1
|
Altaras C, Ly MT, Schultz O, Barr WB, Banks SJ, Wethe JV, Tripodis Y, Adler CH, Balcer LJ, Bernick C, Zetterberg H, Blennow K, Ashton N, Peskind E, Cantu RC, Coleman MJ, Lin AP, Koerte IK, Bouix S, Daneshvar D, Dodick DW, Geda YE, Katz DL, Weller JL, Mez J, Palmisano JN, Martin B, Cummings JL, Reiman EM, Shenton ME, Stern RA, Alosco ML. Dispersion-based cognitive intra-individual variability in former American football players: Association with traumatic encephalopathy syndrome, repetitive head impacts, and biomarkers. Clin Neuropsychol 2025:1-29. [PMID: 39865747 DOI: 10.1080/13854046.2025.2453103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025]
Abstract
Background: Exposure to repetitive head impacts (RHI), such as those experienced in American football, is linked to cognitive dysfunction later in life. Traumatic encephalopathy syndrome (TES) is a proposed clinical syndrome thought to be linked to neuropath-ology of chronic traumatic encephalopathy (CTE), a condition associated with RHI from football. Cognitive intra-individual variability (d-CIIV) measures test-score dispersion, indicating cognitive dysfunction. This study examined d-CIIV in former football players and its associations with TES diagnosis, RHI exposure, and DTI and CSF biomarkers. Methods: Data included 237 males (45-74 years) from DIAGNOSE CTE Research Project, including former professional and college football players (COL) (n = 173) and asymptomatic men without RHI or TBI (n = 55). Participants completed neuropsychological tests. TES diagnosis was based on 2021 NINDS TES criteria. Years of football play and a cumulative head impact index (CHII) measured RHI exposure. Lumipulse technology was used for CSF assays. DTI fractional anisotropy assessed white matter integrity. Coefficient of variation (CoV) measured d-CIIV. ANCOVA compared d-CIIV among groups (football versus control; TES-status). Pearson correlations and linear regressions tested associations between d-CIIV, RHI exposure, and CSF and DTI biomarkers. Results: Former professional players had higher d-CIIV than controls (F(7, 194) = 2.87, p = .007). d-CIIV was associated with TES diagnosis (F(8, 146) = 9.063, p < .001), with highest d-CIIV in TES Possible/Probable-CTE. Higher d-CIIV correlated with higher CHII scores (r = 0.19), reduced CSF Aβ1-42 (β = -0.302), increased p-tau181 (β = 0.374), and reduced DTI FA (β = -0.202). Conclusion: d-CIIV is linked to RHI exposure and TES diagnosis in former football players, with associated changes in CSF biomarkers and white matter integrity.
Collapse
Affiliation(s)
- Caroline Altaras
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Monica T Ly
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Olivia Schultz
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - William B Barr
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sarah J Banks
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Jennifer V Wethe
- Department of Psychiatry and Psychology, Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Yorghos Tripodis
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UKDementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, UK
- Kong Center for Neurodegenerative Diseases, Hong Kong, ROC
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | - Elaine Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington Medicine, Seattle, WA, USA
- Education, and Clinical Center, NW Mental Illness Research, Seattle, WA, USA
| | - Robert C Cantu
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael J Coleman
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexander P Lin
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K Koerte
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Ludwigs-Maximilians-Universität, cBRAIN, Munich, Germany
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel Daneshvar
- Department of Physical Medicine & Rehabilitation, Massachusetts General Hospital, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David W Dodick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Atria Academy of Science and Medicine, New York, NY, USA
| | - Yonas E Geda
- Department of Neurology, the Franke Barrow Global Neuroscience Education Center, Neurological Institute, Barrow Phoenix, AZ, USA
| | - Douglas L Katz
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jason L Weller
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Jeffrey L Cummings
- Department of Brain Health, School of Integrated Health Sciences, Chambers-Grundy Center for Transformative Neuroscience, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Neuroscience, Arizona State University, Phoenix, AZ, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Martha E Shenton
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert A Stern
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Asken BM, Brett BL, Barr WB, Banks S, Wethe JV, Dams-O'Connor K, Stern RA, Alosco ML. Chronic traumatic encephalopathy: State-of-the-science update and narrative review. Clin Neuropsychol 2025:1-25. [PMID: 39834035 DOI: 10.1080/13854046.2025.2454047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE The long-recognized association of brain injury with increased risk of dementia has undergone significant refinement and more detailed study in recent decades. Chronic traumatic encephalopathy (CTE) is a specific neurodegenerative tauopathy related to prior exposure to repetitive head impacts (RHI). We aim to contextualize CTE within a historical perspective and among emerging data which highlights the scientific and conceptual evolution of CTE-related research in parallel with the broader field of neurodegenerative disease and dementia. METHODS We provide a narrative state-of-the-science update on CTE neuropathology, clinical manifestations, biomarkers, different types and patterns of head impact exposure relevant for CTE, and the complicated influence of neurodegenerative co-pathology on symptoms. CONCLUSIONS Now almost 20 years since the initial case report of CTE in a former American football player, the field of CTE continues evolving with increasing clarity but also several ongoing controversies. Our understanding of CTE neuropathology outpaces that of disease-specific clinical correlates or the development of in-vivo biomarkers. Diagnostic criteria for symptoms attributable to CTE are still being validated, but leveraging increasingly available biomarkers for other conditions like Alzheimer's disease may be helpful for informing the CTE differential diagnosis. As diagnostic refinement efforts advance, clinicians should provide care and/or referrals to providers best suited to treat an individual patient's clinical symptoms, many of which have evidence-based behavioral treatment options that are etiologically agnostic. Several ongoing research initiatives and the gradual accrual of gold standard clinico-pathological data will pay dividends for advancing the many existing gaps in the field of CTE.
Collapse
Affiliation(s)
- Breton M Asken
- Department of Clinical and Health Psychology, University of Florida, 1Florida Alzheimer's Disease Research Center, Gainesville, FL, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WS, USA
| | - William B Barr
- Department of Neurology, New York University Langone Health Medical Center, New York, NY, USA
| | - Sarah Banks
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Jennifer V Wethe
- Departments of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, USA
| | - Kristen Dams-O'Connor
- Departments of Rehabilitation Medicine and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert A Stern
- Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University CTE and Alzheimer's Disease Research Centers, Boston, MA, USA
| | - Michael L Alosco
- Departments of Neurology and Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University CTE and Alzheimer's Disease Research Centers, Boston, MA, USA
| |
Collapse
|
3
|
Nicks R, Shah A, Stathas SA, Kirsch D, Horowitz SM, Saltiel N, Calderazzo SM, Butler MLMD, Cormier KA, Aytan N, Tu-Zahra F, Mathias R, Faheem F, Marcus S, Spurlock E, Fishbein L, Esnault CD, Boden A, Rosen G, Xia W, Daley S, Meng G, Martin BR, Daneshvar DH, Nowinski CJ, Alosco ML, Mez J, Tripodis Y, Huber BR, Alvarez VE, Cherry JD, McKee AC, Stein TD. Neurodegeneration in the cortical sulcus is a feature of chronic traumatic encephalopathy and associated with repetitive head impacts. Acta Neuropathol 2024; 148:79. [PMID: 39643767 PMCID: PMC11624223 DOI: 10.1007/s00401-024-02833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Neurodegeneration is a seminal feature of many neurological disorders. Chronic traumatic encephalopathy (CTE) is caused by repetitive head impacts (RHI) and is characterized by sulcal tau pathology. However, quantitative assessments of regional neurodegeneration in CTE have not been described. In this study, we quantified three key neurodegenerative measures, including cortical thickness, neuronal density, and synaptic proteins, in contact sport athletes (n = 185) and non-athlete controls (n = 52) within the sulcal depth, middle, and gyral crest of the dorsolateral frontal cortex. Cortical thickness and neuronal density were decreased within the sulcus in CTE compared to controls (p's < 0.05). Measurements of synaptic proteins within the gyral crest showed a reduction of α-synuclein with CTE stage (p = 0.002) and variable changes in PSD-95 density. After adjusting for age, multiple linear regression models demonstrated a strong association between the duration of contact sports play and cortical thinning (p = 0.001) and neuronal loss (p = 0.032) within the sulcus. Additional regression models, adjusted for tau pathology, suggest that within the sulcus, the duration of play was associated with neuronal loss predominantly through tau pathology. In contrast, the association of duration of play with cortical thinning was minimally impacted by tau pathology. Overall, CTE is associated with cortical atrophy and a predominant sulcal neurodegeneration. Furthermore, the duration of contact sports play is associated with measures of neurodegeneration that are more severe in the cortical sulcus and may occur through tau-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Raymond Nicks
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Arsal Shah
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Spiro Anthony Stathas
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Daniel Kirsch
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah M Horowitz
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Nicole Saltiel
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Samantha M Calderazzo
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Morgane L M D Butler
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kerry A Cormier
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Nurgul Aytan
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Fatima Tu-Zahra
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Rebecca Mathias
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Farwa Faheem
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | | | - Elizabeth Spurlock
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Lucas Fishbein
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Camille D Esnault
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Alexandra Boden
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Grace Rosen
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Weiming Xia
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Biological Sciences, Kennedy College of Science, University of Massachusetts, Lowell, MA, USA
| | - Sarah Daley
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | | | - Brett R Martin
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Mass General Brigham-Spaulding Rehabilitation, Charlestown, MA, USA
| | - Christopher J Nowinski
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA.
- VA Boston Healthcare System, Boston, MA, USA.
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Abdolmohammadi B, Tuz-Zahra F, Uretsky M, Nicks R, Mosaheb S, Labonte J, Yhang E, Durape S, Martin B, Palmisano J, Nowinski C, Cherry JD, Alvarez VE, Huber BR, Dams-O’Connor K, Crary J, Dwyer B, Daneshvar DH, Goldstein LE, Au R, Katz DI, Kowall NW, Cantu RC, Stern RA, Alosco ML, Stein TD, Tripodis Y, McKee AC, Mez J. Duration of Ice Hockey Play and Chronic Traumatic Encephalopathy. JAMA Netw Open 2024; 7:e2449106. [PMID: 39630446 PMCID: PMC11618473 DOI: 10.1001/jamanetworkopen.2024.49106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/14/2024] [Indexed: 12/08/2024] Open
Abstract
Importance Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repetitive head impacts (RHIs). Prior research suggests a dose-response association between American football play duration and CTE risk and severity, but this association has not been studied for ice hockey. Objective To investigate associations of duration of ice hockey play with CTE diagnosis and severity, functional status, and dementia. Design, Setting, and Participants This cross-sectional study was conducted among male brain donors in the Understanding Neurological Injury and Traumatic Encephalopathy and Framingham Heart Study Brain Banks whose primary RHI exposure was from ice hockey. Donors died, brains were donated, and data were collected between July 1997 and January 2023. Data analysis was conducted from January 2023 to May 2024. Exposures Ice hockey years played as an RHI proxy. Main Outcomes and Measures CTE neuropathological diagnosis, cumulative phosphorylated tau (ptau) burden across 11 brain regions commonly affected in CTE, informant-reported Functional Activities Questionnaire (FAQ) score at death, and consensus dementia diagnosis were assessed. Results Among 77 male donors (median [IQR] age, 51 [33-73] years), 42 individuals (54.5%) had CTE, including 27 of 28 professional players (96.4%). CTE was found in 5 of 26 donors (19.2%) who played fewer than 13 years, 14 of 27 donors (51.9%) who played 13 to 23 years, and 23 of 24 donors (95.8%) who played more than 23 years of hockey. Increased years played was associated with increased odds for CTE (odds ratio [OR] per 1-year increase, 1.34; 95% CI, 1.15-1.55; P < .001) and with increased ptau burden (SD increase per 1-year increase = 0.037; 95% CI, 0.017-0.057; P < .001) after adjusting for age at death, other contact sports played, age of first hockey exposure, concussion count, and hockey position. Simulation demonstrated that years played remained associated with CTE when years played and CTE were both associated with brain bank selection across widely ranging scenarios (median [full range] OR across all simulations, 1.34 [1.29-1.40]). Increased ptau burden was associated with FAQ score (βstandardized = 0.045; 95% CI, 0.021-0.070; P < .001) and dementia (OR per SD increase, 1.12; 95% CI, 1.01-1.26; P = .04) after adjusting for age at death, other contact sports played, hockey years played, enforcer status, age of first hockey exposure, concussion count, and hockey position. Conclusions and Relevance In this study of male former ice hockey players, a dose-response association was observed between hockey years played and risk and severity of CTE. Simulation suggested that brain bank selection may not bias the magnitude of outcomes in the association.
