1
|
Maltman N, Sterling A, Santos E, Hagerman R. Language use predicts symptoms of fragile X-associated tremor/ataxia syndrome in men and women with the FMR1 premutation. Sci Rep 2024; 14:20707. [PMID: 39237554 PMCID: PMC11377817 DOI: 10.1038/s41598-024-70810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an age-related neurodegenerative disorder caused by a premutation of the FMR1 gene on the X chromosome. Despite the pervasive physical and cognitive effects of FXTAS, no studies have examined language in symptomatic males and females, limiting utility as an outcome measure in clinical trials of FXTAS. The goal of this work is to determine (a) the extent to which male and female FMR1 premutation carriers with FXTAS symptoms differ in their language use and (b) whether language production predicts FXTAS symptoms. Thirty-one individuals with the FMR1 premutation (21M, 10F), ages 58-85 years with some symptoms of FXTAS, were recruited from a larger cross-sectional study. Participants completed a five-minute monologic language sample. Language transcripts were assessed for rate of dysfluencies, lexical-semantics, syntax, and speech rate. Multivariable linear and ordinal regressions were used to predict FXTAS-associated symptoms, cognitive functioning, and executive functioning. Males and females did not differ in their language use. Language production predicted FXTAS symptom severity, cognitive functioning, and executive functioning. Language production difficulties may co-occur with FXTAS-associated symptoms and may be a viable outcome measure in future clinical trials, with future research needed.
Collapse
Affiliation(s)
- Nell Maltman
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA.
- Department of Speech, Language, and Hearing Sciences, University of Arizona, 1131 2nd St , Tucson, AZ, 85721, USA.
| | - Audra Sterling
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Dr, Madison, WI, 53706, USA
| | - Ellery Santos
- MIND Institute, University of California-Davis, 2825 50th St., Sacramento, CA, 95817, USA
| | - Randi Hagerman
- MIND Institute, University of California-Davis, 2825 50th St., Sacramento, CA, 95817, USA
| |
Collapse
|
2
|
Agustí I, Méndez M, Borrás A, Goday A, Guimerà M, Peralta S, Ribera L, Rodriguez-Revenga L, Manau D. Prevalence of the FMR1 Gene Premutation in Young Women with a Diminished Ovarian Reserve Included in an IVF Program: Implications for Clinical Practice. Genes (Basel) 2024; 15:1008. [PMID: 39202368 PMCID: PMC11353426 DOI: 10.3390/genes15081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
The relationship between premature ovarian insufficiency (FXPOI) and premutation in the FMR1 gene is well established. In recent years, though, a potential relationship between the latter and a low ovarian reserve has been suggested. To explore it, we conducted a retrospective study in an IVF program at a university tertiary referral center in Barcelona (Spain). Data were obtained retrospectively from a total of 385 women referred for FMR1 gene testing at our institution from January 2018 to December 2021. We compared the prevalence of FMR1 gene premutation between 93 of them, younger than 35 years, with a diminished ovarian reserve (DOR), characterized by levels of anti-Mullerian hormone < 1.1 ng/mL and antral follicle count < 5; and 132 egg donors screened by protocol that served as the controls. We found a higher prevalence of FMR1 premutation in the DOR group (seven patients (7.69%)) than in the control group (one patient (1.32%)), Fisher-exact test p-value = 0.012). We concluded that compared with the general population represented by young egg donors, the prevalence of FMR1 gene premutation is higher in young patients with a diminished ovarian reserve. Although these findings warrant further prospective validation in a larger cohort of patients within DOR, they suggest that, in clinical practice, FMR1 premutation should be determined in infertile young patients with DOR in order to give them adequate genetic counselling.
Collapse
Affiliation(s)
- Inés Agustí
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Marta Méndez
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Aina Borrás
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
- Fundacio Clinic de Recerca Biomedique-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Anna Goday
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Marta Guimerà
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Sara Peralta
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Laura Ribera
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona—Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dolors Manau
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
- Fundacio Clinic de Recerca Biomedique-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
3
|
Mbachu CNP, Mbachu II, Hagerman R. A Comprehensive Review of Fragile X Syndrome and Fragile X Premutation Associated Conditions in Africa. Genes (Basel) 2024; 15:683. [PMID: 38927619 PMCID: PMC11203117 DOI: 10.3390/genes15060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Fragile X syndrome (FXS) is a genetic disorder caused by a mutation in the fragile X messenger ribonucleoprotein 1 (FMR1) gene and known to be a leading cause of inherited intellectual disability globally. It results in a range of intellectual, developmental, and behavioral problems. Fragile X premutation-associated conditions (FXPAC), caused by a smaller CGG expansion (55 to 200 CGG repeats) in the FMR1 gene, are linked to other conditions that increase morbidity and mortality for affected persons. Limited research has been conducted on the burden, characteristics, diagnosis, and management of these conditions in Africa. This comprehensive review provides an overview of the current literature on FXS and FXPAC in Africa. The issues addressed include epidemiology, clinical features, discrimination against affected persons, limited awareness and research, and poor access to resources, including genetic services and treatment programs. This paper provides an in-depth analysis of the existing worldwide data for the diagnosis and treatment of fragile X disorders. This review will improve the understanding of FXS and FXPAC in Africa by incorporating existing knowledge, identifying research gaps, and potential topics for future research to enhance the well-being of individuals and families affected by FXS and FXPAC.
Collapse
Affiliation(s)
- Chioma N. P. Mbachu
- Department of Paediatrics, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi 435101, Nigeria
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA
| | - Ikechukwu Innocent Mbachu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi 435101, Nigeria;
| | - Randi Hagerman
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Zhang Y, Liu X, Li Z, Li H, Miao Z, Wan B, Xu X. Advances on the Mechanisms and Therapeutic Strategies in Non-coding CGG Repeat Expansion Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04239-9. [PMID: 38780719 DOI: 10.1007/s12035-024-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Non-coding CGG repeat expansions within the 5' untranslated region are implicated in a range of neurological disorders, including fragile X-associated tremor/ataxia syndrome, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. This review outlined the general characteristics of diseases associated with non-coding CGG repeat expansions, detailing their clinical manifestations and neuroimaging patterns, which often overlap and indicate shared pathophysiological traits. We summarized the underlying molecular mechanisms of these disorders, providing new insights into the roles that DNA, RNA, and toxic proteins play. Understanding these mechanisms is crucial for the development of targeted therapeutic strategies. These strategies include a range of approaches, such as antisense oligonucleotides, RNA interference, genomic DNA editing, small molecule interventions, and other treatments aimed at correcting the dysregulated processes inherent in these disorders. A deeper understanding of the shared mechanisms among non-coding CGG repeat expansion disorders may hold the potential to catalyze the development of innovative therapies, ultimately offering relief to individuals grappling with these debilitating neurological conditions.
Collapse
Affiliation(s)
- Yutong Zhang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xuan Liu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zeheng Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Hao Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215124, China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Bo Wan
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Xingshun Xu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China.
- The Institute of Neuroscience, Soochow University, Suzhou City, China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
5
|
Smith VL, Wang SJ. A 68-year-old man with gait instability and T2 signal abnormality in the cerebellar peduncles. Brain Pathol 2023; 33:e13172. [PMID: 37285581 PMCID: PMC10467032 DOI: 10.1111/bpa.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Affiliation(s)
- Vanessa L. Smith
- Department of PathologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Shih‐Hsiu J. Wang
- Department of Pathology and Department of NeurologyDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
6
|
Linares AJ, Fogel BL. Late-onset hereditary ataxias with dementia. Curr Opin Neurol 2023; 36:324-334. [PMID: 37382141 PMCID: PMC10524827 DOI: 10.1097/wco.0000000000001170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
PURPOSE OF REVIEW Late-onset genetic cerebellar ataxias are clinically heterogenous with variable phenotypes. Several of these conditions are commonly associated with dementia. Recognition of the relationship between ataxia and dementia can guide clinical genetic evaluation. RECENT FINDINGS Spinocerebellar ataxias often present with variable phenotypes that may include dementia. Genomic studies have begun to identify links between incomplete penetrance and such variable phenotypes in certain hereditary ataxias. Recent studies evaluating the interaction of TBP repeat expansions and STUB1 sequence variants provide a framework to understand how genetic interactions influence disease penetrance and dementia risk in spinocerebellar ataxia types 17 and 48. Further advances in next generation sequencing methods will continue to improve diagnosis and create new insights into the expressivity of existing disorders. SUMMARY The late-onset hereditary ataxias are a clinically heterogenous group of disorders with complex presentations that can include cognitive impairment and/or dementia. Genetic evaluation of late-onset ataxia patients with dementia follows a systemic testing approach that often utilizes repeat expansion testing followed by next-generation sequencing. Advances in bioinformatics and genomics is improving both diagnostic evaluation and establishing a basis for phenotypic variability. Whole genome sequencing will likely replace exome sequencing as a more comprehensive means of routine testing.
Collapse
Affiliation(s)
- Anthony J. Linares
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Brent L. Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095 USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, 90095 USA
| |
Collapse
|
7
|
Chen J, Zhao Y, Zhou X, Xue J, Xiao Q, Pan H, Zhou X, Xiang Y, Li J, Zhu L, Zhou Z, Yang Y, Xu Q, Sun Q, Yan X, Tan J, Li J, Guo J, Duan R, Tang B, Yu Q, Liu Z. Evaluation of the role of FMR1 CGG repeat allele in Parkinson's disease from the Chinese population. Front Aging Neurosci 2023; 15:1234027. [PMID: 37583466 PMCID: PMC10423993 DOI: 10.3389/fnagi.2023.1234027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Objective There is controversial evidence that FMR1 premutation or "gray zone" (GZ) allele (small CGG expansion, 45-54 repeats) was associated with Parkinson's disease (PD). We aimed to explore further the association between FMR1 CGG repeat expansions and PD in a large sample of Chinese origin. Methods We included a cohort of 2,362 PD patients and 1,072 controls from the Parkinson's Disease and Movement Disorders Multicenter Database and Collaborative Network in China (PD-MDCNC) in this study and conducted repeat-primed polymerase chain reaction (RP-PCR) for the size of FMR1 CGG repeat expansions. Results Two PD patients were detected with FMR1 premutation (61 and 56 repeats), and the other eleven PD patients were detected with the GZ allele of FMR1 CGG repeat expansions. Those thirteen PD patients responded well to levodopa and were diagnosed with clinically established PD. Specifically, one female PD patient with GZ allele was also found with premature ovarian failure. However, compared to healthy controls, we found no significant enrichment of GZ allele carriers in PD patients or other subgroups of PD cases, including the subgroups of female, male, early-onset, and late-onset PD patients. Furthermore, we did not find any correlation between the FMR1 gene CGG repeat sizes and age at onset of PD. Conclusion It suggested that FMR1 premutation was related to PD, but the GZ allele of FMR1 CGG repeat expansions was not significantly enriched in PD cases of Chinese origin. Further larger multiple ethnic studies are needed to determine further the role of the FMR1 GZ allele in PD.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xun Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jin Xue
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qiao Xiao
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Liping Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhou Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Ranhui Duan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Qiao Yu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Dias CM, Issac B, Sun L, Lukowicz A, Talukdar M, Akula SK, Miller MB, Walsh K, Rockowitz S, Walsh CA. Glial dysregulation in the human brain in fragile X-associated tremor/ataxia syndrome. Proc Natl Acad Sci U S A 2023; 120:e2300052120. [PMID: 37252957 PMCID: PMC10265985 DOI: 10.1073/pnas.2300052120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023] Open
Abstract
Short trinucleotide expansions at the FMR1 locus are associated with the late-onset condition fragile X-associated tremor/ataxia syndrome (FXTAS), which shows very different clinical and pathological features from fragile X syndrome (associated with longer expansions), with no clear molecular explanation for these marked differences. One prevailing theory posits that the shorter, premutation expansion uniquely causes extreme neurotoxic increases in FMR1 mRNA (i.e., four to eightfold increases), but evidence to support this hypothesis is largely derived from analysis of peripheral blood. We applied single-nucleus RNA sequencing to postmortem frontal cortex and cerebellum from 7 individuals with premutation and matched controls (n = 6) to assess cell type-specific molecular neuropathology. We found only modest upregulation (~1.3-fold) of FMR1 in some glial populations associated with premutation expansions. In premutation cases, we also identified decreased astrocyte proportions in the cortex. Differential expression and gene ontology analysis demonstrated altered neuroregulatory roles of glia. Using network analyses, we identified cell type-specific and region-specific patterns of FMR1 protein target gene dysregulation unique to premutation cases, with notable network dysregulation in the cortical oligodendrocyte lineage. We used pseudotime trajectory analysis to determine how oligodendrocyte development was altered and identified differences in early gene expression in oligodendrocyte trajectories in premutation cases specifically, implicating early cortical glial developmental perturbations. These findings challenge dogma regarding extremely elevated FMR1 increases in FXTAS and implicate glial dysregulation as a critical facet of premutation pathophysiology, representing potential unique therapeutic targets directly derived from the human condition.
