1
|
Hernandez SI, Assenmacher CA, Church ME, Alvarez JI. Astroglial Dysfunction, Demyelination and Nodular inflammation in Necrotizing Meningoencephalitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623107. [PMID: 39605694 PMCID: PMC11601332 DOI: 10.1101/2024.11.11.623107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Necrotizing Meningoencephalitis (NME), a form of Meningoencephalitis of Unknown Origin (MUO), is a progressive neuroinflammatory disease that primarily affects young, small-breed dogs. Due to limited understanding of its pathophysiology, early detection and the development of targeted therapies remain challenging. Definitive ante-mortem diagnosis is often unfeasible, and dogs with NME are frequently grouped under the broader MUO category. Our long-term objective is to identify distinct disease mechanisms within each MUO subtype to improve diagnostic accuracy, therapeutic approaches, and prognostic outcomes. To establish unique inflammatory patterns as they relate to neuropathologic changes in NME, we studied we studied the degree of immune cell infiltration, astrogliosis, demyelination, and microglial activation, comparing these factors with granulomatous meningoencephalomyelitis (GME), a closely related MUO subtype. We found that in the leptomeninges, NME is characterized by mild immune cell infiltration, in contrast to the prominent, B cell-rich aggregates seen in GME. In the neuroparenchyma, both diseases exhibit a comparable degree of lymphocyte infiltration; however, demyelination is more pronounced in NME, particularly within the subcortical white matter. Notably, areas of the brain affected by NME display a reduction in astrogliosis, which is associated with a marked decrease in the expression of the water channel protein aquaporin-4 (AQP4), a reduction not observed in GME. Additionally, we found that AQP4 expression levels correlate with the extent of microglial and macrophage activation. These findings suggest that astrocyte dysfunction in regions of microglial inflammation is a driver of NME and with adaptive immune responses likely playing a supportive role.
Collapse
|
2
|
Pranclova V, Nedvedova L, Kotounova E, Hönig V, Dvorakova M, Davidkova M, Bily T, Vancova M, Ruzek D, Palus M. Unraveling the role of human microglia in tick-borne encephalitis virus infection: insights into neuroinflammation and viral pathogenesis. Microbes Infect 2024; 26:105383. [PMID: 38942136 DOI: 10.1016/j.micinf.2024.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Tick-borne encephalitis virus (TBEV) is a neurotropic orthoflavivirus responsible for severe infections of the central nervous system. Although neurons are predominantly targeted, specific involvement of microglia in pathogenesis of TBE is not yet fully understood. In this study, the susceptibility of human microglia to TBEV is investigated, focusing on productive infection and different immune responses of different viral strains. We investigated primary human microglia and two immortalized microglial cell lines exposed to three TBEV strains (Hypr, Neudörfl and 280), each differing in virulence. Our results show that all microglia cultures tested support long-term productive infections, regardless of the viral strain. In particular, immune response varied significantly with the viral strain, as shown by the differential secretion of cytokines and chemokines such as IP-10, MCP-1, IL-8 and IL-6, quantified using a Luminex 48-plex assay. The most virulent strain triggered the highest cytokine induction. Electron tomography revealed substantial ultrastructural changes in the infected microglia, despite the absence of cytopathic effects. These findings underscore the susceptibility of human microglia to TBEV and reveal strain-dependent variations in viral replication and immune responses, highlighting the complex role of microglia in TBEV-induced neuropathology and contribute to a deeper understanding of TBE pathogenesis and neuroinflammation.
Collapse
Affiliation(s)
- Veronika Pranclova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Lenka Nedvedova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Eliska Kotounova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Vaclav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Marketa Dvorakova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
| | - Marika Davidkova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
| | - Tomas Bily
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Marie Vancova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic.
| |
Collapse
|
3
|
Mladinich MC, Himmler GE, Conde JN, Gorbunova EE, Schutt WR, Sarkar S, Tsirka SAE, Kim HK, Mackow ER. Age-dependent Powassan virus lethality is linked to glial cell activation and divergent neuroinflammatory cytokine responses in a murine model. J Virol 2024; 98:e0056024. [PMID: 39087762 PMCID: PMC11334436 DOI: 10.1128/jvi.00560-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 08/02/2024] Open
Abstract
Powassan virus (POWV) is an emergent tick-borne flavivirus that causes fatal encephalitis in the elderly and long-term neurologic sequelae in survivors. How age contributes to severe POWV encephalitis remains an enigma, and no animal models have assessed age-dependent POWV neuropathology. Inoculating C57BL/6 mice with a POWV strain (LI9) currently circulating in Ixodes ticks resulted in age-dependent POWV lethality 10-20 dpi. POWV infection of 50-week-old mice was 82% fatal with lethality sequentially reduced by age to 7.1% in 10-week-old mice. POWV LI9 was neuroinvasive in mice of all ages, causing acute spongiform CNS pathology and reactive gliosis 5-15 dpi that persisted in survivors 30 dpi. High CNS viral loads were found in all mice 10 dpi. However, by 15 dpi, viral loads decreased by 2-4 logs in 10- to 40-week-old mice, while remaining at high levels in 50-week-old mice. Age-dependent differences in CNS viral loads 15 dpi occurred concomitantly with striking changes in CNS cytokine responses. In the CNS of 50-week-old mice, POWV induced Th1-type cytokines (IFNγ, IL-2, IL-12, IL-4, TNFα, IL-6), suggesting a neurodegenerative pro-inflammatory M1 microglial program. By contrast, in 10-week-old mice, POWV-induced Th2-type cytokines (IL-10, TGFβ, IL-4) were consistent with a neuroprotective M2 microglial phenotype. These findings correlate age-dependent CNS cytokine responses and viral loads with POWV lethality and suggest potential neuroinflammatory therapeutic targets. Our results establish the age-dependent lethality of POWV in a murine model that mirrors human POWV severity and long-term CNS pathology in the elderly. IMPORTANCE Powassan virus is an emerging tick-borne flavivirus causing lethal encephalitis in aged individuals. We reveal an age-dependent POWV murine model that mirrors human POWV encephalitis and long-term CNS damage in the elderly. We found that POWV is neuroinvasive and directs reactive gliosis in all age mice, but at acute stages selectively induces pro-inflammatory Th1 cytokine responses in 50-week-old mice and neuroprotective Th2 cytokine responses in 10-week-old mice. Our findings associate CNS viral loads and divergent cytokine responses with age-dependent POWV lethality and survival outcomes. Responses of young mice suggest potential therapeutic targets and approaches for preventing severe POWV encephalitis that may be broadly applicable to other neurodegenerative diseases. Our age-dependent murine POWV model permits analysis of vaccines that prevent POWV lethality, and therapeutics that resolve severe POWV encephalitis.
