1
|
Serra M, Faustini G, Brembati V, Casu MA, Pizzi M, Morelli M, Pinna A, Bellucci A. Early α-synuclein/synapsin III co-accumulation, nigrostriatal dopaminergic synaptopathy and denervation in the MPTPp mouse model of Parkinson's Disease. Exp Neurol 2024; 383:115040. [PMID: 39500391 DOI: 10.1016/j.expneurol.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/10/2024]
Abstract
Parkinson's disease (PD) is characterized by the loss of nigrostriatal dopaminergic neurons and the presence of Lewy bodies (LB), intraneuronal inclusions mainly composed of α-synuclein (α-Syn) fibrils. Compelling evidence supports that, in PD brains, synapses are the sites where neurodegeneration initiates several years before the manifestation of motor symptoms. Furthermore, the amount of α-Syn deposited at synaptic terminals is several orders greater than that constituting LB. This hints that pathological synaptic α-Syn aggregates may be the main trigger for the retrograde synapse-to-cell body degeneration pattern characterizing early prodromal phases of PD. Identifying reliable biomarkers of synaptopathy is therefore crucial for early diagnosis. Here, we studied the alterations of key dopaminergic and non-dopaminergic striatal synaptic markers during the initial phases of axonal and cell body degeneration in mice subjected to 3 or 10 administrations of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine + probenecid (MPTPp), a model for early prodromal PD. We found that MPTPp administration resulted in progressive deposition of α-Syn, advancing from synaptic terminals to axons and dopaminergic neuron cell bodies. This was accompanied by marked co-accumulation of Synapsin III (Syn III), a synaptic protein previously identified as a component of α-Syn fibrils in post-mortem PD brains and as a main stabilizer of α-Syn aggregates, as well as very early and severe reduction of vesicular monoamine transporter 2 (VMAT2), dopamine transporter (DAT) and tyrosine hydroxylase (TH) immunoreactivity in nigrostriatal neurons. Results also showed that striatal α-Syn accumulation and VMAT2 decrease, unlike other markers, did not recover following washout from 10 MPTPp administrations, supporting that these changes were precocious and severe. Finally, we found that early changes in striatal α-Syn, Syn III, VMAT2 and DAT observed following 3 MPTPp administrations, correlated with nigrostriatal neuron loss after 10 MPTPp administrations. These findings indicate that α-Syn/Syn III co-deposition characterizes very early stages of striatal dopaminergic dysfunction in the MPTPp model and highlight that VMAT2 and Syn III could be two reliable molecular imaging biomarkers to predict dopamine neuron denervation and estimate α-Syn-related synaptopathy in prodromal and early symptomatic phases of PD.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Gaia Faustini
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Viviana Brembati
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy.
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine University of Brescia, Brescia, Italy.
| |
Collapse
|
2
|
Bernard K, Mota JA, Wene P, Corenblum MJ, Saez JL, Bartlett MJ, Heien ML, Doyle KP, Polt R, Hay M, Madhavan L, Falk T. The angiotensin (1-7) glycopeptide PNA5 improves cognition in a chronic progressive mouse model of Parkinson's disease through modulation of neuroinflammation. Exp Neurol 2024; 381:114926. [PMID: 39153685 DOI: 10.1016/j.expneurol.2024.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
Cognitive decline in Parkinson's Disease (PD) is a prevalent and undertreated aspect of disease. Currently, no therapeutics adequately improve this aspect of disease. It has been previously shown that MAS receptor agonism via the glycosylated Angiotensin (1-7) peptide, PNA5, effectively reduces cognitive decline in models of vascular contributions to cognitive impairment and dementia (VCID). PNA5 has a brain/plasma ratio of 0.255 indicating good brain penetration. The goal of the present study was to determine if (1) systemic administration of PNA5 rescued cognitive decline in a mouse model of PD, and (2) if improvements in cognitive status could be correlated with changes to histopathological or blood plasma-based changes. Mice over-expressing human, wild-type α-synuclein (αSyn) under the Thy1 promoter (Thy1-αSyn mice, "line 61") were used as a model of PD with cognitive decline. Thy1-αSyn mice were treated with a systemic dose of PNA5, or saline (1 mg/kg/day) beginning at 4 months of age and underwent behavioral testing at 6 months, compared to WT. Subsequently, mice brains were analyzed for changes to brain pathology, and blood plasma was examined with a Multiplex Immunoassay for peripheral cytokine changes. Treatment with PNA5 reversed cognitive dysfunction measured by Novel Object Recognition and spontaneous alteration in a Y-maze in Thy1-αSyn mice. PNA5 treatment was specific to cognitive deficits, as fine-motor disturbances were unchanged. Enhanced cognition was associated with decreases in hippocampal inflammation and reductions in circulating levels of Macrophage Induced Protein (MIP-1β). Additionally, neuronal loss was blunted within the CA3 hippocampal region of PNA5-treated αsyn mice. These data reveal that PNA5 treatment reduces cognitive dysfunction in a mouse model of PD. These changes are associated with decreased MIP-1β levels in plasma identifying a candidate biomarker for target engagement. Thus, PNA5 treatment could potentially fill the therapeutic gap for cognitive decline in PD.
Collapse
Affiliation(s)
- Kelsey Bernard
- Physiological Sciences Graduate Program, University of Arizona, Tucson, AZ, United States
| | - Jesus A Mota
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Paige Wene
- Department of Microbiology, University of Arizona, Tucson, AZ, United States
| | - Mandi J Corenblum
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Juben L Saez
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | | | - M Leandro Heien
- Department of Chemistry & Biochemistry, Tucson, AZ, United States
| | - Kristian P Doyle
- Department of Neurology, University of Arizona, Tucson, AZ, United States; Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry & Biochemistry, Tucson, AZ, United States; BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - Meredith Hay
- Department of Physiology, University of Arizona, Tucson, AZ, United States; Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Physiological Sciences Graduate Program, University of Arizona, Tucson, AZ, United States; Department of Neurology, University of Arizona, Tucson, AZ, United States; BIO5 Institute, University of Arizona, Tucson, AZ, United States; Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, United States.
| | - Torsten Falk
- Physiological Sciences Graduate Program, University of Arizona, Tucson, AZ, United States; Department of Neurology, University of Arizona, Tucson, AZ, United States; Department of Pharmacology, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
3
|
Fiorini MR, Dilliott AA, Thomas RA, Farhan SMK. Transcriptomics of Human Brain Tissue in Parkinson's Disease: a Comparison of Bulk and Single-cell RNA Sequencing. Mol Neurobiol 2024; 61:8996-9015. [PMID: 38578357 PMCID: PMC11496323 DOI: 10.1007/s12035-024-04124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease leading to motor dysfunction and, in some cases, dementia. Transcriptome analysis is one promising approach for characterizing PD and other neurodegenerative disorders by informing how specific disease events influence gene expression and contribute to pathogenesis. With the emergence of single-cell and single-nucleus RNA sequencing (scnRNA-seq) technologies, the transcriptional landscape of neurodegenerative diseases can now be described at the cellular level. As the application of scnRNA-seq is becoming routine, it calls to question how results at a single-cell resolution compare to those obtained from RNA sequencing of whole tissues (bulk RNA-seq), whether the findings are compatible, and how the assays are complimentary for unraveling the elusive transcriptional changes that drive neurodegenerative disease. Herein, we review the studies that have leveraged RNA-seq technologies to investigate PD. Through the integration of bulk and scnRNA-seq findings from human, post-mortem brain tissue, we use the PD literature as a case study to evaluate the compatibility of the results generated from each assay and demonstrate the complementarity of the sequencing technologies. Finally, through the lens of the PD transcriptomic literature, we evaluate the current feasibility of bulk and scnRNA-seq technologies to illustrate the necessity of both technologies for achieving a comprehensive insight into the mechanism by which gene expression promotes neurodegenerative disease. We conclude that the continued application of both assays will provide the greatest insight into neurodegenerative disease pathology, providing both cell-specific and whole-tissue level information.
Collapse
Affiliation(s)
- Michael R Fiorini
- The Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Allison A Dilliott
- The Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Rhalena A Thomas
- The Montreal Neurological Institute-Hospital, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Sali M K Farhan
- The Montreal Neurological Institute-Hospital, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Li D, Rongchun W, Lu W, Ma Y. Exploring the potential of MFG-E8 in neurodegenerative diseases. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39468823 DOI: 10.1080/10408398.2024.2417800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Milk fat globule-epidermal growth factor 8 (MFG-E8) is a multifunctional glycoprotein regulating intercellular interactions in various biological and pathological processes. This review summarizes the effects and mechanisms of MFG-E8 in neurodegenerative diseases (NDDs), emphasizing its roles in inflammation, apoptosis, and oxidative stress. In this review, will also explore the potential of MFG-E8 as a diagnostic biomarker and its therapeutic applications in neurodegenerative disorders. Recent studies have revealed intriguing characteristics of using MFG-E8 as a potential drug for treating various brain disorders. While the discovery, origin, expression, and physiological functions of MFG-E8 in various organs and tissues are well defined, its role in the brain remains less understood. This is particularly true for NDDs, indicating unmet medical needs. Elucidating its role in the brain could position MFG-E8 as a potential treatment for NDDs.
Collapse
Affiliation(s)
- Dan Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Wang Rongchun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Weihong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
5
|
Gabrielli AP, Novikova L, Ranjan A, Wang X, Ernst NJ, Abeykoon D, Roberts A, Kopp A, Mansel C, Qiao L, Lysaker CR, Wiedling IW, Wilkins HM, Swerdlow RH. Inhibiting mtDNA transcript translation alters Alzheimer's disease-associated biology. Alzheimers Dement 2024. [PMID: 39441557 DOI: 10.1002/alz.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) features changes in mitochondrial structure and function. Investigators debate where to position mitochondrial pathology within the chronology and context of other AD features. METHODS To address whether mitochondrial dysfunction alters AD-implicated genes and proteins, we treated SH-SY5Y cells and induced pluripotent stem cell (iPSC)-derived neurons with chloramphenicol, an antibiotic that inhibits mtDNA-generated transcript translation. We characterized adaptive, AD-associated gene, and AD-associated protein responses. RESULTS SH-SY5Y cells and iPSC neurons responded to mtDNA transcript translation inhibition by increasing mtDNA copy number and transcription. Nuclear-expressed respiratory chain mRNA and protein levels also changed. There were AD-consistent concordant and model-specific changes in amyloid precursor protein, beta amyloid, apolipoprotein E, tau, and α-synuclein biology. DISCUSSION Primary mitochondrial dysfunction induces compensatory organelle responses, changes nuclear gene expression, and alters the biology of AD-associated genes and proteins in ways that may recapitulate brain aging and AD molecular phenomena. HIGHLIGHTS In AD, mitochondrial dysfunction could represent a disease cause or consequence. We inhibited mitochondrial translation in human neuronal cells and neurons. Mitochondrial and nuclear gene expression shifted in adaptive-consistent patterns. APP, Aβ, APOE, tau, and α-synuclein biology changed in AD-consistent patterns. Mitochondrial stress creates an environment that promotes AD pathology.