Collapse
Affiliation(s)
- Caroline M. Dias
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA02115
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Pediatrics, Section of Developmental Pediatrics, Section of Genetics and Metabolism, and Denver Fragile X Clinic and Research Center, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Biju Issac
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
| | - Abigail Lukowicz
- Department of Pediatrics, Section of Developmental Pediatrics, Section of Genetics and Metabolism, and Denver Fragile X Clinic and Research Center, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Maya Talukdar
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Bioinformatics & Integrative Genomics, Harvard Medical School, Boston, MA02115
| | - Shyam K. Akula
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
| | - Michael B. Miller
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
| | - Katherine Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
| | - Shira Rockowitz
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
9
|
Katayama T, Takahashi K, Yahara O, Sawada J, Ishida KI, Asanome A, Endo H, Saito T, Hasebe N, Kishibe M, Kanno H, Ishiko S, Sone J. NOTCH2NLC mutation-positive neuronal intranuclear inclusion disease with retinal dystrophy: A case report and literature review. Medicine (Baltimore) 2023; 102:e33789. [PMID: 37171294 PMCID: PMC10174370 DOI: 10.1097/md.0000000000033789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
INTRODUCTION Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder that produces a broad spectrum of clinical conditions such as dementia, upper motor neuron involvement, extrapyramidal symptoms, and neuropathy. Some studies have reported ophthalmological conditions associated with the disease; however, the details of these conditions remain unclear. PATIENT CONCERNS We report a 63-year-old Japanese female with cognitive decline, blurred vision, photophobia, and color blindness at 52 years of age who was diagnosed with cone dystrophy. She also had anxiety, insomnia, depression, delusions, hallucinations, a wide-based gait with short steps, and urinary incontinence. DIAGNOSES, INTERVENTIONS, AND OUTCOMES Magnetic resonance imaging revealed diffuse cerebral white matter changes and subcortical hyperintensity on diffusion-weighted imaging. Skin biopsy showed p62-positive intranuclear inclusions in sweat glands. NOTCH2NLC gene analysis revealed abnormal GGC expansion; therefore, NIID was diagnosed. CONCLUSION NOTCH2NLC mutation-positive NIID may be associated with retinal dystrophy. Brain magnetic resonance imaging and skin biopsy are helpful diagnostic clues, and gene analysis is crucial for accurate diagnosis and appropriate management.
Collapse
Affiliation(s)
| | - Kae Takahashi
- Department of Neurology, Asahikawa City Hospital, Japan
| | - Osamu Yahara
- Department of Neurology, Asahikawa City Hospital, Japan
| | - Jun Sawada
- Division of Neurology, First Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Ken-Ichi Ishida
- Division of Neurology, First Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Asuka Asanome
- Division of Neurology, First Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Hisako Endo
- Division of Neurology, First Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Tsukasa Saito
- Division of Neurology, First Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Naoyuki Hasebe
- Division of Neurology, First Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Mari Kishibe
- Department of Dermatology, Asahikawa Medical University, Japan
| | - Harumi Kanno
- Department of Ophthalmology, Asahikawa City Hospital, Japan
| | - Satoshi Ishiko
- Department of Ophthalmology, Asahikawa Medical University, Japan
| | - Jun Sone
- Institute for Medical Science of Aging, Aichi Medical University, Japan
| |
Collapse
|
10
|
Sone J, Ueno S, Akagi A, Miyahara H, Tamai C, Riku Y, Yabata H, Koizumi R, Hattori T, Hirose H, Koyanagi Y, Kobayashi R, Okada H, Kishimoto Y, Hashizume Y, Sobue G, Yoshida M, Iwasaki Y. NOTCH2NLC GGC repeat expansion causes retinal pathology with intranuclear inclusions throughout the retina and causes visual impairment. Acta Neuropathol Commun 2023; 11:71. [PMID: 37131242 PMCID: PMC10152767 DOI: 10.1186/s40478-023-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
The retinal pathology of genetically confirmed neuronal intranuclear inclusion disease (NIID) is yet unknown. We report the ocular findings in four NIID patients with NOTCH2NLC GGC repeat expansion to investigate the pathology of retinopathy. All four NIID patients were diagnosed by skin biopsy and NOTCH2NLC GGC repeat analysis. Ocular findings in patients with NIID were studied using fundus photographs, optical coherence tomographic images (OCT), and full-field electroretinograms (ERGs). The histopathology of the retina was studied on autopsy samples from two cases with immunohistochemistry. All patients had an expansion of the GGC repeat (87-134 repeats) in the NOTCH2NLC. Two patients were legally blind and had been diagnosed with retinitis pigmentosa prior to the diagnosis of NIID and assessed with whole exome sequencing to rule out comorbidity with other retinal diseases. Fundus photographs around the posterior pole showed chorioretinal atrophy in the peripapillary regions. OCT showed thinning of the retina. ERGs showed various abnormalities in cases. The histopathology of autopsy samples showed diffusely scattered intranuclear inclusions throughout the retina from the retinal pigment epithelium to the ganglion cell layer, and optic nerve glial cells. And severe gliosis was observed in retina and optic nerve. The NOTCH2NLC GGC repeat expansion causes numerous intranuclear inclusions in the retina and optic nerve cells and gliosis. Visual dysfunction could be the first sign of NIID. We should consider NIID as one of the causes of retinal dystrophy and investigate the GGC repeat expansion in NOTCH2NLC.
Collapse
Affiliation(s)
- Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
- Department of Neurology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan.
- Department of Neurology, National Hospital Organization Suzuka National Hospital, 3-2-1, Kasado, Suzuka, Mie, 513-8501, Japan.
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan.
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, 5 Zaifu, Hirosaki, Aomori, 036-8562, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Chisato Tamai
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Hiroyuki Yabata
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Shiga University of Medical Science. Seta-Tsukinowa, Otsu, 520-2192, Japan
| | - Ryuichi Koizumi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 22-2 Seto, Kanazawa-Ku, Yokohama, Kanagawa, 236-0027, Japan
| | - Tomohiro Hattori
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Hiroshi Hirose
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Rei Kobayashi
- Department of Neurology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Hisashi Okada
- Department of Neurology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Yoshiyuki Kishimoto
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, 19-14, Yamanaka, Noyori, Toyohashi, Aichi, 441-8124, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
- Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
11
|
Segal O, Kowal T, Banet-Levi Y, Gabis LV. Executive Function and Working Memory Deficits in Females with Fragile X Premutation. Life (Basel) 2023; 13:life13030813. [PMID: 36983968 PMCID: PMC10053193 DOI: 10.3390/life13030813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The Fragile X premutation is a genetic instability of the FMR1 gene caused by 55–199 recurrences of the CGG sequence, whereas there are only 7–54 repeats of the CGG sequence in the normal condition. While males with the premutation of Fragile X were found to have difficulties in executive functions and working memory, little data have been collected on females. This study is among the first to address executive functions and phonological memory in females with the Fragile X premutation. Twenty-three female carriers aged 20–55 years and twelve non carrier females matched in age and levels of education (in years) participated in this study. Executive functions and phonological memory were assessed using the self-report questionnaire The Behavior Rating Inventory of Executive Function (BRIEF) and behavioral measures (nonword repetitions, forward and backward digit span). Females who were carriers of the premutation of the FMR1 gene reported less efficient executive functions in the BRIEF questionnaire compared to the control group. In addition, a relationship was found between the number of repetitions on the CGG sequence of nucleotides, nonword repetitions, and forward digit span. The findings suggest that the premutation of Fragile X in females affects their performance of executive functions and may have impact on everyday functioning.
Collapse
Affiliation(s)
- Osnat Segal
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-522998404
| | - Tamar Kowal
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | | | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Trajković J, Makevic V, Pesic M, Pavković-Lučić S, Milojevic S, Cvjetkovic S, Hagerman R, Budimirovic DB, Protic D. Drosophila melanogaster as a Model to Study Fragile X-Associated Disorders. Genes (Basel) 2022; 14:genes14010087. [PMID: 36672829 PMCID: PMC9859539 DOI: 10.3390/genes14010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Fragile X syndrome (FXS) is a global neurodevelopmental disorder caused by the expansion of CGG trinucleotide repeats (≥200) in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene. FXS is the hallmark of Fragile X-associated disorders (FXD) and the most common monogenic cause of inherited intellectual disability and autism spectrum disorder. There are several animal models used to study FXS. In the FXS model of Drosophila, the only ortholog of FMR1, dfmr1, is mutated so that its protein is missing. This model has several relevant phenotypes, including defects in the circadian output pathway, sleep problems, memory deficits in the conditioned courtship and olfactory conditioning paradigms, deficits in social interaction, and deficits in neuronal development. In addition to FXS, a model of another FXD, Fragile X-associated tremor/ataxia syndrome (FXTAS), has also been established in Drosophila. This review summarizes many years of research on FXD in Drosophila models.
Collapse
Affiliation(s)
- Jelena Trajković
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Vedrana Makevic
- Department of Pathophysiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Pesic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Sara Milojevic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Smiljana Cvjetkovic
- Department of Humanities, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
13
|
Yousuf A, Ahmed N, Qurashi A. Non-canonical DNA/RNA structures associated with the pathogenesis of Fragile X-associated tremor/ataxia syndrome and Fragile X syndrome. Front Genet 2022; 13:866021. [PMID: 36110216 PMCID: PMC9468596 DOI: 10.3389/fgene.2022.866021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X syndrome (FXS) are primary examples of fragile X-related disorders (FXDs) caused by abnormal expansion of CGG repeats above a certain threshold in the 5'-untranslated region of the fragile X mental retardation (FMR1) gene. Both diseases have distinct clinical manifestations and molecular pathogenesis. FXTAS is a late-adult-onset neurodegenerative disorder caused by a premutation (PM) allele (CGG expansion of 55-200 repeats), resulting in FMR1 gene hyperexpression. On the other hand, FXS is a neurodevelopmental disorder that results from a full mutation (FM) allele (CGG expansions of ≥200 repeats) leading to heterochromatization and transcriptional silencing of the FMR1 gene. The main challenge is to determine how CGG repeat expansion affects the fundamentally distinct nature of FMR1 expression in FM and PM ranges. Abnormal CGG repeat expansions form a variety of non-canonical DNA and RNA structures that can disrupt various cellular processes and cause distinct effects in PM and FM alleles. Here, we review these structures and how they are related to underlying mutations and disease pathology in FXS and FXTAS. Finally, as new CGG expansions within the genome have been identified, it will be interesting to determine their implications in disease pathology and treatment.