Collapse
Affiliation(s)
- Megan C. Mladinich
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Jonas N. Conde
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - William R. Schutt
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Shayan Sarkar
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Styliani-Anna E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| |
Collapse
|
4
|
Zhong S, Lian Y, Zhou B, Ren R, Duan L, Pan Y, Gong Y, Wu X, Cheng D, Zhang P, Lu B, Wang X, Ding J. Microglia contribute to polyG-dependent neurodegeneration in neuronal intranuclear inclusion disease. Acta Neuropathol 2024; 148:21. [PMID: 39150562 DOI: 10.1007/s00401-024-02776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder caused by the expansion of GGC trinucleotide repeats in NOTCH2NLC gene. Despite identifying uN2CpolyG, a toxic polyglycine (polyG) protein translated by expanded GGC repeats, the exact pathogenic mechanisms of NIID remain unclear. In this study, we investigated the role of polyG by expressing various forms of NOTCH2NLC in mice: the wild-type, the expanded form with 100 GGC repeats (either translating or not translating into uN2CpolyG), and the mutated form that encodes a pure polyG without GGC-repeat RNA and the C-terminal stretch (uN2CpolyG-dCT). Both uN2CpolyG and uN2CpolyG-dCT induced the formation of inclusions composed by filamentous materials and resulted in neurodegenerative phenotypes in mice, including impaired motor and cognitive performance, shortened lifespan, and pathologic lesions such as white-matter lesions, microgliosis, and astrogliosis. In contrast, expressing GGC-repeat RNA alone was non-pathogenic. Through bulk and single-nuclei RNA sequencing, we identified common molecular signatures linked to the expression of uN2CpolyG and uN2CpolyG-dCT, particularly the upregulation of inflammation and microglia markers, and the downregulation of immediate early genes and splicing factors. Importantly, microglia-mediated inflammation was visualized in NIID patients using positron emission tomography, correlating with levels of white-matter atrophy. Furthermore, microglia ablation ameliorated neurodegenerative phenotypes and transcriptional alterations in uN2CpolyG-expressing mice but did not affect polyG inclusions. Together, these results demonstrate that polyG is crucial for the pathogenesis of NIID and highlight the significant role of microglia in polyG-induced neurodegeneration.
Collapse
Affiliation(s)
- Shaoping Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yangye Lian
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Binbin Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ruiqing Ren
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lewei Duan
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyin Pan
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchen Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Puming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Boxun Lu
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| |
Collapse
|
5
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
6
|
Meinhardt J, Streit S, Dittmayer C, Manitius RV, Radbruch H, Heppner FL. The neurobiology of SARS-CoV-2 infection. Nat Rev Neurosci 2024; 25:30-42. [PMID: 38049610 DOI: 10.1038/s41583-023-00769-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/06/2023]
Abstract
Worldwide, over 694 million people have been infected with SARS-CoV-2, with an estimated 55-60% of those infected developing COVID-19. Since the beginning of the pandemic in December 2019, different variants of concern have appeared and continue to occur. With the emergence of different variants, an increasing rate of vaccination and previous infections, the acute neurological symptomatology of COVID-19 changed. Moreover, 10-45% of individuals with a history of SARS-CoV-2 infection experience symptoms even 3 months after disease onset, a condition that has been defined as 'post-COVID-19' by the World Health Organization and that occurs independently of the virus variant. The pathomechanisms of COVID-19-related neurological complaints have become clearer during the past 3 years. To date, there is no overt - that is, truly convincing - evidence for SARS-CoV-2 particles in the brain. In this Review, we put special emphasis on discussing the methodological difficulties of viral detection in CNS tissue and discuss immune-based (systemic and central) effects contributing to COVID-19-related CNS affection. We sequentially review the reported changes to CNS cells in COVID-19, starting with the blood-brain barrier and blood-cerebrospinal fluid barrier - as systemic factors from the periphery appear to primarily influence barriers and conduits - before we describe changes in brain parenchymal cells, including microglia, astrocytes, neurons and oligodendrocytes as well as cerebral lymphocytes. These findings are critical to understanding CNS affection in acute COVID-19 and post-COVID-19 in order to translate these findings into treatment options, which are still very limited.
Collapse
Affiliation(s)
- Jenny Meinhardt
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Simon Streit
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Regina V Manitius
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- Cluster of Excellence, NeuroCure, Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Asamu MO, Oladipo OO, Abayomi OA, Adebayo AA. Alzheimer's disease: The role of T lymphocytes in neuroinflammation and neurodegeneration. Brain Res 2023; 1821:148589. [PMID: 37734576 DOI: 10.1016/j.brainres.2023.148589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Alzheimer's disease, the leading cause of progressive cognitive decline globally, has been reported to be enhanced by neuroinflammation. Brain-resident innate immune cells and adaptive immune cells work together to produce neuroinflammation. Studies over the past decade have established the neuroimmune axis present in Alzheimer's disease; the crosstalk between adaptive and innate immune cells within and outside the brain is crucial to the onset and progression of Alzheimer's disease. Although the role of the adaptive immune system in Alzheimer's disease is not fully understood, it has been hypothesized that the brain's immune homeostasis is significantly disrupted, which greatly contributes to neuroinflammation. Brain-infiltrating T cells possess proinflammatory phenotypes and activities that directly contribute to neuroinflammation. The pro-inflammatory activities of the adaptive immune system in Alzheimer's disease are characterized by the upregulation of effector T cell activities and the downregulation of regulatory T cell activities in the brain, blood, and cerebrospinal fluid. In this review, we discuss the major impact of T lymphocytes on the pathogenesis and progression of Alzheimer's disease. Understanding the role and mechanism of action of T cells in Alzheimer's disease would significantly contribute to the identification of novel biomarkers for diagnosing and monitoring the progression of the disease. This knowledge could also be crucial to the development of immunotherapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Moses O Asamu
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Oluseun A Abayomi
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Olabisi Onabanjo University Teaching Hospital (OOUTH), Sagamu, Ogun State, Nigeria
| | - Afeez A Adebayo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
8
|
Malvaso A, Gatti A, Negro G, Calatozzolo C, Medici V, Poloni TE. Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells 2023; 12:2824. [PMID: 38132144 PMCID: PMC10742050 DOI: 10.3390/cells12242824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Malvaso
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Alberto Gatti
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Giulia Negro
- Department of Neurology, University of Milano Bicocca, 20126 Milan, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Valentina Medici
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| |
Collapse
|
9
|
Andzelm MM, Stredny CM. Mechanisms and Emerging Therapies for Treatment of Seizures in Pediatric Autoimmune Encephalitis and Autoinflammatory/Autoimmune-Associated Epilepsy. Rheum Dis Clin North Am 2023; 49:875-893. [PMID: 37821201 DOI: 10.1016/j.rdc.2023.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
There has been increasing understanding of the role of inflammation in seizures and epilepsy, as well as targeted immunomodulatory treatments. In children, immune-mediated seizures often present acutely in the setting of autoimmune encephalitis and are very responsive to immunotherapy with low rates of subsequent epilepsy. Conversely, seizures in autoimmune-associated epilepsies, such as Rasmussen syndrome, can remain refractory to multimodal therapy, including immunomodulation. In this review, the authors discuss the presentations of immune-mediated seizures in children, underlying mechanisms, and emerging therapies.