Collapse
Affiliation(s)
- Bobak Abdolmohammadi
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Madeline Uretsky
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Raymond Nicks
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Sydney Mosaheb
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Jacob Labonte
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Eukyung Yhang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Shruti Durape
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Joseph Palmisano
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Christopher Nowinski
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
| | - Jonathan D. Cherry
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Bertrand R. Huber
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance, Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Crary
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brigid Dwyer
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Daniel H. Daneshvar
- Department of Rehabilitation Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lee E. Goldstein
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, Massachusetts
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Radiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Rhoda Au
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Douglas I. Katz
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Neil W. Kowall
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Robert C. Cantu
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Emerson Hospital, Concord, Massachusetts
- Department of Neurosurgery, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Robert A. Stern
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
- Department of Neurosurgery, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Thor D. Stein
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Ann C. McKee
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| |
Collapse
|
5
|
de Sena Barbosa MG, Francisco GGDOA, de Souza RLV, de Souza JMA, Almeida Carneiro R, Rabelo NN, Chaurasia B. Chronic traumatic encephalopathy in athletes, players, boxers and military: systematic review. Ann Med Surg (Lond) 2024; 86:7238-7247. [PMID: 39649931 PMCID: PMC11623818 DOI: 10.1097/ms9.0000000000002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/16/2024] [Indexed: 12/11/2024] Open
Abstract
The objective of the study was to demonstrate whether athletes, players, boxers and military personnel can really be victims of Chronic traumatic encephalopathy (CTE), and to elucidate this pathology. In 53 articles, 14 were selected for qualitative synthesis in the results table that addresses CTE in football, soccer and rugby players, boxers and the military. Neuropathologically, CTE shows cerebral atrophy, a pelvic septum cavity with fenestrations, dense diffuse immunoreactive inclusions and a TDP-43 proteinopathy. Microscopically, there are extensive neurofibrillary tangles and spindle-shaped neurites throughout the brain. Thus, CTE is characterized by being a distinct tauopathy and with a clear environmental etiology. American football players, boxers and the military are more likely to trigger CET, due to the constant mechanical shocks from their heads. The most frequent clinical manifestations were: headache, aggressiveness, dementia, executive dysfunction and suicide. CET is definitely diagnosed only at autopsy, there is no specific treatment for it, but support and safety measures can help the patient. Advances to definitively diagnose CTE in living people and specific treatment for this disease are needed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birginj, Nepal
| |
Collapse
|
6
|
Ryniejska M, El-Hachami H, Mrzyglod A, Liu J, Thom M. The prevalence of chronic traumatic encephalopathy in a historical epilepsy post-mortem collection. Brain Pathol 2024:e13317. [PMID: 39528258 DOI: 10.1111/bpa.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Previous post-mortem epilepsy series showed phosphorylated tau (pTau) accumulation in relation to traumatic brain injury (TBI) rather than driven by seizure frequency. The Corsellis Epilepsy Collection, established in the mid-20th century, represents brain samples collected from patients living with a range of epilepsies from the 1880s to 1990s. Our aim was to interrogate this historical archive to explore relationships between epilepsy, trauma and tau pathology. AT8 immunohistochemistry for pTau was carried out in 102 cases (55% male, with mean age at death of 62 years) on frontal, temporal, amygdala, hippocampal and lesional cortical regions and evaluated using current NINDS criteria for chronic traumatic encephalopathy (CTE) and Braak staging with beta-amyloid, AT8-GFAP and other pTau markers (CP13, PHF1, AT100, AT180) in selected cases. CTE-neuropathologic change (CTE-NC) was identified in 15.7% and was associated with the presence of astroglial tau, a younger age of onset of epilepsy, evidence of TBI and institutionalisation for epilepsy compared to cases without CTE-NC, but not for seizure type or frequency. Memory impairment was noted in 43% of cases with CTE-NC, and a significantly younger age of death; more frequent reports of sudden and unexpected death (p <0.05-0.001) were noted in cases with CTE-NC. In contrast, a higher Braak stage was associated with late-onset epilepsy and cognitive decline. Of note, 9% of cases showed no pTau, including cases with long epilepsy duration, poor seizure control and a history of prior TBI. In summary, this cohort includes patients with more severe and diverse forms of epilepsy, with CTE-NC observed more frequently than reported in non-epilepsy community-based studies (0%-8%) but lower than published series from contact sports participants (32%-87%). Although the literature does not report increased epilepsy occurring in CTE syndrome, our findings support an increased risk of CTE in epilepsy syndromes, likely primarily related to increased TBI.
Collapse
Affiliation(s)
- Maritchka Ryniejska
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Hanaa El-Hachami
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Alicja Mrzyglod
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Joan Liu
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
- School of Life Sciences, University of Westminster, London, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| |
Collapse
|
7
|
Friberg S, Lindblad C, Zeiler FA, Zetterberg H, Granberg T, Svenningsson P, Piehl F, Thelin EP. Fluid biomarkers of chronic traumatic brain injury. Nat Rev Neurol 2024; 20:671-684. [PMID: 39363129 DOI: 10.1038/s41582-024-01024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability across the world. Evidence for the usefulness of imaging and fluid biomarkers to predict outcomes and screen for the need to monitor complications in the acute stage is steadily increasing. Still, many people experience symptoms such as fatigue and cognitive and motor dysfunction in the chronic phase of TBI, where objective assessments for brain injury are lacking. Consensus criteria for traumatic encephalopathy syndrome, a clinical syndrome possibly associated with the neurodegenerative disease chronic traumatic encephalopathy, which is commonly associated with sports concussion, have been defined only recently. However, these criteria do not fit all individuals living with chronic consequences of TBI. The pathophysiology of chronic TBI shares many similarities with other neurodegenerative and neuroinflammatory conditions, such as Alzheimer disease. As with Alzheimer disease, advancements in fluid biomarkers represent one of the most promising paths for unravelling the chain of pathophysiological events to enable discrimination between these conditions and, with time, provide prediction modelling and therapeutic end points. This Review summarizes fluid biomarker findings in the chronic phase of TBI (≥6 months after injury) that demonstrate the involvement of inflammation, glial biology and neurodegeneration in the long-term complications of TBI. We explore how the biomarkers associate with outcome and imaging findings and aim to establish mechanistic differences in biomarker patterns between types of chronic TBI and other neurodegenerative conditions. Finally, current limitations and areas of priority for future fluid biomarker research are highlighted.
Collapse
Affiliation(s)
- Susanna Friberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Frederick A Zeiler
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Rady Faculty of Health Sciences, Winnipeg, Manitoba, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Clinic Foundation, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Fortington LV, Cassidy JD, Castellani RJ, Gardner AJ, McIntosh AS, Austen M, Kerr ZY, Quarrie KL. Epidemiological Principles in Claims of Causality: An Enquiry into Repetitive Head Impacts (RHI) and Chronic Traumatic Encephalopathy (CTE). Sports Med 2024:10.1007/s40279-024-02102-4. [PMID: 39277838 DOI: 10.1007/s40279-024-02102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Determining whether repetitive head impacts (RHI) cause the development of chronic traumatic encephalopathy (CTE)-neuropathological change (NC) and whether pathological changes cause clinical syndromes are topics of considerable interest to the global sports medicine community. In 2022, an article was published that used the Bradford Hill criteria to evaluate the claim that RHI cause CTE. The publication garnered international media attention and has since been promoted as definitive proof that causality has been established. Our counterpoint presents an appraisal of the published article in terms of the claims made and the scientific literature used in developing those claims. We conclude that the evidence provided does not justify the causal claims. We discuss how causes are conceptualised in modern epidemiology and highlight shortcomings in the current definitions and measurement of exposures (RHI) and outcomes (CTE). We address the Bradford Hill arguments that are used as evidence in the original review and conclude that assertions of causality having been established are premature. Members of the scientific community must be cautious of making causal claims until the proposed exposures and outcomes are well defined and consistently measured, and findings from appropriately designed studies have been published. Evaluating and reflecting on the quality of research is a crucial step in providing accurate evidence-based information to the public.
Collapse
Affiliation(s)
- Lauren V Fortington
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| | - J David Cassidy
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Rudolph J Castellani
- Division of Neuropathology, Northwestern University Feinberg School of Medicine and Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Chicago, IL, USA
| | - Andrew J Gardner
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew S McIntosh
- Monash University Accident Research Centre, Monash University, Clayton, VIC, Australia
| | - Michael Austen
- Australasian Faculty of Occupational and Environmental Medicine, Royal Australasian College of Physicians, Sydney, Australia
- Royal New Zealand College of Urgent Care, Auckland, New Zealand
- High Court of New Zealand, Auckland, New Zealand
| | - Zachary Yukio Kerr
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth L Quarrie
- New Zealand Rugby, 100 Molesworth Street, Wellington, New Zealand
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
- Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Vasilevskaya A, Anastassiadis C, Thapa S, Taghdiri F, Khodadadi M, Multani N, Rusjan P, Ozzoude M, Tarazi A, Mushtaque A, Wennberg R, Houle S, Green R, Colella B, Vasdev N, Blennow K, Zetterberg H, Karikari T, Sato C, Moreno D, Rogaeva E, Mikulis D, Davis KD, Tator C, Tartaglia MC. 18F-Flortaucipir (AV1451) imaging identifies grey matter atrophy in retired athletes. J Neurol 2024; 271:6068-6079. [PMID: 39037476 PMCID: PMC11377597 DOI: 10.1007/s00415-024-12573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The long-term consequences of concussions may include pathological neurodegeneration as seen in Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Tau-PET showed promise as a method to detect tau pathology of CTE, but more studies are needed OBJECTIVE: This study aimed (1) to assess the association of imaging evidence of tau pathology with brain volumes in retired athletes and (2) to examine the relationship between tau-PET and neuropsychological functioning. METHODS Former contact sport athletes were recruited through the Canadian Football League Alumni Association or the Canadian Concussion Centre clinic. Athletes completed MRI, [18F]flortaucipir tau-PET, and a neuropsychological battery. Memory composite was created by averaging the Rey Auditory Verbal Learning Test and Rey Visual Design Learning Test z-scores. Grey matter (GM) volumes were age/intracranial volume corrected using normal control MRIs. Tau-PET % positivity in GM was calculated as the number of positive voxels (≥ 1.3 standardized uptake value ratio (SUVR)/total voxels). RESULTS 47 retired contact sport athletes negative for AD (age:51 ± 14; concussions/athlete:15 ± 2) and 54 normal controls (age:50 ± 13) were included. Tau-PET positive voxels had significantly lower GM volumes, compared to tau-PET negative voxels (- 0.37 ± 0.41 vs. - 0.31 ± 0.37, paired p = .006). There was a significant relationship between GM tau-PET % positivity and memory composite score (r = - .366, p = .02), controlled for age, PET scanner, and PET scan duration. There was no relationship between tau-PET measures and concussion number, or years of sport played. CONCLUSION A higher tau-PET signal was associated with reduced GM volumes and lower memory scores. Tau-PET may be useful for identifying those at risk for neurodegeneration.
Collapse
Affiliation(s)
- Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Chloe Anastassiadis
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Simrika Thapa
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Mozhgan Khodadadi
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Namita Multani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Pablo Rusjan
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Miracle Ozzoude
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
| | - Apameh Tarazi
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Asma Mushtaque
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Richard Wennberg
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Campbell Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robin Green
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- KITE Research Institute, University Health Network, Toronto, ON, Canada
| | - Brenda Colella
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- KITE Research Institute, University Health Network, Toronto, ON, Canada
| | - Neil Vasdev
- Brain Health Imaging Centre, Campbell Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
| | - David Mikulis
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Karen Deborah Davis
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Charles Tator
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
10
|
Adams JW, Kirsch D, Calderazzo SM, Tuz-Zahra F, Tripodis Y, Mez J, Alosco ML, Alvarez VE, Huber BR, Kubilus C, Cormier KA, Nicks R, Uretsky M, Nair E, Kuzyk E, Aytan N, Cherry JD, Crary JF, Daneshvar DH, Nowinski CJ, Goldstein LE, Dwyer B, Katz DI, Cantu RC, Stern RA, McKee AC, Stein TD. Substantia Nigra Pathology, Contact Sports Play, and Parkinsonism in Chronic Traumatic Encephalopathy. JAMA Neurol 2024; 81:916-924. [PMID: 39008284 PMCID: PMC11250391 DOI: 10.1001/jamaneurol.2024.2166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/21/2024] [Indexed: 07/16/2024]
Abstract
Importance Parkinsonism is associated with traumatic brain injury and chronic traumatic encephalopathy (CTE), a neurodegenerative disease associated with repetitive head impact (RHI) exposure, but the neuropathologic substrates that underlie parkinsonism in individuals with CTE are yet to be defined. Objective To evaluate the frequency of parkinsonism in individuals with CTE and the association of RHI and neuropathologic substrates with parkinsonism in these individuals. Design, Setting, and Participants This cross-sectional study included brain donors with neuropathologically diagnosed CTE without other significant neurodegenerative disease and with information on parkinsonism from the Understanding Neurologic Injury and Traumatic Encephalopathy brain bank between July 2015 and May 2022. Exposure Years of contact sports participation as a proxy for RHI. Main Outcomes and Measures The main outcomes were frequency of parkinsonism in individuals with CTE and associations between (1) RHI with substantia nigra (SN) Lewy bodies (LBs) and neurofibrillary tangles (NFTs); (2) LBs, NFTs, and arteriolosclerosis with SN neuronal loss; and (3) SN neuronal loss, LBs, NFTs, and arteriolosclerosis with parkinsonism, tested by age-adjusted logistic regressions. Results Of 481 male brain donors with neuropathologically diagnosed CTE, parkinsonism occurred frequently in individuals with CTE (119 [24.7%]; 362 [75.3%] did not have parkinsonism). Participants with parkinsonism had a higher mean (SD) age at death (71.5 [13.0] years) than participants without parkinsonism (54.1 [19.3] years) (P < .001) and higher rates of dementia (104 [87.4%] vs 105 [29.0%]), visual hallucinations (45 [37.8%] vs 51 [14.1%]), and probable rapid eye movement sleep behavior disorder (52 [43.7%] vs 58 [16.0%]) (P < .001 for all). Participants with parkinsonism had a more severe CTE stage (eg, stage IV: 35 [29.4%] vs 39 [10.8%]) and nigral pathology than those without parkinsonism (NFTs: 50 of 117 [42.7%] vs 103 of 344 [29.9%]; P = .01; neuronal loss: 61 of 117 [52.1%] vs 59 of 344 [17.1%]; P < .001; and LBs: 28 of 116 [24.1%] vs 20 of 342 [5.8%]; P < .001). Years of contact sports participation were associated with SN NFTs (adjusted odds ratio [AOR], 1.04; 95% CI, 1.00-1.07; P = .03) and neuronal loss (AOR, 1.05; 95% CI, 1.01-1.08; P = .02). Nigral neuronal loss (AOR, 2.61; 95% CI, 1.52-4.47; P < .001) and LBs (AOR, 2.29; 95% CI, 1.15-4.57; P = .02) were associated with parkinsonism. However, SN neuronal loss was associated with SN LBs (AOR, 4.48; 95% CI, 2.25-8.92; P < .001), SN NFTs (AOR, 2.51; 95% CI, 1.52-4.15; P < .001), and arteriolosclerosis (AOR, 2.27; 95% CI, 1.33-3.85; P = .002). In American football players, regression analysis demonstrated that SN NFTs and neuronal loss mediated the association between years of play and parkinsonism in the context of CTE (β, 0.012; 95% CI, 0.001-0.038). Conclusions and Relevance In this cross-sectional study of contact sports athletes with CTE, years of contact sports participation were associated with SN tau pathology and neuronal loss, and these pathologies were associated with parkinsonism. Repetitive head impacts may incite neuropathologic processes that lead to symptoms of parkinsonism in individuals with CTE.