Collapse
Affiliation(s)
| | | | - Abrar Qurashi
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
14
|
Bülow P, Segal M, Bassell GJ. Mechanisms Driving the Emergence of Neuronal Hyperexcitability in Fragile X Syndrome. Int J Mol Sci 2022; 23:ijms23116315. [PMID: 35682993 PMCID: PMC9181819 DOI: 10.3390/ijms23116315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperexcitability is a shared neurophysiological phenotype across various genetic neurodevelopmental disorders, including Fragile X syndrome (FXS). Several patient symptoms are associated with hyperexcitability, but a puzzling feature is that their onset is often delayed until their second and third year of life. It remains unclear how and why hyperexcitability emerges in neurodevelopmental disorders. FXS is caused by the loss of FMRP, an RNA-binding protein which has many critical roles including protein synthesis-dependent and independent regulation of ion channels and receptors, as well as global regulation of protein synthesis. Here, we discussed recent literature uncovering novel mechanisms that may drive the progressive onset of hyperexcitability in the FXS brain. We discussed in detail how recent publications have highlighted defects in homeostatic plasticity, providing new insight on the FXS brain and suggest pharmacotherapeutic strategies in FXS and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Pernille Bülow
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| | - Menahem Segal
- Department of Brain Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| |
Collapse
|
15
|
Ueda R, Koizumi T, Mizuno T, Nakagawa M. [Neuronal intranuclear inclusion disease in a patient who exhibited abnormal behavior]. Rinsho Shinkeigaku 2022; 62:369-374. [PMID: 35474285 DOI: 10.5692/clinicalneurol.cn-001689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A 63-year-old woman with no medical history of note developed acute-onset abnormal behavior persisting for one week. Mild disturbance of consciousness was noted on physical examination. Her blood and spinal fluid test results were normal. On brain MRI, diffusion-weighted image showed a high-intensity signal in U-fiber areas of the bilateral frontal lobes, and fluid-attenuated inversion recovery showed white matter lesions. We suspected neuronal intranuclear inclusion disease (NIID) based on brain MRI findings; therefore, we performed a skin biopsy and genetic test. Pathological findings of the skin biopsy revealed the presence of anti-p62-positive intranuclear inclusion bodies in fibroblasts and adipocytes. The genetic test showed GGC repeat expansion of NOTCH2NLC, but no mutation of FMR1. Thus, we diagnosed her with NIID. The acute-onset abnormal behavior was improved by levetiracetam. The present case indicates that patients with a high-intensity area in the corticomedullary junction should undergo a skin biopsy, even though they may present with non-specific symptoms such as acute-onset abnormal behavior.
Collapse
Affiliation(s)
- Ryota Ueda
- Department of Neurology, North Medical Center Kyoto Prefectural University of Medicine
- Department of Neurology and Stroke Treatment, Kyoto Daiichi Red Cross Hospital
| | - Takashi Koizumi
- Department of Neurology, North Medical Center Kyoto Prefectural University of Medicine
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine
| | - Masanori Nakagawa
- Department of Neurology, North Medical Center Kyoto Prefectural University of Medicine
- Professor emeritus, Kyoto Kyoto Prefectural University of Medicine
| |
Collapse
|
16
|
Zhang S, Shen L, Jiao B. Cognitive Dysfunction in Repeat Expansion Diseases: A Review. Front Aging Neurosci 2022; 14:841711. [PMID: 35478698 PMCID: PMC9036481 DOI: 10.3389/fnagi.2022.841711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
With the development of the sequencing technique, more than 40 repeat expansion diseases (REDs) have been identified during the past two decades. Moreover, the clinical features of these diseases show some commonality, and the nervous system, especially the cognitive function was affected in part by these diseases. However, the specific cognitive domains impaired in different diseases were inconsistent. Here, we survey literature on the cognitive consequences of the following disorders presenting cognitive dysfunction and summarizing the pathogenic genes, epidemiology, and different domains affected by these diseases. We found that the cognitive domains affected in neuronal intranuclear inclusion disease (NIID) were widespread including the executive function, memory, information processing speed, attention, visuospatial function, and language. Patients with C9ORF72-frontotemporal dementia (FTD) showed impairment in executive function, memory, language, and visuospatial function. While in Huntington's disease (HD), the executive function, memory, and information processing speed were affected, in the fragile X-associated tremor/ataxia syndrome (FXTAS), executive function, memory, information processing speed, and attention were impaired. Moreover, the spinocerebellar ataxias showed broad damage in almost all the cognitive domains except for the relatively intact language ability. Some other diseases with relatively rare clinical data also indicated cognitive dysfunction, such as myotonic dystrophy type 1 (DM1), progressive myoclonus epilepsy (PME), Friedreich ataxia (FRDA), Huntington disease like-2 (HDL2), and cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). We drew a cognitive function landscape of the related REDs that might provide an aspect for differential diagnosis through cognitive domains and effective non-specific interventions for these diseases.
Collapse
Affiliation(s)
- Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Bin Jiao
| |
Collapse
|
17
|
Rajan-Babu IS, Phang GP, Law HY, Lee CG, Chong SS. High-Throughput Methylation-Specific Triplet-Primed PCR and Melting Curve Analysis for Selective and Reliable Identification of Actionable FMR1 Genotypes. J Mol Diagn 2022; 24:241-252. [PMID: 35038595 DOI: 10.1016/j.jmoldx.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Methylated FMR1 full-mutation expansions cause fragile X syndrome. FMR1 premutation carriers are susceptible to other late-onset conditions, and women with premutation are at risk of transmitting a fully expanded FMR1 allele to offspring. Identification of individuals with actionable FMR1 genotypes (full-mutation males and females, and premutation females at risk for primary ovarian insufficiency and/or having fragile X-affected offspring) can enable timely access to intervention services and genetic counseling. This study presents a rapid, first-tier test based on melting curve analysis of methylation-specific triplet-primed PCR amplicons (msTP-PCR MCA) for concurrent detection of FMR1 CGG-repeat expansions and their methylation status. The msTP-PCR MCA assay was optimized on 20 fragile X reference samples, and its performance was evaluated on 111 peripheral blood-derived DNA samples from patients who have undergone prior molecular testing with PCR and/or Southern blot analysis. The msTP-PCR MCA assay detected all samples with a methylated FMR1 CGG-repeat expansion, and had sensitivity, specificity, positive predictive value, and negative predictive values of 100%, 92.06%, 91.1%, and 100%, respectively. The msTP-PCR MCA assay identified premutation/full-mutation mosaicism down to 1%, detected skewed inactivation in females with FMR1 expansions, and enabled selective identification of all individuals with an actionable FMR1 genotype. The msTP-PCR MCA assay may aid in fragile X screening of at-risk populations and newborns and voluntary carrier screening of women of reproductive age.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, Vancouver, British Columbia, Canada.
| | - Gui-Ping Phang
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hai-Yang Law
- Department of Pediatric Medicine, KK Women's and Children's Hospital, Singapore
| | - Caroline G Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Samuel S Chong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Laboratory Medicine, National University Hospital, Singapore.
| |
Collapse
|
18
|
Neurogenetic disorders across the lifespan: from aberrant development to degeneration. Nat Rev Neurol 2022; 18:117-124. [PMID: 34987232 PMCID: PMC10132523 DOI: 10.1038/s41582-021-00595-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
Intellectual disability and autism spectrum disorder (ASD) are common, and genetic testing is increasingly performed in individuals with these diagnoses to inform prognosis, refine management and provide information about recurrence risk in the family. For neurogenetic conditions associated with intellectual disability and ASD, data on natural history in adults are scarce; however, as older adults with these disorders are identified, it is becoming clear that some conditions are associated with both neurodevelopmental problems and neurodegeneration. Moreover, emerging evidence indicates that some neurogenetic conditions associated primarily with neurodegeneration also affect neurodevelopment. In this Perspective, we discuss examples of diseases that have developmental and degenerative overlap. We propose that neurogenetic disorders should be studied continually across the lifespan to understand the roles of the affected genes in brain development and maintenance, and to inform strategies for treatment.
Collapse
|
19
|
Martins AAS, Paiva GM, Matosinho CGR, Coser EM, Fonseca PADS, Haase VG, Carvalho MRS. Working memory and arithmetic impairments in children with FMR1 premutation and gray zone alleles. Dement Neuropsychol 2022; 16:105-114. [PMID: 35719251 PMCID: PMC9170264 DOI: 10.1590/1980-5764-dn-2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022] Open
Abstract
Expansive mutations in familial mental retardation 1 (FMR1) gene have been associated with different phenotypes. Full mutations are associated with intellectual disability and autism spectrum disorder; premutations are associated with math learning difficulties and working memory impairments. In gray zone, neuropsychological development has not yet been described. Objectives This study aimed to describe the frequency of FMR1 premutation and gray zone alleles in a school population sample representing a broad spectrum of variation in math achievement and detail school achievement and cognitive performance in the children identified with FMR1 premutation or gray zone alleles. Methods We described a two-phase study. In the first phase, 2,195 school-age children were screened for math achievement. In the second phase, 378 children with normal intelligence were neuropsychologically assessed and genotyped for FMR1. Of these, 121 children (61 girls) performed below percentile 25 in mathematics (MD group) and 257 children (146 girls) performed above percentile 25 (control group). Results Four pupils presented expanded alleles, one premutation and three gray zone alleles. The girl with the premutation and one boy with a gray zone allele presented impairments in working memory and arithmetic performance below percentile 6, compatible with the diagnosis of developmental dyscalculia. These children's difficulties were not associated with inaccuracy of nonsymbolic number representations or literacy impairments. Dyscalculia in these children seems to be associated mainly with working memory impairments. Conclusions FMR1 expansions in the gray zone may contribute to dyscalculia in otherwise healthy and normally intelligent children.
Collapse
Affiliation(s)
- Aline Aparecida Silva Martins
- Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Postgraduate Program em Genética, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte MG, Brazil
| | - Giulia Moreira Paiva
- Universidade Federal de Minas Gerais, Faculdade de Filosofia e Ciências Humanas, Departamento de Psicologia, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil
| | - Carolina Guimarães Ramos Matosinho
- Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Postgraduate Program em Genética, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte MG, Brazil
| | - Elisângela Monteiro Coser
- Fundação Oswaldo Cruz, Instituto René Rachou, Departamento de Informática de Biossistemas e Genômica, Belo Horizonte MG, Brazil
| | - Pablo Augusto de Souza Fonseca
- Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Postgraduate Program em Genética, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte MG, Brazil
| | - Vitor Geraldi Haase
- Universidade Federal de Minas Gerais, Faculdade de Filosofia e Ciências Humanas, Departamento de Psicologia, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Faculdade de Medicina, Postgraduate Program em Saúde da Criança e do Adolescente Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Faculdade de Filosofia e Ciências Humanas, Departamento de Psicologia, Postgraduate Program em Psicologia, Belo Horizonte MG, Brazil.,Instituto Nacional de Ciência e Tecnologia em Cognição, Comportamento e Ensino, São Carlos SP, Brazil
| | - Maria Raquel Santos Carvalho
- Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Postgraduate Program em Genética, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte MG, Brazil
| |
Collapse
|
20
|
Moser C, Mattie L, Abbeduto L, Klusek J. The FMR1 Premutation Phenotype and Mother-Youth Synchrony in Fragile X Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2021; 126:443-459. [PMID: 34700350 PMCID: PMC8555425 DOI: 10.1352/1944-7558-126.6.443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/12/2021] [Indexed: 06/13/2023]
Abstract
A subset of mothers who carry the FMR1 premutation may express a unique phenotype. The relationship between the FMR1 phenotype and mother-child interaction in families with fragile X-associated disorders has not been well characterized, despite the importance of high-quality mother-child interaction for child development. This study examined the association between the FMR1 phenotype and the quality of interactions between mothers and their adolescent/young adult sons with fragile X syndrome. Mother-youth synchrony was coded from a dyadic interaction. Maternal anxiety and depression symptoms, executive function deficits, and pragmatic language difficulties were evaluated. Results indicated that pragmatic language was associated with mother-youth synchrony. These findings highlight the importance of family-centered intervention practices for families with fragile X-associated disorders.