Collapse
Affiliation(s)
- Alexander P Gabrielli
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
- Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Lesya Novikova
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
| | - Amol Ranjan
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
| | - Xiaowan Wang
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
| | - Nicholas J Ernst
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
| | - Dhanushki Abeykoon
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
| | - Anysja Roberts
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
| | - Annie Kopp
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
| | - Clayton Mansel
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
| | - Linlan Qiao
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
| | - Colton R Lysaker
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Neurology, the University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ian W Wiedling
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
- Neurology, the University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Neurology, the University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
- Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Neurology, the University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
6
|
Schueller E, Grgurina I, Cosquer B, Panzer E, Penaud N, Pereira de Vasconcelos A, Stéphan A, Merienne K, Cassel JC, Mathis C, Blanc F, Bousiges O, Boutillier AL. A novel mouse model reproducing frontal alterations related to the prodromal stage of dementia with LEWY bodies. Neurobiol Dis 2024; 201:106676. [PMID: 39307398 DOI: 10.1016/j.nbd.2024.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/20/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is the second most common age-related neurocognitive pathology after Alzheimer's disease. Animal models characterizing this disease are lacking and their development would ameliorate both the understanding of neuropathological mechanisms underlying DLB as well as the efficacy of pre-clinical studies tackling this disease. METHODS We performed extensive phenotypic characterization of a transgenic mouse model overexpressing, most prominently in the dorsal hippocampus (DH) and frontal cortex (FC), wild-type form of the human α-synuclein gene (mThy1-hSNCA, 12 to 14-month-old males). Moreover, we drew a comparison of our mouse model results to DH- and FC- dependent neuropsychological and neuropathological deficits observed in a cohort of patients including 34 healthy control subjects and 55 prodromal-DLB patients (males and females). RESULTS Our study revealed an increase of pathological form of soluble α-synuclein, mainly in the FC and DH of the mThy1-hSNCA model. However, functional impairment as well as increase in transcripts of inflammatory markers and decrease in plasticity-relevant protein level were exclusive to the FC. Furthermore, we did not observe pathophysiological or Tyrosine Hydroxylase alterations in the striatum or substantia nigra, nor motor deficits in our model. Interestingly, the results stemming from the cohort of prodromal DLB patients also demonstrated functional deficits emanating from FC alterations, along with preservation of those usually related to DH dysfunctions. CONCLUSIONS This study demonstrates that pathophysiological impairment of the FC with concomitant DH preservation is observed at an early stage of DLB, and that the mThy1-hSNCA mouse model parallels some markers of this pathology.
Collapse
Affiliation(s)
- Estelle Schueller
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364 CNRS, 12 Rue Goethe, Strasbourg, France
| | - Iris Grgurina
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364 CNRS, 12 Rue Goethe, Strasbourg, France
| | - Brigitte Cosquer
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364 CNRS, 12 Rue Goethe, Strasbourg, France
| | - Elodie Panzer
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364 CNRS, 12 Rue Goethe, Strasbourg, France
| | - Noémie Penaud
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364 CNRS, 12 Rue Goethe, Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364 CNRS, 12 Rue Goethe, Strasbourg, France
| | - Aline Stéphan
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364 CNRS, 12 Rue Goethe, Strasbourg, France
| | - Karine Merienne
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364 CNRS, 12 Rue Goethe, Strasbourg, France
| | - Jean-Christophe Cassel
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364 CNRS, 12 Rue Goethe, Strasbourg, France
| | - Chantal Mathis
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364 CNRS, 12 Rue Goethe, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team, University of Strasbourg and CNRS, Strasbourg, France; CM2R (Research and Resources Memory Center), Geriatric Day Hospital, Neurogeriatric Service, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
| | - Olivier Bousiges
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364 CNRS, 12 Rue Goethe, Strasbourg, France; ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team, University of Strasbourg and CNRS, Strasbourg, France; University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Avenue Molière, Hôpital de Hautepierre, Strasbourg, France.
| | - Anne-Laurence Boutillier
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364 CNRS, 12 Rue Goethe, Strasbourg, France.
| |
Collapse
|
7
|
Kaur T, Sidana P, Kaur N, Choubey V, Kaasik A. Unraveling neuroprotection in Parkinson's disease: Nrf2-Keap1 pathway's vital role amidst pathogenic pathways. Inflammopharmacology 2024; 32:2801-2820. [PMID: 39136812 DOI: 10.1007/s10787-024-01549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 10/11/2024]
Abstract
Parkinson's disease (PD) is an age-related chronic neurological condition characterized by progressive degeneration of dopaminergic neurons and the presence of Lewy bodies, primarily composed of alpha-synuclein and ubiquitin. The pathophysiology of PD encompasses alpha-synuclein aggregation, oxidative stress, neuroinflammation, mitochondrial dysfunction, and impaired autophagy and ubiquitin-proteasome systems. Among these, the Keap1-Nrf2 pathway is a key regulator of antioxidant defense mechanisms. Nrf2 has emerged as a crucial factor in managing oxidative stress and inflammation, and it also influences ubiquitination through p62 expression. Keap1 negatively regulates Nrf2 by targeting it for degradation via the ubiquitin-proteasome system. Disruption of the Nrf2-Keap1 pathway in PD affects cellular responses to oxidative stress and inflammation, thereby playing a critical role in disease progression. In addition, the role of neuroinflammation in PD has gained significant attention, highlighting the interplay between immune responses and neurodegeneration. This review discusses the various mechanisms responsible for neuronal degeneration in PD, with a special emphasis on the neuroprotective role of the Nrf2-Keap1 pathway. Furthermore, it explores the implications of inflammopharmacology in modulating these pathways to provide therapeutic insights for PD.
Collapse
Affiliation(s)
- Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India.
| | - Palak Sidana
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Vinay Choubey
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Padalko V, Posnik F, Adamczyk M. Mitochondrial Aconitase and Its Contribution to the Pathogenesis of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9950. [PMID: 39337438 PMCID: PMC11431987 DOI: 10.3390/ijms25189950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This survey reviews modern ideas on the structure and functions of mitochondrial and cytosolic aconitase isoenzymes in eukaryotes. Cumulative experimental evidence about mitochondrial aconitases (Aco2) as one of the main targets of reactive oxygen and nitrogen species is generalized. The important role of Aco2 in maintenance of homeostasis of the intracellular iron pool and maintenance of the mitochondrial DNA is discussed. The role of Aco2 in the pathogenesis of some neurodegenerative diseases is highlighted. Inactivation or dysfunction of Aco2 as well as mutations found in the ACO2 gene appear to be significant factors in the development and promotion of various types of neurodegenerative diseases. A restoration of efficient mitochondrial functioning as a source of energy for the cell by targeting Aco2 seems to be one of the promising therapeutic directions to minimize progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Volodymyr Padalko
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- School of Medicine, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Filip Posnik
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Malgorzata Adamczyk
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
9
|
Duranti E, Villa C. From Brain to Muscle: The Role of Muscle Tissue in Neurodegenerative Disorders. BIOLOGY 2024; 13:719. [PMID: 39336146 PMCID: PMC11428675 DOI: 10.3390/biology13090719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs), like amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and Parkinson's disease (PD), primarily affect the central nervous system, leading to progressive neuronal loss and motor and cognitive dysfunction. However, recent studies have revealed that muscle tissue also plays a significant role in these diseases. ALS is characterized by severe muscle wasting as a result of motor neuron degeneration, as well as alterations in gene expression, protein aggregation, and oxidative stress. Muscle atrophy and mitochondrial dysfunction are also observed in AD, which may exacerbate cognitive decline due to systemic metabolic dysregulation. PD patients exhibit muscle fiber atrophy, altered muscle composition, and α-synuclein aggregation within muscle cells, contributing to motor symptoms and disease progression. Systemic inflammation and impaired protein degradation pathways are common among these disorders, highlighting muscle tissue as a key player in disease progression. Understanding these muscle-related changes offers potential therapeutic avenues, such as targeting mitochondrial function, reducing inflammation, and promoting muscle regeneration with exercise and pharmacological interventions. This review emphasizes the importance of considering an integrative approach to neurodegenerative disease research, considering both central and peripheral pathological mechanisms, in order to develop more effective treatments and improve patient outcomes.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
10
|
Li W, Varatharajah Y, Dicks E, Barnard L, Brinkmann BH, Crepeau D, Worrell G, Fan W, Kremers W, Boeve B, Botha H, Gogineni V, Jones DT. Data-driven retrieval of population-level EEG features and their role in neurodegenerative diseases. Brain Commun 2024; 6:fcae227. [PMID: 39086629 PMCID: PMC11289732 DOI: 10.1093/braincomms/fcae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Electrophysiologic disturbances due to neurodegenerative disorders such as Alzheimer's disease and Lewy Body disease are detectable by scalp EEG and can serve as a functional measure of disease severity. Traditional quantitative methods of EEG analysis often require an a-priori selection of clinically meaningful EEG features and are susceptible to bias, limiting the clinical utility of routine EEGs in the diagnosis and management of neurodegenerative disorders. We present a data-driven tensor decomposition approach to extract the top 6 spectral and spatial features representing commonly known sources of EEG activity during eyes-closed wakefulness. As part of their neurologic evaluation at Mayo Clinic, 11 001 patients underwent 12 176 routine, standard 10-20 scalp EEG studies. From these raw EEGs, we developed an algorithm based on posterior alpha activity and eye movement to automatically select awake-eyes-closed epochs and estimated average spectral power density (SPD) between 1 and 45 Hz for each channel. We then created a three-dimensional (3D) tensor (record × channel × frequency) and applied a canonical polyadic decomposition to extract the top six factors. We further identified an independent cohort of patients meeting consensus criteria for mild cognitive impairment (30) or dementia (39) due to Alzheimer's disease and dementia with Lewy Bodies (31) and similarly aged cognitively normal controls (36). We evaluated the ability of the six factors in differentiating these subgroups using a Naïve Bayes classification approach and assessed for linear associations between factor loadings and Kokmen short test of mental status scores, fluorodeoxyglucose (FDG) PET uptake ratios and CSF Alzheimer's Disease biomarker measures. Factors represented biologically meaningful brain activities including posterior alpha rhythm, anterior delta/theta rhythms and centroparietal beta, which correlated with patient age and EEG dysrhythmia grade. These factors were also able to distinguish patients from controls with a moderate to high degree of accuracy (Area Under the Curve (AUC) 0.59-0.91) and Alzheimer's disease dementia from dementia with Lewy Bodies (AUC 0.61). Furthermore, relevant EEG features correlated with cognitive test performance, PET metabolism and CSF AB42 measures in the Alzheimer's subgroup. This study demonstrates that data-driven approaches can extract biologically meaningful features from population-level clinical EEGs without artefact rejection or a-priori selection of channels or frequency bands. With continued development, such data-driven methods may improve the clinical utility of EEG in memory care by assisting in early identification of mild cognitive impairment and differentiating between different neurodegenerative causes of cognitive impairment.
Collapse
Affiliation(s)
- Wentao Li
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Kaiser Permanente Northern California, Sacramento, CA 95758, USA
| | - Yogatheesan Varatharajah
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
- Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellen Dicks
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Leland Barnard
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Daniel Crepeau
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Winnie Fan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Walter Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Bradley Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Bie J, Li R, Li Y, Song C, Chen Z, Zhang T, Tang Z, Su L, Zhu L, Wang J, Wan Y, Chen J, Liu X, Li T, Luo J. PKM2 aggregation drives metabolism reprograming during aging process. Nat Commun 2024; 15:5761. [PMID: 38982055 PMCID: PMC11233639 DOI: 10.1038/s41467-024-50242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2024] [Indexed: 07/11/2024] Open
Abstract
While protein aggregation's association with aging and age-related diseases is well-established, the specific proteins involved and whether dissolving them could alleviate aging remain unclear. Our research addresses this gap by uncovering the role of PKM2 aggregates in aging. We find that PKM2 forms aggregates in senescent cells and organs from aged mice, impairing its enzymatic activity and glycolytic flux, thereby driving cells into senescence. Through a rigorous two-step small molecule library screening, we identify two compounds, K35 and its analog K27, capable of dissolving PKM2 aggregates and alleviating senescence. Further experiments show that treatment with K35 and K27 not only alleviate aging-associated signatures but also extend the lifespan of naturally and prematurely aged mice. These findings provide compelling evidence for the involvement of PKM2 aggregates in inducing cellular senescence and aging phenotypes, and suggest that targeting these aggregates could be a promising strategy for anti-aging drug discovery.