Collapse
Affiliation(s)
- Jason W. Adams
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla
| | - Daniel Kirsch
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Samantha M. Calderazzo
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Fatima Tuz-Zahra
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Jesse Mez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
- VA Bedford Healthcare System, Bedford, Massachusetts
| | - Bertrand R. Huber
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
| | - Caroline Kubilus
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Kerry A. Cormier
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
- VA Bedford Healthcare System, Bedford, Massachusetts
| | - Raymond Nicks
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Madeline Uretsky
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Evan Nair
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Eva Kuzyk
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Nurgul Aytan
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Jonathan D. Cherry
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - John F. Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel H. Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts
- Department of Physical Medicine and Rehabilitation, Mass General Brigham-Spaulding Rehabilitation, Charlestown, Massachusetts
| | - Christopher J. Nowinski
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
| | - Lee E. Goldstein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Brigid Dwyer
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Brain Injury Program, Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Douglas I. Katz
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Brain Injury Program, Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Robert C. Cantu
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Emerson Hospital, Concord, Massachusetts
| | - Robert A. Stern
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts
| | - Ann C. McKee
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
- VA Bedford Healthcare System, Bedford, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
- VA Bedford Healthcare System, Bedford, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
11
|
Todd N. Medico-legal implications of dementia following concussion in rugby football. Med Leg J 2024; 92:91-95. [PMID: 38340786 DOI: 10.1177/00258172231184550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
There is litigation in respect of dementia in ex-rugby football players. The allegation is that these ex-players have suffered a traumatic encephalopathy syndrome causing dementia and other neurological problems. The syndrome is alleged to have been caused by repeated concussion during play. It is alleged that governing bodies of rugby should have been aware, and players should have been warned, of this risk. The dilemma, for both claimants and defendants, is that there is no agreed definition of the syndrome nor are there any diagnostic tests that confirm or refute this diagnosis. This paper reviews the literature of traumatic encephalopathy syndrome and when governing bodies were aware of the possibility of rugby concussion causing dementia. The legal principles are discussed and a framework for determining the probability of an ex-rugby player having the syndrome is proposed.
Collapse
Affiliation(s)
- Nicholas Todd
- Newcastle Nuffield Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Zhu M, Zhang G, Meng L, Xiao T, Fang X, Zhang Z. Physiological and pathological functions of TMEM106B in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:209. [PMID: 38710967 PMCID: PMC11074223 DOI: 10.1007/s00018-024-05241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
As an integral lysosomal transmembrane protein, transmembrane protein 106B (TMEM106B) regulates several aspects of lysosomal function and is associated with neurodegenerative diseases. The TMEM106B gene mutations lead to lysosomal dysfunction and accelerate the pathological progression of Neurodegenerative diseases. Yet, the precise mechanism of TMEM106B in Neurodegenerative diseases remains unclear. Recently, different research teams discovered that TMEM106B is an amyloid protein and the C-terminal domain of TMEM106B forms amyloid fibrils in various Neurodegenerative diseases and normally elderly individuals. In this review, we discussed the physiological functions of TMEM106B. We also included TMEM106B gene mutations that cause neurodegenerative diseases. Finally, we summarized the identification and cryo-electronic microscopic structure of TMEM106B fibrils, and discussed the promising therapeutic strategies aimed at TMEM106B fibrils and the future directions for TMEM106B research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Zhu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tingting Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
13
|
Zimmerman KA, Hain JA, Graham NSN, Rooney EJ, Lee Y, Del-Giovane M, Parker TD, Friedland D, Cross MJ, Kemp S, Wilson MG, Sylvester RJ, Sharp DJ. Prospective cohort study of long-term neurological outcomes in retired elite athletes: the Advanced BiomaRker, Advanced Imaging and Neurocognitive (BRAIN) Health Study protocol. BMJ Open 2024; 14:e082902. [PMID: 38663922 PMCID: PMC11043776 DOI: 10.1136/bmjopen-2023-082902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Although limited, recent research suggests that contact sport participation might have an adverse long-term effect on brain health. Further work is required to determine whether this includes an increased risk of neurodegenerative disease and/or subsequent changes in cognition and behaviour. The Advanced BiomaRker, Advanced Imaging and Neurocognitive Health Study will prospectively examine the neurological, psychiatric, psychological and general health of retired elite-level rugby union and association football/soccer players. METHODS AND ANALYSIS 400 retired athletes will be recruited (200 rugby union and 200 association football players, male and female). Athletes will undergo a detailed clinical assessment, advanced neuroimaging, blood testing for a range of brain health outcomes and neuropsychological assessment longitudinally. Follow-up assessments will be completed at 2 and 4 years after baseline visit. 60 healthy volunteers will be recruited and undergo an aligned assessment protocol including advanced neuroimaging, blood testing and neuropsychological assessment. We will describe the previous exposure to head injuries across the cohort and investigate relationships between biomarkers of brain injury and clinical outcomes including cognitive performance, clinical diagnoses and psychiatric symptom burden. ETHICS AND DISSEMINATION Relevant ethical approvals have been granted by the Camberwell St Giles Research Ethics Committee (Ref: 17/LO/2066). The study findings will be disseminated through manuscripts in clinical/academic journals, presentations at professional conferences and through participant and stakeholder communications.
Collapse
Affiliation(s)
- Karl A Zimmerman
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Injury Studies, Imperial College London, London, UK
| | - Jessica A Hain
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Neil S N Graham
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Injury Studies, Imperial College London, London, UK
| | - Erin Jane Rooney
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
| | - Ying Lee
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
| | - Martina Del-Giovane
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Thomas D Parker
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurodegenerative Disease, The Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Daniel Friedland
- Department of Brain Sciences, Imperial College London, London, UK
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
| | - Matthew J Cross
- Carnegie Applied Rugby Research Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Premiership Rugby, London, UK
| | - Simon Kemp
- Rugby Football Union, Twickenham, UK
- London School of Hygiene & Tropical Medicine, London, UK
| | - Mathew G Wilson
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
- HCA Healthcare Research Institute, London, UK
| | - Richard J Sylvester
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
- Acute Stroke and Brain Injury Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - David J Sharp
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Injury Studies, Imperial College London, London, UK
| |
Collapse
|
14
|
Li W, Li JY. Overlaps and divergences between tauopathies and synucleinopathies: a duet of neurodegeneration. Transl Neurodegener 2024; 13:16. [PMID: 38528629 DOI: 10.1186/s40035-024-00407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Proteinopathy, defined as the abnormal accumulation of proteins that eventually leads to cell death, is one of the most significant pathological features of neurodegenerative diseases. Tauopathies, represented by Alzheimer's disease (AD), and synucleinopathies, represented by Parkinson's disease (PD), show similarities in multiple aspects. AD manifests extrapyramidal symptoms while dementia is also a major sign of advanced PD. We and other researchers have sequentially shown the cross-seeding phenomenon of α-synuclein (α-syn) and tau, reinforcing pathologies between synucleinopathies and tauopathies. The highly overlapping clinical and pathological features imply shared pathogenic mechanisms between the two groups of disease. The diagnostic and therapeutic strategies seemingly appropriate for one distinct neurodegenerative disease may also apply to a broader spectrum. Therefore, a clear understanding of the overlaps and divergences between tauopathy and synucleinopathy is critical for unraveling the nature of the complicated associations among neurodegenerative diseases. In this review, we discuss the shared and diverse characteristics of tauopathies and synucleinopathies from aspects of genetic causes, clinical manifestations, pathological progression and potential common therapeutic approaches targeting the pathology, in the aim to provide a timely update for setting the scheme of disease classification and provide novel insights into the therapeutic development for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wen Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China
| | - Jia-Yi Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184, Lund, Sweden.
| |
Collapse
|
15
|
Picard C, Miron J, Poirier J. Association of TMEM106B with Cortical APOE Gene Expression in Neurodegenerative Conditions. Genes (Basel) 2024; 15:416. [PMID: 38674351 PMCID: PMC11049136 DOI: 10.3390/genes15040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
The e4 allele of the apolipoprotein E gene is the strongest genetic risk factor for sporadic Alzheimer's disease. Nevertheless, how APOE is regulated is still elusive. In a trans-eQTL analysis, we found a genome-wide significant association between transmembrane protein 106B (TMEM106B) genetic variants and cortical APOE mRNA levels in human brains. The goal of this study is to determine whether TMEM106B is mis-regulated in Alzheimer's disease or in other neurodegenerative conditions. Available genomic, transcriptomic and proteomic data from human brains were downloaded from the Mayo Clinic Brain Bank and the Religious Orders Study and Memory and Aging Project. An in-house mouse model of the hippocampal deafferentation/reinnervation was achieved via a stereotaxic lesioning surgery to the entorhinal cortex, and mRNA levels were measured using RNAseq technology. In human temporal cortices, the mean TMEM106B expression was significantly higher in Alzheimer's disease compared to cognitively unimpaired individuals. In the mouse model, hippocampal Tmem106b reached maximum levels during the early phase of reinnervation. These results suggest an active response to tissue damage that is consistent with compensatory synaptic and terminal remodeling.
Collapse
Affiliation(s)
- Cynthia Picard
- Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada; (C.P.); (J.M.)
- Centre for the Studies on Prevention of Alzheimer’s Disease, Montreal, QC H4H 1R3, Canada
| | - Justin Miron
- Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada; (C.P.); (J.M.)
- Centre for the Studies on Prevention of Alzheimer’s Disease, Montreal, QC H4H 1R3, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC H3A 0E7, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada; (C.P.); (J.M.)
- Centre for the Studies on Prevention of Alzheimer’s Disease, Montreal, QC H4H 1R3, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC H3A 0E7, Canada
| |
Collapse
|
16
|
Feng T, Du H, Yang C, Wang Y, Hu F. Loss of TMEM106B exacerbates Tau pathology and neurodegeneration in PS19 mice. Acta Neuropathol 2024; 147:62. [PMID: 38526799 DOI: 10.1007/s00401-024-02702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/27/2024]
Abstract
TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased abnormalities in the neuronal cytoskeleton, autophagy-lysosome activities, as well as glial activation, compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Huan Du
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Cha Yang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Ya Wang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
17
|
Alosco ML, Adler CH, Dodick DW, Tripodis Y, Balcer LJ, Bernick C, Banks SJ, Barr WB, Wethe JV, Palmisano JN, Martin B, Hartlage K, Cantu RC, Geda YE, Katz DI, Mez J, Cummings JL, Shenton ME, Reiman EM, Stern RA. Examination of parkinsonism in former elite American football players. Parkinsonism Relat Disord 2024; 120:105903. [PMID: 37981539 PMCID: PMC10922636 DOI: 10.1016/j.parkreldis.2023.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Former American football players are at risk for chronic traumatic encephalopathy (CTE) which may have parkinsonism as a clinical feature. OBJECTIVE Former football players were prospectively assessed for parkinsonism. METHODS 120 former professional football players, 58 former college football players, and 60 same-age asymptomatic men without repetitive head impacts, 45-74 years, were studied using the MDS-UPDRS to assess for parkinsonism, and the Timed Up and Go (TUG). Traumatic encephalopathy syndrome (TES), the clinical syndrome of CTE, was adjudicated and includes parkinsonism diagnosis. Fisher's Exact Test compared groups on parkinsonism due to small cell sizes; analysis of covariance or linear regressions controlling for age and body mass index were used otherwise. RESULTS Twenty-two (12.4%) football players (13.3% professional, 10.3% college) met parkinsonism criteria compared with two (3.3%) in the unexposed group. Parkinsonism was higher in professional (p = 0.037) but not college players (p = 0.16). There were no differences on the MDS-UPDRS Part III total scores. Scores on the individual MDS-UPDRS items were low. TUG times were longer in former professional but not college players compared with unexposed men (13.09 versus 11.35 s, p < 0.01). There were no associations between years of football, age of first exposure, position or level of play on motor outcomes. TES status was not associated with motor outcomes. CONCLUSIONS Parkinsonism rates in this sample of football players was low and highest in the professional football players. The association between football and parkinsonism is inconclusive and depends on factors related to sample selection, comparison groups, and exposure characteristics.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | - David W Dodick
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Sarah J Banks
- Departments of Neuroscience and Psychiatry, University of California, San Diego, CA, USA
| | - William B Barr
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jennifer V Wethe
- Department of Psychiatry and Psychology, Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Kaitlin Hartlage
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Robert C Cantu
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | | | - Douglas I Katz
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| | - Jeffery L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Department of Radiology, Brigham and Women's Hospital, And Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian, Boston, MA, USA
| |
Collapse
|
18
|
Agrawal S, Leurgans SE, Barnes LL, Dams-O’Connor K, Mez J, Bennett DA, Schneider JA. Chronic traumatic encephalopathy and aging-related tau astrogliopathy in community-dwelling older persons with and without moderate-to-severe traumatic brain injury. J Neuropathol Exp Neurol 2024; 83:181-193. [PMID: 38300796 PMCID: PMC10880068 DOI: 10.1093/jnen/nlae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
This study examined the frequency of chronic traumatic encephalopathy-neuropathologic change (CTE-NC) and aging-related tau astrogliopathy (ARTAG) in community-dwelling older adults and tested the hypothesis that these tau pathologies are associated with a history of moderate-to-severe traumatic brain injury (msTBI), defined as a TBI with loss of consciousness >30 minutes. We evaluated CTE-NC, ARTAG, and Alzheimer disease pathologies in 94 participants with msTBI and 94 participants without TBI matched by age, sex, education, and dementia status TBI from the Rush community-based cohorts. Six (3%) of brains showed the pathognomonic lesion of CTE-NC; only 3 of these had a history of msTBI. In contrast, ARTAG was common in older brains (gray matter ARTAG = 77%; white matter ARTAG = 54%; subpial ARTAG = 51%); there were no differences in severity, type, or distribution of ARTAG pathology with respect to history of msTBI. Furthermore, those with msTBI did not have higher levels of PHF-tau tangles density but had higher levels of amyloid-β load (Estimate = 0.339, SE = 0.164, p = 0.040). These findings suggest that CTE-NC is infrequent while ARTAG is common in the community and that both pathologies are unrelated to msTBI. The association of msTBI with amyloid-β, rather than with tauopathies suggests differential mechanisms of neurodegeneration in msTBI.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Sue E Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Lisa L Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance, Mt Sinai School of Medicine, New York, New York, USA
- Department of Neurology, Mt Sinai School of Medicine, New York, New York, USA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
19
|
Vanderlinden G, Michiels L, Koole M, Lemmens R, Liessens D, Van Walleghem J, Depreitere B, Vandenbulcke M, Van Laere K. Tau Imaging in Late Traumatic Brain Injury: A [ 18F]MK-6240 Positron Emission Tomography Study. J Neurotrauma 2024; 41:420-429. [PMID: 38038357 DOI: 10.1089/neu.2023.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Epidemiological studies have identified prior traumatic brain injury (TBI) as a risk factor for developing Alzheimer's disease (AD). Neurofibrillary tangles (NFTs) are common to AD and chronic traumatic encephalopathy following repetitive mild TBI. However, it is unclear if a single TBI is sufficient to cause accumulation of NFTs. We performed a [18F]MK-6240 positron emission tomography (PET) imaging study to assess NFTs in patients who had sustained a single TBI at least 2 years prior to study inclusion. Fourteen TBI patients (49 ± 20 years; 5 M/9 F; 8 moderate-severe, 1 mild-probable, 5 symptomatic-possible TBI) and 40 demographically similar controls (57 ± 19 years; 19 M/21 F) underwent simultaneous [18F]MK-6240 PET and magnetic resonance imaging (MRI) as well as neuropsychological assessment including the Cambridge Neuropsychological Test Automated Battery (CANTAB). A region-based voxelwise partial volume correction was applied, using parcels obtained by FreeSurfer v6.0, and standardized uptake value ratios (SUVR) were calculated relative to the cerebellar gray matter. Group differences were assessed on both a voxel- and a volume-of-interest-based level and correlations of [18F]MK-6240 SUVR with time since injury as well as with clinical outcomes were calculated. Visual assessment of TBI images did not show global or focal increases in tracer uptake in any subject. On a group level, [18F]MK-6240 SUVR was not significantly different in patients versus controls or between subgroups of moderate-severe TBI versus less severe TBI. Within the TBI group, One Touch Stockings problem solving and spatial working memory (executive function), reaction time (attention), and Mini-Mental State Examination (MMSE) (global cognition) were associated with [18F]MK-6240 SUVR. We found no group-based increase of [18F]MK-6240 brain uptake in patients scanned at least 2 years after a single TBI compared with healthy volunteers, which suggests that no NFTs are building up in the first years after a single TBI. Nonetheless, correlations with cognitive outcomes were found that warrant further investigation.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, and Departments of Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Laura Michiels
- Leuven Brain Institute, Leuven, Belgium
- Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium
- VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Belgium
- Neurosciences, and Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, and Departments of Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Robin Lemmens
- Leuven Brain Institute, Leuven, Belgium
- Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium
- VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Belgium
- Neurosciences, and Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Dirk Liessens
- Department of Geriatric Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
| | | | - Bart Depreitere
- Department of Neurosurgery, and University Hospitals UZ Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Leuven Brain Institute, Leuven, Belgium
- Department of Geriatric Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
- Neuropsychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, and Departments of Research Group Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Department of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Monsour MA, Wolfson DI, Jo J, Terry DP, Zuckerman SL. Is contact sport participation associated with chronic traumatic encephalopathy or neurodegenerative decline? A systematic review and meta-analysis. J Neurosurg Sci 2024; 68:117-127. [PMID: 36779774 DOI: 10.23736/s0390-5616.22.05895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
INTRODUCTION We sought to evaluate a potential association between contact vs. non-contact sport participation and long-term neurologic outcomes and chronic traumatic encephalopathy (CTE). EVIDENCE ACQUISITION PubMed/Embase/PsycINFO/CINAHL databases were queried for studies between 1950-2020 with contact and non-contact sports, longitudinal assessment >10 years, and long-term neurologic outcomes in four-domains: I) clinical diagnosis; II) CTE neuropathology; III) neurocognition; and IV) neuroimaging. EVIDENCE SYNTHESIS Of 2561 studies, 37 met inclusion criteria, and 19 contained homogenous outcomes usable in the meta-analysis. Domain I: Across six studies, no significant relationship was seen between contact sport participation and antemortem diagnosis of neurodegenerative disease or death related to such a diagnosis (RR1.88, P=0.054, 95%CI0.99, 3.49); however, marginal significance (P<0.10) was obtained. Domain II: Across three autopsy studies, no significant relationship was seen between contact sport participation and CTE neuropathology (RR42.39, P=0.086, 95%CI0.59, 3057.46); however, marginal significance (P<0.10) was obtained. Domain III: Across five cognitive studies, no significant relationship was seen between contact sport participation and cognitive function on the Trail Making Test (TMT) scores A/B (A:d=0.17, P=0.275,95% CI-0.13, 0.47; B:d=0.13, P=0.310, 95%CI-0.12, 0.38). Domain IV: In 10 brain imaging-based studies, 32% comparisons showed significant differences between those with a history of contact sport vs. those without. CONCLUSIONS No statistically significant increased risk of neurodegenerative diagnosis, CTE neuropathology, or neurocognitive changes was found to be associated with contact sport participation, yet marginal significance was obtained in two domains. A minority of imaging comparisons showed differences of uncertain clinical significance. These results highlight the need for longitudinal investigations using standardized contact sport participation and neurodegenerative criteria.