Collapse
Affiliation(s)
- Carly Moser
- University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Laura Mattie
- University of Illinois, Champaign, Illinois, 61820, USA
| | | | - Jessica Klusek
- University of South Carolina, Columbia, South Carolina, 29208, USA
| |
Collapse
|
21
|
Beyond Trinucleotide Repeat Expansion in Fragile X Syndrome: Rare Coding and Noncoding Variants in FMR1 and Associated Phenotypes. Genes (Basel) 2021; 12:genes12111669. [PMID: 34828275 PMCID: PMC8623550 DOI: 10.3390/genes12111669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
FMR1 (FMRP translational regulator 1) variants other than repeat expansion are known to cause disease phenotypes but can be overlooked if they are not accounted for in genetic testing strategies. We collected and reanalyzed the evidence for pathogenicity of FMR1 coding, noncoding, and copy number variants published to date. There is a spectrum of disease-causing FMR1 variation, with clinical and functional evidence supporting pathogenicity of five splicing, five missense, one in-frame deletion, one nonsense, and four frameshift variants. In addition, FMR1 deletions occur in both mosaic full mutation patients and as constitutional pathogenic alleles. De novo deletions arise not only from full mutation alleles but also alleles with normal-sized CGG repeats in several patients, suggesting that the CGG repeat region may be prone to genomic instability even in the absence of repeat expansion. We conclude that clinical tests for potentially FMR1-related indications such as intellectual disability should include methods capable of detecting small coding, noncoding, and copy number variants.
Collapse
|
22
|
Dulman RS, Auta J, Wandling GM, Patwell R, Zhang H, Pandey SC. Persistence of cerebellar ataxia during chronic ethanol exposure is associated with epigenetic up-regulation of Fmr1 gene expression in rat cerebellum. Alcohol Clin Exp Res 2021; 45:2006-2016. [PMID: 34453331 PMCID: PMC8602769 DOI: 10.1111/acer.14691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Alcohol intoxication produces ataxia by affecting the cerebellum, which coordinates movements. Fragile X mental retardation (FMR) protein is a complex regulator of RNA and synaptic plasticity implicated in fragile X-associated tremor/ataxia syndrome, which features ataxia and increased Fmr1 mRNA expression resulting from epigenetic dysregulation of FMRP. We recently demonstrated that acute ethanol-induced ataxia is associated with increased cerebellar Fmr1 gene expression via histone modifications in rats, but it is unknown whether similar behavioral and molecular changes occur following chronic ethanol exposure. Here, we investigated the effects of chronic ethanol exposure on ataxia and epigenetically regulated changes in Fmr1 expression in the cerebellum. METHODS Male adult Sprague-Dawley rats were trained on the accelerating rotarod and then fed with chronic ethanol or a control Lieber-DeCarli diet while undergoing periodic behavioral testing for ataxia during ethanol exposure and withdrawal. Cerebellar tissues were analyzed for expression of the Fmr1 gene and its targets using a real-time quantitative polymerase chain reaction assay. The epigenetic regulation of Fmr1 was also investigated using a chromatin immunoprecipitation assay. RESULTS Ataxic behavior measured by the accelerating rotarod behavioral test developed during chronic ethanol treatment and persisted at both the 8-h and 24-h withdrawal time points compared to control diet-fed rats. In addition, chronic ethanol treatment resulted in up-regulated expression of Fmr1 mRNA and increased activating epigenetic marks H3K27 acetylation and H3K4 trimethylation at 2 sites within the Fmr1 promoter. Finally, measurement of the expression of relevant FMRP mRNA targets in the cerebellum showed that chronic ethanol up-regulated cAMP response element binding (CREB) Creb1, Psd95, Grm5, and Grin2b mRNA expression without altering Grin2a, Eaa1, or histone acetyltransferases CREB binding protein (Cbp) or p300 mRNA transcripts. CONCLUSIONS These results suggest that epigenetic regulation of Fmr1 and subsequent FMRP regulation of target mRNA transcripts constitute neuroadaptations in the cerebellum that may underlie the persistence of ataxic behavior during chronic ethanol exposure and withdrawal.
Collapse
Affiliation(s)
- Russell S. Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - Gabriela M. Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - Ryan Patwell
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612 USA
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612 USA
| |
Collapse
|
23
|
Mechanisms of Ethanol-Induced Cerebellar Ataxia: Underpinnings of Neuronal Death in the Cerebellum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168678. [PMID: 34444449 PMCID: PMC8391842 DOI: 10.3390/ijerph18168678] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
Ethanol consumption remains a major concern at a world scale in terms of transient or irreversible neurological consequences, with motor, cognitive, or social consequences. Cerebellum is particularly vulnerable to ethanol, both during development and at the adult stage. In adults, chronic alcoholism elicits, in particular, cerebellar vermis atrophy, the anterior lobe of the cerebellum being highly vulnerable. Alcohol-dependent patients develop gait ataxia and lower limb postural tremor. Prenatal exposure to ethanol causes fetal alcohol spectrum disorder (FASD), characterized by permanent congenital disabilities in both motor and cognitive domains, including deficits in general intelligence, attention, executive function, language, memory, visual perception, and communication/social skills. Children with FASD show volume deficits in the anterior lobules related to sensorimotor functions (Lobules I, II, IV, V, and VI), and lobules related to cognitive functions (Crus II and Lobule VIIB). Various mechanisms underlie ethanol-induced cell death, with oxidative stress and endoplasmic reticulum (ER) stress being the main pro-apoptotic mechanisms in alcohol abuse and FASD. Oxidative and ER stresses are induced by thiamine deficiency, especially in alcohol abuse, and are exacerbated by neuroinflammation, particularly in fetal ethanol exposure. Furthermore, exposure to ethanol during the prenatal period interferes with neurotransmission, neurotrophic factors and retinoic acid-mediated signaling, and reduces the number of microglia, which diminishes expected cerebellar development. We highlight the spectrum of cerebellar damage induced by ethanol, emphasizing physiological-based clinical profiles and biological mechanisms leading to cell death and disorganized development.
Collapse
|
24
|
Molecular Pathogenesis and Peripheral Monitoring of Adult Fragile X-Associated Syndromes. Int J Mol Sci 2021; 22:ijms22168368. [PMID: 34445074 PMCID: PMC8395059 DOI: 10.3390/ijms22168368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
Abnormal trinucleotide expansions cause rare disorders that compromise quality of life and, in some cases, lifespan. In particular, the expansions of the CGG-repeats stretch at the 5’-UTR of the Fragile X Mental Retardation 1 (FMR1) gene have pleiotropic effects that lead to a variety of Fragile X-associated syndromes: the neurodevelopmental Fragile X syndrome (FXS) in children, the late-onset neurodegenerative disorder Fragile X-associated tremor-ataxia syndrome (FXTAS) that mainly affects adult men, the Fragile X-associated primary ovarian insufficiency (FXPOI) in adult women, and a variety of psychiatric and affective disorders that are under the term of Fragile X-associated neuropsychiatric disorders (FXAND). In this review, we will describe the pathological mechanisms of the adult “gain-of-function” syndromes that are mainly caused by the toxic actions of CGG RNA and FMRpolyG peptide. There have been intensive attempts to identify reliable peripheral biomarkers to assess disease progression and onset of specific pathological traits. Mitochondrial dysfunction, altered miRNA expression, endocrine system failure, and impairment of the GABAergic transmission are some of the affectations that are susceptible to be tracked using peripheral blood for monitoring of the motor, cognitive, psychiatric and reproductive impairment of the CGG-expansion carriers. We provided some illustrative examples from our own cohort. Understanding the association between molecular pathogenesis and biomarkers dynamics will improve effective prognosis and clinical management of CGG-expansion carriers.
Collapse
|
25
|
Dysregulation of anti-Mullerian hormone expression levels in mural granulosa cells of FMR1 premutation carriers. Sci Rep 2021; 11:14139. [PMID: 34238973 PMCID: PMC8266831 DOI: 10.1038/s41598-021-93489-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
FMR1 premutation (55–200 CGG repeats) results in fragile X-associated primary ovarian insufficiency (FXPOI). We evaluated expression levels of folliculogenesis-related mediators, follicle-stimulating hormone (FSH) receptor and anti-Mullerian hormone (AMH), to gain insights into the mechanisms underlying the reduced ovarian function. Mural granulosa cells (MGCs) were collected from FMR1 premutation carriers and noncarriers undergoing IVF treatments. At baseline, MGCs of carriers demonstrated significantly higher mRNA expression levels of AMH (3.5 ± 2.2, n = 12 and 0.97 ± 0.5, n = 17, respectively; p = 0.0003) and FSH receptor (5.6 ± 2.8 and 2.7 ± 2.8, respectively; p = 0.02) and higher AMH protein expression on immunostaining. Accordingly, FMR1 premutation-transfected COV434 cells exhibited higher AMH protein expression than COV434 cells transfected with 20 CGG repeats. We conclude that FMR1 premutation may lead to dysregulation of AMH expression levels, probably due to a compensatory mechanism. Elucidating the pathophysiology of FXPOI may help in early detection of ovarian dysfunction and tailoring IVF treatments to FMR1 premutation carriers.
Collapse
|
26
|
Yang S, Lim KH, Kim SH, Joo JY. Molecular landscape of long noncoding RNAs in brain disorders. Mol Psychiatry 2021; 26:1060-1074. [PMID: 33173194 DOI: 10.1038/s41380-020-00947-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
According to current paradigms, various risk factors, such as genetic mutations, oxidative stress, neural network dysfunction, and abnormal protein degradation, contribute to the progression of brain disorders. Through the cooperation of gene transcripts in biological processes, the study of noncoding RNAs can lead to insights into the cause and treatment of brain disorders. Recently, long noncoding RNAs (lncRNAs) which are longer than 200 nucleotides in length have been suggested as key factors in various brain disorders. Accumulating evidence suggests the potential of lncRNAs as diagnostic or prognostic biomarkers and therapeutic targets. High-throughput screening-based sequencing has been instrumental in identification of lncRNAs that demand new approaches to understanding the progression of brain disorders. In this review, we discuss the recent progress in the study of lncRNAs, and addresses the pathogenesis of brain disorders that involve lncRNAs and describes the associations of lncRNAs with neurodegenerative disorders such as Alzheimer disease (AD), Parkinson disease (PD), and neurodevelopmental disorders. We also discuss potential targets of lncRNAs and their promise as novel therapeutics and biomarkers in brain disorders.