Collapse
Affiliation(s)
- Milena M Andzelm
- Program in Neuroimmunology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Coral M Stredny
- Program in Neuroimmunology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Griggs E, Trageser K, Naughton S, Yang EJ, Mathew B, Van Hyfte G, Hellmers L, Jette N, Estill M, Shen L, Fischer T, Pasinetti GM. Recapitulation of pathophysiological features of AD in SARS-CoV-2-infected subjects. eLife 2023; 12:e86333. [PMID: 37417740 PMCID: PMC10361716 DOI: 10.7554/elife.86333] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition in some patients with post-acute sequelae of SARS-CoV-2 (PASC). To evaluate neuropathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Brodmann area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimer's disease (AD), and SARS-CoV-2-infected AD individuals compared to age- and gender-matched neurological cases. Here, we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2-infected AD individuals. Distribution of microglial changes reflected by the increase in Iba-1 reveals nodular morphological alterations in SARS-CoV-2-infected AD individuals. Similarly, HIF-1α is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help in informing decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD.
Collapse
Affiliation(s)
- Elizabeth Griggs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Kyle Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Sean Naughton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Brian Mathew
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Grace Van Hyfte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Linh Hellmers
- Tulane National Primate Research Center, Covington, United States
| | - Nathalie Jette
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Molly Estill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Li Shen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Tracy Fischer
- Tulane National Primate Research Center, Covington, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, United States
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, United States
| |
Collapse
|
11
|
Gallus M, Roll W, Dik A, Barca C, Zinnhardt B, Hicking G, Mueller C, Naik VN, Anstötz M, Krämer J, Rolfes L, Wachsmuth L, Pitsch J, van Loo KM, Räuber S, Okada H, Wimberley C, Strippel C, Golombeck KS, Johnen A, Kovac S, Groß CC, Backhaus P, Seifert R, Lewerenz J, Surges R, Elger CE, Wiendl H, Ruck T, Becker AJ, Faber C, Jacobs AH, Bauer J, Meuth SG, Schäfers M, Melzer N. Translational imaging of TSPO reveals pronounced innate inflammation in human and murine CD8 T cell-mediated limbic encephalitis. SCIENCE ADVANCES 2023; 9:eabq7595. [PMID: 37294768 PMCID: PMC10256169 DOI: 10.1126/sciadv.abq7595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/08/2023] [Indexed: 06/11/2023]
Abstract
Autoimmune limbic encephalitis (ALE) presents with new-onset mesial temporal lobe seizures, progressive memory disturbance, and other behavioral and cognitive changes. CD8 T cells are considered to play a key role in those cases where autoantibodies (ABs) target intracellular antigens or no ABs were found. Assessment of such patients presents a clinical challenge, and novel noninvasive imaging biomarkers are urgently needed. Here, we demonstrate that visualization of the translocator protein (TSPO) with [18F]DPA-714-PET-MRI reveals pronounced microglia activation and reactive gliosis in the hippocampus and amygdala of patients suspected with CD8 T cell ALE, which correlates with FLAIR-MRI and EEG alterations. Back-translation into a preclinical mouse model of neuronal antigen-specific CD8 T cell-mediated ALE allowed us to corroborate our preliminary clinical findings. These translational data underline the potential of [18F]DPA-714-PET-MRI as a clinical molecular imaging method for the direct assessment of innate immunity in CD8 T cell-mediated ALE.