Collapse
Affiliation(s)
- Meredith A Monsour
- Vanderbilt Sports Concussion Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel I Wolfson
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Jacob Jo
- Vanderbilt Sports Concussion Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas P Terry
- Vanderbilt Sports Concussion Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott L Zuckerman
- Vanderbilt Sports Concussion Center, Nashville, TN, USA -
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
21
|
McGill MB, Schnyer DM. The Effects of Early Life History of TBI on the Progression of Normal Brain Aging with Implications for Increased Dementia Risk. ADVANCES IN NEUROBIOLOGY 2024; 42:119-143. [PMID: 39432040 DOI: 10.1007/978-3-031-69832-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
There is increasing interest in the risk conferred on neurological health by a traumatic brain injury (TBI) and how that influences the lifespan trajectory of brain aging. This chapter explores the importance of this issue, population, and methodological considerations, including injury documentation and outcome assessment. We then explore some of the findings in the neuroimaging and neuropsychological research literature examining the interaction between an earlier life history of TBI and the normal aging process. Finally, we consider the limitations of our current knowledge and where the field needs to go in the future.
Collapse
Affiliation(s)
- Makenna B McGill
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
| | - David M Schnyer
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Hageman G, Hageman I, Nihom J. Chronic Traumatic Encephalopathy in Soccer Players: Review of 14 Cases. Clin J Sport Med 2024; 34:69-80. [PMID: 37403989 DOI: 10.1097/jsm.0000000000001174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/22/2023] [Indexed: 07/06/2023]
Abstract
OBJECTIVE Exposure to repetitive sports-related concussions or (sub)concussive head trauma may lead to chronic traumatic encephalopathy (CTE). Which impact (heading or concussion) poses the greatest risk of CTE development in soccer players? DESIGN Narrative review. SETTING Teaching hospital and University of Applied sciences. PATIENTS A literature search (PubMed) was conducted for neuropathologic studies in the period 2005-December 2022, investigating soccer players with dementia and a CTE diagnosis, limited to English language publications. 210 papers were selected for final inclusion, of which 7 papers described 14 soccer players. ASSESSMENT Magnetic resonance imaging studies in soccer players show that lifetime estimates of heading numbers are inversely correlated with cortical thickness, grey matter volume, and density of the anterior temporal cortex. Using diffusion tensor imaging-magnetic resonance imaging, higher frequency of headings-particularly with rotational accelerations-are associated with impaired white matter integrity. Serum neurofilament light protein is elevated after heading. MAIN OUTCOME MEASURES Chronic traumatic encephalopathy pathology, history of concussion, heading frequency. RESULTS In 10 of 14 soccer players, CTE was the primary diagnosis. In 4 cases, other dementia types formed the primary diagnosis and CTE pathology was a concomitant finding. Remarkably, 6 of the 14 cases had no history of concussion, suggesting that frequent heading may be a risk for CTE in patients without symptomatic concussion. Rule changes in heading duels, management of concussion during the game, and limiting the number of high force headers during training are discussed. CONCLUSIONS Data suggest that heading frequency and concussions are associated with higher risk of developing CTE in (retired) soccer players. However based on this review of only 14 players, questions persist as to whether or not heading is a risk factor for CTE or long-term cognitive decline.
Collapse
Affiliation(s)
- Gerard Hageman
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, the Netherlands; and
| | - Ivar Hageman
- Saxion University of Applied Sciences, Enschede, the Netherlands
| | - Jik Nihom
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, the Netherlands; and
| |
Collapse
|
23
|
Dams-O'Connor K, Seifert AC, Crary JF, Delman BN, Del Bigio MR, Kovacs GG, Lee EB, Nolan AL, Pruyser A, Selmanovic E, Stewart W, Woodoff-Leith E, Folkerth RD. The neuropathology of intimate partner violence. Acta Neuropathol 2023; 146:803-815. [PMID: 37897548 PMCID: PMC10627910 DOI: 10.1007/s00401-023-02646-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
Lifelong brain health consequences of traumatic brain injury (TBI) include the risk of neurodegenerative disease. Up to one-third of women experience intimate partner violence (IPV) in their lifetime, often with TBI, yet remarkably little is known about the range of autopsy neuropathologies encountered in IPV. We report a prospectively accrued case series from a single institution, the New York City Office of Chief Medical Examiner, evaluated in partnership with the Brain Injury Research Center of Mount Sinai, using a multimodal protocol comprising clinical history review, ex vivo imaging in a small subset, and comprehensive neuropathological assessment by established consensus protocols. Fourteen brains were obtained over 2 years from women with documented IPV (aged 3rd-8th decade; median, 4th) and complex histories including prior TBI in 6, nonfatal strangulation in 4, cerebrovascular, neurological, and/or psychiatric conditions in 13, and epilepsy in 7. At autopsy, all had TBI stigmata (old and/or recent). In addition, white matter regions vulnerable to diffuse axonal injury showed perivascular and parenchymal iron deposition and microgliosis in some subjects. Six cases had evidence of cerebrovascular disease (lacunes and/or chronic infarcts). Regarding neurodegenerative disease pathologies, Alzheimer disease neuropathologic change was present in a single case (8th decade), with no chronic traumatic encephalopathy neuropathologic change (CTE-NC) identified in any. Findings from this initial series then prompted similar exploration in an expanded case series of 70 archival IPV cases (aged 2nd-9th decade; median, 4th) accrued from multiple international institutions. In this secondary case series, we again found evidence of vascular and white matter pathologies. However, only limited neurodegenerative proteinopathies were encountered in the oldest subjects, none meeting consensus criteria for CTE-NC. These observations from this descriptive exploratory study reinforce a need to consider broad co-morbid and neuropathological substrates contributing to brain health outcomes in the context of IPV, some of which may be potentially modifiable.
Collapse
Affiliation(s)
- Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Brain Injury Research Center of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan C Seifert
- Department of Diagnostic, Molecular and Interventional Radiology, Biomedical Engineering and Imaging Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John F Crary
- Department of Pathology, Molecular, and Cell Based Medicine, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, and Artificial Intelligence & Human Health, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Mount Sinai Hospital, New York, NY, USA
| | - Bradley N Delman
- Department of Diagnostic, Molecular and Interventional Radiology, Biomedical Engineering and Imaging Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Room 401 Brodie Centre, 727 McDermot Avenue, Winnipeg, MB, Canada
- Diagnostic Services - Pathology, Shared Health Manitoba, Winnipeg, MB, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease (CRND) and Department of Laboratory Medicine and Pathobiology, Krembil Discovery Tower, University of Toronto, 60 Leonard Ave, Toronto, ON, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ariel Pruyser
- Department of Rehabilitation and Human Performance, Brain Injury Research Center of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Enna Selmanovic
- Department of Rehabilitation and Human Performance, Brain Injury Research Center of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Stewart
- Department of Neuropathology, Elizabeth University Hospital, Glasgow, G514TF, Queen, UK
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G128QQ, UK
| | - Emma Woodoff-Leith
- Department of Pathology, Molecular, and Cell Based Medicine, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, and Artificial Intelligence & Human Health, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Mount Sinai Hospital, New York, NY, USA
| | - Rebecca D Folkerth
- Office of Chief Medical Examiner, 520 First Avenue, New York, NY, 10116, USA.
- Department of Forensic Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Feng T, Du H, Hu F. Loss of TMEM106B exacerbates Tau pathology and neurodegeneration in PS19 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566707. [PMID: 38014238 PMCID: PMC10680640 DOI: 10.1101/2023.11.11.566707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased disruption of the neuronal cytoskeleton, autophagy-lysosomal function, and lysosomal trafficking along the axon as well as enhanced gliosis compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Huan Du
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
Ferdousi J, Post A, Karton C, Doelle K, Gilchrist MD, Hoshizaki TB. Head trauma analysis of laboratory reconstructed headers using 1966 Slazenger Challenge and 2018 Telstar 18 soccer balls. Sci Rep 2023; 13:18575. [PMID: 37903796 PMCID: PMC10616227 DOI: 10.1038/s41598-023-45489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Retired soccer players are presenting with early onset neurodegenerative diseases, potentially from heading the ball. It has been proposed that the older composition of soccer balls places higher strains on brain tissues. The purpose of this research was to compare the dynamic head response and brain tissue strain of laboratory reconstructed headers using replicas of the 1966 Slazenger Challenge and 2018 Telstar 18 World Cup soccer balls. Head-to-ball impacts were physically conducted in the laboratory by impacting a Hybrid III head form at three locations and four velocities using dry and wet soccer ball conditions, and computational simulation was used to measure the resulting brain tissue strain. This research showed that few significant differences were found in head dynamic response and maximum principal strain between the dry 1966 and 2018 balls during reconstructed soccer headers. Headers using the wet 1966 soccer ball resulted in higher head form responses at low-velocity headers and lower head responses as velocities increased. This study demonstrates that under dry conditions, soccer ball construction does not have a significant effect on head and brain response during headers reconstructed in the laboratory. Although ball construction didn't show a notable effect, this study revealed that heading the ball, comparable to goalkeeper kicks and punts at 22 m/s, led to maximum principal strains exceeding the 50% likelihood of injury risk threshold. This has implications for the potential risks associated with repetitive heading in soccer for current athletes.
Collapse
Affiliation(s)
| | - Andrew Post
- Health Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Clara Karton
- Health Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada.
| | - Klara Doelle
- Health Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Michael D Gilchrist
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
26
|
Stern RA, Trujillo-Rodriguez D, Tripodis Y, Pulukuri SV, Alosco ML, Adler CH, Balcer LJ, Bernick C, Baucom Z, Marek KL, McClean MD, Johnson KA, McKee AC, Stein TD, Mez J, Palmisano JN, Cummings JL, Shenton ME, Reiman EM. Amyloid PET across the cognitive spectrum in former professional and college American football players: findings from the DIAGNOSE CTE Research Project. Alzheimers Res Ther 2023; 15:166. [PMID: 37798671 PMCID: PMC10552261 DOI: 10.1186/s13195-023-01315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Exposure to repetitive head impacts (RHI) in American football players can lead to cognitive impairment and dementia due to neurodegenerative disease, particularly chronic traumatic encephalopathy (CTE). The pathognomonic lesion of CTE consists of perivascular aggregates of hyper-phosphorylated tau in neurons at the depths of cortical sulci. However, it is unclear whether exposure to RHI accelerates amyloid-β (Aβ) plaque formation and increases the risk for Alzheimer's disease (AD). Although the Aβ neuritic plaques characteristic of AD are observed in a minority of later-stage CTE cases, diffuse plaques are more common. This study examined whether former professional and college American football players, including those with cognitive impairment and dementia, have elevated neuritic Aβ plaque density, as measured by florbetapir PET. Regardless of cognitive and functional status, elevated levels of florbetapir uptake were not expected. METHODS We examined 237 men ages 45-74, including 119 former professional (PRO) and 60 former college (COL) football players, with and without cognitive impairment and dementia, and 58 same-age men without a history of contact sports or TBI (unexposed; UE) and who denied cognitive or behavioral symptoms at telephone screening. Former players were categorized into four diagnostic groups: normal cognition, subjective memory impairment, mild cognitive impairment, and dementia. Positive florbetapir PET was defined by cortical-cerebellar average SUVR of ≥ 1.10. Multivariable linear regression and analysis of covariance (ANCOVA) compared florbetapir average SUVR across diagnostic and exposure groups. Multivariable logistic regression compared florbetapir positivity. Race, education, age, and APOE4 were covariates. RESULTS There were no diagnostic group differences either in florbetapir average SUVR or the proportion of elevated florbetapir uptake. Average SUVR means also did not differ between exposure groups: PRO-COL (p = 0.94, 95% C.I. = [- 0.033, 0.025]), PRO-UE (p = 0.40, 95% C.I. = [- 0.010, 0.029]), COL-UE (p = 0.36, 95% CI = [0.0004, 0.039]). Florbetapir was not significantly associated with years of football exposure, cognition, or daily functioning. CONCLUSIONS Cognitive impairment in former American football players is not associated with PET imaging of neuritic Aβ plaque deposition. These findings are inconsistent with a neuropathological diagnosis of AD in individuals with substantial RHI exposure and have both clinical and medico-legal implications. TRIAL REGISTRATION NCT02798185.