Collapse
Affiliation(s)
- Juntao Bie
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
- Medical Innovation Center (Taizhou) of Peking University, Taizhou, 225316, China
| | - Ridong Li
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yutong Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Chen Song
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Zhaoming Chen
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Tianzhuo Zhang
- Department of Anesthesiology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Li Su
- Peking university medical and health analysis center, Beijing, 100191, China
| | - Liangyi Zhu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Jiaxin Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - You Wan
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191, China
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
| | - Tingting Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191, China.
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China.
- Medical Innovation Center (Taizhou) of Peking University, Taizhou, 225316, China.
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
12
|
Zarkali A, Thomas GEC, Zetterberg H, Weil RS. Neuroimaging and fluid biomarkers in Parkinson's disease in an era of targeted interventions. Nat Commun 2024; 15:5661. [PMID: 38969680 PMCID: PMC11226684 DOI: 10.1038/s41467-024-49949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
A major challenge in Parkinson's disease is the variability in symptoms and rates of progression, underpinned by heterogeneity of pathological processes. Biomarkers are urgently needed for accurate diagnosis, patient stratification, monitoring disease progression and precise treatment. These were previously lacking, but recently, novel imaging and fluid biomarkers have been developed. Here, we consider new imaging approaches showing sensitivity to brain tissue composition, and examine novel fluid biomarkers showing specificity for pathological processes, including seed amplification assays and extracellular vesicles. We reflect on these biomarkers in the context of new biological staging systems, and on emerging techniques currently in development.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, Institute of Neurology, UCL, London, UK.
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Rimona S Weil
- Dementia Research Centre, Institute of Neurology, UCL, London, UK
- Department of Advanced Neuroimaging, UCL, London, UK
- Movement Disorders Centre, UCL, London, UK
| |
Collapse
|
13
|
Wang C, Wang J, Zhu Z, Hu J, Lin Y. Spotlight on pro-inflammatory chemokines: regulators of cellular communication in cognitive impairment. Front Immunol 2024; 15:1421076. [PMID: 39011039 PMCID: PMC11247373 DOI: 10.3389/fimmu.2024.1421076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
Cognitive impairment is a decline in people's ability to think, learn, and remember, and so forth. Cognitive impairment is a global health challenge that affects the quality of life of thousands of people. The condition covers a wide range from mild cognitive impairment to severe dementia, which includes Alzheimer's disease (AD) and Parkinson's disease (PD), among others. While the etiology of cognitive impairment is diverse, the role of chemokines is increasingly evident, especially in the presence of chronic inflammation and neuroinflammation. Although inflammatory chemokines have been linked to cognitive impairment, cognitive impairment is usually multifactorial. Researchers are exploring the role of chemokines and other inflammatory mediators in cognitive dysfunction and trying to develop therapeutic strategies to mitigate their effects. The pathogenesis of cognitive disorders is very complex, their underlying causative mechanisms have not been clarified, and their treatment is always one of the challenges in the field of medicine. Therefore, exploring its pathogenesis and treatment has important socioeconomic value. Chemokines are a growing family of structurally and functionally related small (8-10 kDa) proteins, and there is growing evidence that pro-inflammatory chemokines are associated with many neurobiological processes that may be relevant to neurological disorders beyond their classical chemotactic function and play a crucial role in the pathogenesis and progression of cognitive disorders. In this paper, we review the roles and regulatory mechanisms of pro-inflammatory chemokines (CCL2, CCL3, CCL4, CCL5, CCL11, CCL20, and CXCL8) in cognitive impairment. We also discuss the intrinsic relationship between the two, hoping to provide some valuable references for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jiayi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zhichao Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
| | - Yong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesia, The First Affiliated Hospital of GanNan Medical University, Ganzhou, China
| |
Collapse
|
14
|
Pan W, Su C, Maasch JRMA, Chen K, Henchcliffe C, Wang F. Learning Phenotypic Associations for Parkinson's Disease with Longitudinal Clinical Records. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2024; 2024:374-383. [PMID: 38827071 PMCID: PMC11141836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Parkinson's disease (PD) is associated with multiple clinical motor and non-motor manifestations. Understanding of PD etiologies has been informed by a growing number of genetic mutations and various fluid-based and brain imaging biomarkers. However, the mechanisms underlying its varied phenotypic features remain elusive. The present work introduces a data-driven approach for generating phenotypic association graphs for PD cohorts. Data collected by the Parkinson's Progression Markers Initiative (PPMI), the Parkinson's Disease Biomarkers Program (PDBP), and the Fox Investigation for New Discovery of Biomarkers (BioFIND) were analyzed by this approach to identify heterogeneous and longitudinal phenotypic associations that may provide insight into the pathology of this complex disease. Findings based on the phenotypic association graphs could improve understanding of longitudinal PD pathologies and how these relate to patient symptomology.
Collapse
Affiliation(s)
- Weishen Pan
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Chang Su
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Kun Chen
- Department of Statistics, University of Connecticut, Storrs, CT, USA
| | - Claire Henchcliffe
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
15
|
Casiano Rivera CV, Wallace JN, Fisher GE, Morgan JR. Acute introduction of phosphoserine-129 α-synuclein induces severe swelling of mitochondria at lamprey synapses. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001206. [PMID: 38854632 PMCID: PMC11157340 DOI: 10.17912/micropub.biology.001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Abnormal synaptic aggregation of α-synuclein is linked to cognitive deficits in Parkinson's disease (PD). While the impacts of excess α-synuclein on synaptic function are well established, comparatively less is known about the effects on local mitochondria. Here, we examined morphological features of synaptic mitochondria treated with wild type (WT) or phosphoserine 129 (pS129) α-synuclein, a variant with prominent synaptic accumulation in PD. Acute introduction of pS129 α-synuclein to lamprey synapses caused an activity-dependent swelling and bursting of mitochondria, which did not occur with WT α-synuclein. These pS129-induced effects on mitochondria likely contribute to the synaptic deficits observed in PD.
Collapse
Affiliation(s)
- Caroline V. Casiano Rivera
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
| | - Jaqulin N. Wallace
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
| | - Gia E. Fisher
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
- Biological Sciences Division, The University of Chicago
| | - Jennifer R. Morgan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
| |
Collapse
|
16
|
Chapman MA, Sorg BA. A Systematic Review of Extracellular Matrix-Related Alterations in Parkinson's Disease. Brain Sci 2024; 14:522. [PMID: 38928523 PMCID: PMC11201521 DOI: 10.3390/brainsci14060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
The role of the extracellular matrix (ECM) in Parkinson's disease (PD) is not well understood, even though it is critical for neuronal structure and signaling. This systematic review identified the top deregulated ECM-related pathways in studies that used gene set enrichment analyses (GSEA) to document transcriptomic, proteomic, or genomic alterations in PD. PubMed and Google scholar were searched for transcriptomics, proteomics, or genomics studies that employed GSEA on data from PD tissues or cells and reported ECM-related pathways among the top-10 most enriched versus controls. Twenty-seven studies were included, two of which used multiple omics analyses. Transcriptomics and proteomics studies were conducted on a variety of tissue and cell types. Of the 17 transcriptomics studies (16 data sets), 13 identified one or more adhesion pathways in the top-10 deregulated gene sets or pathways, primarily related to cell adhesion and focal adhesion. Among the 8 proteomics studies, 5 identified altered overarching ECM gene sets or pathways among the top 10. Among the 4 genomics studies, 3 identified focal adhesion pathways among the top 10. The findings summarized here suggest that ECM organization/structure and cell adhesion (particularly focal adhesion) are altered in PD and should be the focus of future studies.
Collapse
Affiliation(s)
| | - Barbara A. Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, USA;
| |
Collapse
|
17
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, AlAseeri AA, Alruwaili M, Saad HM, Batiha GE. BDNF/TrkB activators in Parkinson's disease: A new therapeutic strategy. J Cell Mol Med 2024; 28:e18368. [PMID: 38752280 PMCID: PMC11096816 DOI: 10.1111/jcmm.18368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Research and DevelopmentFunogenAthensGreece
- Department of Research and DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Ali Abdullah AlAseeri
- Department of Internal MedicineCollege of Medicine, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
18
|
Bavarsad MS, Grinberg LT. SV2A PET imaging in human neurodegenerative diseases. Front Aging Neurosci 2024; 16:1380561. [PMID: 38699560 PMCID: PMC11064927 DOI: 10.3389/fnagi.2024.1380561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
This manuscript presents a thorough review of synaptic vesicle glycoprotein 2A (SV2A) as a biomarker for synaptic integrity using Positron Emission Tomography (PET) in neurodegenerative diseases. Synaptic pathology, characterized by synaptic loss, has been linked to various brain diseases. Therefore, there is a need for a minimally invasive approach to measuring synaptic density in living human patients. Several radiotracers targeting synaptic vesicle protein 2A (SV2A) have been created and effectively adapted for use in human subjects through PET scans. SV2A is an integral glycoprotein found in the membranes of synaptic vesicles in all synaptic terminals and is widely distributed throughout the brain. The review delves into the development of SV2A-specific PET radiotracers, highlighting their advancements and limitations in neurodegenerative diseases. Among these tracers, 11C-UCB-J is the most used so far. We summarize and discuss an increasing body of research that compares measurements of synaptic density using SV2A PET with other established indicators of neurodegenerative diseases, including cognitive performance and radiological findings, thus providing a comprehensive analysis of SV2A's effectiveness and reliability as a diagnostic tool in contrast to traditional markers. Although the literature overall suggests the promise of SV2A as a diagnostic and therapeutic monitoring tool, uncertainties persist regarding the superiority of SV2A as a biomarker compared to other available markers. The review also underscores the paucity of studies characterizing SV2A distribution and loss in human brain tissue from patients with neurodegenerative diseases, emphasizing the need to generate quantitative neuropathological maps of SV2A density in cases with neurodegenerative diseases to fully harness the potential of SV2A PET imaging in clinical settings. We conclude by outlining future research directions, stressing the importance of integrating SV2A PET imaging with other biomarkers and clinical assessments and the need for longitudinal studies to track SV2A changes throughout neurodegenerative disease progression, which could lead to breakthroughs in early diagnosis and the evaluation of new treatments.
Collapse
Affiliation(s)
| | - Lea T. Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
19
|
Oliveira da Silva MI, Santejo M, Babcock IW, Magalhães A, Minamide LS, Won SJ, Castillo E, Gerhardt E, Fahlbusch C, Swanson RA, Outeiro TF, Taipa R, Ruff M, Bamburg JR, Liz MA. α-Synuclein triggers cofilin pathology and dendritic spine impairment via a PrP C-CCR5 dependent pathway. Cell Death Dis 2024; 15:264. [PMID: 38615035 PMCID: PMC11016063 DOI: 10.1038/s41419-024-06630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Cognitive dysfunction and dementia are critical symptoms of Lewy Body dementias (LBD). Specifically, alpha-synuclein (αSyn) accumulation in the hippocampus leading to synaptic dysfunction is linked to cognitive deficits in LBD. Here, we investigated the pathological impact of αSyn on hippocampal neurons. We report that either αSyn overexpression or αSyn pre-formed fibrils (PFFs) treatment triggers the formation of cofilin-actin rods, synapse disruptors, in cultured hippocampal neurons and in the hippocampus of synucleinopathy mouse models and of LBD patients. In vivo, cofilin pathology is present concomitantly with synaptic impairment and cognitive dysfunction. Rods generation prompted by αSyn involves the co-action of the cellular prion protein (PrPC) and the chemokine receptor 5 (CCR5). Importantly, we show that CCR5 inhibition, with a clinically relevant peptide antagonist, reverts dendritic spine impairment promoted by αSyn. Collectively, we detail the cellular and molecular mechanism through which αSyn disrupts hippocampal synaptic structure and we identify CCR5 as a novel therapeutic target to prevent synaptic impairment and cognitive dysfunction in LBD.