Collapse
Affiliation(s)
- Marco Gallus
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurosurgery, University of Münster, Münster, Germany
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Wolfgang Roll
- Department of Nuclear Medicine, University of Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Cristina Barca
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Biomarkers and Translational Technologies (BTT), Pharma Research and Early Development (pRED), F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Gordon Hicking
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christoph Mueller
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Venu Narayanan Naik
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Max Anstötz
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Krämer
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Leoni Rolfes
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Julika Pitsch
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Karen M. J. van Loo
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn, Bonn, Germany
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Saskia Räuber
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Christine Strippel
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Kristin S. Golombeck
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Andreas Johnen
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Catharina C. Groß
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Philipp Backhaus
- Department of Nuclear Medicine, University of Münster, Münster, Germany
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University of Münster, Münster, Germany
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Jan Lewerenz
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn, Bonn, Germany
| | | | - Heinz Wiendl
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Tobias Ruck
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Albert J. Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sven G. Meuth
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University of Münster, Münster, Germany
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Nico Melzer
- Department of Neurology Institute of Translational Neurology, University of Münster, Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Tröscher AR, Mair KM, Verdú de Juan L, Köck U, Steinmaurer A, Baier H, Becker A, Blümcke I, Finzel M, Geis C, Höftberger R, Mawrin C, von Oertzen TJ, Pitsch J, Surges R, Voges B, Weis S, Winklehner M, Woermann F, Bauer J, Bien CG. Temporal lobe epilepsy with GAD antibodies: neurons killed by T cells not by complement membrane attack complex. Brain 2023; 146:1436-1452. [PMID: 36314080 PMCID: PMC10115353 DOI: 10.1093/brain/awac404] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/14/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the syndromes linked to antibodies against glutamic acid decarboxylase (GAD). It has been questioned whether 'limbic encephalitis with GAD antibodies' is a meaningful diagnostic entity. The immunopathogenesis of GAD-TLE has remained enigmatic. Improvement of immunological treatability is an urgent clinical concern. We retrospectively assessed the clinical, MRI and CSF course as well as brain tissue of 15 adult patients with GAD-TLE who underwent temporal lobe surgery. Brain tissue was studied by means of immunohistochemistry, multiplex fluorescent microscopy and transcriptomic analysis for inflammatory mediators and neuronal degeneration. In 10 patients, there was a period of mediotemporal swelling and T2 signal increase; in nine cases this occurred within the first 6 years after symptom onset. This resulted in unilateral or bilateral hippocampal sclerosis; three cases developed hippocampal sclerosis within the first 2 years. All CSF studies done within the first year (n = 6) revealed intrathecal synthesis of immunoglobulin G. Temporal lobe surgeries were done after a median disease duration of 9 years (range 3 weeks to 60 years). Only two patients became seizure-free. Brain parenchyma collected during surgery in the first 6 years revealed high numbers of plasma cells but no signs of antibody-mediated tissue damage. Even more dense was the infiltration by CD8+ cytotoxic T lymphocytes (CTLs) that were seen to locally proliferate. Further, a portion of these cells revealed an antigen-specific resident memory T cell phenotype. Finally, CTLs with cytotoxic granzyme B+ granules were also seen in microglial nodules and attached to neurons, suggesting a CTL-mediated destruction of these cells. With longer disease duration, the density of all lymphocytes decreased. Whole transcriptome analysis in early/active cases (but not in late/inactive stages) revealed 'T cell immunity' and 'Regulation of immune processes' as the largest overrepresented clusters. To a lesser extent, pathways associated with B cells and neuronal degeneration also showed increased representation. Surgically treated patients with GAD-TLE go through an early active inflammatory, 'encephalitic' stage (≤6 years) with CTL-mediated, antigen-driven neuronal loss and antibody-producing plasma cells but without signs of complement-mediated cell death. Subsequently, patients enter an apparently immunologically inactive or low-active stage with ongoing seizures, probably caused by the structural damage to the temporal lobe. 'Limbic encephalitis' with GAD antibodies should be subsumed under GAD-TLE. The early tissue damage explains why immunotherapy does not usually lead to freedom from seizures.
Collapse
Affiliation(s)
- Anna R Tröscher
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neurology I, Neuromed Campus, Kepler University Hospital, Linz, Austria
| | - Katharina M Mair
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Laia Verdú de Juan
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ulrike Köck
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Anja Steinmaurer
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Albert Becker
- Section for Translational Epilepsy Research Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, University Hospital Jena, Jena, Germany
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Tim J von Oertzen
- Department of Neurology I, Neuromed Campus, Kepler University Hospital, Linz, Austria
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Berthold Voges
- Hamburg Epilepsy Centre, Protestant Hospital Alsterdorf, Department of Neurology and Epileptology, Hamburg, Germany
| | - Serge Weis
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Neuromed Campus, Kepler University Hospital Linz, Linz, Austria
| | - Michael Winklehner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Friedrich Woermann
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
- Epilepsy Centre Bodensee, Ravensburg, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Medical School, Campus Bielefeld-Bethel, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
13
|
Piccirilli G, Gabrielli L, Bonasoni MP, Chiereghin A, Turello G, Borgatti EC, Simonazzi G, Felici S, Leone M, Salfi NCM, Santini D, Lazzarotto T. Fetal Brain Damage in Human Fetuses with Congenital Cytomegalovirus Infection: Histological Features and Viral Tropism. Cell Mol Neurobiol 2023; 43:1385-1399. [PMID: 35933637 PMCID: PMC10006254 DOI: 10.1007/s10571-022-01258-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022]
Abstract
Human cytomegalovirus (HCMV) causes congenital neurological lifelong disabilities. To date, the neuropathogenesis of brain injury related to congenital HCMV (cCMV) infection is poorly understood. This study evaluates the characteristics and pathogenetic mechanisms of encephalic damage in cCMV infection. Ten HCMV-infected human fetuses at 21 weeks of gestation were examined. Specifically, tissues from different brain areas were analyzed by: (i) immunohistochemistry (IHC) to detect HCMV-infected cell distribution, (ii) hematoxylin-eosin staining to evaluate histological damage and (iii) real-time PCR to quantify tissue viral load (HCMV-DNA). The differentiation stage of HCMV-infected neural/neuronal cells was assessed by double IHC to detect simultaneously HCMV-antigens and neural/neuronal markers: nestin (a marker of neural stem/progenitor cells), doublecortin (DCX, marker of cells committed to the neuronal lineage) and neuronal nuclei (NeuN, identifying mature neurons). HCMV-positive cells and viral DNA were found in the brain of 8/10 (80%) fetuses. For these cases, brain damage was classified as mild (n = 4, 50%), moderate (n = 3, 37.5%) and severe (n = 1, 12.5%) based on presence and frequency of pathological findings (necrosis, microglial nodules, microglial activation, astrocytosis, and vascular changes). The highest median HCMV-DNA level was found in the hippocampus (212 copies/5 ng of human DNA [hDNA], range: 10-7,505) as well as the highest mean HCMV-infected cell value (2.9 cells, range: 0-23), followed by that detected in subventricular zone (1.7 cells, range: 0-19). These findings suggested a preferential viral tropism for both neural stem/progenitor cells and neuronal committed cells, residing in these regions, confirmed by the expression of DCX and nestin in 94% and 63.3% of HCMV-positive cells, respectively. NeuN was not found among HCMV-positive cells and was nearly absent in the brain with severe damage, suggesting HCMV does not infect mature neurons and immature neural/neuronal cells do not differentiate into neurons. This could lead to known structural and functional brain defects from cCMV infection.