Collapse
Affiliation(s)
- Robert A Stern
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA.
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Departments of Neurosurgery, and Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Diana Trujillo-Rodriguez
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
- Graduate Program in Neuroscience, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Surya V Pulukuri
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
| | - Michael L Alosco
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Zachary Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kenneth L Marek
- Institute for Neurodegenerative Disorders, Invicro, LLC, New Haven, CT, USA
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Keith A Johnson
- Massachusetts General Hospital, Harvard Medical School, Gordon Center for Medical Imaging, Brigham and Women's Hospital, Boston, MA, USA
| | - Ann C McKee
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Thor D Stein
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Jeffrey L Cummings
- Department of Brain Health, School of Integrated Health Sciences, Chambers-Grundy Center for Transformative Neuroscience, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Harvard Medical School, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| |
Collapse
|
27
|
McKee AC, Mez J, Abdolmohammadi B, Butler M, Huber BR, Uretsky M, Babcock K, Cherry JD, Alvarez VE, Martin B, Tripodis Y, Palmisano JN, Cormier KA, Kubilus CA, Nicks R, Kirsch D, Mahar I, McHale L, Nowinski C, Cantu RC, Stern RA, Daneshvar D, Goldstein LE, Katz DI, Kowall NW, Dwyer B, Stein TD, Alosco ML. Neuropathologic and Clinical Findings in Young Contact Sport Athletes Exposed to Repetitive Head Impacts. JAMA Neurol 2023; 80:1037-1050. [PMID: 37639244 PMCID: PMC10463175 DOI: 10.1001/jamaneurol.2023.2907] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Importance Young contact sport athletes may be at risk for long-term neuropathologic disorders, including chronic traumatic encephalopathy (CTE). Objective To characterize the neuropathologic and clinical symptoms of young brain donors who were contact sport athletes. Design, Setting, and Participants This case series analyzes findings from 152 of 156 brain donors younger than 30 years identified through the Understanding Neurologic Injury and Traumatic Encephalopathy (UNITE) Brain Bank who donated their brains from February 1, 2008, to September 31, 2022. Neuropathologic evaluations, retrospective telephone clinical assessments, and online questionnaires with informants were performed blinded. Data analysis was conducted between August 2021 and June 2023. Exposures Repetitive head impacts from contact sports. Main Outcomes and Measures Gross and microscopic neuropathologic assessment, including diagnosis of CTE, based on defined diagnostic criteria; and informant-reported athletic history and informant-completed scales that assess cognitive symptoms, mood disturbances, and neurobehavioral dysregulation. Results Among the 152 deceased contact sports participants (mean [SD] age, 22.97 [4.31] years; 141 [92.8%] male) included in the study, CTE was diagnosed in 63 (41.4%; median [IQR] age, 26 [24-27] years). Of the 63 brain donors diagnosed with CTE, 60 (95.2%) were diagnosed with mild CTE (stages I or II). Brain donors who had CTE were more likely to be older (mean difference, 3.92 years; 95% CI, 2.74-5.10 years) Of the 63 athletes with CTE, 45 (71.4%) were men who played amateur sports, including American football, ice hockey, soccer, rugby, and wrestling; 1 woman with CTE played collegiate soccer. For those who played football, duration of playing career was significantly longer in those with vs without CTE (mean difference, 2.81 years; 95% CI, 1.15-4.48 years). Athletes with CTE had more ventricular dilatation, cavum septum pellucidum, thalamic notching, and perivascular pigment-laden macrophages in the frontal white matter than those without CTE. Cognitive and neurobehavioral symptoms were frequent among all brain donors. Suicide was the most common cause of death, followed by unintentional overdose; there were no differences in cause of death or clinical symptoms based on CTE status. Conclusions and Relevance This case series found that young brain donors exposed to repetitive head impacts were highly symptomatic regardless of CTE status, and the causes of symptoms in this sample are likely multifactorial. Future studies that include young brain donors unexposed to repetitive head impacts are needed to clarify the association among exposure, white matter and microvascular pathologic findings, CTE, and clinical symptoms.
Collapse
Affiliation(s)
- Ann C. McKee
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- National Center for PTSD, VA Boston Healthcare, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Jesse Mez
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Bobak Abdolmohammadi
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Morgane Butler
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Bertrand Russell Huber
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- National Center for PTSD, VA Boston Healthcare, Boston, Massachusetts
| | - Madeline Uretsky
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Katharine Babcock
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Jonathan D. Cherry
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Victor E. Alvarez
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Brett Martin
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Yorghos Tripodis
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Joseph N. Palmisano
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Kerry A. Cormier
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Caroline A. Kubilus
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Raymond Nicks
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Daniel Kirsch
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Ian Mahar
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Lisa McHale
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
| | - Christopher Nowinski
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
| | - Robert C. Cantu
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
- Department of Neurosurgery, Emerson Hospital, Concord, Massachusetts
- Department of Neurosurgery, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Robert A. Stern
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurosurgery, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Daniel Daneshvar
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Rehabilitation Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lee E. Goldstein
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Psychiatry, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Biomedical, Electrical, and Computer Engineering, Boston University College of Engineering, Boston, Massachusetts
| | - Douglas I. Katz
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Neil W. Kowall
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Brigid Dwyer
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Thor D. Stein
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Michael L. Alosco
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| |
Collapse
|
28
|
Laskowitz DT, Van Wyck DW. ApoE Mimetic Peptides as Therapy for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1496-1507. [PMID: 37592168 PMCID: PMC10684461 DOI: 10.1007/s13311-023-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
The lack of targeted therapies for traumatic brain injury (TBI) remains a compelling clinical unmet need. Although knowledge of the pathophysiologic cascades involved in TBI has expanded rapidly, the development of novel pharmacological therapies has remained largely stagnant. Difficulties in creating animal models that recapitulate the different facets of clinical TBI pathology and flaws in the design of clinical trials have contributed to the ongoing failures in neuroprotective drug development. Furthermore, multiple pathophysiological mechanisms initiated early after TBI that progress in the subacute and chronic setting may limit the potential of traditional approaches that target a specific cellular pathway for acute therapeutic intervention. We describe a reverse translational approach that focuses on translating endogenous mechanisms known to influence outcomes after TBI to develop druggable targets. In particular, numerous clinical observations have demonstrated an association between apolipoprotein E (apoE) polymorphism and functional recovery after brain injury. ApoE has been shown to mitigate the response to acute brain injury by exerting immunomodulatory properties that reduce secondary tissue injury as well as protecting neurons from excitotoxicity. CN-105 represents an apoE mimetic peptide that can effectively penetrate the CNS compartment and retains the neuroprotective properties of the intact protein.
Collapse
Affiliation(s)
- Daniel T Laskowitz
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA
- AegisCN LLC, 701 W Main Street, Durham, NC, 27701, USA
| | - David W Van Wyck
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
29
|
Sang XZ, Wang CQ, Chen W, Rong H, Hou LJ. An exhaustive analysis of post-traumatic brain injury dementia using bibliometric methodologies. Front Neurol 2023; 14:1165059. [PMID: 37456644 PMCID: PMC10345842 DOI: 10.3389/fneur.2023.1165059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Background It is widely accepted that traumatic brain injury (TBI) increases the risk of developing long-term dementia, although some controversies surrounding this topic exist. Annually, approximately 69 million individuals suffer from TBI all around the world. Such a large population of TBI patients could lead to a future surge in the number of dementia patients. Due to the potentially severe consequences of TBI, various research projects on post-TBI dementia have emerged worldwide. Therefore, it is essential to comprehend the current status and development of post-TBI dementia for future research. Objective The purpose of the study was to provide an overview of the field and identify hotspots, research frontiers, and future research trends for post-TBI dementia. Methods Articles related to post-TBI dementia were retrieved from the Web of Science Core Collection for the period between 2007 and 2022, and analyzing them based on factors such as citations, authors, institutions, countries, journals, keywords, and references. Data analysis and visualization were conducted using VOSviewer, CiteSpace, and an online bibliometric platform (https://bibliometric.com). Results From 2007 to 2022, we obtained a total of 727 articles from 3,780 authors and 1,126 institutions across 52 countries, published in 262 journals. These articles received a total of 29,353 citations, citing 25,713 references from 3,921 journals. Over the last 15 years, there has been a significant upward trend in both publications and citations. The most productive country was the United States, the most productive institution was Boston University, and the most productive author was McKee AC. Journal of Neurotrauma has been identified as the periodical with the greatest number of publications. Three clusters were identified through cluster analysis of keywords. A burst in the use of the term "outcome" in 2019 is indicative of a future research hotspot. The timeline view of references showed 14 clusters, of which the first 4 clusters collected the majority of papers. The first 4 clusters were "chronic traumatic encephalopathy," "age of onset," "tauopathy," and "cognitive decline," respectively, suggesting some areas of interest in the field. Conclusion The subject of post-TBI dementia has raised much interest from scientists. Notably, America is at the forefront of research in this area. Further collaborative research between different countries is imperative. Two topical issues in this field are "The association between TBI and dementia-related alterations" and "chronic traumatic encephalopathy (CTE)." Studies on clinical manifestation, therapy, pathology, and pathogenic mechanisms are also popular in the field.
Collapse
Affiliation(s)
- Xian-Zheng Sang
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng-Qing Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wen Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hong Rong
- Department of Outpatient, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li-Jun Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
30
|
Mavroudis I, Balmus IM, Ciobica A, Luca AC, Gorgan DL, Dobrin I, Gurzu IL. A Review of the Most Recent Clinical and Neuropathological Criteria for Chronic Traumatic Encephalopathy. Healthcare (Basel) 2023; 11:1689. [PMID: 37372807 DOI: 10.3390/healthcare11121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Chronic traumatic encephalopathy (CTE) is a complex pathological condition characterized by neurodegeneration, as a result of repeated head traumas. Currently, the diagnosis of CTE can only be assumed postmortem. Thus, the clinical manifestations associated with CTE are referred to as traumatic encephalopathy syndrome (TES), for which diagnostic multiple sets of criteria can be used. (2) Objectives: In this study, we aimed to present and discuss the limitations of the clinical and neuropathological diagnostic criteria for TES/CTE and to suggest a diagnostic algorithm enabling a more accurate diagnostic procedure. (3) Results: The most common diagnostic criteria for TES/CTE discriminate between possible, probable, and improbable. However, several key variations between the available diagnostic criteria suggest that the diagnosis of CTE can still only be given with postmortem neurophysiological examination. Thus, a TES/CTE diagnosis during life imposes a different level of certainty. Here, we are proposing a comprehensive algorithm of diagnosis criteria for TES/CTE based on the similarities and differences between the previous criteria. (4) Conclusions: The diagnosis of TES/CTE requires a multidisciplinary approach; thorough investigation for other neurodegenerative disorders, systemic illnesses, and/or psychiatric conditions that can account for the symptoms; and also complex investigations of patient history, psychiatric assessment, and blood and cerebrospinal fluid biomarker evaluation.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals NHS Trust and Leeds University, Leeds LS9 7TF, UK
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, B dul Carol I, No. 11, 700506 Iasi, Romania
| | - Alina-Costina Luca
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, B dul Carol I, No. 11, 700506 Iasi, Romania
| | - Irina Dobrin
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Irina Luciana Gurzu
- Department of Preventive Medicine and Interdisciplinarity, Discipline of Occupational Medicine, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| |
Collapse
|
31
|
Zhang C, Wei C, Huang X, Hou C, Liu C, Zhang S, Zhao Z, Liu Y, Zhang R, Zhou L, Li Y, Yuan X, Zhang J. MPC-n (IgG) improves long-term cognitive impairment in the mouse model of repetitive mild traumatic brain injury. BMC Med 2023; 21:199. [PMID: 37254196 DOI: 10.1186/s12916-023-02895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Contact sports athletes and military personnel who suffered a repetitive mild traumatic brain injury (rmTBI) are at high risk of neurodegenerative diseases such as advanced dementia and chronic traumatic encephalopathy (CTE). However, due to the lack of specific biological indicators in clinical practice, the diagnosis and treatment of rmTBI are quite limited. METHODS We used 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules to deliver immunoglobulins (IgG), which can increase the delivery efficiency and specific target of IgG while reducing the effective therapeutic dose of the drug. RESULTS Our results demonstrated that MPC-capsuled immunoglobulins (MPC-n (IgG)) significantly alleviated cognitive impairment, hippocampal atrophy, p-Tau deposition, and myelin injury in rmTBI mice compared with free IgG. Furthermore, MPC-n (IgG) can also effectively inhibit the activation of microglia and the release of inflammatory factors. CONCLUSIONS In the present study, we put forward an efficient strategy for the treatment of rmTBI-related cognitive impairment and provide evidence for the administration of low-dose IgG.