Collapse
Grants
- R01 AG049668 NIA NIH HHS
- R01 NS105774 NINDS NIH HHS
- R43 AG071064 NIA NIH HHS
- S10 OD025127 NIH HHS
- Applicable Funding Source FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-028336 (PTDC/MED-NEU/28336/2017); National Funds through FCT – Fundação para a Ciência e a Tecnologia under the project IF/00902/2015; R&D@PhD from Luso-American Development Foundation (FLAD); FLAD Healthcare 2020; and Programme for Cooperation in Science between Portugal and Germany 2018/2019 (FCT/DAAD). Márcia A Liz is supported by CEECINST/00091/2018.
- FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-028336 (PTDC/MED-NEU/28336/2017); National Funds through FCT – Fundação para a Ciência e a Tecnologia under the project IF/00902/2015; R&D@PhD from Luso-American Development Foundation (FLAD); FLAD Healthcare 2020; and Programme for Cooperation in Science between Portugal and Germany 2018/2019 (FCT/DAAD).
- Generous gifts to the Colorado State University Development Fund (J.R.B) and by the National Institutes on Aging of the National Institutes of Health under award numbers R01AG049668, 1S10OD025127 (J.R.B), and R43AG071064 (J.R.B).
- National Institutes on Aging of the National Institutes of Health under award number RO1NS105774 (R.A.S).
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2067/1- 390729940) and SFB1286 (Project B8)
- Generous gifts to the Colorado State University Development Fund (J.R.B) and by the National Institutes on Aging of the National Institutes of Health under award numbers R01AG049668, 1S10OD025127 (J.R.B), R43AG071064 (J.R.B)
Collapse
Affiliation(s)
- Marina I Oliveira da Silva
- Neurodegeneration Team, Nerve Regeneration Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Miguel Santejo
- Neurodegeneration Team, Nerve Regeneration Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Isaac W Babcock
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ana Magalhães
- Addiction Biology Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Laurie S Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Seok-Joon Won
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Erika Castillo
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Christiane Fahlbusch
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Raymond A Swanson
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075, Göttingen, Germany
| | - Ricardo Taipa
- Neuropathology Unit, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
- Autoimmune and Neuroscience Research Group, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, 4050-600, Porto, Portugal
| | - Michael Ruff
- Creative Bio-Peptides, Rockville, MD, 20854, USA
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Márcia A Liz
- Neurodegeneration Team, Nerve Regeneration Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
20
|
Sharma M, Aggarwal N, Mishra J, Panda JJ. Neuroglia targeting nano-therapeutic approaches to rescue aging and neurodegenerating brain. Int J Pharm 2024; 654:123950. [PMID: 38430951 DOI: 10.1016/j.ijpharm.2024.123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Despite intense efforts at the bench, the development of successful brain-targeting therapeutics to relieve malicious neural diseases remains primitive. The brain, being a beautifully intricate organ, consists of heterogeneous arrays of neuronal and glial cells. Primarily acting as the support system for neuronal functioning and maturation, glial cells have been observed to be engaged more apparently in the progression and worsening of various neural pathologies. The diseased state is often related to metabolic alterations in glial cells, thereby modulating their physiological homeostasis in conjunction with neuronal dysfunction. A plethora of data indicates the effect of oxidative stress, protein aggregation, and DNA damage in neuroglia impairments. Still, a deeper insight is needed to gain a conflict-free understanding in this arena. As a consequence, glial cells hold the potential to be identified as promising targets for novel therapeutic approaches aimed at brain protection. In this review, we describe the recent strides taken in the direction of understanding the impact of oxidative stress, protein aggregation, and DNA damage on neuroglia impairment and neuroglia-directed nanotherapeutic approaches to mitigate the burden of various neural disorders.
Collapse
Affiliation(s)
- Manju Sharma
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Nidhi Aggarwal
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Jibanananda Mishra
- School of Biosciences, RIMT University, Mandi Gobindgarh, Punjab 147301, India.
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India.
| |
Collapse
|
21
|
Yu H, Feng R, Chen F, Wu Z, Li D, Qiu X. Rapid FRET Assay for the Early Detection of Alpha-Synuclein Aggregation in Parkinson's Disease. ACS Chem Neurosci 2024; 15:1378-1387. [PMID: 38506367 DOI: 10.1021/acschemneuro.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Alpha-synuclein (α-Syn) is a key protein of Parkinson's disease (PD). Oligomers formed by misfolding and aggregation of α-Syn can cause many pathological phenomena and aggravate the development of PD. Therefore, sensitive and accurate detection of oligomers is essential to understanding the pathology of PD and beneficial to screening and developing new drugs against PD. Here, we demonstrated a simple and sensitive method to detect the early aggregation of α-Syn via Förster resonance energy transfer (FRET) technology. We performed systematic investigations of the FRET sensitizations, efficiencies, and donor-to-acceptor distances during α-Syn aggregation, which was proved to be more sensitive to reflect small distance changes in the early stage of α-Syn aggregation, especially for α-Syn oligomers. The FRET assays were also applied to study the influence of Ser129 phosphorylation (pS129) on the aggregation rate of α-Syn. Our results showed that pS129 modification promotes α-Syn aggregation and enhances the ability of preformed fibrils to induce monomer aggregation. pS129 also increased the cytotoxicity of α-Syn. These results are of great significance for a better understanding of the pathological mechanisms of PD and future PD drug development.
Collapse
Affiliation(s)
- Hang Yu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Rui Feng
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fenglin Chen
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zuodong Wu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Dehai Li
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xue Qiu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
22
|
Novakova L, Gajdos M, Barton M, Brabenec L, Zeleznikova Z, Moravkova I, Rektorova I. Striato-cortical functional connectivity changes in mild cognitive impairment with Lewy bodies. Parkinsonism Relat Disord 2024; 121:106031. [PMID: 38364623 DOI: 10.1016/j.parkreldis.2024.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Functional connectivity changes in clinically overt neurodegenerative diseases such as dementia with Lewy bodies have been described, but studies on connectivity changes in the pre-dementia phase are scarce. OBJECTIVES We concentrated on evaluating striato-cortical functional connectivity differences between patients with Mild Cognitive Impairment with Lewy bodies and healthy controls and on assessing the relation to cognition. METHODS Altogether, we enrolled 77 participants (47 patients, of which 35 met all the inclusion criteria for the final analysis, and 30 age- and gender-matched healthy controls, of which 28 met all the inclusion criteria for the final analysis) to study the seed-based connectivity of the dorsal, middle, and ventral striatum. We assessed correlations between functional connectivity in the regions of between-group differences and neuropsychological scores of interest (visuospatial and executive domains z-scores). RESULTS Subjects with Mild Cognitive Impairment with Lewy Bodies, as compared to healthy controls, showed increased connectivity from the dorsal part of the striatum particularly to the bilateral anterior part of the temporal cortex with an association with executive functions. CONCLUSIONS We were able to capture early abnormal connectivity within cholinergic and noradrenergic pathways that correlated with cognitive functions known to be linked to cholinergic/noradrenergic deficits. The knowledge of specific alterations may improve our understanding of early neural changes in pre-dementia stages and enhance research of disease modifying therapy.
Collapse
Affiliation(s)
- Lubomira Novakova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Martin Gajdos
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Marek Barton
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Lubos Brabenec
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Zaneta Zeleznikova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivona Moravkova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Irena Rektorova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
23
|
Akhtar A, Singh S, Kaushik R, Awasthi R, Behl T. Types of memory, dementia, Alzheimer's disease, and their various pathological cascades as targets for potential pharmacological drugs. Ageing Res Rev 2024; 96:102289. [PMID: 38582379 DOI: 10.1016/j.arr.2024.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia accounting for 90% of cases; however, frontotemporal dementia, vascular dementia, etc. prevails only in a minority of populations. The term dementia is defined as loss of memory which further takes several other categories of memories like working memory, spatial memory, fear memory, and long-term, and short-term memory into consideration. In this review, these memories have critically been elaborated based on context, duration, events, appearance, intensity, etc. The most important part and purpose of the review is the various pathological cascades as well as molecular levels of targets of AD, which have extracellular amyloid plaques and intracellular hyperphosphorylated tau protein as major disease hallmarks. There is another phenomenon that either leads to or arises from the above-mentioned hallmarks, such as oxidative stress, mitochondrial dysfunction, neuroinflammation, cholinergic dysfunction, and insulin resistance. Several potential drugs like antioxidants, anti-inflammatory drugs, acetylcholinesterase inhibitors, insulin mimetics or sensitizers, etc. studied in various previous preclinical or clinical reports were put as having the capacity to act on these pathological targets. Additionally, agents directly or indirectly targeting amyloid and tau were also discussed. This could be further investigated in future research.
Collapse
Affiliation(s)
- Ansab Akhtar
- Louisiana State University Health Sciences Center, Neuroscience Center of Excellence, School of Medicine, New Orleans, LA 70112, USA.
| | - Siddharth Singh
- School of Health Sciences & Technology, UPES University, Bidholi, Dehradun, Uttarakhand 248007, India
| | - Ravinder Kaushik
- School of Health Sciences & Technology, UPES University, Bidholi, Dehradun, Uttarakhand 248007, India
| | - Rajendra Awasthi
- School of Health Sciences & Technology, UPES University, Bidholi, Dehradun, Uttarakhand 248007, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab 140306, India
| |
Collapse
|
24
|
Martin SL, Uribe C, Strafella AP. PET imaging of synaptic density in Parkinsonian disorders. J Neurosci Res 2024; 102:e25253. [PMID: 37814917 DOI: 10.1002/jnr.25253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Synaptic dysfunction and altered synaptic pruning are present in people with Parkinsonian disorders. Dopamine loss and alpha-synuclein accumulation, two hallmarks of Parkinson's disease (PD) pathology, contribute to synaptic dysfunction and reduced synaptic density in PD. Atypical Parkinsonian disorders are likely to have unique spatiotemporal patterns of synaptic density, differentiating them from PD. Therefore, quantification of synaptic density has the potential to support diagnoses, monitor disease progression, and treatment efficacy. Novel radiotracers for positron emission tomography which target the presynaptic vesicle protein SV2A have been developed to quantify presynaptic density. The radiotracers have successfully investigated synaptic density in preclinical models of PD and people with Parkinsonian disorders. Therefore, this review will summarize the preclinical and clinical utilization of SV2A radiotracers in people with Parkinsonian disorders. We will evaluate how SV2A abundance is associated with other imaging modalities and the considerations for interpreting SV2A in Parkinsonian pathology.