Collapse
Affiliation(s)
- Giulia Piccirilli
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Liliana Gabrielli
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | | | - Angela Chiereghin
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gabriele Turello
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Eva Caterina Borgatti
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Giuliana Simonazzi
- Department of Obstetrics and Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Felici
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marta Leone
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Donatella Santini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Kazama I. Brain Leukocytes as the Potential Therapeutic Target for Post-COVID-19 Brain Fog. Neurochem Res 2023:10.1007/s11064-023-03912-0. [PMID: 36952147 PMCID: PMC10034247 DOI: 10.1007/s11064-023-03912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
After recovering from the acute phase of coronavirus disease 2019 (COVID-19), many patients struggle with additional symptoms of long COVID during the chronic phase. Among them, the neuropsychiatric manifestations characterized by a short-term memory loss and inability to concentrate are called "brain fog". Recent studies have revealed the involvement of "chronic neuro-inflammation" in the pathogenesis of brain fog following COVID-19 infection. In the COVID-related brain fog, similarly to neurodegenerative disorders caused by neuro-inflammation, brain leukocytes, such as microglia and lymphocytes, are hyperactivated, suggesting the overexpression of delayed rectifier K+-channels (Kv1.3) within the cells. In our previous patch-clamp studies, drugs, such as antihistamines, statins, nonsteroidal anti-inflammatory drugs, antibiotics and anti-hypertensive drugs, suppressed the Kv1.3-channel activity and reduced the production of pro-inflammatory cytokines. Additionally, newer generation antihistamines, antibiotics and corticosteroids strongly stabilize mast cells that directly activate microglia in the brain. Taking such pharmacological properties of these commonly used drugs into account, they may be useful in the treatment of COVID-related brain fog, in which the enhanced innate and adaptive immune responses are responsible for the pathogenesis.
Collapse
Affiliation(s)
- Itsuro Kazama
- School of Nursing, Miyagi University, 1-1 Gakuen, Taiwa-Cho, Kurokawa-Gun, Miyagi, 981-3298, Japan.
| |
Collapse
|
15
|
Flammer J, Neziraj T, Rüegg S, Pröbstel AK. Immune Mechanisms in Epileptogenesis: Update on Diagnosis and Treatment of Autoimmune Epilepsy Syndromes. Drugs 2023; 83:135-158. [PMID: 36696027 PMCID: PMC9875200 DOI: 10.1007/s40265-022-01826-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/26/2023]
Abstract
Seizures and epilepsy can result from various aetiologies, yet the underlying cause of several epileptic syndromes remains unclear. In that regard, autoimmune-mediated pathophysiological mechanisms have been gaining attention in the past years and were included as one of the six aetiologies of seizures in the most recent classification of the International League Against Epilepsy. The increasing number of anti-neuronal antibodies identified in patients with encephalitic disorders has contributed to the establishment of an immune-mediated pathophysiology in many cases of unclear aetiology of epileptic syndromes. Yet only a small number of patients with autoimmune encephalitis develop epilepsy in the proper sense where the brain transforms into a state where it will acquire the enduring propensity to produce seizures if it is not hindered by interventions. Hence, the term autoimmune epilepsy is often wrongfully used in the context of autoimmune encephalitis since most of the seizures are acute encephalitis-associated and will abate as soon as the encephalitis is in remission. Given the overlapping clinical presentation of immune-mediated seizures originating from different aetiologies, a clear distinction among the aetiological entities is crucial when it comes to discussing pathophysiological mechanisms, therapeutic options, and long-term prognosis of patients. Moreover, a rapid and accurate identification of patients with immune-mediated epilepsy syndromes is required to ensure an early targeted treatment and, thereby, improve clinical outcome. In this article, we review our current understanding of pathogenesis and critically discuss current and potential novel treatment options for seizures and epilepsy syndromes of underlying or suspected immune-mediated origin. We further outline the challenges in proper terminology.
Collapse
Affiliation(s)
- Julia Flammer
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tradite Neziraj
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland. .,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Griggs E, Trageser K, Naughton S, Yang EJ, Mathew B, Van Hyfte G, Hellmers L, Jette N, Estill M, Shen L, Fischer T, Pasinetti GM. Molecular and cellular similarities in the brain of SARS-CoV-2 and Alzheimer's disease individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.23.517706. [PMID: 36451886 PMCID: PMC9709800 DOI: 10.1101/2022.11.23.517706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
UNLABELLED Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition, which some patients with Post-acute Sequelae of SARS-CoV-2 (PASC). To evaluate neuro-pathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Broadman area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimer's disease (AD) and SARS-CoV-2 infected AD individuals, compared to age- and gender-matched neurological cases. Here we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2 infected AD individuals. Distribution of microglial changes reflected by the increase of Iba-1 reveal nodular morphological alterations in SARS-CoV-2 infected AD individuals. Similarly, HIF-1α is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help to inform decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD. TEASER SARS-CoV-2 and Alzheimer's disease share similar neuroinflammatory processes, which may help explain neuro-PASC.
Collapse
|
17
|
Molecular and spatial heterogeneity of microglia in Rasmussen encephalitis. Acta Neuropathol Commun 2022; 10:168. [PMID: 36411471 PMCID: PMC9677917 DOI: 10.1186/s40478-022-01472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Rasmussen encephalitis (RE) is a rare childhood neurological disease characterized by progressive unilateral loss of function, hemispheric atrophy and drug-resistant epilepsy. Affected brain tissue shows signs of infiltrating cytotoxic T-cells, microglial activation, and neuronal death, implicating an inflammatory disease process. Recent studies have identified molecular correlates of inflammation in RE, but cell-type-specific mechanisms remain unclear. We used single-nucleus RNA-sequencing (snRNA-seq) to assess gene expression across multiple cell types in brain tissue resected from two children with RE. We found transcriptionally distinct microglial populations enriched in RE compared to two age-matched individuals with unaffected brain tissue and two individuals with Type I focal cortical dysplasia (FCD). Specifically, microglia in RE tissues demonstrated increased expression of genes associated with cytokine signaling, interferon-mediated pathways, and T-cell activation. We extended these findings using spatial proteomic analysis of tissue from four surgical resections to examine expression profiles of microglia within their pathological context. Microglia that were spatially aggregated into nodules had increased expression of dynamic immune regulatory markers (PD-L1, CD14, CD11c), T-cell activation markers (CD40, CD80) and were physically located near distinct CD4+ and CD8+ lymphocyte populations. These findings help elucidate the complex immune microenvironment of RE.