Collapse
Affiliation(s)
- Chaonan Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cheng Wei
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingqi Huang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Changxin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chuan Liu
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shu Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zilong Zhao
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yafan Liu
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ruiguang Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lei Zhou
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Li
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Jianning Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
32
|
Ware JB, Sandsmark DK. Imaging Approach to Concussion. Neuroimaging Clin N Am 2023; 33:261-269. [PMID: 36965944 DOI: 10.1016/j.nic.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The acute and long-term neurobiological sequelae of concussion (mild traumatic brain injury [mTBI]) and sub-concussive head trauma have become increasingly apparent in recent decades in part due to neuroimaging research. Although imaging has an established role in the clinical management of mTBI for the identification of intracranial lesions warranting urgent interventions, MR imaging is increasingly employed for the detection of post-traumatic sequelae which carry important prognostic significance. As neuroimaging research continues to elucidate the pathophysiology of TBI underlying prolonged recovery and the development of persistent post-concussive symptoms, there is a strong motivation to translate these techniques into clinical use for improved diagnosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Jeffrey B Ware
- Department of Radiology, Neuroradiology Division, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Danielle K Sandsmark
- Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Ritter A, Shan G, Montes A, Randall R, Bernick C. Traumatic encephalopathy syndrome: application of new criteria to a cohort exposed to repetitive head impacts. Br J Sports Med 2023; 57:389-394. [PMID: 36517216 PMCID: PMC10086298 DOI: 10.1136/bjsports-2022-105819] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To examine the characteristics of those who fulfil the recent National Institute of Neurological Disease and Stroke (NINDS) Consensus Diagnostic Criteria for Traumatic Encephalopathy Syndrome (TES) and test whether they show differences in MRI-based regional brain volumes, cognitive domains, and certain plasma biomarkers. METHODS Professional fighters 35 years of age or older and/or retired were included. Participants were categorised as either having TES (TES+) or not (non-TES). TES+ participants were further subtyped by their cognitive profile. Multiple linear regression models were used to compare MRI-based regional brain volumes, cognitive performance, plasma tau and neurofilament light levels between TES- and TES+ groups. RESULTS 176 participants (110 boxers and 66 MMA) were included in the analysis. 72 (41%)/176 were categorised as having TES, the likelihood of TES increasing with age. TES+ participants tended to be boxers, started fighting at a younger age, had more professional fights and knocked out more frequently. The TES+ group had lower regional brain volumes including both grey and white matter structures. TES+ also had lower scores on simple and choice reaction time, psychomotor speed and Trails A . CONCLUSION The new TES criteria does distinguish a group of fighters with differences in regional brain volumes and reduced cognitive function. Our findings support the use of the NINDS criteria for TES in further research of the long-term effects of repetitive head impacts.
Collapse
Affiliation(s)
- Aaron Ritter
- Neurological Institute, Cleveland Clinic, Las Vegas, Nevada, USA
| | - Guogen Shan
- Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Arturo Montes
- Medicine, University of Las Vegas, Las Vegas, Nevada, USA
| | - Rebekah Randall
- Neurological Institute, Cleveland Clinic, Las Vegas, Nevada, USA
| | - Charles Bernick
- Department of Neurology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
34
|
McKee AC, Stein TD, Huber BR, Crary JF, Bieniek K, Dickson D, Alvarez VE, Cherry JD, Farrell K, Butler M, Uretsky M, Abdolmohammadi B, Alosco ML, Tripodis Y, Mez J, Daneshvar DH. Chronic traumatic encephalopathy (CTE): criteria for neuropathological diagnosis and relationship to repetitive head impacts. Acta Neuropathol 2023; 145:371-394. [PMID: 36759368 PMCID: PMC10020327 DOI: 10.1007/s00401-023-02540-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
Over the last 17 years, there has been a remarkable increase in scientific research concerning chronic traumatic encephalopathy (CTE). Since the publication of NINDS-NIBIB criteria for the neuropathological diagnosis of CTE in 2016, and diagnostic refinements in 2021, hundreds of contact sport athletes and others have been diagnosed at postmortem examination with CTE. CTE has been reported in amateur and professional athletes, including a bull rider, boxers, wrestlers, and American, Canadian, and Australian rules football, rugby union, rugby league, soccer, and ice hockey players. The pathology of CTE is unique, characterized by a pathognomonic lesion consisting of a perivascular accumulation of neuronal phosphorylated tau (p-tau) variably alongside astrocytic aggregates at the depths of the cortical sulci, and a distinctive molecular structural configuration of p-tau fibrils that is unlike the changes observed with aging, Alzheimer's disease, or any other tauopathy. Computational 3-D and finite element models predict the perivascular and sulcal location of p-tau pathology as these brain regions undergo the greatest mechanical deformation during head impact injury. Presently, CTE can be definitively diagnosed only by postmortem neuropathological examination; the corresponding clinical condition is known as traumatic encephalopathy syndrome (TES). Over 97% of CTE cases published have been reported in individuals with known exposure to repetitive head impacts (RHI), including concussions and nonconcussive impacts, most often experienced through participation in contact sports. While some suggest there is uncertainty whether a causal relationship exists between RHI and CTE, the preponderance of the evidence suggests a high likelihood of a causal relationship, a conclusion that is strengthened by the absence of any evidence for plausible alternative hypotheses. There is a robust dose-response relationship between CTE and years of American football play, a relationship that remains consistent even when rigorously accounting for selection bias. Furthermore, a recent study suggests that selection bias underestimates the observed risk. Here, we present the advances in the neuropathological diagnosis of CTE culminating with the development of the NINDS-NIBIB criteria, the multiple international studies that have used these criteria to report CTE in hundreds of contact sports players and others, and the evidence for a robust dose-response relationship between RHI and CTE.
Collapse
Affiliation(s)
- Ann C McKee
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA.
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
| | - Thor D Stein
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Bertrand R Huber
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - John F Crary
- Departments of Pathology, Neuroscience, and Artificial Intelligence and Human Health, Neuropathology Brain Bank and Research Core, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Bieniek
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Jonathan D Cherry
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Kurt Farrell
- Departments of Pathology, Neuroscience, and Artificial Intelligence and Human Health, Neuropathology Brain Bank and Research Core, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgane Butler
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel H Daneshvar
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| |
Collapse
|
35
|
Singh G, Chanda A. Development and Mechanical Characterization of Artificial Surrogates for Brain Tissues. BIOMEDICAL ENGINEERING ADVANCES 2023. [DOI: 10.1016/j.bea.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
36
|
Kelly JP, Priemer DS, Perl DP, Filley CM. Sports Concussion and Chronic Traumatic Encephalopathy: Finding a Path Forward. Ann Neurol 2023; 93:222-225. [PMID: 36504163 PMCID: PMC10108279 DOI: 10.1002/ana.26566] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Sports concussion has recently assumed special importance because of the widely publicized entity of chronic traumatic encephalopathy (CTE). Identified primarily in former contact sports athletes with repeated mild traumatic brain injury (mTBI), CTE is a distinct tauopathy that can only be diagnosed postmortem and for which no specific treatment is available. Although the hazards of repeated mTBI are generally acknowledged, a spirited controversy has developed because a firm link between sports concussion and CTE has been questioned. We briefly review the history of CTE, discuss areas of uncertainty, and offer suggestions to assist neurologists confronting these issues and advance understanding of this vexing problem. ANN NEUROL 2023;93:222-225.
Collapse
Affiliation(s)
- James P Kelly
- Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.,Marcus Institute for Brain Health, Anschutz Medical Campus, Aurora, CO, USA
| | - David S Priemer
- Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA.,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Daniel P Perl
- Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA.,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Christopher M Filley
- Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.,Marcus Institute for Brain Health, Anschutz Medical Campus, Aurora, CO, USA.,Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
37
|
Lack of a protective effect of the Tmem106b "protective SNP" in the Grn knockout mouse model for frontotemporal lobar degeneration. Acta Neuropathol Commun 2023; 11:21. [PMID: 36707901 PMCID: PMC9881268 DOI: 10.1186/s40478-023-01510-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/28/2023] Open
Abstract
Genetic variants in TMEM106B are a common risk factor for frontotemporal lobar degeneration and the most important modifier of disease risk in patients with progranulin (GRN) mutations (FTLD-GRN). TMEM106B is encoding a lysosomal transmembrane protein of unknown molecular function. How it mediates its disease-modifying function remains enigmatic. Several TMEM106B single nucleotide polymorphisms (SNPs) are significantly associated with disease risk in FTLD-GRN carriers, of which all except one are within intronic sequences of TMEM106B. Of note, the non-coding SNPs are in high linkage disequilibrium with the coding SNP rs3173615 located in exon six of TMEM106B, resulting in a threonine to serine change at amino acid 185 in the minor allele, which is protective in FTLD-GRN carriers. To investigate the functional consequences of this variant in vivo, we generated and characterized a knockin mouse model harboring the Tmem106bT186S variant. We analyzed the effect of this protective variant on FTLD pathology by crossing Tmem106bT186S mice with Grn-/- knockout mice, a model for GRN-mediated FTLD. We did not observe the amelioration of any of the investigated Grn-/- knockout phenotypes, including transcriptomic changes, lipid alterations, or microgliosis in Tmem106bT186S/T186S × Grn-/- mice, indicating that the Tmem106bT186S variant is not protective in the Grn-/- knockout mouse model. These data suggest that effects of the associated SNPs not directly linked to the amino acid exchange in TMEM106B are critical for the modifying effect.
Collapse
|
38
|
Pichler EM, Ewers S, Ajdacic-Gross V, Deutschmann M, Exner J, Kawohl W, Seifritz E, Claussen MC. Athletes are not at greater risk for death by suicide: A review. Scand J Med Sci Sports 2023; 33:569-585. [PMID: 36648386 DOI: 10.1111/sms.14316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/21/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Suicide represents a major mental and public health issue. Elite athletes share certain individual and environmental characteristics that may increase their risk for mental illnesses, ultimately leading to suicide. This notion conflicts with the general perception of athletes, being the healthiest representatives of society. METHODS A comprehensive literature search was carried out through PubMed and Embase databases for relevant publications. RESULTS Recent calls for investigating suicidality among athletes resulted in a considerable amount of literature providing some evidence regarding lower rates of suicide among professional and high-performance athletes as well as similar incidence and prevalence of mental conditions, which are known as risk factors for suicide. Nevertheless, special attention is required in this population as predisposing and precipitating factors might differ from classical features of suicidality in the general population. Sports physicians, sports psychiatrists, and other mental health professionals in elite sports should be aware of early signs of affective disorders, risk of recreational drug abuse, misuse of performance-enhancing medications, sport-specific environmental stressors, serious physical injuries, and presence of physical or mental illness, all of which may increase suicidality. Traumatic brain injury (TBI) is with suicide with higher severity correlated with increased risk. Compared to active athletes, former athletes may have higher rates of suicide due to common life stressors occurring after sports retirement. CONCLUSIONS The findings suggest a multidisciplinary approach to suicidality in elite athletes, the main goal of which should be the reduction of suicide-related morbidity and mortality. Further research is required to clarify the existing gaps in the current knowledge of the issue. While having lower rates of suicide, athletes share some similar (affective disorders, drug abuse, mental and physical illness) and unique factors (misuse of performance-enhancing substances, sports-related stressors, sports injuries, TBI) putting them at risk of suicide during active career and retirement.
Collapse
Affiliation(s)
- Eva-Maria Pichler
- Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau, Windisch, Switzerland
| | - Simon Ewers
- Klinikum Fünfseenland, Fachklinik für Psychiatrie und Psychotherapie, Wallerfangen, Germany
| | - Vladeta Ajdacic-Gross
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Markus Deutschmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Jan Exner
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Wolfram Kawohl
- Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau, Windisch, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Clienia Schlössli AG, Oetwil am See, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Malte Christian Claussen
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Private Clinic Wyss AG, Münchenbuchsee, Switzerland.,Psychiatric Services Grisons, Chur, Switzerland
| |
Collapse
|
39
|
Alosco ML, Barr WB, Banks SJ, Wethe JV, Miller JB, Pulukuri SV, Culhane J, Tripodis Y, Adler CH, Balcer LJ, Bernick C, Mariani ML, Cantu RC, Dodick DW, McClean MD, Au R, Mez J, Turner RW, Palmisano JN, Martin B, Hartlage K, Cummings JL, Reiman EM, Shenton ME, Stern RA, Chen K, Protas H, Boker C, Farrer L, Helm R, Katz DI, Kowall N, Mercier G, Otis J, Weller J, Simkin I, Andino A, Conneely S, Diamond C, Fagle T, Haller O, Hunt T, Gullotti N, Mayville B, McLaughlin K, Nanna M, Platt T, Rice F, Sestak M, Annis D, Chaisson C, Dixon DB, Finney C, Gallagher K, Lu J, Ojo E, Pine B, Ramachandran J, Bouix S, Fitzsimmons J, Lin AP, Koerte IK, Pasternak O, Arciniega H, Billah T, Bonke E, Breedlove K, Coello E, Coleman MJ, Jung L, Liao H, Loy M, Rizzoni E, Schultz V, Silva A, Vessey B, Wiegand TLT, Ritter A, Sabbagh M, de la Cruz R, Durant J, Golceker M, Harmon N, Kaylegian K, Long R, Nance C, Sandoval P, Marek KL, Serrano A, Geda Y, Falk B, Duffy A, Howard M, Montague M, Osgood T, Babcock D, Bellgowan P, Goldberg J, Wisniewski T, Kirov I, Lui Y, Marmar C, Hasanaj L, Serrano L, Al-Kharafi A, George A, Martin S, Riley E, Runge W, Peskind ER, Colasurdo E, Marcus DS, Gurney J, Greenwald R, Johnson KA. Neuropsychological test performance of former American football players. Alzheimers Res Ther 2023; 15:1. [PMID: 36597138 PMCID: PMC9808953 DOI: 10.1186/s13195-022-01147-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Patterns of cognitive impairment in former American football players are uncertain because objective neuropsychological data are lacking. This study characterized the neuropsychological test performance of former college and professional football players. METHODS One hundred seventy male former football players (n=111 professional, n=59 college; 45-74 years) completed a neuropsychological test battery. Raw scores were converted to T-scores using age, sex, and education-adjusted normative data. A T-score ≤ 35 defined impairment. A domain was impaired if 2+ scores fell in the impaired range except for the language and visuospatial domains due to the limited number of tests. RESULTS Most football players had subjective cognitive concerns. On testing, rates of impairments were greatest for memory (21.2% two tests impaired), especially for recall of unstructured (44.7%) versus structured verbal stimuli (18.8%); 51.8% had one test impaired. 7.1% evidenced impaired executive functions; however, 20.6% had impaired Trail Making Test B. 12.1% evidenced impairments in the attention, visual scanning, and psychomotor speed domain with frequent impairments on Trail Making Test A (18.8%). Other common impairments were on measures of language (i.e., Multilingual Naming Test [21.2%], Animal Fluency [17.1%]) and working memory (Number Span Backward [14.7%]). Impairments on our tasks of visuospatial functions were infrequent. CONCLUSIONS In this sample of former football players (most of whom had subjective cognitive concerns), there were diffuse impairments on neuropsychological testing with verbal memory being the most frequently impaired domain.