Collapse
Affiliation(s)
- Sarah L Martin
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Carme Uribe
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Unitat de Psicologia Medica, Departament de Medicina, Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
| | - Antonio P Strafella
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Edmond J. Safra Parkinson Disease Program, Neurology Division, Toronto Western Hospital & Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Manoj M, Sowmyanarayan S, Kowshik AV, Chatterjee J. Identification of Potentially Repurposable Drugs for Lewy Body Dementia Using a Network-Based Approach. J Mol Neurosci 2024; 74:21. [PMID: 38363395 DOI: 10.1007/s12031-024-02199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
The conventional method of one drug being used for one target has not yielded therapeutic solutions for Lewy body dementia (LBD), which is a leading progressive neurological disorder characterized by significant loss of neurons. The age-related disease is marked by memory loss, hallucinations, sleep disorder, mental health deterioration, palsy, and cognitive impairment, all of which have no known effective cure. The present study deploys a network medicine pipeline to repurpose drugs having considerable effect on the genes and proteins related to the diseases of interest. We utilized the novel SAveRUNNER algorithm to quantify the proximity of all drugs obtained from DrugBank with the disease associated gene dataset obtained from Phenopedia and targets in the human interactome. We found that most of the 154 FDA-approved drugs predicted by SAveRUNNER were used to treat nervous system disorders, but some off-label drugs like quinapril and selegiline were interestingly used to treat hypertension and Parkinson's disease (PD), respectively. Additionally, we performed gene set enrichment analysis using Connectivity Map (CMap) and pathway enrichment analysis using EnrichR to validate the efficacy of the drug candidates obtained from the pipeline approach. The investigation enabled us to identify the significant role of the synaptic vesicle pathway in our disease and accordingly finalize 8 suitable antidepressant drugs from the 154 drugs initially predicted by SAveRUNNER. These potential anti-LBD drugs are either selective or non-selective inhibitors of serotonin, dopamine, and norepinephrine transporters. The validated selective serotonin and norepinephrine inhibitors like milnacipran, protriptyline, and venlafaxine are predicted to manage LBD along with the affecting symptomatic issues.
Collapse
Affiliation(s)
- Megha Manoj
- Department of Biotechnology, PES University, Bangalore, 560085, India
| | | | - Arjun V Kowshik
- Department of Biotechnology, PES University, Bangalore, 560085, India
| | - Jhinuk Chatterjee
- Department of Biotechnology, PES University, Bangalore, 560085, India.
| |
Collapse
|
26
|
So YJ, Lee JU, Yang GS, Yang G, Kim SW, Lee JH, Kim JU. The Potentiality of Natural Products and Herbal Medicine as Novel Medications for Parkinson's Disease: A Promising Therapeutic Approach. Int J Mol Sci 2024; 25:1071. [PMID: 38256144 PMCID: PMC10816678 DOI: 10.3390/ijms25021071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
As the global population ages, the prevalence of Parkinson's disease (PD) is steadily on the rise. PD demonstrates chronic and progressive characteristics, and many cases can transition into dementia. This increases societal and economic burdens, emphasizing the need to find effective treatments. Among the widely recognized causes of PD is the abnormal accumulation of proteins, and autophagy dysfunction accelerates this accumulation. The resultant Lewy bodies are also commonly found in Alzheimer's disease patients, suggesting an increased potential for the onset of dementia. Additionally, the production of free radicals due to mitochondrial dysfunction contributes to neuronal damage and degeneration. The activation of astrocytes and the M1 phenotype of microglia promote damage to dopamine neurons. The drugs currently used for PD only delay the clinical progression and exacerbation of the disease without targeting its root cause, and come with various side effects. Thus, there is a demand for treatments with fewer side effects, with much potential offered by natural products. In this study, we reviewed a total of 14 articles related to herbal medicines and natural products and investigated their relevance to possible PD treatment. The results showed that the reviewed herbal medicines and natural products are effective against lysosomal disorder, mitochondrial dysfunction, and inflammation, key mechanisms underlying PD. Therefore, natural products and herbal medicines can reduce neurotoxicity and might improve both motor and non-motor symptoms associated with PD. Furthermore, these products, with their multi-target effects, enhance bioavailability, inhibit antibiotic resistance, and might additionally eliminate side effects, making them good alternative therapies for PD treatment.
Collapse
Affiliation(s)
- Yu-Jin So
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
| | - Jae-Ung Lee
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
| | - Ga-Seung Yang
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
| | - Gabsik Yang
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
| | - Sung-Wook Kim
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
| | - Jun-Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
- Da CaPo Co., Ltd., 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea
| | - Jong-Uk Kim
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
| |
Collapse
|
27
|
Limke A, Poschmann G, Stühler K, Petzsch P, Wachtmeister T, von Mikecz A. Silica Nanoparticles Disclose a Detailed Neurodegeneration Profile throughout the Life Span of a Model Organism. J Xenobiot 2024; 14:135-153. [PMID: 38249105 PMCID: PMC10801581 DOI: 10.3390/jox14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The incidence of age-related neurodegenerative diseases is rising globally. However, the temporal sequence of neurodegeneration throughout adult life is poorly understood. To identify the starting points and schedule of neurodegenerative events, serotonergic and dopaminergic neurons were monitored in the model organism C. elegans, which has a life span of 2-3 weeks. Neural morphology was examined from young to old nematodes that were exposed to silica nanoparticles. Young nematodes showed phenotypes such as dendritic beading of serotonergic and dopaminergic neurons that are normally not seen until late life. During aging, neurodegeneration spreads from specifically susceptible ADF and PDE neurons in young C. elegans to other more resilient neurons, such as dopaminergic CEP in middle-aged worms. Investigation of neurodegenerative hallmarks and animal behavior revealed a temporal correlation with the acceleration of neuromuscular defects, such as internal hatch in 2-day-old C. elegans. Transcriptomics and proteomics of young worms exposed to nano silica showed a change in gene expression concerning the gene ontology groups serotonergic and dopaminergic signaling as well as neuropeptide signaling. Consistent with this, reporter strains for nlp-3, nlp-14 and nlp-21 confirmed premature degeneration of the serotonergic neuron HSN and other neurons in young C. elegans. The results identify young nematodes as a vulnerable age group for nano silica-induced neural defects with a significantly reduced health span. Neurodegeneration of specific neurons impairs signaling by classical neurotransmitters as well as neuropeptides and compromises related neuromuscular behaviors in critical phases of life, such as the reproductive phase.
Collapse
Affiliation(s)
- Annette Limke
- IUF–Leibniz Research Institute of Environmental Medicine GmbH, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anna von Mikecz
- IUF–Leibniz Research Institute of Environmental Medicine GmbH, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Wallace JN, Crockford ZC, Román-Vendrell C, Brady EB, Hoffmann C, Vargas KJ, Potcoava M, Wegman ME, Alford ST, Milovanovic D, Morgan JR. Excess phosphoserine-129 α-synuclein induces synaptic vesicle trafficking and declustering defects at a vertebrate synapse. Mol Biol Cell 2024; 35:ar10. [PMID: 37991902 PMCID: PMC10881165 DOI: 10.1091/mbc.e23-07-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
α-Synuclein is a presynaptic protein that regulates synaptic vesicle (SV) trafficking. In Parkinson's disease (PD) and dementia with Lewy bodies (DLB), α-synuclein aberrantly accumulates throughout neurons, including at synapses. During neuronal activity, α-synuclein is reversibly phosphorylated at serine 129 (pS129). While pS129 comprises ∼4% of total α-synuclein under physiological conditions, it dramatically increases in PD and DLB brains. The impacts of excess pS129 on synaptic function are currently unknown. We show here that compared with wild-type (WT) α-synuclein, pS129 exhibits increased binding and oligomerization on synaptic membranes and enhanced vesicle "microclustering" in vitro. Moreover, when acutely injected into lamprey reticulospinal axons, excess pS129 α-synuclein robustly localized to synapses and disrupted SV trafficking in an activity-dependent manner, as assessed by ultrastructural analysis. Specifically, pS129 caused a declustering and dispersion of SVs away from the synaptic vicinity, leading to a significant loss of total synaptic membrane. Live imaging further revealed altered SV cycling, as well as microclusters of recently endocytosed SVs moving away from synapses. Thus, excess pS129 caused an activity-dependent inhibition of SV trafficking via altered vesicle clustering/reclustering. This work suggests that accumulation of pS129 at synapses in diseases like PD and DLB could have profound effects on SV dynamics.
Collapse
Affiliation(s)
| | | | | | - Emily B. Brady
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, and
| | - Christian Hoffmann
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Karina J. Vargas
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, and
- Department of Cell Biology, University of Pittsburgh, PA 15261
| | - Mariana Potcoava
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Simon T. Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Dragomir Milovanovic
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | | |
Collapse
|
29
|
Miteva D, Vasilev GV, Velikova T. Role of Specific Autoantibodies in Neurodegenerative Diseases: Pathogenic Antibodies or Promising Biomarkers for Diagnosis. Antibodies (Basel) 2023; 12:81. [PMID: 38131803 PMCID: PMC10740538 DOI: 10.3390/antib12040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Neurodegenerative diseases (NDDs) affect millions of people worldwide. They develop due to the pathological accumulation and aggregation of various misfolded proteins, axonal and synaptic loss and dysfunction, inflammation, cytoskeletal abnormalities, defects in DNA and RNA, and neuronal death. This leads to the activation of immune responses and the release of the antibodies against them. Recently, it has become clear that autoantibodies (Aabs) can contribute to demyelination, axonal loss, and brain and cognitive dysfunction. This has significantly changed the understanding of the participation of humoral autoimmunity in neurodegenerative disorders. It is crucial to understand how neuroinflammation is involved in neurodegeneration, to aid in improving the diagnostic and therapeutic value of Aabs in the future. This review aims to provide data on the immune system's role in NDDs, the pathogenic role of some specific Aabs against molecules associated with the most common NDDs, and their potential role as biomarkers for monitoring and diagnosing NDDs. It is suggested that the autoimmune aspects of NDDs will facilitate early diagnosis and help to elucidate previously unknown aspects of the pathobiology of these diseases.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak str, 1407 Sofia, Bulgaria; (G.V.V.); (T.V.)
| | - Georgi V. Vasilev
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak str, 1407 Sofia, Bulgaria; (G.V.V.); (T.V.)
- Clinic of Neurology, Department of Emergency Medicine UMHAT “Sv. Georgi”, 4000 Plovdiv, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak str, 1407 Sofia, Bulgaria; (G.V.V.); (T.V.)
| |
Collapse
|
30
|
Lindsay HG, Hendrix CJ, Gonzalez Murcia JD, Haynie C, Weber KS. The Role of Atypical Chemokine Receptors in Neuroinflammation and Neurodegenerative Disorders. Int J Mol Sci 2023; 24:16493. [PMID: 38003682 PMCID: PMC10671188 DOI: 10.3390/ijms242216493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Neuroinflammation is associated with several neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Neuroinflammation provides protection in acute situations but results in significant damage to the nervous system if chronic. Overexpression of chemokines within the brain results in the recruitment and activation of glial and peripheral immune cells which can propagate a cascading inflammatory response, resulting in neurodegeneration and the onset of neurodegenerative disorders. Recent work has identified the role of atypical chemokine receptors (ACKRs) in neurodegenerative conditions. ACKRs are seven-transmembrane domain receptors that do not follow canonical G protein signaling, but regulate inflammatory responses by modulating chemokine abundance, location, and availability. This review summarizes what is known about the four ACKRs and three putative ACKRs within the brain, highlighting their known expression and discussing the current understanding of each ACKR in the context of neurodegeneration. The ability of ACKRs to alter levels of chemokines makes them an appealing therapeutic target for neurodegenerative conditions. However, further work is necessary to understand the expression of several ACKRs within the neuroimmune system and the effectiveness of targeted drug therapies in the prevention and treatment of neurodegenerative conditions.