Collapse
|
18
|
Tang C, Yang W, Luan G. Progress in pathogenesis and therapy of Rasmussen's encephalitis. Acta Neurol Scand 2022; 146:761-766. [PMID: 36189924 DOI: 10.1111/ane.13712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 01/15/2023]
Abstract
Rasmussen's encephalitis (RE) is a rare condition of unknown etiology that causes a severe chronically neurological disorder with mostly affecting children. The main clinical feature of RE includes frequent seizures with drug-resistant, unilateral hemispheric atrophy, and progressive neurological deficits. In this review, we summarized five pathogenesis on the basis of the current research including virus infection, antibody-mediated degeneration, cell-mediated immunity, microglia-induced degeneration, and genetic mutations. So far, no exact virus in RE brain tissue or definite antigen in humoral immune system was confirmed as the determined etiology. The importance of cytotoxic CD8+ T lymphocytes and activated microglial and the role of their immune mechanism in RE development are gradually emerging with the deep study. Genetic researches support the notion that the pathogenesis of RE is probably associated with single nucleotide polymorphisms on immune-related genes, which is driven by affecting inherent antiretroviral innate immunity. Recent advances in treatment suggest immunotherapy could partially slows down the progression of RE according to the histopathology and clinical presentation, which aimed at the initial damage to the brain by T cells and microglia in the early stage. However, the cerebral hemispherectomy is an effective means to controlling the intractable seizure, which is accompanied by neurological complications inevitably. So, the optimal timing for surgical intervention is still a challenge for RE patient. On the contrary, exploration on other aspects of pathogenesis such as dysfunction of adenosine system may offer a new therapeutic option for the treatment of RE in future.
Collapse
Affiliation(s)
- Chongyang Tang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Wei Yang
- Beijing Key Laboratory of Epilepsy, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Epilepsy, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
19
|
Abstract
SARS-CoV-2, the virus that causes coronavirus disease (COVID)-19, has become a persistent global health threat. Individuals who are symptomatic for COVID-19 frequently exhibit respiratory illness, which is often accompanied by neurological symptoms of anosmia and fatigue. Mounting clinical data also indicate that many COVID-19 patients display long-term neurological disorders postinfection such as cognitive decline, which emphasizes the need to further elucidate the effects of COVID-19 on the central nervous system. In this review article, we summarize an emerging body of literature describing the impact of SARS-CoV-2 infection on central nervous system (CNS) health and highlight important areas of future investigation.
Collapse
Affiliation(s)
- Nick R. Natale
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
20
|
Yang QY, Li XW, Yang R, Qin TY, Long H, Zhang SB, Zhang F. Effects of intraperitoneal injection of lipopolysaccharide-induced peripheral inflammation on dopamine neuron damage in rat midbrain. CNS Neurosci Ther 2022; 28:1624-1636. [PMID: 35789066 PMCID: PMC9437226 DOI: 10.1111/cns.13906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Current studies have documented neuroinflammation is implicated in Parkinson's disease. Recently, growing evidence indicated peripheral inflammation plays an important role in regulation of neuroinflammation and thus conferring protection against dopamine (DA) neuronal damage. However, the underlying mechanisms are not clearly illuminated. Methods The effects of intraperitoneal injection of LPS (LPS[i.p.])‐induced peripheral inflammation on substantia nigra (SN) injection of LPS (LPS[SN])‐elicited DA neuronal damage in rat midbrain were investigated. Rats were intraperitoneally injected with LPS (0.5 mg/kg) daily for 4 consecutive days and then given single injection of LPS (8 μg) into SN with an interval of 0 (LPS(i.p.) 0 day ± LPS(SN)), 30 (LPS(i.p.) 30 days ± LPS(SN)), and 90 (LPS(i.p.) 90 days ± LPS(SN)) days after LPS(i.p.) administration. Results LPS(i.p.) increased the levels of inflammatory factors in peripheral blood in (LPS(i.p.) 0 day ± LPS(SN)). Importantly, in (LPS(i.p.) 0 day ± LPS(SN)) and (LPS(i.p.) 30 days ± LPS(SN)), LPS(i.p.) attenuated LPS(SN)‐induced DA neuronal loss in SN. Besides, LPS(i.p.) reduced LPS(SN)‐induced microglia and astrocytes activation in SN. Furtherly, LPS(i.p.) reduced pro‐inflammatory M1 microglia markers mRNA levels and increased anti‐inflammatory M2 microglia markers mRNA levels. In addition, the increased T‐cell marker expression and the decreased M1 microglia marker expression and more DA neuronal survival were discerned at the same area of rat midbrain in LPS(SN)‐induced DA neuronal damage 30 days after LPS(i.p.) application. Conclusion This study suggested LPS(i.p.)‐induced peripheral inflammation might cause T cells to infiltrate the brain to regulate microglia‐mediated neuroinflammation, thereby protecting DA neurons.