Collapse
Affiliation(s)
- Michael L. Alosco
- grid.189504.10000 0004 1936 7558Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA 02118 USA
| | - William B. Barr
- grid.137628.90000 0004 1936 8753Department of Neurology, NYU Grossman School of Medicine, New York, NY USA
| | - Sarah J. Banks
- grid.266100.30000 0001 2107 4242Department of Neuroscience, University of California, San Diego, CA USA ,grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California, San Diego, CA USA
| | - Jennifer V. Wethe
- grid.417468.80000 0000 8875 6339Department of Psychiatry and Psychology, Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ USA
| | - Justin B. Miller
- grid.239578.20000 0001 0675 4725Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV USA
| | - Surya Vamsi Pulukuri
- grid.189504.10000 0004 1936 7558Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA 02118 USA
| | - Julia Culhane
- grid.189504.10000 0004 1936 7558Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA 02118 USA
| | - Yorghos Tripodis
- grid.189504.10000 0004 1936 7558Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Charles H. Adler
- grid.417468.80000 0000 8875 6339Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ USA
| | - Laura J. Balcer
- grid.137628.90000 0004 1936 8753Department of Neurology, NYU Grossman School of Medicine, New York, NY USA ,grid.137628.90000 0004 1936 8753Department of Population Health, NYU Grossman School of Medicine, New York, NY USA ,grid.137628.90000 0004 1936 8753Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY USA
| | - Charles Bernick
- grid.239578.20000 0001 0675 4725Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV USA ,grid.34477.330000000122986657Department of Neurology, University of Washington, Seattle, WA USA
| | - Megan L. Mariani
- grid.189504.10000 0004 1936 7558Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA 02118 USA
| | - Robert C. Cantu
- grid.189504.10000 0004 1936 7558Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA 02118 USA
| | - David W. Dodick
- grid.417468.80000 0000 8875 6339Department of Psychiatry and Psychology, Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ USA
| | - Michael D. McClean
- grid.189504.10000 0004 1936 7558Department of Environmental Health, Boston University School of Public Health, Boston, MA USA
| | - Rhoda Au
- grid.189504.10000 0004 1936 7558Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA 02118 USA ,grid.510954.c0000 0004 0444 3861Framingham Heart Study, Framingham, MA USA ,grid.189504.10000 0004 1936 7558Slone Epidemiology Center, Boston University, Boston, MA USA ,grid.189504.10000 0004 1936 7558Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Department of Epidemiology, Boston University School of Public Health, Boston, MA USA
| | - Jesse Mez
- grid.189504.10000 0004 1936 7558Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA 02118 USA ,grid.510954.c0000 0004 0444 3861Framingham Heart Study, Framingham, MA USA
| | - Robert W. Turner
- grid.253615.60000 0004 1936 9510Department of Clinical Research & Leadership, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Joseph N. Palmisano
- grid.189504.10000 0004 1936 7558Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA USA
| | - Brett Martin
- grid.189504.10000 0004 1936 7558Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA USA
| | - Kaitlin Hartlage
- grid.189504.10000 0004 1936 7558Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA USA
| | - Jeffrey L. Cummings
- grid.272362.00000 0001 0806 6926Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV USA
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer’s Consortium, Phoenix, AZ USA
| | - Martha E. Shenton
- grid.62560.370000 0004 0378 8294Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Department of Radiology, Brigham and Women’s Hospital, Boston, MA USA ,grid.410370.10000 0004 4657 1992VA Boston Healthcare System, Boston, MA USA
| | - Robert A. Stern
- grid.189504.10000 0004 1936 7558Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Robinson Building, Suite B7800, Boston, MA 02118 USA ,grid.189504.10000 0004 1936 7558Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Priemer DS, Perl DP. Neurotrauma: 2023 Update. FREE NEUROPATHOLOGY 2023; 4:4-14. [PMID: 37736080 PMCID: PMC10510742 DOI: 10.17879/freeneuropathology-2023-5076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
2022 was a productive year for research in traumatic brain injury (TBI) and resultant neuropathology. After an extensive review, we present related studies and publications which we felt were of particular importance to the neuropathology community. First, 2022 was highlighted by important advancements in the diagnosis and, moreover, our understanding of chronic traumatic encephalopathy (CTE). Important publications include a pair concluding that CTE primarily concerns neuronal accumulation of phosphorylated tau (ptau), but that glial ptau accumulation often helps to facilitate diagnosis. In addition, a new large community study from Australia continues the indication that CTE is relatively uncommon in the community, and the first large-cohort study on brains of military personnel similarly demonstrates that CTE appears to be uncommon among service members and does not appear to explain high rates of neuropsychiatric sequelae suffered by the warfighter. The causation of CTE by impact-type TBI was supported by the application of the Bradford Hill criteria, within the brains of headbutting bovids, and interestingly within an artificial head model exposed to linear impact. Finally, a large-scale analysis of APOE genotypes contends that gene status may influence CTE pathology and outcomes. In experimental animal work, a study using mouse models provided important evidence that TDP-43 facilitates neurodegenerative pathology and is implicated in cognitive dysfunction following TBI, and another study using a swine model for concussion demonstrated that evidence that axonal sodium channel disruption may be a driver of neurologic dysfunction after concussion. Finally, we end with memoriam to Dr. John Q. Trojanowski, a giant of neurodegenerative research and an important contributor to the neurotrauma literature, who we lost in 2022.
Collapse
Affiliation(s)
- David S. Priemer
- The Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Daniel P. Perl
- The Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
41
|
Gibbons LE, Power MC, Walker RL, Kumar RG, Murphy A, Latimer CS, Nolan AL, Melief EJ, Beller A, Bogdani M, Keene CD, Larson EB, Crane PK, Dams-O’Connor K. Association of Traumatic Brain Injury with Late Life Neuropathological Outcomes in a Community-Based Cohort. J Alzheimers Dis 2023; 93:949-961. [PMID: 37125552 PMCID: PMC10860614 DOI: 10.3233/jad-221224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND Prior studies into the association of head trauma with neuropathology have been limited by incomplete lifetime neurotrauma exposure characterization. OBJECTIVE To investigate the neuropathological sequelae of traumatic brain injury (TBI) in an autopsy sample using three sources of TBI ascertainment, weighting findings to reflect associations in the larger, community-based cohort. METHODS Self-reported head trauma with loss of consciousness (LOC) exposure was collected in biennial clinic visits from 780 older adults from the Adult Changes in Thought study who later died and donated their brain for research. Self-report data were supplemented with medical record abstraction, and, for 244 people, structured interviews on lifetime head trauma. Neuropathology outcomes included Braak stage, CERAD neuritic plaque density, Lewy body distribution, vascular pathology, hippocampal sclerosis, and cerebral/cortical atrophy. Exposures were TBI with or without LOC. Modified Poisson regressions adjusting for age, sex, education, and APOE ɛ4 genotype were weighted back to the full cohort of 5,546 participants. RESULTS TBI with LOC was associated with the presence of cerebral cortical atrophy (Relative Risk 1.22, 95% CI 1.02, 1.42). None of the other outcomes was associated with TBI with or without LOC. CONCLUSION TBI with LOC was associated with increased risk of cerebral cortical atrophy. Despite our enhanced TBI ascertainment, we found no association with the Alzheimer's disease-related neuropathologic outcomes among people who survived to at least age 65 without dementia. This suggests the pathophysiological processes underlying post-traumatic neurodegeneration are distinct from the hallmark pathologies of Alzheimer's disease.
Collapse
Affiliation(s)
- Laura E. Gibbons
- General Internal Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Melinda C. Power
- George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Rod L. Walker
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Raj G. Kumar
- Department of Rehabilitation and Human Performance, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alia Murphy
- George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Caitlin S. Latimer
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Amber L. Nolan
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Erica J. Melief
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Allison Beller
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Marika Bogdani
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Eric B. Larson
- General Internal Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Paul K. Crane
- General Internal Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
42
|
Alosco ML, Su Y, Stein TD, Protas H, Cherry JD, Adler CH, Balcer LJ, Bernick C, Pulukuri SV, Abdolmohammadi B, Coleman MJ, Palmisano JN, Tripodis Y, Mez J, Rabinovici GD, Marek KL, Beach TG, Johnson KA, Huber BR, Koerte I, Lin AP, Bouix S, Cummings JL, Shenton ME, Reiman EM, McKee AC, Stern RA. Associations between near end-of-life flortaucipir PET and postmortem CTE-related tau neuropathology in six former American football players. Eur J Nucl Med Mol Imaging 2023; 50:435-452. [PMID: 36152064 PMCID: PMC9816291 DOI: 10.1007/s00259-022-05963-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Flourine-18-flortaucipir tau positron emission tomography (PET) was developed for the detection for Alzheimer's disease. Human imaging studies have begun to investigate its use in chronic traumatic encephalopathy (CTE). Flortaucipir-PET to autopsy correlation studies in CTE are needed for diagnostic validation. We examined the association between end-of-life flortaucipir PET and postmortem neuropathological measurements of CTE-related tau in six former American football players. METHODS Three former National Football League players and three former college football players who were part of the DIAGNOSE CTE Research Project died and agreed to have their brains donated. The six players had flortaucipir (tau) and florbetapir (amyloid) PET prior to death. All brains from the deceased participants were neuropathologically evaluated for the presence of CTE. On average, the participants were 59.0 (SD = 9.32) years of age at time of PET. PET scans were acquired 20.33 (SD = 13.08) months before their death. Using Spearman correlation analyses, we compared flortaucipir standard uptake value ratios (SUVRs) to digital slide-based AT8 phosphorylated tau (p-tau) density in a priori selected composite cortical, composite limbic, and thalamic regions-of-interest (ROIs). RESULTS Four brain donors had autopsy-confirmed CTE, all with high stage disease (n = 3 stage III, n = 1 stage IV). Three of these four met criteria for the clinical syndrome of CTE, known as traumatic encephalopathy syndrome (TES). Two did not have CTE at autopsy and one of these met criteria for TES. Concomitant pathology was only present in one of the non-CTE cases (Lewy body) and one of the CTE cases (motor neuron disease). There was a strong association between flortaucipir SUVRs and p-tau density in the composite cortical (ρ = 0.71) and limbic (ρ = 0.77) ROIs. Although there was a strong association in the thalamic ROI (ρ = 0.83), this is a region with known off-target binding. SUVRs were modest and CTE and non-CTE cases had overlapping SUVRs and discordant p-tau density for some regions. CONCLUSIONS Flortaucipir-PET could be useful for detecting high stage CTE neuropathology, but specificity to CTE p-tau is uncertain. Off-target flortaucipir binding in the hippocampus and thalamus complicates interpretation of these associations. In vivo biomarkers that can detect the specific p-tau of CTE across the disease continuum are needed.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yi Su
- Banner Alzheimer's Institute, Arizona State University, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Hillary Protas
- Banner Alzheimer's Institute, Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Surya Vamsi Pulukuri
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Gil D Rabinovici
- Memory & Aging Center, Departments of Neurology, Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth L Marek
- Institute for Neurodegenerative Disorders, Invicro, LLC, New Haven, CT, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Keith A Johnson
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Bertrand Russell Huber
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, MA, USA
| | - Inga Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig Maximilians University, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University, Munich, Germany
- NICUM (NeuroImaging Core Unit Munich), Ludwig Maximilians University, Munich, Germany
| | - Alexander P Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Martha E Shenton
- VA Boston Healthcare System, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Departments of Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
43
|
Eagle SR, Okonkwo DO. Telling the Whole Story: Bibliometric Network Analysis to Evaluate Impact of Media Attention on Chronic Traumatic Encephalopathy Research. J Neurotrauma 2023; 40:148-154. [PMID: 35929854 DOI: 10.1089/neu.2022.0266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There is a national debate regarding the existence of a relationship between contact sport participation and future risk of neurodegenerative disease. We employed bibliometrics and altmetrics to quantify the academic, popular, and social media impact of published scientific articles that report an association between contact sports or military service with chronic traumatic encephalopathy (CTE+), and compare with those scientific articles that report null or no association of contact sports or military service with CTE (CTE-). In this cross-sectional study, we extracted number of citations, total link strength, altmetric score, number of news stories, media outlets, and Twitter interaction from published CTE articles. The top 10 most cited articles were statistically compared on these outcomes using Mann-Whitney U tests. CTE+ publications had an average of 101 citations per article, Altmetric score of 272, 36 news stories in 26 media outlets, and upper-bound of Twitter users of 402,159. CTE- publications had an average of 29 citations per article, Altmetric score of 39, two news stories and media outlets, and upper-bound of Twitter users of 91,070. Top 10 CTE+ publications had, on average, 94% more citations (p < 0.001), 95% higher altmetric scores (p = 0.01), 99% higher number of news stories (p = 0.01), 98% higher number of media outlets (p = 0.01), and reached 95% more Twitter users than top 10 CTE- publications (p = 0.11). The bibliometric analysis indicates a significant inequality in media dissemination and popular consumption of scientific findings that do not support a relationship between contact sports or military service and future neurodegeneration.
Collapse
Affiliation(s)
- Shawn R Eagle
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
44
|
Farrell K, Iida MA, Cherry JD, Casella A, Stein TD, Bieniek KF, Walker JM, Richardson TE, White CL, Alvarez VE, Huber BR, Dickson DW, Insausti R, Dams-O'Connor K, McKee AC, Crary JF. Differential Vulnerability of Hippocampal Subfields in Primary Age-Related Tauopathy and Chronic Traumatic Encephalopathy. J Neuropathol Exp Neurol 2022; 81:781-789. [PMID: 36004533 PMCID: PMC9487677 DOI: 10.1093/jnen/nlac066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a tauopathy associated with repetitive mild head impacts characterized by perivascular hyperphosphorylated tau (p-tau) in neurofibrillary tangles (NFTs) and neurites in the depths of the neocortical sulci. In moderate to advanced CTE, NFTs accumulate in the hippocampus, potentially overlapping neuroanatomically with primary age-related tauopathy (PART), an age-related tauopathy characterized by Alzheimer disease-like tau pathology in the hippocampus devoid of amyloid plaques. We measured p-tau burden using positive-pixel counts on immunohistochemically stained and neuroanatomically segmented hippocampal tissue. Subjects with CTE had a higher total p-tau burden than PART subjects in all sectors (p = 0.005). Within groups, PART had significantly higher total p-tau burden in CA1/subiculum compared to CA3 (p = 0.02) and CA4 (p = 0.01) and total p-tau burden in CA2 trended higher than CA4 (p = 0.06). In CTE, total p-tau burden in CA1/subiculum was significantly higher than in the dentate gyrus; and CA2 also trended higher than dentate gyrus (p = 0.01, p = 0.06). When controlling for p-tau burden across the entire hippocampus, CA3 and CA4 had significantly higher p-tau burden in CTE than PART (p < 0.0001). These data demonstrate differences in hippocampal p-tau burden and regional distribution in CTE compared to PART that might be helpful in differential diagnosis and reveal insights into disease pathogenesis.