Collapse
Affiliation(s)
- Hunter G. Lindsay
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Colby J. Hendrix
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | | | - Christopher Haynie
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - K. Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
31
|
Novikov NI, Brazhnik ES, Kitchigina VF. Pathological Correlates of Cognitive Decline in Parkinson's Disease: From Molecules to Neural Networks. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1890-1904. [PMID: 38105206 DOI: 10.1134/s0006297923110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the death of dopaminergic neurons in the substantia nigra and appearance of protein aggregates (Lewy bodies) consisting predominantly of α-synuclein in neurons. PD is currently recognized as a multisystem disorder characterized by severe motor impairments and various non-motor symptoms. Cognitive decline is one of the most common and worrisome non-motor symptoms. Moderate cognitive impairments (CI) are diagnosed already at the early stages of PD, usually transform into dementia. The main types of CI in PD include executive dysfunction, attention and memory decline, visuospatial impairments, and verbal deficits. According to the published data, the following mechanisms play an essential role demonstrates a crucial importance in the decline of the motor and cognitive functions in PD: (1) changes in the conformational structure of transsynaptic proteins and protein aggregation in presynapses; (2) synaptic transmission impairment; (3) neuroinflammation (pathological activation of the neuroglia); (4) mitochondrial dysfunction and oxidative stress; (5) metabolic disorders (hypometabolism of glucose, dysfunction of glycolipid metabolism; and (6) functional rearrangement of neuronal networks. These changes can lead to the death of dopaminergic cells in the substantia nigra and affect the functioning of other neurotransmitter systems, thus disturbing neuronal networks involved in the transmission of information related to the regulation of motor activity and cognitive functions. Identification of factors causing detrimental changes in PD and methods for their elimination will help in the development of new approaches to the therapy of PD. The goal of this review was to analyze pathological processes that take place in the brain and underlie the onset of cognitive disorders in PD, as well as to describe the impairments of cognitive functions in this disease.
Collapse
Affiliation(s)
- Nikolai I Novikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Elena S Brazhnik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Valentina F Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
32
|
Salem HA, Abu-Elfotuh K, Alzahrani S, Rizk NI, Ali HS, Elsherbiny N, Aljohani A, Hamdan AME, Chellasamy P, Abdou NS, Gowifel AMH, Darwish A, Ibrahim OM, Abd Elmageed ZY. Punicalagin's Protective Effects on Parkinson's Progression in Socially Isolated and Socialized Rats: Insights into Multifaceted Pathway. Pharmaceutics 2023; 15:2420. [PMID: 37896179 PMCID: PMC10610313 DOI: 10.3390/pharmaceutics15102420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) is a gradual deterioration of dopaminergic neurons, leading to motor impairments. Social isolation (SI), a recognized stressor, has recently gained attention as a potential influencing factor in the progress of neurodegenerative illnesses. We aimed to investigate the intricate relationship between SI and PD progression, both independently and in the presence of manganese chloride (MnCl2), while evaluating the punicalagin (PUN) therapeutic effects, a natural compound established for its cytoprotective, anti-inflammatory, and anti-apoptotic activities. In this five-week experiment, seven groups of male albino rats were organized: G1 (normal control), G2 (SI), G3 (MnCl2), G4 (SI + MnCl2), G5 (SI + PUN), G6 (MnCl2 + PUN), and G7 (SI + PUN + MnCl2). The results revealed significant changes in behavior, biochemistry, and histopathology in rats exposed to SI and/or MnCl2, with the most pronounced effects detected in the SI rats concurrently exposed to MnCl2. These effects were associated with augmented oxidative stress biomarkers and reduced antioxidant activity of the Nrf2/HO-1 pathway. Additionally, inflammatory pathways (HMGB1/RAGE/TLR4/NF-ᴋB/NLRP3/Caspase-1 and JAK-2/STAT-3) were upregulated, while dysregulation of signaling pathways (PI3K/AKT/GSK-3β/CREB), sustained endoplasmic reticulum stress by activation PERK/CHOP/Bcl-2, and impaired autophagy (AMPK/SIRT-1/Beclin-1 axis) were observed. Apoptosis induction and a decrease in monoamine levels were also noted. Remarkably, treatment with PUN effectively alleviated behaviour, histopathological changes, and biochemical alterations induced by SI and/or MnCl2. These findings emphasize the role of SI in PD progress and propose PUN as a potential therapeutic intervention to mitigate PD. PUN's mechanisms of action involve modulation of pathways such as HMGB1/RAGE/TLR4/NF-ᴋB/NLRP3/Caspase-1, JAK-2/STAT-3, PI3K/AKT/GSK-3β/CREB, AMPK/SIRT-1, Nrf2/HO-1, and PERK/CHOP/Bcl-2.
Collapse
Affiliation(s)
- Hoda A. Salem
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Sharifa Alzahrani
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.S.A.); (S.A.)
| | - Nermin I. Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menouf 32952, Egypt;
| | - Howaida S. Ali
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.S.A.); (S.A.)
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Alhanouf Aljohani
- Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | | | - Nada S. Abdou
- Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 11556, Egypt;
| | - Ayah M. H. Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Osama Mohamed Ibrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Tanta, Tanta 31527, Egypt;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA 71203, USA;
| |
Collapse
|
33
|
Wang Z, Xu Z, Luo Y, Peng S, Song H, Li T, Zheng J, Liu N, Wu S, Zhang J, Zhang L, Hu Y, Liu Y, Lu D, Dai J, Zhang J. Reduced biophotonic activities and spectral blueshift in Alzheimer's disease and vascular dementia models with cognitive impairment. Front Aging Neurosci 2023; 15:1208274. [PMID: 37727319 PMCID: PMC10505668 DOI: 10.3389/fnagi.2023.1208274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Background Although clinically, Alzheimer's disease (AD) and vascular dementia (VaD) are the two major types of dementia, it is unclear whether the biophotonic activities associated with cognitive impairments in these diseases share common pathological features. Methods We used the ultraweak biophoton imaging system (UBIS) and synaptosomes prepared by modified percoll method to directly evaluate the functional changes in synapses and neural circuits in AD and VaD model animals. Results We found that biophotonic activities induced by glutamate were significantly reduced and spectral blueshifted in synaptosomes and brain slices. These changes could be partially reversed by pre-perfusion of the ifenprodil, a specific antagonist of the GluN2B subunit of N-methyl-D-aspartate receptors (NMDARs). Conclusion Our findings suggest that AD and VaD pathology present similar but complex changes in biophotonic activities and transmission at synapses and neural circuits, implying that communications and information processing of biophotonic signals in the brain are crucial for advanced cognitive functions.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Science, Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhipeng Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sisi Peng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Song
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tian Li
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Zheng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Na Liu
- College of Life Science, Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan, China
| | - Shenjia Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junxia Zhang
- Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Lei Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Hu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongwei Lu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiapei Dai
- College of Life Science, Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Scarpa E, Cascione M, Griego A, Pellegrino P, Moschetti G, De Matteis V. Gold and silver nanoparticles in Alzheimer's and Parkinson's diagnostics and treatments. IBRAIN 2023; 9:298-315. [PMID: 37786760 PMCID: PMC10527799 DOI: 10.1002/ibra.12126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 10/04/2023]
Abstract
Neurodegenerative diseases (NDs) impose substantial medical and public health burdens on people worldwide and represent one of the major threats to human health. The prevalence of these age-dependent disorders is dramatically increasing over time, a process intrinsically related to a constantly rising percentage of the elderly population in recent years. Among all the NDs, Alzheimer's and Parkinson's are considered the most debilitating as they cause memory and cognitive loss, as well as severely affecting basic physiological conditions such as the ability to move, speak, and breathe. There is an extreme need for new and more effective therapies to counteract these devastating diseases, as the available treatments are only able to slow down the pathogenic process without really stopping or resolving it. This review aims to elucidate the current nanotechnology-based tools representing a future hope for NDs treatment. Noble metal nano-systems, that is, gold and silver nanoparticles (NPs), have indeed unique physicochemical characteristics enabling them to deliver any pharmacological treatment in a more effective way within the central nervous system. This can potentially make NPs a new hope for reversing the actual therapeutic strategy based on slowing down an irreversible process into a more effective and permanent treatment.
Collapse
Affiliation(s)
- Edoardo Scarpa
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
- National Research Council of Italy (CNR)‐Institute for Microelectronics and Microsystems (IMM)LecceItaly
| | - Anna Griego
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Paolo Pellegrino
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
- National Research Council of Italy (CNR)‐Institute for Microelectronics and Microsystems (IMM)LecceItaly
| | - Giorgia Moschetti
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
- National Research Council of Italy (CNR)‐Institute for Microelectronics and Microsystems (IMM)LecceItaly
| |
Collapse
|
35
|
Ekmark-Lewén S, Aniszewska A, Molisak A, Gumucio A, Lindström V, Kahle P, Nordström E, Möller C, Fälting J, Lannfelt L, Bergström J, Ingelsson M. Reduction of brain stem pathology and transient amelioration of early cognitive symptoms in transgenic mice treated with a monoclonal antibody against α-synuclein oligomers/protofibrils. AGING BRAIN 2023; 4:100086. [PMID: 37559953 PMCID: PMC10407822 DOI: 10.1016/j.nbas.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/11/2023] Open
Abstract
Immunotherapy against alpha-synuclein (α-syn) is a promising novel treatment strategy for Parkinson's disease (PD) and related α-synucleinopathies. We have previously shown that systemic treatment with the monoclonal oligomer/protofibril-selective antibody mAb47 targeting cytotoxic α-syn leads to reduced central nervous system levels of such species as well as an indication of reduced late-stage symptoms in aged (Thy-1)-h[A30P] α-syn transgenic mice. Here, we performed an early-onset long-term treatment study with this antibody to evaluate effects on brain pathology and behavioral outcomes in the same mouse model. Compared to the placebo group, the treatment strongly reduced phosphorylated α-syn (pS129 α-syn) pathology in the upper brain stem. Moreover, a preserved recognition memory and risk assessment behavior could be seen in antibody-treated mice at six months of age, even although these effects were no longer significant at eleven months of age. Importantly, no evidence of inflammatory responses or other potential toxic effects was seen with the treatment. Taken together, this study supports the strategy to target α-syn oligomers/protofibrils with monoclonal antibodies to counteract early symptoms and slow down the progression of PD and other α-synucleinopathies.
Collapse
Affiliation(s)
- S. Ekmark-Lewén
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - A. Aniszewska
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - A. Molisak
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - A. Gumucio
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - V. Lindström
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - P.J. Kahle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | | | | | - L. Lannfelt
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - J. Bergström
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - M. Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Martinez-Banaclocha MA. Targeting the Cysteine Redox Proteome in Parkinson's Disease: The Role of Glutathione Precursors and Beyond. Antioxidants (Basel) 2023; 12:1373. [PMID: 37507913 PMCID: PMC10376658 DOI: 10.3390/antiox12071373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Encouraging recent data on the molecular pathways underlying aging have identified variants and expansions of genes associated with DNA replication and repair, telomere and stem cell maintenance, regulation of the redox microenvironment, and intercellular communication. In addition, cell rejuvenation requires silencing some transcription factors and the activation of pluripotency, indicating that hidden molecular networks must integrate and synchronize all these cellular mechanisms. Therefore, in addition to gene sequence expansions and variations associated with senescence, the optimization of transcriptional regulation and protein crosstalk is essential. The protein cysteinome is crucial in cellular regulation and plays unexpected roles in the aging of complex organisms, which show cumulative somatic mutations, telomere attrition, epigenetic modifications, and oxidative dysregulation, culminating in cellular senescence. The cysteine thiol groups are highly redox-active, allowing high functional versatility as structural disulfides, redox-active disulfides, active-site nucleophiles, proton donors, and metal ligands to participate in multiple regulatory sites in proteins. Also, antioxidant systems control diverse cellular functions, including the transcription machinery, which partially depends on the catalytically active cysteines that can reduce disulfide bonds in numerous target proteins, driving their biological integration. Since we have previously proposed a fundamental role of cysteine-mediated redox deregulation in neurodegeneration, we suggest that cellular rejuvenation of the cysteine redox proteome using GSH precursors, like N-acetyl-cysteine, is an underestimated multitarget therapeutic approach that would be particularly beneficial in Parkinson's disease.