Collapse
Affiliation(s)
- Sumin Yang
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Key-Hwan Lim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sung-Hyun Kim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| |
Collapse
|
27
|
Bhat SA, Yousuf A, Mushtaq Z, Kumar V, Qurashi A. Fragile X Premutation rCGG Repeats Impair Synaptic Growth and Synaptic Transmission at Drosophila larval Neuromuscular Junction. Hum Mol Genet 2021; 30:1677-1692. [PMID: 33772546 DOI: 10.1093/hmg/ddab087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/14/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disease that develops in some premutation (PM) carriers of the FMR1 gene with alleles bearing 55-200 CGG repeats. The discovery of a broad spectrum of clinical and cell developmental abnormalities among PM carriers with or without FXTAS and in model systems suggests that neurodegeneration seen in FXTAS could be the inevitable end-result of pathophysiological processes set during early development. Hence, it is imperative to trace early PM-induced pathological abnormalities. Previous studies have shown that transgenic Drosophila carrying PM-length CGG repeats are sufficient to cause neurodegeneration. Here, we used the same transgenic model to understand the effect of CGG repeats on the structure and function of the developing nervous system. We show that presynaptic expression of CGG repeats restricts synaptic growth, reduces the number of synaptic boutons, leads to aberrant presynaptic varicosities, and impairs synaptic transmission at the larval neuromuscular junctions. The postsynaptic analysis shows that both glutamate receptors and subsynaptic reticulum proteins were normal. However, a high percentage of boutons show a reduced density of Bruchpilot protein, a key component of presynaptic active zones required for vesicle release. The electrophysiological analysis shows a significant reduction in quantal content, a measure of total synaptic vesicles released per excitation potential. Together, these findings suggest that synapse perturbation caused by rCGG repeats mediates presynaptically during larval NMJ development. We also suggest that the stress-activated c-Jun N-terminal kinase protein Basket and CIDE-N protein Drep-2 positively mediate Bruchpilot active zone defects caused by rCGG repeats.
Collapse
Affiliation(s)
- Sajad A Bhat
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| | - Aadil Yousuf
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| | - Zeeshan Mushtaq
- Laboratory of Neurogenetics, IISER-Bhopal, Bhopal, MP, 462066, India
| | - Vimlesh Kumar
- Laboratory of Neurogenetics, IISER-Bhopal, Bhopal, MP, 462066, India
| | - Abrar Qurashi
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| |
Collapse
|
28
|
Quach TT, Stratton HJ, Khanna R, Kolattukudy PE, Honnorat J, Meyer K, Duchemin AM. Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol 2021; 141:139-158. [PMID: 33226471 PMCID: PMC7855540 DOI: 10.1007/s00401-020-02244-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) corresponds to several neurodevelopmental disorders of heterogeneous origin in which cognitive deficits are commonly associated with abnormalities of dendrites and dendritic spines. These histological changes in the brain serve as a proxy for underlying deficits in neuronal network connectivity, mostly a result of genetic factors. Historically, chromosomal abnormalities have been reported by conventional karyotyping, targeted fluorescence in situ hybridization (FISH), and chromosomal microarray analysis. More recently, cytogenomic mapping, whole-exome sequencing, and bioinformatic mining have led to the identification of novel candidate genes, including genes involved in neuritogenesis, dendrite maintenance, and synaptic plasticity. Greater understanding of the roles of these putative ID genes and their functional interactions might boost investigations into determining the plausible link between cellular and behavioral alterations as well as the mechanisms contributing to the cognitive impairment observed in ID. Genetic data combined with histological abnormalities, clinical presentation, and transgenic animal models provide support for the primacy of dysregulation in dendrite structure and function as the basis for the cognitive deficits observed in ID. In this review, we highlight the importance of dendrite pathophysiology in the etiologies of four prototypical ID syndromes, namely Down Syndrome (DS), Rett Syndrome (RTT), Digeorge Syndrome (DGS) and Fragile X Syndrome (FXS). Clinical characteristics of ID have also been reported in individuals with deletions in the long arm of chromosome 10 (the q26.2/q26.3), a region containing the gene for the collapsin response mediator protein 3 (CRMP3), also known as dihydropyrimidinase-related protein-4 (DRP-4, DPYSL4), which is involved in dendritogenesis. Following a discussion of clinical and genetic findings in these syndromes and their preclinical animal models, we lionize CRMP3/DPYSL4 as a novel candidate gene for ID that may be ripe for therapeutic intervention.
Collapse
Affiliation(s)
- Tam T Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Jérome Honnorat
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- SynatAc Team, Institut NeuroMyoGène, Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH, 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH, 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
29
|
Dijkstra AA, Haify SN, Verwey NA, Prins ND, van der Toorn EC, Rozemuller AJM, Bugiani M, den Dunnen WFA, Todd PK, Charlet-Berguerand N, Willemsen R, Hukema RK, Hoozemans JJM. Neuropathology of FMR1-premutation carriers presenting with dementia and neuropsychiatric symptoms. Brain Commun 2021; 3:fcab007. [PMID: 33709078 PMCID: PMC7936660 DOI: 10.1093/braincomms/fcab007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
CGG repeat expansions within the premutation range (55–200) of the FMR1 gene can lead to Fragile X-associated tremor/ataxia syndrome and Fragile X-associated neuropsychiatric disorders. These CGG repeats are translated into a toxic polyglycine-containing protein, FMRpolyG. Pathology of Fragile X-associated tremor/ataxia syndrome and Fragile X-associated neuropsychiatric disorders comprises FMRpolyG- and p62-positive intranuclear inclusions. Diagnosing a FMR1-premutation carrier remains challenging, as the clinical features overlap with other neurodegenerative diseases. Here, we describe two male cases with Fragile X-associated neuropsychiatric disorders-related symptoms and mild movement disturbances and novel pathological features that can attribute to the variable phenotype. Macroscopically, both donors did not show characteristic white matter lesions on MRI; however, vascular infarcts in cortical- and sub-cortical regions were identified. Immunohistochemistry analyses revealed a high number of FMRpolyG intranuclear inclusions throughout the brain, which were also positive for p62. Importantly, we identified a novel pathological vascular phenotype with inclusions present in pericytes and endothelial cells. Although these results need to be confirmed in more cases, we propose that these vascular lesions in the brain could contribute to the complex symptomology of FMR1-premutation carriers. Overall, our report suggests that Fragile X-associated tremor/ataxia syndrome and Fragile X-associated neuropsychiatric disorders may present diverse clinical involvements resembling other types of dementia, and in the absence of genetic testing, FMRpolyG can be used post-mortem to identify premutation carriers.
Collapse
Affiliation(s)
- Anke A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Saif N Haify
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Niek A Verwey
- Department of Neurology, Medisch Centrum Leeuwarden, Leeuwarden, The Netherlands
| | - Niels D Prins
- Department of Neurology, Alzheimer Center, VU University Medical Center, Amsterdam Neuroscience, The Netherlands.,Brain Research Center, Amsterdam, The Netherlands
| | | | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Department of Veterans Affairs, Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400, Illkirch, France
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands.,Department of Health Care Studies, Rotterdam University of Applied Sciences, Rotterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Moser C, Schmitt L, Schmidt J, Fairchild A, Klusek J. Response Inhibition Deficits in Women with the FMR1 Premutation are Associated with Age and Fall Risk. Brain Cogn 2020; 148:105675. [PMID: 33387817 DOI: 10.1016/j.bandc.2020.105675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
One in 113-178 females worldwide carry a premutation allele on the FMR1 gene. The FMR1 premutation is linked to neurocognitive and neuromotor impairments, although the phenotype is not fully understood, particularly with respect to age effects. This study sought to define oculomotor response inhibition skills in women with the FMR1 premutation and their association with age and fall risk. We employed an antisaccade eye-tracking paradigm to index oculomotor inhibition skills in 35 women with the FMR1 premutation and 28 control women. The FMR1 premutation group exhibited longer antisaccade latency and reduced accuracy relative to controls, indicating deficient response inhibition skills. Longer response latency was associated with older age in the FMR1 premutation and was also predictive of fall risk. Findings highlight the utility of the antisaccade paradigm for detecting early signs of age-related executive decline in the FMR1 premutation, which is related to fall risk. Findings support the need for clinical prevention efforts to decrease and delay the trajectory of age-related executive decline in women with the FMR1 premutation during midlife.
Collapse
Affiliation(s)
- Carly Moser
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA
| | - Lyndsay Schmitt
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA
| | - Joseph Schmidt
- Department of Psychology, University of Central Florida, 4111 Pictor Lane, Orlando, FL 32816, Orlando, Florida 32816, USA
| | - Amanda Fairchild
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, South Carolina, 29208, USA
| | - Jessica Klusek
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
31
|
Schwartz JL, Jones KL, Yeo GW. Repeat RNA expansion disorders of the nervous system: post-transcriptional mechanisms and therapeutic strategies. Crit Rev Biochem Mol Biol 2020; 56:31-53. [PMID: 33172304 PMCID: PMC8192115 DOI: 10.1080/10409238.2020.1841726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dozens of incurable neurological disorders result from expansion of short repeat sequences in both coding and non-coding regions of the transcriptome. Short repeat expansions underlie microsatellite repeat expansion (MRE) disorders including myotonic dystrophy (DM1, CUG50–3,500 in DMPK; DM2, CCTG75–11,000 in ZNF9), fragile X tremor ataxia syndrome (FXTAS, CGG50–200 in FMR1), spinal bulbar muscular atrophy (SBMA, CAG40–55 in AR), Huntington’s disease (HD, CAG36–121 in HTT), C9ORF72-amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD and C9-ALS/FTD, GGGGCC in C9ORF72), and many others, like ataxias. Recent research has highlighted several mechanisms that may contribute to pathology in this heterogeneous class of neurological MRE disorders – bidirectional transcription, intranuclear RNA foci, and repeat associated non-AUG (RAN) translation – which are the subject of this review. Additionally, many MRE disorders share similar underlying molecular pathologies that have been recently targeted in experimental and preclinical contexts. We discuss the therapeutic potential of versatile therapeutic strategies that may selectively target disrupted RNA-based processes and may be readily adaptable for the treatment of multiple MRE disorders. Collectively, the strategies under consideration for treatment of multiple MRE disorders include reducing levels of toxic RNA, preventing RNA foci formation, and eliminating the downstream cellular toxicity associated with peptide repeats produced by RAN translation. While treatments are still lacking for the majority of MRE disorders, several promising therapeutic strategies have emerged and will be evaluated within this review.
Collapse
Affiliation(s)
- Joshua L Schwartz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krysten Leigh Jones
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
32
|
Yuan Y, Liu Z, Hou X, Li W, Ni J, Huang L, Hu Y, Liu P, Hou X, Xue J, Sun Q, Tian Y, Jiao B, Duan R, Jiang H, Shen L, Tang B, Wang J. Identification of GGC repeat expansion in the NOTCH2NLC gene in amyotrophic lateral sclerosis. Neurology 2020; 95:e3394-e3405. [PMID: 32989102 DOI: 10.1212/wnl.0000000000010945] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To determine whether the GGC repeats in the NOTCH2NLC gene contribute to amyotrophic lateral sclerosis (ALS). METHODS In this study, 545 patients with ALS and 1,305 healthy controls from mainland China were recruited. Several pathogenic mutations in known ALS-causative genes (including C9ORF72 and ATXN2) and polynucleotide repeat expansions in NOP56 and AR genes were excluded. Repeat-primed PCR and GC-rich PCR were performed to determine the GGC repeat size in NOTCH2NLC. Systematic and targeted clinical evaluations and investigations, including skin biopsy and dynamic electrophysiologic studies, were conducted in the genetically affected patients. RESULTS GGC repeat expansion was observed in 4 patients (numbers of repeats 44, 54, 96, and 143), accounting for ≈0.73% (4 of 545) of all patients with ALS. A comparison with 1,305 healthy controls revealed that GGC repeat expansion in NOTCH2NLC was associated with ALS (Fisher exact test, 4 of 545 vs 0 of 1,305, p = 0.007). Compared to patients with the neuronal intranuclear inclusion disease (NIID) muscle weakness-dominant subtype, patients with ALS phenotype carrying the abnormal repeat expansion tended to have a severe phenotype and rapid deterioration. CONCLUSION Our results suggest that ALS is a specific phenotype of NIID or that GGC expansion in NOTCH2NLC is a factor that modifies ALS. These findings may help clarify the pathogenic mechanism of ALS and may expand the known clinical spectrum of NIID.