Collapse
Affiliation(s)
- Kurt Farrell
- Departments of Pathology, Artificial Intelligence & Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan A Iida
- Departments of Pathology, Artificial Intelligence & Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jonathan D Cherry
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Alicia Casella
- Departments of Pathology, Artificial Intelligence & Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thor D Stein
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Kevin F Bieniek
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jamie M Walker
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Timothy E Richardson
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Victor E Alvarez
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Bertrand R Huber
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Dennis W Dickson
- Departments of Pathology and Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ann C McKee
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - John F Crary
- Departments of Pathology, Artificial Intelligence & Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
45
|
Suter CM, Affleck AJ, Lee M, Davies D, Burns AL, Sy J, I’Ons B, Buckland ME. Chronic Traumatic Encephalopathy in a Routine Neuropathology Service in Australia. J Neuropathol Exp Neurol 2022; 81:790-795. [PMID: 35947764 PMCID: PMC10622321 DOI: 10.1093/jnen/nlac071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neuropathological diagnosis defined by a unique pattern of hyperphosphorylated tau (p-tau) accumulation that begins in neocortical regions of the brain. It is associated with a range of neuropsychological symptoms, but a definitive diagnosis can only be made by postmortem brain examination. In 2018, we instituted CTE screening for all autopsy brains as part of our routine departmental protocol by performing p-tau immunohistochemistry on a restricted set of 3 neocortical blocks (frontal, temporal, and parietal). This strategy allowed us to identify 4 cases of low-stage CTE from 180 consecutive autopsies. Two of the 4 cases had a documented history of brain injury; for the remaining 2 cases, there was a long history of treatment-resistant tonic/clonic epilepsy suggesting that undocumented brain injuries may have occurred. Our experience indicates that 3-block CTE screening is useful in identifying CTE in routine practice. The results of this study further support the association between prior head injuries and CTE and demonstrate that, albeit uncommon, CTE does occur in the general population. Our findings suggest that p-tau screening should be routinely pursued in brain autopsy, particularly where there is a documented or likely history of traumatic brain injury.
Collapse
Affiliation(s)
- Catherine M Suter
- From the Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Andrew J Affleck
- From the Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Maggie Lee
- From the Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Danielle Davies
- From the Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Arran L Burns
- From the Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Joanne Sy
- From the Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Bernard I’Ons
- From the Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Forensic and Analytical Scientific Services, Lidcombe, NSW, Australia
| | - Michael E Buckland
- From the Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
46
|
Bellomo G, Piscopo P, Corbo M, Pupillo E, Stipa G, Beghi E, Vanacore N, Lacorte E. A systematic review on the risk of neurodegenerative diseases and neurocognitive disorders in professional and varsity athletes. Neurol Sci 2022; 43:6667-6691. [PMID: 35976476 PMCID: PMC9663371 DOI: 10.1007/s10072-022-06319-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/01/2022] [Indexed: 01/01/2023]
Abstract
Abstract
Objective
The aim of this systematic review (SR) was to gather all available epidemiological evidence on former participation in any type of sport, at a professional and varsity level, as a potential risk factor for neurodegenerative diseases (NDs) and neurocognitive disorders (NCDs).
Design
Systematic searches were performed on PubMed, the Cochrane databases, and the ISI Web of Knowledge databases. Included studies were assessed using the NOS checklist.
Eligibility criteria for selecting studies
All epidemiological studies reporting data on the possible association between a clinical diagnosis of amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND), dementia or mild cognitive impairment (MCI), Parkinson’s disease (PD), chronic traumatic encephalopathy (CTE) at any stage and with any clinical pattern and the former participation in any types of sport at a varsity and professional level were included.
Results
Data from the 17 included studies showed a higher frequency of NDs and NCDs in former soccer and American football players. Updating the previous SR confirmed a higher frequency of ALS/MND in former soccer players. Data reported a significantly higher risk of dementia/AD in former soccer players, and of MCI in former American football players. Results also showed a significantly higher risk of PD in former soccer and American football players, and a significantly higher risk of CTE in former boxers and American football players.
Summary/conclusions
This SR confirmed a higher risk of NDs and NCDs in former professional/varsity athletes. However, the pathological mechanisms underlying this association remain unclear, and further high-quality studies should be performed to clarify whether the association could be sport specific.
Collapse
Affiliation(s)
- G Bellomo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy.
| | - P Piscopo
- Department of Neurosciences, Italian National Institute of Health, Rome, Italy
| | - M Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - E Pupillo
- Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - G Stipa
- Clinical Neurophysiology Division, Neuroscience Department, S. Maria University Hospital, Terni, Italy
| | - E Beghi
- Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - N Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - E Lacorte
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
47
|
Stathas S, Alvarez VE, Xia W, Nicks R, Meng G, Daley S, Pothast M, Shah A, Kelley H, Esnault C, McCormack R, Dixon E, Fishbein L, Cherry JD, Huber BR, Tripodis Y, Alosco ML, Mez J, McKee AC, Stein TD. Tau phosphorylation sites serine202 and serine396 are differently altered in chronic traumatic encephalopathy and Alzheimer's disease. Alzheimers Dement 2022; 18:1511-1522. [PMID: 34854540 PMCID: PMC9160206 DOI: 10.1002/alz.12502] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/03/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repetitive head impacts (RHI) typically sustained by contact sport athletes. Post-translation modifications to tau in CTE have not been well delineated or compared to Alzheimer's disease (AD). METHODS We measured phosphorylated tau epitopes within dorsolateral frontal cortex from post mortem brains with neither CTE nor AD (n = 108), CTE (n = 109), AD (n = 223), and both CTE and AD (n = 33). RESULTS Levels of hyperphosphorylated tau (p-tau)202 , p-tau231 , and p-tau396 were significantly increased in CTE. Total years of RHI exposure was significantly associated with increased p-tau202 levels (P = .001), but not p-tau396 . Instead, p-tau396 was most closely related to amyloid beta (Aβ)1-42 levels (P < .001). The p-tau202 :p-tau396 ratio was significantly increased in early and late CTE compared to AD. DISCUSSION In frontal cortex, p-tau202 is the most upregulated p-tau species in CTE, while p-tau396 is most increased in AD. p-tau202 and p-tau396 measurements may aid in developing biomarkers for disease.
Collapse
Affiliation(s)
- SpiroAnthony Stathas
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Weiming Xia
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Raymond Nicks
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Gaoyuan Meng
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Sarah Daley
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Morgan Pothast
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Arsal Shah
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Hunter Kelley
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Camille Esnault
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Robert McCormack
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Erin Dixon
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Lucas Fishbein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Jonathan D. Cherry
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Bertrand R. Huber
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 20118, USA
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
| | - Jesse Mez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
| | - Ann C. McKee
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| |
Collapse
|
48
|
LeClair J, Weuve J, Fox MP, Mez J, Alosco ML, Nowinski C, McKee A, Tripodis Y. Relationship Between Level of American Football Playing and Diagnosis of Chronic Traumatic Encephalopathy in a Selection Bias Analysis. Am J Epidemiol 2022; 191:1429-1443. [PMID: 35434739 PMCID: PMC9989358 DOI: 10.1093/aje/kwac075] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 01/28/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts such as those from American football. Our understanding of this association is based on research in autopsied brains, since CTE can only be diagnosed postmortem. Such studies are susceptible to selection bias, which needs to be accounted for to ensure a generalizable estimate of the association between repetitive head impacts and CTE. We evaluated the relationship between level of American football playing and CTE diagnosis after adjusting for selection bias. The sample included 290 deceased male former American football players who donated their brains to the Veterans Affairs-Boston University-Concussion Legacy Foundation (VA-BU-CLF) Brain Bank between 2008 and 2019. After adjustment for selection bias, college-level and professional football players had 2.38 (95% simulation interval (SI): 1.16, 5.94) and 2.47 (95% SI: 1.46, 4.79) times the risk of being diagnosed with CTE as high-school-level players, respectively; these estimates are larger than estimates with no selection bias adjustment. Since CTE is currently diagnosed only postmortem, we additionally provide plausible scenarios for CTE risk ratios for each level of play during the former players' lifetime. This study provides further evidence to support a dose-response relationship between American football playing and CTE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yorghos Tripodis
- Correspondence to Dr. Yorghos Tripodis, Department of Biostatistics, School of Public Health, Boston University, 801 Massachusetts Avenue, Crosstown Center, 3rd Floor, Boston, MA 02118 (e-mail: )
| |
Collapse
|
49
|
Nowinski CJ, Bureau SC, Buckland ME, Curtis MA, Daneshvar DH, Faull RLM, Grinberg LT, Hill-Yardin EL, Murray HC, Pearce AJ, Suter CM, White AJ, Finkel AM, Cantu RC. Applying the Bradford Hill Criteria for Causation to Repetitive Head Impacts and Chronic Traumatic Encephalopathy. Front Neurol 2022; 13:938163. [PMID: 35937061 PMCID: PMC9355594 DOI: 10.3389/fneur.2022.938163] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with a history of repetitive head impacts (RHI). CTE was described in boxers as early as the 1920s and by the 1950s it was widely accepted that hits to the head caused some boxers to become "punch drunk." However, the recent discovery of CTE in American and Australian-rules football, soccer, rugby, ice hockey, and other sports has resulted in renewed debate on whether the relationship between RHI and CTE is causal. Identifying the strength of the evidential relationship between CTE and RHI has implications for public health and medico-legal issues. From a public health perspective, environmentally caused diseases can be mitigated or prevented. Medico-legally, millions of children are exposed to RHI through sports participation; this demographic is too young to legally consent to any potential long-term risks associated with this exposure. To better understand the strength of evidence underlying the possible causal relationship between RHI and CTE, we examined the medical literature through the Bradford Hill criteria for causation. The Bradford Hill criteria, first proposed in 1965 by Sir Austin Bradford Hill, provide a framework to determine if one can justifiably move from an observed association to a verdict of causation. The Bradford Hill criteria include nine viewpoints by which to evaluate human epidemiologic evidence to determine if causation can be deduced: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, and analogy. We explored the question of causation by evaluating studies on CTE as it relates to RHI exposure. Through this lens, we found convincing evidence of a causal relationship between RHI and CTE, as well as an absence of evidence-based alternative explanations. By organizing the CTE literature through this framework, we hope to advance the global conversation on CTE mitigation efforts.
Collapse
Affiliation(s)
- Christopher J. Nowinski
- Concussion Legacy Foundation, Boston, MA, United States,*Correspondence: Christopher J. Nowinski
| | | | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Daniel H. Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Richard L. M. Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States,Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil,Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia,Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Helen C. Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Alan J. Pearce
- College of Science, Health, and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Catherine M. Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Adam J. White
- Department of Sport, Health Science, and Social Work, Oxford Brookes University, Oxford, United Kingdom,Concussion Legacy Foundation UK, Cheltenham, United Kingdom
| | - Adam M. Finkel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Robert C. Cantu
- Concussion Legacy Foundation, Boston, MA, United States,Department of Neurology, Boston University School of Medicine, Boston, MA, United States,Department of Neurosurgery, Emerson Hospital, Concord, MA, United States
| |
Collapse
|
50
|
McCann H, Bahar AY, Burkhardt K, Gardner AJ, Halliday GM, Iverson GL, Shepherd CE. Prevalence of chronic traumatic encephalopathy in the Sydney Brain Bank. Brain Commun 2022; 4:fcac189. [PMID: 35950093 PMCID: PMC9356727 DOI: 10.1093/braincomms/fcac189] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Chronic traumatic encephalopathy neuropathologic change can only be definitively diagnosed post-mortem. It has been associated with repetitive mild neurotrauma sustained in amateur and professional contact, collision and combat sports, although it has also been documented in people with a single severe traumatic brain injury and in some people with no known history of brain injury. The characteristic neuropathology is an accumulation of perivascular neuronal and astrocytic phosphorylated tau in the depths of the cortical sulci. The tau-immunopositive neurons and astrocytes that are considered pathognomonic for chronic traumatic encephalopathy are morphologically indistinguishable from Alzheimer-related neurofibrillary tangles and ageing-related tau astrogliopathy, respectively, although they are found in different spatial distributions throughout the cortex. The Sydney Brain Bank collection consists of neurodegenerative diseases and neurologically normal controls. We screened 636 of these cases for chronic traumatic encephalopathy neuropathologic change. A subset of 109 cases had a known history of traumatic brain injury. Three cortical regions were screened for the presence of neuronal and astrocytic phosphorylated tau according to the current 2021 National Institute on Neurological Disorders and Stroke/National Institute of Biomedical Imaging and Bioengineering consensus criteria for chronic traumatic encephalopathy. Five cases (0.79%) showed pathological evidence of chronic traumatic encephalopathy and three of these had a history of traumatic brain injury. Three cases had coexisting Alzheimer’s and/or Lewy body disease pathology meeting criteria for neurodegenerative disease. Another eight cases almost met criteria for chronic traumatic encephalopathy neuropathological change except for an absence of neuronal tau or a strict perivascular arrangement. Ageing-related tau astrogliopathy was found in all eight cases as a coexisting neuropathology. Traumatic brain injury was associated with increased odds ratio [1.79, confidence interval 1.18–2.72] of having a higher neurofibrillary tangle stage and phosphorylated TAR DNA binding protein 43 (OR 2.48, confidence interval 1.35–4.54). Our study shows a very low rate of chronic traumatic encephalopathy neuropathological change in brains with or without neurodegenerative disease from the Sydney Brain Bank. Our evidence suggests that isolated traumatic brain injury in the general population is unlikely to cause chronic traumatic encephalopathy neuropathologic change but may be associated with increased brain ageing.
Collapse
Affiliation(s)
- Heather McCann
- Neuroscience Research Australia , Randwick, NSW 2031 , Australia
| | - Anita Y Bahar
- Neuroscience Research Australia , Randwick, NSW 2031 , Australia
| | - Karim Burkhardt
- School of Medical Sciences, University of New South Wales , Kensington, NSW 2052 , Australia
| | - Andrew J Gardner
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle , Callaghan, NSW 2308 , Australia
| | - Glenda M Halliday
- Neuroscience Research Australia , Randwick, NSW 2031 , Australia
- Faculty of Medicine and Health School of Medical Sciences, University of Sydney Brain and Mind Centre , Camperdown, NSW 2050 , Australia
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School , Boston, MA 02114 , USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital , Charlestown, MA 02114 , USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program , Charlestown, MA 02114 , USA
- MassGeneral Hospital for Children Sports Concussion Program , Boston, MA 02114 , USA
| | - Claire E Shepherd
- Neuroscience Research Australia , Randwick, NSW 2031 , Australia
- School of Medical Sciences, University of New South Wales , Kensington, NSW 2052 , Australia
| |
Collapse
|