Collapse
Affiliation(s)
- Qiu-Yu Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Xian-Wei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Rong Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Ting-Yang Qin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Hong Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Shi-Bin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| |
Collapse
|
21
|
Winklehner M, Bauer J, Endmayr V, Schwaiger C, Ricken G, Motomura M, Yoshimura S, Shintaku H, Ishikawa K, Tsuura Y, Iizuka T, Yokota T, Irioka T, Höftberger R. Paraneoplastic Cerebellar Degeneration With P/Q-VGCC vs Yo Autoantibodies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:e200006. [PMID: 36070310 PMCID: PMC9278121 DOI: 10.1212/nxi.0000000000200006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Paraneoplastic cerebellar degeneration (PCD) is characterized by a widespread loss of Purkinje cells (PCs) and may be associated with autoantibodies against intracellular antigens such as Yo or cell surface neuronal antigens such as the P/Q-type voltage-gated calcium channel (P/Q-VGCC). Although the intracellular location of the target antigen in anti-Yo-PCD supports a T cell-mediated pathology, the immune mechanisms in anti-P/Q-VGCC-PCD remain unclear. In this study, we compare neuropathologic characteristics of PCD with anti-P/Q-VGCC and anti-Yo autoantibodies in an archival autopsy cohort. METHODS We performed neuropathology, immunohistochemistry, and multiplex immunofluorescence on formalin-fixed and paraffin-embedded brain tissue of 1 anti-P/Q-VGCC, 2 anti-Yo-PCD autopsy cases and controls. RESULTS Anti-Yo-PCD revealed a diffuse and widespread PC loss together with microglial nodules with pSTAT1+ and CD8+granzymeB+ T cells and neuronal upregulation of major histocompatibility complex (MHC) Class I molecules. Some neurons showed a cytoplasmic immunoglobulin G (IgG) staining. In contrast, PC loss in anti-P/Q-VGCC-PCD was focal and predominantly affected the upper vermis, whereas caudal regions and lateral hemispheres were spared. Inflammation was characterized by scattered CD8+ T cells, single CD20+/CD79a+ B/plasma cells, and an IgG staining of the neuropil in the molecular layer of the cerebellar cortex and neuronal cytoplasms. No complement deposition or MHC-I upregulation was detected. Moreover, synaptophysin was reduced, and neuronal P/Q-VGCC was downregulated. In affected areas, axonal spheroids and the accumulation of amyloid precursor protein and glucose-regulated protein 78 in PCs indicate endoplasmatic reticulum stress and impairment of axonal transport. In both PCD types, calbindin expression was reduced or lost in the remaining PCs. DISCUSSION Anti-Yo-PCD showed characteristic features of a T cell-mediated pathology, whereas this was not observed in 1 case of anti-P/Q-VGCC-PCD. Our findings support a pathogenic role of anti-P/Q-VGCC autoantibodies in causing neuronal dysfunction, probably due to altered synaptic transmission resulting in calcium dysregulation and subsequent PC death. Because disease progression may lead to irreversible PC loss, anti-P/Q-VGCC-PCD patients could benefit from early oncologic and immunologic therapies.
Collapse
Affiliation(s)
- Michael Winklehner
- From the Division of Neuropathology and Neurochemistry (M.W., V.E., C.S., G.R.,
R.H.), Department of Neurology, and Department of Neuroimmunology (J.B.), Center
for Brain Research, Medical University of Vienna, Austria; Department of
Electrical and Electronics Engineering (M.M.), Faculty of Engineering, Nagasaki
Institute of Applied Science; Department of Neurology and Strokology (S.Y.),
Nagasaki University Hospital; Neurology Clinic with Neuromorphomics Laboratory
(H.S.), Nitobe Memorial Nakano General Hospital, Tokyo; Division of Surgical
Pathology (H.S.), Tokyo Medical and Dental University Hospital; The Center for
Personalized Medicine for Healthy Aging (K.I.), Tokyo Medical and Dental
University; Departments of Diagnostic Pathology and Clinical Laboratory (Y.T.),
Yokosuka Kyosai Hospital, Kanagawa; Department of Neurology (T. Iizuka),
Kitasato University School of Medicine, Kanagawa; Department of Neurology and
Neurological Science (T.Y.), Graduate School, Tokyo Medical and Dental
University; and Department of Neurology (T. Irioka), Yokosuka Kyosai Hospital,
Kanagawa, Japan
| | - Jan Bauer
- From the Division of Neuropathology and Neurochemistry (M.W., V.E., C.S., G.R.,
R.H.), Department of Neurology, and Department of Neuroimmunology (J.B.), Center
for Brain Research, Medical University of Vienna, Austria; Department of
Electrical and Electronics Engineering (M.M.), Faculty of Engineering, Nagasaki
Institute of Applied Science; Department of Neurology and Strokology (S.Y.),
Nagasaki University Hospital; Neurology Clinic with Neuromorphomics Laboratory
(H.S.), Nitobe Memorial Nakano General Hospital, Tokyo; Division of Surgical
Pathology (H.S.), Tokyo Medical and Dental University Hospital; The Center for
Personalized Medicine for Healthy Aging (K.I.), Tokyo Medical and Dental
University; Departments of Diagnostic Pathology and Clinical Laboratory (Y.T.),
Yokosuka Kyosai Hospital, Kanagawa; Department of Neurology (T. Iizuka),
Kitasato University School of Medicine, Kanagawa; Department of Neurology and
Neurological Science (T.Y.), Graduate School, Tokyo Medical and Dental
University; and Department of Neurology (T. Irioka), Yokosuka Kyosai Hospital,
Kanagawa, Japan
| | - Verena Endmayr
- From the Division of Neuropathology and Neurochemistry (M.W., V.E., C.S., G.R.,
R.H.), Department of Neurology, and Department of Neuroimmunology (J.B.), Center
for Brain Research, Medical University of Vienna, Austria; Department of
Electrical and Electronics Engineering (M.M.), Faculty of Engineering, Nagasaki
Institute of Applied Science; Department of Neurology and Strokology (S.Y.),
Nagasaki University Hospital; Neurology Clinic with Neuromorphomics Laboratory
(H.S.), Nitobe Memorial Nakano General Hospital, Tokyo; Division of Surgical
Pathology (H.S.), Tokyo Medical and Dental University Hospital; The Center for
Personalized Medicine for Healthy Aging (K.I.), Tokyo Medical and Dental
University; Departments of Diagnostic Pathology and Clinical Laboratory (Y.T.),
Yokosuka Kyosai Hospital, Kanagawa; Department of Neurology (T. Iizuka),
Kitasato University School of Medicine, Kanagawa; Department of Neurology and
Neurological Science (T.Y.), Graduate School, Tokyo Medical and Dental
University; and Department of Neurology (T. Irioka), Yokosuka Kyosai Hospital,