Collapse
Affiliation(s)
- Yanchun Yuan
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Zhen Liu
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Xuan Hou
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Wanzhen Li
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China.
| | - Jie Ni
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Ling Huang
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Yiting Hu
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Pan Liu
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Xiaorong Hou
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Jin Xue
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Qiying Sun
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Yun Tian
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Bin Jiao
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Ranhui Duan
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Hong Jiang
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Lu Shen
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Beisha Tang
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China
| | - Junling Wang
- From the Department of Neurology (Y.Y., Z.L., X.H., W.L., J.N., Y.H., P.L., X.H., Q.S., Y.T., B.J., H.J., L.S, B.T., J.W.) and National Clinical Research Center for Geriatric Diseases (H.J., L.S, B.T., J.W.), Xiangya Hospital, Department of Neurology (L.H.), the Third Xiangya Hospital, Laboratory of Medical Genetics (J.X., R.D., H.J., L.S, B.T., J.W.), and Key Laboratory of Hunan Province in Neurodegenerative Disorders (J.H., L.S, B.T., J.W.), Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
33
|
Abstract
Neuronal intranuclear inclusion disease (NIID) is a progressive neurodegenerative disease that had been diagnosed by autopsy until recently, but the number of cases has increased since skin biopsy was reported to be useful in 2011. In 2019, the genetical cause of NIID was identified as the extension of the GGC repeat sequence on the NOTCH2NLC gene, and genetic diagnosis became possible. In NIID, there are two groups: a group onset with cognitive dysfunction, and with leukoencephalopathy on head MRI and a high intensity signal at the corticomedurally junction on DWI, and a group with limb weakness. It is necessary to include NIID in the differential diagnosis of leukoencephalopathy and neuropathy, and it is necessary to combine skin biopsy and genetic testing to accurately diagnose of NIID and promote pathological elucidation.
Collapse
Affiliation(s)
- Jun Sone
- Department of Neurology, National Hospital Organization Suzuka National Hospital
| |
Collapse
|
34
|
Robinson AC, Bajaj N, Hadjivassiliou M, Minshull J, Mahmood A, Roncaroli F. Neuropathology of a case of fragile X-associated tremor ataxia syndrome without tremor. Neuropathology 2020; 40:611-619. [PMID: 32830366 DOI: 10.1111/neup.12674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/01/2022]
Abstract
Fragile X-associated tremor ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG trinucleotide expansion from 55 to 200 repeats in the non-coding region of the fragile X mental retardation 1 (FMR1) gene (FMR1). Clinical features include cognitive decline, progressive tremor, and gait ataxia. Neuropathologically, FXTAS shows white matter changes, hippocampal and cerebellar involvement, and p62-positive eosinophilic intranuclear inclusions in astrocytes and neurons. Here, we document the neuropathological findings from a subject who developed cognitive impairment but not tremor and was proved to have genetically confirmed FMR1 premutation. Microscopically, typical p62-postive intranuclear inclusions were present in all the regions examined. Neocortical regions demonstrated gliosis of layer I and mild degree of neuronal loss and atrophy across the other layers. The molecular, Purkinje's cell, and granule cell layers of the cerebellar folia demonstrated mild gliosis, and cerebellar white matter was mildly affected. Aside from p62-positive inclusions, the hippocampus was spared. Arteries in the deep white matter often showed changes consistent with moderate small vessel disease (SVD). Reactive gliosis and severe SVD were features of basal ganglia. Florid reactive astrocytosis was found in the white matter of all regions. Axonal loss and features of axonal damage were found in the white matter of the centrum semiovale. Microglial activation was widespread and evenly seen in both the white matter and grey matter, although the grey matter appeared more severely affected. Pathology associated with Alzheimer's disease was limited. Similarly, no abnormal accumulations of α-synuclein were present. We postulate that age at death and disease duration may play a role in the extent of the pathological features associated with FXTAS. The present results suggest that immunohistochemical staining for p62 can help with the diagnosis of cases with atypical phenotype. In addition, it is likely that the cognitive impairment observed was a result of white matter changes.
Collapse
Affiliation(s)
- Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Nin Bajaj
- Department of Neurology, University of Nottingham, Nottingham, UK
| | - Marios Hadjivassiliou
- Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - James Minshull
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Aiza Mahmood
- Neuropathology Unit, Salford Royal Hospital, Manchester, UK
| | - Federico Roncaroli
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK.,Neuropathology Unit, Salford Royal Hospital, Manchester, UK
| |
Collapse
|
35
|
Malecki C, Hambly BD, Jeremy RW, Robertson EN. The RNA-binding fragile-X mental retardation protein and its role beyond the brain. Biophys Rev 2020; 12:903-916. [PMID: 32654068 DOI: 10.1007/s12551-020-00730-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
It is well-established that variations of a CGG repeat expansion in the gene FMR1, which encodes the fragile-X mental retardation protein (FMRP), cause the neurocognitive disorder, fragile-X syndrome (FXS). However, multiple observations suggest a general and complex regulatory role of FMRP in processes outside the brain: (1) FMRP is ubiquitously expressed in the body, suggesting it functions in multiple organ systems; (2) patients with FXS can exhibit a physical phenotype that is consistent with an underlying abnormality in connective tissue; (3) different CGG repeat expansion lengths in FMR1 result in different clinical outcomes due to different pathogenic mechanisms; (4) the function of FMRP as an RNA-binding protein suggests it has a general regulatory role. This review details the complex nature of FMRP and the different CGG repeat expansion lengths and the evidence supporting the essential role of the protein in a variety of biological and pathological processes.
Collapse
Affiliation(s)
- Cassandra Malecki
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.
| | - Brett D Hambly
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia
| | - Richmond W Jeremy
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Elizabeth N Robertson
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
36
|
Elevated FMR1-mRNA and lowered FMRP - A double-hit mechanism for psychiatric features in men with FMR1 premutations. Transl Psychiatry 2020; 10:205. [PMID: 32576818 PMCID: PMC7311546 DOI: 10.1038/s41398-020-00863-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 01/07/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by a full mutation of the FMR1 gene (>200 CGG repeats and subsequent methylation), such that there is little or no FMR1 protein (FMRP) produced, leading to intellectual disability (ID). Individuals with the premutation allele (55-200 CGG repeats, generally unmethylated) have elevated FMR1 mRNA levels, a consequence of enhanced transcription, resulting in neuronal toxicity and a spectrum of premutation-associated disorders, including the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Here we described 14 patients who had both lowered FMRP and elevated FMR1 mRNA levels, representing dual mechanisms of clinical involvement, which may combine features of both FXS and FXTAS. In addition, the majority of these cases show psychiatric symptoms, including bipolar disorder, and/or psychotic features, which are rarely seen in those with just FXS.
Collapse
|
37
|
Deng J, Yu J, Li P, Luan X, Cao L, Zhao J, Yu M, Zhang W, Lv H, Xie Z, Meng L, Zheng Y, Zhao Y, Gang Q, Wang Q, Liu J, Zhu M, Guo X, Su Y, Liang Y, Liang F, Hayashi T, Maeda MH, Sato T, Ura S, Oya Y, Ogasawara M, Iida A, Nishino I, Zhou C, Yan C, Yuan Y, Hong D, Wang Z. Expansion of GGC Repeat in GIPC1 Is Associated with Oculopharyngodistal Myopathy. Am J Hum Genet 2020; 106:793-804. [PMID: 32413282 DOI: 10.1016/j.ajhg.2020.04.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/15/2020] [Indexed: 11/27/2022] Open
Abstract
Oculopharyngodistal myopathy (OPDM) is an adult-onset inherited neuromuscular disorder characterized by progressive ptosis, external ophthalmoplegia, and weakness of the masseter, facial, pharyngeal, and distal limb muscles. The myopathological features are presence of rimmed vacuoles (RVs) in the muscle fibers and myopathic changes of differing severity. Inheritance is variable, with either putative autosomal-dominant or autosomal-recessive pattern. Here, using a comprehensive strategy combining whole-genome sequencing (WGS), long-read whole-genome sequencing (LRS), linkage analysis, repeat-primed polymerase chain reaction (RP-PCR), and fluorescence amplicon length analysis polymerase chain reaction (AL-PCR), we identified an abnormal GGC repeat expansion in the 5' UTR of GIPC1 in one out of four families and three sporadic case subjects from a Chinese OPDM cohort. Expanded GGC repeats were further confirmed as the cause of OPDM in an additional 2 out of 4 families and 6 out of 13 sporadic Chinese individuals with OPDM, as well as 7 out of 194 unrelated Japanese individuals with OPDM. Methylation, qRT-PCR, and western blot analysis indicated that GIPC1 mRNA levels were increased while protein levels were unaltered in OPDM-affected individuals. RNA sequencing indicated p53 signaling, vascular smooth muscle contraction, ubiquitin-mediated proteolysis, and ribosome pathways were involved in the pathogenic mechanisms of OPDM-affected individuals with GGC repeat expansion in GIPC1. This study provides further evidence that OPDM is associated with GGC repeat expansions in distinct genes and highly suggests that expanded GGC repeat units are essential in the pathogenesis of OPDM, regardless of the genes in which the expanded repeats are located.
Collapse
|
38
|
Haify SN, Botta-Orfila T, Hukema RK, Tartaglia GG. In silico, in vitro, and in vivo Approaches to Identify Molecular Players in Fragile X Tremor and Ataxia Syndrome. Front Mol Biosci 2020; 7:31. [PMID: 32219099 PMCID: PMC7078329 DOI: 10.3389/fmolb.2020.00031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative monogenetic disorder affecting carriers of premutation (PM) forms of the FMR1 gene, resulting in a progressive development of tremors, ataxia, and neuropsychological problems. This highly disabling disease is quite common in the general population with an estimation of about 20 million PM carriers worldwide. The chances of developing FXTAS increase dramatically with age, with about 45% of male carriers over the age of 50 being affected. Both the gene and pathogenic trigger, a mutant expansion of CGG RNA, causing FXTAS are known. This makes it an interesting disease to develop targeted therapeutic interventions for. Yet, no such interventions are available at this moment. Here we discuss in silico, in vitro, and in vivo approaches and how they have been used to identify the molecular determinants of FXTAS pathology. These approaches have yielded substantial information about FXTAS pathology and, consequently, many markers have emerged to play a key role in understanding the disease mechanism. Integration of the different approaches is expected to provide crucial information about the value of these markers as either therapeutic target or biomarker, essential to monitor therapeutic interventions in the future.