Collapse
|
37
|
Szelągowski A, Kozakiewicz M. A Glance at Biogenesis and Functionality of MicroRNAs and Their Role in the Neuropathogenesis of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7759053. [PMID: 37333462 PMCID: PMC10270766 DOI: 10.1155/2023/7759053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNA transcripts. Mammalian miRNA coding sequences are located in introns and exons of genes encoding various proteins. As the central nervous system is the largest source of miRNA transcripts in living organisms, miRNA molecules are an integral part of the regulation of epigenetic activity in physiological and pathological processes. Their activity depends on many proteins that act as processors, transporters, and chaperones. Many variants of Parkinson's disease have been directly linked to specific gene mutations which in pathological conditions are cumulated resulting in the progression of neurogenerative changes. These mutations can often coexist with specific miRNA dysregulation. Dysregulation of different extracellular miRNAs has been confirmed in many studies on the PD patients. It seems reasonable to conduct further research on the role of miRNAs in the pathogenesis of Parkinson's disease and their potential use in future therapies and diagnosis of the disease. This review presents the current state of knowledge about the biogenesis and functionality of miRNAs in the human genome and their role in the neuropathogenesis of Parkinson's disease (PD)-one of the most common neurodegenerative disorders. The article also describes the process of miRNA formation which can occur in two ways-the canonical and noncanonical one. However, the main focus was on miRNA's use in in vitro and in vivo studies in the context of pathophysiology, diagnosis, and treatment of PD. Some issues, especially those regarding the usefulness of miRNAs in PD's diagnostics and especially its treatment, require further research. More standardization efforts and clinical trials on miRNAs are needed.
Collapse
Affiliation(s)
- Adam Szelągowski
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| |
Collapse
|
38
|
Koeglsperger T, Rumpf SL, Schließer P, Struebing FL, Brendel M, Levin J, Trenkwalder C, Höglinger GU, Herms J. Neuropathology of incidental Lewy body & prodromal Parkinson's disease. Mol Neurodegener 2023; 18:32. [PMID: 37173733 PMCID: PMC10182593 DOI: 10.1186/s13024-023-00622-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with a loss of dopaminergic (DA) neurons. Despite symptomatic therapies, there is currently no disease-modifying treatment to halt neuronal loss in PD. A major hurdle for developing and testing such curative therapies results from the fact that most DA neurons are already lost at the time of the clinical diagnosis, rendering them inaccessible to therapy. Understanding the early pathological changes that precede Lewy body pathology (LBP) and cell loss in PD will likely support the identification of novel diagnostic and therapeutic strategies and help to differentiate LBP-dependent and -independent alterations. Several previous studies identified such specific molecular and cellular changes that occur prior to the appearance of Lewy bodies (LBs) in DA neurons, but a concise map of such early disease events is currently missing. METHODS Here, we conducted a literature review to identify and discuss the results of previous studies that investigated cases with incidental Lewy body disease (iLBD), a presumed pathological precursor of PD. RESULTS Collectively, our review demonstrates numerous cellular and molecular neuropathological changes occurring prior to the appearance of LBs in DA neurons. CONCLUSIONS Our review provides the reader with a summary of early pathological events in PD that may support the identification of novel therapeutic and diagnostic targets and aid to the development of disease-modifying strategies in PD.
Collapse
Affiliation(s)
- Thomas Koeglsperger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany.
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany.
| | - Svenja-Lotta Rumpf
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Patricia Schließer
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Felix L Struebing
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
- Centre for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
- Clinical Study Unit, DZNE - German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany
| | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, Medizinische Hochschule Hannover (MHH), Hannover, Germany
| | - Jochen Herms
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
- Centre for Neuropathology and Prion Research, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| |
Collapse
|
39
|
Cory MB, Jones CM, Shaffer KD, Venkatesh Y, Giannakoulias S, Perez RM, Lougee MG, Hummingbird E, Pagar VV, Hurley CM, Li A, Mach RH, Kohli RM, Petersson EJ. FRETing about the details: Case studies in the use of a genetically encoded fluorescent amino acid for distance-dependent energy transfer. Protein Sci 2023; 32:e4633. [PMID: 36974585 PMCID: PMC10108435 DOI: 10.1002/pro.4633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Förster resonance energy transfer (FRET) is a valuable method for monitoring protein conformation and biomolecular interactions. Intrinsically fluorescent amino acids that can be genetically encoded, such as acridonylalanine (Acd), are particularly useful for FRET studies. However, quantitative interpretation of FRET data to derive distance information requires careful use of controls and consideration of photophysical effects. Here we present two case studies illustrating how Acd can be used in FRET experiments to study small molecule induced conformational changes and multicomponent biomolecular complexes.
Collapse
Affiliation(s)
- Michael B. Cory
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Chloe M. Jones
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Kyle D. Shaffer
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Yarra Venkatesh
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Sam Giannakoulias
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Ryann M. Perez
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marshall G. Lougee
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Eshe Hummingbird
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Vinayak V. Pagar
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Christina M. Hurley
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Allen Li
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Robert H. Mach
- Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Rahul M. Kohli
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - E. James Petersson
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| |
Collapse
|
40
|
Sensi SL, Russo M, Tiraboschi P. Biomarkers of diagnosis, prognosis, pathogenesis, response to therapy: Convergence or divergence? Lessons from Alzheimer's disease and synucleinopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:187-218. [PMID: 36796942 DOI: 10.1016/b978-0-323-85538-9.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Alzheimer's disease (AD) is the most common disorder associated with cognitive impairment. Recent observations emphasize the pathogenic role of multiple factors inside and outside the central nervous system, supporting the notion that AD is a syndrome of many etiologies rather than a "heterogeneous" but ultimately unifying disease entity. Moreover, the defining pathology of amyloid and tau coexists with many others, such as α-synuclein, TDP-43, and others, as a rule, not an exception. Thus, an effort to shift our AD paradigm as an amyloidopathy must be reconsidered. Along with amyloid accumulation in its insoluble state, β-amyloid is becoming depleted in its soluble, normal states, as a result of biological, toxic, and infectious triggers, requiring a shift from convergence to divergence in our approach to neurodegeneration. These aspects are reflected-in vivo-by biomarkers, which have become increasingly strategic in dementia. Similarly, synucleinopathies are primarily characterized by abnormal deposition of misfolded α-synuclein in neurons and glial cells and, in the process, depleting the levels of the normal, soluble α-synuclein that the brain needs for many physiological functions. The soluble to insoluble conversion also affects other normal brain proteins, such as TDP-43 and tau, accumulating in their insoluble states in both AD and dementia with Lewy bodies (DLB). The two diseases have been distinguished by the differential burden and distribution of insoluble proteins, with neocortical phosphorylated tau deposition more typical of AD and neocortical α-synuclein deposition peculiar to DLB. We propose a reappraisal of the diagnostic approach to cognitive impairment from convergence (based on clinicopathologic criteria) to divergence (based on what differs across individuals affected) as a necessary step for the launch of precision medicine.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology-CAST and ITAB Institute for Advanced Biotechnology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pietro Tiraboschi
- Division of Neurology V-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
41
|
Wilson DM, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I. Hallmarks of neurodegenerative diseases. Cell 2023; 186:693-714. [PMID: 36803602 DOI: 10.1016/j.cell.2022.12.032] [Citation(s) in RCA: 342] [Impact Index Per Article: 342.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 02/18/2023]
Abstract
Decades of research have identified genetic factors and biochemical pathways involved in neurodegenerative diseases (NDDs). We present evidence for the following eight hallmarks of NDD: pathological protein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. We describe the hallmarks, their biomarkers, and their interactions as a framework to study NDDs using a holistic approach. The framework can serve as a basis for defining pathogenic mechanisms, categorizing different NDDs based on their primary hallmarks, stratifying patients within a specific NDD, and designing multi-targeted, personalized therapies to effectively halt NDDs.
Collapse
Affiliation(s)
- David M Wilson
- Hasselt University, Biomedical Research Institute, BIOMED, 3500 Hasselt, Belgium.
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ludo Van Den Bosch
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ilse Dewachter
- Hasselt University, Biomedical Research Institute, BIOMED, 3500 Hasselt, Belgium.
| |
Collapse
|
42
|
Brain O-GlcNAcylation: From Molecular Mechanisms to Clinical Phenotype. ADVANCES IN NEUROBIOLOGY 2023; 29:255-280. [DOI: 10.1007/978-3-031-12390-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Brady EB, McQuillan M, Medeiros AT, Bubacco L, Sousa R, Lafer EM, Morgan JR. Hsc70 rescues the synaptic vesicle trafficking defects caused by α-synuclein dimers. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000737. [PMID: 36938331 PMCID: PMC10018313 DOI: 10.17912/micropub.biology.000737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/21/2023]
Abstract
Aberrant buildup of α-synuclein is associated with Parkinson's disease (PD) and other neurodegenerative disorders. At synapses, α-synuclein accumulation leads to severe synaptic vesicle trafficking defects. We previously demonstrated that different molecular species of α-synuclein produce distinct effects on synaptic vesicle recycling, and that the synaptic phenotypes caused by monomeric α-synuclein were ameliorated by Hsc70. Here, we tested whether Hsc70 could also correct synaptic deficits induced by α-synuclein dimers. Indeed, co-injection of Hsc70 with α-synuclein dimers completely reversed the synaptic deficits, resulting in synapses with normal appearance. This work lends additional support for pursuing chaperone-based strategies to treat PD and other synucleinopathies.
Collapse
Affiliation(s)
- Emily B. Brady
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
- Department of Biology, Duke University, Durham, North Carolina, United States
| | - Molly McQuillan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island, United States
| | - Audrey T. Medeiros
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island, United States
| | - Luigi Bubacco
- Department of Biology, University of Padua, Padua, Veneto, Italy
| | - Rui Sousa
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Jennifer R. Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
- Correspondence to: Jennifer R. Morgan (
)
| |
Collapse
|
44
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
45
|
Cousins KAQ, Arezoumandan S, Shellikeri S, Ohm D, Shaw LM, Grossman M, Wolk D, McMillan CT, Chen-Plotkin A, Lee E, Trojanowski JQ, Zetterberg H, Blennow K, Irwin DJ. CSF Biomarkers of Alzheimer Disease in Patients With Concomitant α-Synuclein Pathology. Neurology 2022; 99:e2303-e2312. [PMID: 36041863 PMCID: PMC9694837 DOI: 10.1212/wnl.0000000000201202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES CSF biomarkers β-amyloid 1-42 (Aβ42), phosphorylated tau 181 (p-tau181), total tau (t-tau), and neurogranin (Ng) can diagnose Alzheimer disease (AD) in life. However, it is unknown whether CSF concentrations, and thus their accuracies, are affected by concomitant pathologies common in AD, such as α-synuclein (αSyn). Our primary goal was to test whether biomarkers in patients with AD are altered by concomitant αSyn. We compared CSF Aβ42, p-tau181, t-tau, and Ng levels across autopsy-confirmed AD and concomitant AD and αSyn (AD + αSyn). Antemortem CSF levels were related to postmortem accumulations of αSyn. Finally, we tested how concommitant AD + αSyn affected the diagnostic accuracy of 2 CSF-based strategies: the amyloid/tau/neurodegeneration (ATN) framework and the t-tau/Aβ42 ratio. METHODS Inclusion criteria were neuropathologic diagnoses of AD, mixed AD + αSyn, and αSyn. A convenience sample of nonimpaired controls was selected with available CSF and a Mini-Mental State Examination (MMSE) ≥ 27. αSyn without AD and controls were included as reference groups. Analyses of covariance (ANCOVAs) tested planned comparisons were CSF Aβ42, p-tau181, t-tau, and Ng differences across AD and AD + αSyn. Linear models tested how biomarkers were altered by αSyn accumulation in AD, accounting for pathologic β-amyloid and tau. Receiver operating characteristic and area under the curve (AUC), including 95% CI, evaluated diagnostic accuracy. RESULTS Participants were 61 patients with AD, 39 patients with mixed AD + αSyn, 20 patients with αSyn, and 61 controls. AD had similar median age (73 [interquartile range {IQR} = 12] years), MMSE (23 [IQR = 9]), and sex distribution (male = 49%) compared with AD + αSyn age (70 [IQR = 13] years; p = 0.3), MMSE (25 [IQR = 9.5]; p = 0.19), and sex distribution (male = 69%; p = 0.077). ANCOVAs showed that AD + αSyn had lower p-tau181 (F(1,94) = 17, p < 2.6e-16), t-tau (F(1,93) = 11, p = 0.0004), and Ng levels (F(1,50) = 12, p = 0.0004) than AD; there was no difference in Aβ42 (p = 0.44). Models showed increasing αSyn related to lower p-tau181 (β = -0.26, SE = 0.092, p = 0.0065), t-tau (β = -0.19, SE = 0.092, p = 0.041), and Ng levels (β = -0.2, SE = 0.066, p = 0.0046); αSyn was not a significant factor for Aβ42 (p = 1). T-tau/Aβ42 had the highest accuracy when detecting AD, including mixed AD + αSyn cases (AUC = 0.95; CI 0.92-0.98). DISCUSSION Findings demonstrate that concomitant αSyn pathology in AD is associated with lower CSF p-tau181, t-tau, and Ng levels and can affect diagnostic accuracy in patients with AD.