Collapse
Affiliation(s)
- Saif N Haify
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Teresa Botta-Orfila
- Biological Fluids Bank of the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biology 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
39
|
Friedman-Gohas M, Elizur SE, Dratviman-Storobinsky O, Aizer A, Haas J, Raanani H, Orvieto R, Cohen Y. FMRpolyG accumulates in FMR1 premutation granulosa cells. J Ovarian Res 2020; 13:22. [PMID: 32101156 PMCID: PMC7045455 DOI: 10.1186/s13048-020-00623-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background Fragile X premutation (Amplification of CGG number 55–200) is associated with increased risk for fragile X-Associated Premature Ovarian Insufficiency (FXPOI) in females and fragile X-associated tremor/ataxia syndrome (FXTAS) predominantly in males. Recently, it has been shown that CGG repeats trigger repeat associated non-AUG initiated translation (RAN) of a cryptic polyglycine-containing protein, FMRpolyG. This protein accumulates in ubiquitin-positive inclusions in neuronal brain cells of FXTAS patients and may lead to protein-mediated neurodegeneration. FMRpolyG inclusions were also found in ovary stromal cells of a FXPOI patient. The role of FMRpolyG expression has not been thoroughly examined in folliculogenesis related cells. The main goal of this study is to evaluate whether FMRpolyG accumulates in mural granulosa cells of FMR1 premutation carriers. Following FMRpolyG detection, we aim to examine premutation transfected COV434 as a suitable model used to identify RAN translation functions in FXPOI pathogenesis. Results FMRpolyG and ubiquitin immunostained mural granulosa cells from six FMR1 premutation carriers demonstrated FMRpolyG aggregates. However, co-localization of FMRpolyG and ubiquitin appeared to vary within the FMR1 premutation carriers’ group as three exhibited partial ubiquitin and FMRpolyG double staining and three premutation carriers demonstrated FMRpolyG single staining. None of the granulosa cells from the five control women expressed FMRpolyG. Additionally, human ovarian granulosa tumor, COV434, were transfected with two plasmids; both expressing 99CGG repeats but only one enables FMRpolyG expression. Like in granulosa cells from FMR1 premutation carriers, FMRpolyG aggregates were found only in COV434 transfected with expended CGG repeats and the ability to express FMRpolyG. Conclusions Corresponding with previous studies in FXTAS, we demonstrated accumulation of FMRpolyG in mural granulosa cells of FMR1 premutation carriers. We also suggest that following further investigation, the premutation transfected COV434 might be an appropriate model for RAN translation studies. Detecting FMRpolyG accumulation in folliculogenesis related cells supports previous observations and imply a possible common protein-mediated toxic mechanism for both FXPOI and FXTAS.
Collapse
Affiliation(s)
- M Friedman-Gohas
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - S E Elizur
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel
| | - O Dratviman-Storobinsky
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel
| | - A Aizer
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel
| | - J Haas
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel
| | - H Raanani
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel
| | - R Orvieto
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel
| | - Y Cohen
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel. .,IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Ramat-Gan, Israel.
| |
Collapse
|
40
|
Cornejo-Olivas M, Inca-Martinez M, Castilhos RM, Furtado GV, Mattos EP, Bampi GB, Leistner-Segal S, Marca V, Mazzetti P, Saraiva-Pereira ML, Jardim LB. Genetic Analysis of Hereditary Ataxias in Peru Identifies SCA10 Families with Incomplete Penetrance. THE CEREBELLUM 2020; 19:208-215. [PMID: 31900855 DOI: 10.1007/s12311-019-01098-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Relative frequency of hereditary ataxias remains unknown in many regions of Latin America. We described the relative frequency in spinocerebellar ataxias (SCA) due to (CAG)n and to (ATTCT)n expansions, as well as Friedreich ataxia (FRDA), among cases series of ataxic individuals from Peru. Among ataxic index cases from 104 families (38 of them with and 66 without autosomal dominant pattern of inheritance), we identified 22 SCA10, 8 SCA2, 3 SCA6, 2 SCA3, 2 SCA7, 1 SCA1, and 9 FRDA cases (or families). SCA10 was by far the most frequent one. Findings in SCA10 and FRDA families were of note. Affected genitors were not detected in 7 out of 22 SCA10 nuclear families; then overall maximal penetrance of SCA10 was estimated as 85%; in multiplex families, penetrance was 94%. Two out of nine FRDA cases carried only one allele with a GAA expansion. SCA10 was the most frequent hereditary ataxia in Peru. Our data suggested that ATTCT expansions at ATXN10 might not be fully penetrant and/or instability between generations might frequently cross the limits between non-penetrant and penetrant lengths. A unique distribution of inherited ataxias in Peru requires specific screening panels, considering SCA10 as first line of local diagnosis guidelines.
Collapse
Affiliation(s)
- Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, 1271 Ancash St, Barrios Altos, 15003, Lima, Peru. .,Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Miguel Inca-Martinez
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, 1271 Ancash St, Barrios Altos, 15003, Lima, Peru.,Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Raphael Machado Castilhos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gabriel Vasata Furtado
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduardo Preusser Mattos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Giovana Bavia Bampi
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Sandra Leistner-Segal
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Victoria Marca
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, 1271 Ancash St, Barrios Altos, 15003, Lima, Peru
| | - Pilar Mazzetti
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, 1271 Ancash St, Barrios Altos, 15003, Lima, Peru
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil
| | | |
Collapse
|
41
|
Sacino AN, Prokop S, Walsh MA, Adamson J, Subramony SH, Krans A, Todd PK, Giasson BI, Yachnis AT. Fragile X-associated tremor ataxia syndrome with co-occurrent progressive supranuclear palsy-like neuropathology. Acta Neuropathol Commun 2019; 7:158. [PMID: 31665069 PMCID: PMC6820960 DOI: 10.1186/s40478-019-0818-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023] Open
Abstract
Co-occurrence of multiple neuropathologic changes is a common phenomenon, most prominently seen in Alzheimer's disease (AD) and Parkinson's disease (PD), complicating clinical diagnosis and patient management. Reports of co-occurring pathological processes are emerging in the group of genetically defined repeat-associated non-AUG (RAN)-translation related diseases. Here we report a case of Fragile X-associated tremor-ataxia syndrome (FXTAS) with widespread and abundant nuclear inclusions of the RAN-translation related FMRpolyG-peptide. In addition, we describe prominent neuronal and glial tau pathology representing changes seen in progressive supranuclear palsy (PSP). The highest abundance of the respective pathological changes was seen in distinct brain regions indicating an incidental, rather than causal correlation.
Collapse
|
42
|
Drozd M, Delhaye S, Maurin T, Castagnola S, Grossi M, Brau F, Jarjat M, Willemsen R, Capovilla M, Hukema RK, Lalli E, Bardoni B. Reduction of Fmr1 mRNA Levels Rescues Pathological Features in Cortical Neurons in a Model of FXTAS. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:546-553. [PMID: 31671347 PMCID: PMC6838541 DOI: 10.1016/j.omtn.2019.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 02/08/2023]
Abstract
Fragile X-associated tremor ataxia syndrome (FXTAS) is a rare disorder associated to the presence of the fragile X premutation, a 55–200 CGG repeat expansion in the 5′ UTR of the FMR1 gene. Two main neurological phenotypes have been described in carriers of the CGG premutation: (1) neurodevelopmental disorders characterized by anxiety, attention deficit hyperactivity disorder (ADHD), social deficits, or autism spectrum disorder (ASD); and (2) after 50 years old, the FXTAS phenotype. This neurodegenerative disorder is characterized by ataxia and a form of parkinsonism. The molecular pathology of this disorder is characterized by the presence of elevated levels of Fragile X Mental Retardation 1 (FMR1) mRNA, presence of a repeat-associated non-AUG (RAN) translated peptide, and FMR1 mRNA-containing nuclear inclusions. Whereas in the past FXTAS was mainly considered as a late-onset disorder, some phenotypes of patients and altered learning and memory behavior of a mouse model of FXTAS suggested that this disorder involves neurodevelopment. To better understand the physiopathological role of the increased levels of Fmr1 mRNA during neuronal differentiation, we used a small interfering RNA (siRNA) approach to reduce the abundance of this mRNA in cultured cortical neurons from the FXTAS mouse model. Morphological alterations of neurons were rescued by this approach. This cellular phenotype is associated to differentially expressed proteins that we identified by mass spectrometry analysis. Interestingly, phenotype rescue is also associated to the rescue of the abundance of 29 proteins that are involved in various pathways, which represent putative targets for early therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Drozd
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Sébastien Delhaye
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Thomas Maurin
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Sara Castagnola
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Mauro Grossi
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Frédéric Brau
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Marielle Jarjat
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Maria Capovilla
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Enzo Lalli
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Barbara Bardoni
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France.
| |
Collapse
|
43
|
Ma L, Herren AW, Espinal G, Randol J, McLaughlin B, Martinez-Cerdeño V, Pessah IN, Hagerman RJ, Hagerman PJ. Composition of the Intranuclear Inclusions of Fragile X-associated Tremor/Ataxia Syndrome. Acta Neuropathol Commun 2019; 7:143. [PMID: 31481131 PMCID: PMC6720097 DOI: 10.1186/s40478-019-0796-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 12/11/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder associated with a premutation repeat expansion (55-200 CGG repeats) in the 5' noncoding region of the FMR1 gene. Solitary intranuclear inclusions within FXTAS neurons and astrocytes constitute a hallmark of the disorder, yet our understanding of how and why these bodies form is limited. Here, we have discovered that FXTAS inclusions emit a distinct autofluorescence spectrum, which forms the basis of a novel, unbiased method for isolating FXTAS inclusions by preparative fluorescence-activated cell sorting (FACS). Using a combination of autofluorescence-based FACS and liquid chromatography/tandem mass spectrometry (LC-MS/MS)-based proteomics, we have identified more than two hundred proteins that are enriched within the inclusions relative to FXTAS whole nuclei. Whereas no single protein species dominates inclusion composition, highly enriched levels of conjugated small ubiquitin-related modifier 2 (SUMO 2) protein and p62/sequestosome-1 (p62/SQSTM1) protein were found within the inclusions. Many additional proteins involved with RNA binding, protein turnover, and DNA damage repair were enriched within inclusions relative to total nuclear protein. The current analysis has also allowed the first direct detection, through peptide sequencing, of endogenous FMRpolyG peptide, the product of repeat-associated non-ATG (RAN) translation of the FMR1 mRNA. However, this peptide was found only at extremely low levels and not within whole FXTAS nuclear preparations, raising the question whether endogenous RAN products exist at quantities sufficient to contribute to FXTAS pathogenesis. The abundance of the inclusion-associated ubiquitin- and SUMO-based modifiers supports a model for inclusion formation as the result of increased protein loads and elevated oxidative stress leading to maladaptive autophagy. These results highlight the need to further investigate FXTAS pathogenesis in the context of endogenous systems.
Collapse
Affiliation(s)
- Lisa Ma
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Anthony W Herren
- Genome Center, University of California Davis, Davis, California, USA
| | - Glenda Espinal
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Jamie Randol
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Bridget McLaughlin
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California, USA
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California Davis, School of Medicine, Sacramento, California, USA
- MIND Institute, University of California Davis Health, Sacramento, California, USA
| | - Isaac N Pessah
- MIND Institute, University of California Davis Health, Sacramento, California, USA
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| | - Randi J Hagerman
- MIND Institute, University of California Davis Health, Sacramento, California, USA
- Department of Pediatrics, University of California Davis, School of Medicine, Sacramento, California, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA.
- MIND Institute, University of California Davis Health, Sacramento, California, USA.
| |
Collapse
|
44
|
Nakajima H, Motoki M. Author response: Neuronal intranuclear inclusion disease showing intranuclear inclusions in renal biopsy 12 years earlier. Neurology 2019; 93:413-414. [PMID: 31451593 DOI: 10.1212/wnl.0000000000008019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Loesch DZ, Tassone F, Mellick GD, Horne M, Rubio JP, Bui MQ, Francis D, Storey E. Evidence for the role of FMR1 gray zone alleles as a risk factor for parkinsonism in females. Mov Disord 2019; 33:1178-1181. [PMID: 30153395 DOI: 10.1002/mds.27420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 12/12/2022] Open
Abstract
Background and Objective There is convincing evidence that small CGG expansion (41-54 repeats): FMR1 "gray zone" alleles (GZ) contribute to the risk of parkinsonism in males, but there is insufficient corresponding data in females. This study intends to fill this gap. Methods We screened whole-blood-derived DNA from a cohort of 601 females diagnosed with idiopathic PD, and from dry Guthrie blood spots from a local sample of 1,005 female newborns (population controls), for the size of the FMR1 CGG repeat using a PCR technique. Results We found a significant excess (8.2%) of GZ carriers compared with 5.2% in the control sample, with a P value of 0.009 for the difference in proportions. Conclusion FMR1 gray zone alleles are a significant risk factor for parkinsonism in females. These population data and occasional reports of FXTAS-like or parkinsonian manifestations in carriers suggest possible mechanisms whereby the effects of these alleles synergize with the existing pathologies underpinning parkinsonism. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Danuta Z Loesch
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Flora Tassone
- UC Davis MIND Institute, Sacramento, California, USA
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Malcolm Horne
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Justin P Rubio
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, VIC, Australia
| | - Minh Q Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, VIC, Australia
| | - David Francis
- Victorian Clinical Genetic Services, Melbourne, VIC, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Melbourne, VIC, Australia
| |
Collapse
|
46
|
Neuronal BC RNA Transport Impairments Caused by Systemic Lupus Erythematosus Autoantibodies. J Neurosci 2019; 39:7759-7777. [PMID: 31405929 DOI: 10.1523/jneurosci.1657-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 05/02/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022] Open
Abstract
The etiology of the autoimmune disorder systemic lupus erythematosus (SLE) remains poorly understood. In neuropsychiatric SLE (NPSLE), autoimmune responses against neural self-antigens find expression in neurological and cognitive alterations. SLE autoantibodies often target nucleic acids, including RNAs and specifically RNA domains with higher-order structural content. We report that autoantibodies directed against neuronal regulatory brain cytoplasmic (BC) RNAs were generated in a subset of SLE patients. By contrast, anti-BC RNA autoantibodies (anti-BC abs) were not detected in sera from patients with autoimmune diseases other than SLE (e.g., rheumatoid arthritis or multiple sclerosis) or in sera from healthy subjects with no evidence of disease. SLE anti-BC abs belong to the IgG class of immunoglobulins and target both primate BC200 RNA and rodent BC1 RNA. They are specifically directed at architectural motifs in BC RNA 5' stem-loop domains that serve as dendritic targeting elements (DTEs). SLE anti-BC abs effectively compete with RNA transport factor heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2) for DTE access and significantly diminish BC RNA delivery to synapto-dendritic sites of function. In vivo experiments with male BALB/c mice indicate that, upon lipopolysaccharide-induced opening of the blood-brain barrier, SLE anti-BC abs are taken up by CNS neurons where they significantly impede localization of endogenous BC1 RNA to synapto-dendritic domains. Lack of BC1 RNA causes phenotypic abnormalities including epileptogenic responses and cognitive dysfunction. The combined data indicate a role for anti-BC RNA autoimmunity in SLE and its neuropsychiatric manifestations.SIGNIFICANCE STATEMENT Although clinical manifestations of neuropsychiatric lupus are well recognized, the underlying molecular-cellular alterations have been difficult to determine. We report that sera of a subset of lupus patients contain autoantibodies directed at regulatory brain cytoplasmic (BC) RNAs. These antibodies, which we call anti-BC abs, target the BC RNA 5' domain noncanonical motif structures that specify dendritic delivery. Lupus anti-BC abs effectively compete with RNA transport factor heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2) for access to BC RNAs. As a result, hnRNP A2 is displaced, and BC RNAs are impaired in their ability to reach synapto-dendritic sites of function. The results reveal an unexpected link between BC RNA autoantibody recognition and dendritic RNA targeting. Cellular RNA dysregulation may thus be a contributing factor in the pathogenesis of neuropsychiatric lupus.
Collapse
|
47
|
Rodriguez CM, Todd PK. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol Dis 2019; 130:104515. [PMID: 31229686 DOI: 10.1016/j.nbd.2019.104515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Tandem microsatellite repeats are common throughout the human genome and intrinsically unstable, exhibiting expansions and contractions both somatically and across generations. Instability in a small subset of these repeats are currently linked to human disease, although recent findings suggest more disease-causing repeats await discovery. These nucleotide repeat expansion disorders (NREDs) primarily affect the nervous system and commonly lead to neurodegeneration through toxic protein gain-of-function, protein loss-of-function, and toxic RNA gain-of-function mechanisms. However, the lines between these categories have blurred with recent findings of unconventional Repeat Associated Non-AUG (RAN) translation from putatively non-coding regions of the genome. Here we review two emerging topics in NREDs: 1) The mechanisms by which RAN translation occurs and its role in disease pathogenesis and 2) How nucleotide repeats as RNA and translated proteins influence liquid-liquid phase separation, membraneless organelle dynamics, and nucleocytoplasmic transport. We examine these topics with a particular eye on two repeats: the CGG repeat expansion responsible for Fragile X syndrome and Fragile X-associated Tremor Ataxia Syndrome (FXTAS) and the intronic GGGGCC repeat expansion in C9orf72, the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Our thesis is that these emerging disease mechanisms can inform a broader understanding of the native roles of microsatellites in cellular function and that aberrations in these native processes provide clues to novel therapeutic strategies for these currently untreatable disorders.
Collapse
Affiliation(s)
- C M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - P K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
48
|
Alvarez‐Mora MI, Podlesniy P, Gelpi E, Hukema R, Madrigal I, Pagonabarraga J, Trullas R, Mila M, Rodriguez‐Revenga L. Fragile X‐associated tremor/ataxia syndrome: Regional decrease of mitochondrial DNA copy number relates to clinical manifestations. GENES BRAIN AND BEHAVIOR 2019; 18:e12565. [DOI: 10.1111/gbb.12565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/15/2019] [Accepted: 03/13/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Maria I. Alvarez‐Mora
- Biochemistry and Molecular Genetics DepartmentHospital Clinic of Barcelona Barcelona Spain
- CIBER of Rare Diseases (CIBERER)Instituto de Salud Carlos III Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
| | - Petar Podlesniy
- Neurobiology UnitInstitut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC) Barcelona Spain
- CIBER of Neurodegenerative Diseases (CIBERNED)Instituto de Salud Carlos III Barcelona Spain
| | - Ellen Gelpi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Neurological Tissue Bank of the Biobanc‐Hospital Clinic Barcelona Spain
- Institute of NeurologyMedical University of Vienna Vienna Austria
| | - Renate Hukema
- Department of Clinical GeneticsErasmus Medical Center Rotterdam The Netherlands
| | - Irene Madrigal
- Biochemistry and Molecular Genetics DepartmentHospital Clinic of Barcelona Barcelona Spain
- CIBER of Rare Diseases (CIBERER)Instituto de Salud Carlos III Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
| | - Javier Pagonabarraga
- Neurology DepartmentUniversitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau Barcelona Spain
| | - Ramon Trullas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Neurobiology UnitInstitut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC) Barcelona Spain
- CIBER of Neurodegenerative Diseases (CIBERNED)Instituto de Salud Carlos III Barcelona Spain
| | - Montserrat Mila
- Biochemistry and Molecular Genetics DepartmentHospital Clinic of Barcelona Barcelona Spain
- CIBER of Rare Diseases (CIBERER)Instituto de Salud Carlos III Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
| | - Laia Rodriguez‐Revenga
- Biochemistry and Molecular Genetics DepartmentHospital Clinic of Barcelona Barcelona Spain
- CIBER of Rare Diseases (CIBERER)Instituto de Salud Carlos III Barcelona Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
| |
Collapse
|
49
|
Gelpi E, Botta-Orfila T, Bodi L, Marti S, Kovacs G, Grau-Rivera O, Lozano M, Sánchez-Valle R, Muñoz E, Valldeoriola F, Pagonabarraga J, Tartaglia GG, Milà M. Neuronal intranuclear (hyaline) inclusion disease and fragile X-associated tremor/ataxia syndrome: a morphological and molecular dilemma. Brain 2019; 140:e51. [PMID: 28899011 DOI: 10.1093/brain/awx156] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Teresa Botta-Orfila
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laia Bodi
- Department of Genetics, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Stefanie Marti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gabor Kovacs
- Institute of Neurology, Medical University of Vienna, Austria
| | - Oriol Grau-Rivera
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Neurology Department, Alzheimer's disease and other Cognitive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Manuel Lozano
- Neurology Department, Hospital Germans Trias I Pujol, Badalona, Spain
| | - Raquel Sánchez-Valle
- Neurology Department, Alzheimer's disease and other Cognitive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Esteban Muñoz
- Neurology Department, Movement Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Francesc Valldeoriola
- Neurology Department, Movement Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Gian-Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Montserrat Milà
- Department of Genetics, Hospital Clinic de Barcelona, Barcelona, Spain
| |
Collapse
|
50
|
Dulman RS, Auta J, Teppen T, Pandey SC. Acute Ethanol Produces Ataxia and Induces Fmr1 Expression via Histone Modifications in the Rat Cerebellum. Alcohol Clin Exp Res 2019; 43:1191-1198. [PMID: 30969437 DOI: 10.1111/acer.14044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The cerebellum is fundamental for motor coordination and therefore crucial in ethanol (EtOH)-induced ataxia. EtOH contributes to cerebellar pathophysiology. Fragile-X mental retardation protein (FMRP) is a complex regulator of RNA and synaptic plasticity implicated in fragile-X tremor and ataxia syndrome, a phenotype featuring increased Fmr1 mRNA expression. Recent studies have implicated glutamatergic targets of FMRP in hereditary cerebellar ataxias including the main cerebellar excitatory amino acid (Eaa1) transporter and a subtype of metabotropic glutamate receptor (Grm5). However, EtOH-induced changes in cerebellar Fmr1 expression and its epigenetic regulation have not been investigated. Here, we examined the effects of acute EtOH exposure on ataxic behavior, gene expression, and epigenetic regulation of the Fmr1 gene and its glutamatergic targets in the rat cerebellum. METHODS Male adult Sprague Dawley rats received acute EtOH (2 g/kg) intraperitoneally 1 hour prior to ataxic behavioral testing on the accelerating rotarod and were sacrificed immediately thereafter. Cerebellar tissues were analyzed for gene expression and epigenetic regulation of the Fmr1 gene and its glutamatergic targets in the rat cerebellum using real-time quantitative polymerase chain reaction (PCR) and chromatin immunoprecipitation. RESULTS Acute EtOH exposure caused marked ataxia on the accelerating rotarod test compared with saline-treated controls. This ataxic response was associated with increases in mRNA levels of Fmr1, postsynaptic density 95 (Psd95), Eaa1, and Grm5 in the cerebellum. In addition, we found increased H3K27 acetylation both at the promoter region of Fmr1 and at a proposed cyclic adenosine monophosphate (cAMP) response-element binding (CREB) site downstream of the Fmr1 transcription start site. Furthermore, acute EtOH exposure significantly increased Creb1 and the histone acetyltransferases (HAT) CREB binding protein (Cbp), and p300 mRNA transcripts. CONCLUSIONS Overall, EtOH regulates cerebellar Fmr1 expression most likely via HAT-mediated increase in histone acetylation. We propose that FMRP regulation of glutamatergic transcripts plays an important role in disrupting the excitatory-inhibitory balance in the cerebellum underlying EtOH-induced ataxia.
Collapse
Affiliation(s)
- Russell S Dulman
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois
| | - James Auta
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois
| | - Tara Teppen
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Subhash C Pandey
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|