Collapse
Affiliation(s)
- Katheryn Alexandra Quilico Cousins
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK.
| | - Sanaz Arezoumandan
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK
| | - Sanjana Shellikeri
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK
| | - Daniel Ohm
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK
| | - Leslie M Shaw
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK
| | - Murray Grossman
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK
| | - David Wolk
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK
| | - Corey T McMillan
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK
| | - Alice Chen-Plotkin
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK
| | - Edward Lee
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK
| | - John Q Trojanowski
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK
| | - Henrik Zetterberg
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK
| | - Kaj Blennow
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK
| | - David John Irwin
- From the Departments of Neurology (K.A.Q.C., S.A., S.S., D.O., M.G., D.W., C.T.M., A.C.-P., D.J.I.), Pathology and Laboratory Medicine (L.M.S., E.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden; and Department of Neurodegenerative Disease (H.Z.), Institute of Neurology, University College London, UK
| |
Collapse
|
46
|
Cerebrospinal Fluid Alpha-Synuclein Improves the Differentiation between Dementia with Lewy Bodies and Alzheimer's Disease in Clinical Practice. Int J Mol Sci 2022; 23:ijms232113488. [PMID: 36362275 PMCID: PMC9654229 DOI: 10.3390/ijms232113488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Alpha-synuclein, abnormally aggregated in Dementia with Lewy Bodies (DLB), could represent a potential biomarker to improve the differentiation between DLB and Alzheimer’s disease (AD). Our main objective was to compare Cerebrospinal Fluid (CSF) alpha-synuclein levels between patients with DLB, AD and Neurological Control (NC) individuals. Methods: In a monocentric retrospective study, we assessed CSF alpha-synuclein concentration with a validated ELISA kit (ADx EUROIMMUN) in patients with DLB, AD and NC from a tertiary memory clinic. Between-group comparisons were performed, and Receiver Operating Characteristic analysis was used to identify the best CSF alpha-synuclein threshold. We examined the associations between CSF alpha-synuclein, other core AD CSF biomarkers and brain MRI characteristics. Results: We included 127 participants (mean age: 69.3 ± 8.1, Men: 41.7%). CSF alpha-synuclein levels were significantly lower in DLB than in AD (1.28 ± 0.52 ng/mL vs. 2.26 ± 0.91 ng/mL, respectively, p < 0.001) without differences due to the stage of cognitive impairment. The best alpha-synuclein threshold was characterized by an Area Under the Curve = 0.85, Sensitivity = 82.0% and Specificity = 76.0%. CSF alpha-synuclein was associated with CSF AT(N) biomarkers positivity (p < 0.01) but not with hippocampal atrophy or white matter lesions. Conclusion: CSF Alpha-synuclein evaluation could help to early differentiate patients with DLB and AD in association with existing biomarkers.
Collapse
|
47
|
Chiu PY, Yang FC, Chiu MJ, Lin WC, Lu CH, Yang SY. Relevance of plasma biomarkers to pathologies in Alzheimer's disease, Parkinson's disease and frontotemporal dementia. Sci Rep 2022; 12:17919. [PMID: 36289355 PMCID: PMC9605966 DOI: 10.1038/s41598-022-22647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/18/2022] [Indexed: 01/20/2023] Open
Abstract
Amyloid plaques and tau tangles are pathological hallmarks of Alzheimer's disease (AD). Parkinson's disease (PD) results from the accumulation of α-synuclein. TAR DNA-binding protein (TDP-43) and total tau protein (T-Tau) play roles in FTD pathology. All of the pathological evidence was found in the biopsy. However, it is impossible to perform stein examinations in clinical practice. Assays of biomarkers in plasma would be convenient. It would be better to investigate the combinations of various biomarkers in AD, PD and FTD. Ninety-one subjects without neurodegenerative diseases, 76 patients with amnesic mild cognitive impairment (aMCI) or AD dementia, combined as AD family, were enrolled. One hundred and nine PD patients with normal cognition (PD-NC) or dementia (PDD), combined as PD family, were enrolled. Twenty-five FTD patients were enrolled for assays of plasma amyloid β 1-40 (Aβ1-40), Aβ1-42, T-Tau, α-synuclein and TDP-43 using immunomagnetic reduction (IMR). The results show that Aβs and T-Tau are major domains in AD family. α-synuclein is highly dominant in PD family. FTD is closely associated with TDP-43 and T-Tau. The dominant plasma biomarkers in AD family, PD family and FTD are consistent with pathology. This implies that plasma biomarkers are promising for precise and differential assessments of AD, PD and FTD in clinical practice.
Collapse
Affiliation(s)
- Pai-Yi Chiu
- grid.452796.b0000 0004 0634 3637Department of Neurology, Show Chwan Memorial Hospital, Chunghwa, 500 Taiwan ,MR-Guided Focus Ultrasound Center, Chang Bin Shaw Chwan Memorial Hospital, Changhwa, 505 Taiwan
| | - Fu-Chi Yang
- grid.278244.f0000 0004 0638 9360Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan
| | - Ming-Jang Chiu
- grid.19188.390000 0004 0546 0241Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100 Taiwan ,grid.19188.390000 0004 0546 0241Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 100 Taiwan ,grid.19188.390000 0004 0546 0241Department of Psychology, National Taiwan University, Taipei, 106 Taiwan ,grid.19188.390000 0004 0546 0241Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106 Taiwan
| | - Wei-Che Lin
- grid.145695.a0000 0004 1798 0922Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833 Taiwan
| | - Cheng-Hsien Lu
- grid.145695.a0000 0004 1798 0922Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833 Taiwan
| | | |
Collapse
|
48
|
Neuropsychological Impairments and Their Cognitive Architecture in Mild Cognitive Impairment (MCI) with Lewy Bodies and MCI-Alzheimer's Disease. J Int Neuropsychol Soc 2022; 28:963-973. [PMID: 34666864 DOI: 10.1017/s1355617721001181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The present study aimed to clarify the neuropsychological profile of the emergent diagnostic category of Mild Cognitive Impairment with Lewy bodies (MCI-LB) and determine whether domain-specific impairments such as in memory were related to deficits in domain-general cognitive processes (executive function or processing speed). METHOD Patients (n = 83) and healthy age- and sex-matched controls (n = 34) underwent clinical and imaging assessments. Probable MCI-LB (n = 44) and MCI-Alzheimer's disease (AD) (n = 39) were diagnosed following National Institute on Aging-Alzheimer's Association (NIA-AA) and dementia with Lewy bodies (DLB) consortium criteria. Neuropsychological measures included cognitive and psychomotor speed, executive function, working memory, and verbal and visuospatial recall. RESULTS MCI-LB scored significantly lower than MCI-AD on processing speed [Trail Making Test B: p = .03, g = .45; Digit Symbol Substitution Test (DSST): p = .04, g = .47; DSST Error Check: p < .001, g = .68] and executive function [Trail Making Test Ratio (A/B): p = .04, g = .52] tasks. MCI-AD performed worse than MCI-LB on memory tasks, specifically visuospatial (Modified Taylor Complex Figure: p = .01, g = .46) and verbal (Rey Auditory Verbal Learning Test: p = .04, g = .42) delayed recall measures. Stepwise discriminant analysis correctly classified the subtype in 65.1% of MCI patients (72.7% specificity, 56.4% sensitivity). Processing speed accounted for more group-associated variance in visuospatial and verbal memory in both MCI subtypes than executive function, while no significant relationships between measures were observed in controls (all ps > .05). CONCLUSIONS MCI-LB was characterized by executive dysfunction and slowed processing speed but did not show the visuospatial dysfunction expected, while MCI-AD displayed an amnestic profile. However, there was considerable neuropsychological profile overlap and processing speed mediated performance in both MCI subtypes.
Collapse
|
49
|
Synucleinopathy in Amyotrophic Lateral Sclerosis: A Potential Avenue for Antisense Therapeutics? Int J Mol Sci 2022; 23:ijms23169364. [PMID: 36012622 PMCID: PMC9409035 DOI: 10.3390/ijms23169364] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease classified as both a neurodegenerative and neuromuscular disorder. With a complex aetiology and no current cure for ALS, broadening the understanding of disease pathology and therapeutic avenues is required to progress with patient care. Alpha-synuclein (αSyn) is a hallmark for disease in neurodegenerative disorders, such as Parkinson's disease, Lewy body dementia, and multiple system atrophy. A growing body of evidence now suggests that αSyn may also play a pathological role in ALS, with αSyn-positive Lewy bodies co-aggregating alongside known ALS pathogenic proteins, such as SOD1 and TDP-43. This review endeavours to capture the scope of literature regarding the aetiology and development of ALS and its commonalities with "synucleinopathy disorders". We will discuss the involvement of αSyn in ALS and motor neuron disease pathology, and the current theories and strategies for therapeutics in ALS treatment, as well as those targeting αSyn for synucleinopathies, with a core focus on small molecule RNA technologies.
Collapse
|
50
|
Bellucci A, Longhena F, Spillantini MG. The Role of Rab Proteins in Parkinson's Disease Synaptopathy. Biomedicines 2022; 10:biomedicines10081941. [PMID: 36009486 PMCID: PMC9406004 DOI: 10.3390/biomedicines10081941] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/29/2022] Open
Abstract
In patients affected by Parkinson's disease (PD), the most common neurodegenerative movement disorder, the brain is characterized by the loss of dopaminergic neurons in the nigrostriatal system, leading to dyshomeostasis of the basal ganglia network activity that is linked to motility dysfunction. PD mostly arises as an age-associated sporadic disease, but several genetic forms also exist. Compelling evidence supports that synaptic damage and dysfunction characterize the very early phases of either sporadic or genetic forms of PD and that this early PD synaptopathy drives retrograde terminal-to-cell body degeneration, culminating in neuronal loss. The Ras-associated binding protein (Rab) family of small GTPases, which is involved in the maintenance of neuronal vesicular trafficking, synaptic architecture and function in the central nervous system, has recently emerged among the major players in PD synaptopathy. In this manuscript, we provide an overview of the main findings supporting the involvement of Rabs in either sporadic or genetic PD pathophysiology, and we highlight how Rab alterations participate in the onset of early synaptic damage and dysfunction.
Collapse
Affiliation(s)
- Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-0303-717-380
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge CB2 0AH, UK
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge CB2 0AH, UK
| |
Collapse
|