Kanagawa, Japan
| | - Carmen Schwaiger
- From the Division of Neuropathology and Neurochemistry (M.W., V.E., C.S., G.R.,
R.H.), Department of Neurology, and Department of Neuroimmunology (J.B.), Center
for Brain Research, Medical University of Vienna, Austria; Department of
Electrical and Electronics Engineering (M.M.), Faculty of Engineering, Nagasaki
Institute of Applied Science; Department of Neurology and Strokology (S.Y.),
Nagasaki University Hospital; Neurology Clinic with Neuromorphomics Laboratory
(H.S.), Nitobe Memorial Nakano General Hospital, Tokyo; Division of Surgical
Pathology (H.S.), Tokyo Medical and Dental University Hospital; The Center for
Personalized Medicine for Healthy Aging (K.I.), Tokyo Medical and Dental
University; Departments of Diagnostic Pathology and Clinical Laboratory (Y.T.),
Yokosuka Kyosai Hospital, Kanagawa; Department of Neurology (T. Iizuka),
Kitasato University School of Medicine, Kanagawa; Department of Neurology and
Neurological Science (T.Y.), Graduate School, Tokyo Medical and Dental
University; and Department of Neurology (T. Irioka), Yokosuka Kyosai Hospital,
Kanagawa, Japan
| | - Gerda Ricken
- From the Division of Neuropathology and Neurochemistry (M.W., V.E., C.S., G.R.,
R.H.), Department of Neurology, and Department of Neuroimmunology (J.B.), Center
for Brain Research, Medical University of Vienna, Austria; Department of
Electrical and Electronics Engineering (M.M.), Faculty of Engineering, Nagasaki
Institute of Applied Science; Department of Neurology and Strokology (S.Y.),
Nagasaki University Hospital; Neurology Clinic with Neuromorphomics Laboratory
(H.S.), Nitobe Memorial Nakano General Hospital, Tokyo; Division of Surgical
Pathology (H.S.), Tokyo Medical and Dental University Hospital; The Center for
Personalized Medicine for Healthy Aging (K.I.), Tokyo Medical and Dental
University; Departments of Diagnostic Pathology and Clinical Laboratory (Y.T.),
Yokosuka Kyosai Hospital, Kanagawa; Department of Neurology (T. Iizuka),
Kitasato University School of Medicine, Kanagawa; Department of Neurology and
Neurological Science (T.Y.), Graduate School, Tokyo Medical and Dental
University; and Department of Neurology (T. Irioka), Yokosuka Kyosai Hospital,
Kanagawa, Japan
| | - Masakatsu Motomura
- From the Division of Neuropathology and Neurochemistry (M.W., V.E., C.S., G.R.,
R.H.), Department of Neurology, and Department of Neuroimmunology (J.B.), Center
for Brain Research, Medical University of Vienna, Austria; Department of
Electrical and Electronics Engineering (M.M.), Faculty of Engineering, Nagasaki
Institute of Applied Science; Department of Neurology and Strokology (S.Y.),
Nagasaki University Hospital; Neurology Clinic with Neuromorphomics Laboratory
(H.S.), Nitobe Memorial Nakano General Hospital, Tokyo; Division of Surgical
Pathology (H.S.), Tokyo Medical and Dental University Hospital; The Center for
Personalized Medicine for Healthy Aging (K.I.), Tokyo Medical and Dental
University; Departments of Diagnostic Pathology and Clinical Laboratory (Y.T.),
Yokosuka Kyosai Hospital, Kanagawa; Department of Neurology (T. Iizuka),
Kitasato University School of Medicine, Kanagawa; Department of Neurology and
Neurological Science (T.Y.), Graduate School, Tokyo Medical and Dental
University; and Department of Neurology (T. Irioka), Yokosuka Kyosai Hospital,
Kanagawa, Japan
| | - Shunsuke Yoshimura
- From the Division of Neuropathology and Neurochemistry (M.W., V.E., C.S., G.R.,
R.H.), Department of Neurology, and Department of Neuroimmunology (J.B.), Center
for Brain Research, Medical University of Vienna, Austria; Department of
Electrical and Electronics Engineering (M.M.), Faculty of Engineering, Nagasaki
Institute of Applied Science; Department of Neurology and Strokology (S.Y.),
Nagasaki University Hospital; Neurology Clinic with Neuromorphomics Laboratory
(H.S.), Nitobe Memorial Nakano General Hospital, Tokyo; Division of Surgical
Pathology (H.S.), Tokyo Medical and Dental University Hospital; The Center for
Personalized Medicine for Healthy Aging (K.I.), Tokyo Medical and Dental
University; Departments of Diagnostic Pathology and Clinical Laboratory (Y.T.),
Yokosuka Kyosai Hospital, Kanagawa; Department of Neurology (T. Iizuka),
Kitasato University School of Medicine, Kanagawa; Department of Neurology and
Neurological Science (T.Y.), Graduate School, Tokyo Medical and Dental
University; and Department of Neurology (T. Irioka), Yokosuka Kyosai Hospital,
Kanagawa, Japan
| | - Hiroshi Shintaku
- From the Division of Neuropathology and Neurochemistry (M.W., V.E., C.S., G.R.,
R.H.), Department of Neurology, and Department of Neuroimmunology (J.B.), Center
for Brain Research, Medical University of Vienna, Austria; Department of
Electrical and Electronics Engineering (M.M.), Faculty of Engineering, Nagasaki
Institute of Applied Science; Department of Neurology and Strokology (S.Y.),
Nagasaki University Hospital; Neurology Clinic with Neuromorphomics Laboratory
(H.S.), Nitobe Memorial Nakano General Hospital, Tokyo; Division of Surgical
Pathology (H.S.), Tokyo Medical and Dental University Hospital; The Center for
Personalized Medicine for Healthy Aging (K.I.), Tokyo Medical and Dental
University; Departments of Diagnostic Pathology and Clinical Laboratory (Y.T.),
Yokosuka Kyosai Hospital, Kanagawa; Department of Neurology (T. Iizuka),
Kitasato University School of Medicine, Kanagawa; Department of Neurology and
Neurological Science (T.Y.), Graduate School, Tokyo Medical and Dental
University; and Department of Neurology (T. Irioka), Yokosuka Kyosai Hospital,
Kanagawa, Japan
| | - Kinya Ishikawa
- From the Division of Neuropathology and Neurochemistry (M.W., V.E., C.S., G.R.,
R.H.), Department of Neurology, and Department of Neuroimmunology (J.B.), Center
for Brain Research, Medical University of Vienna, Austria; Department of
Electrical and Electronics Engineering (M.M.), Faculty of Engineering, Nagasaki
Institute of Applied Science; Department of Neurology and Strokology (S.Y.),
Nagasaki University Hospital; Neurology Clinic with Neuromorphomics Laboratory
(H.S.), Nitobe Memorial Nakano General Hospital, Tokyo; Division of Surgical
Pathology (H.S.), Tokyo Medical and Dental University Hospital; The Center for
Personalized Medicine for Healthy Aging (K.I.), Tokyo Medical and Dental
University; Departments of Diagnostic Pathology and Clinical Laboratory (Y.T.),
Yokosuka Kyosai Hospital, Kanagawa; Department of Neurology (T. Iizuka),
Kitasato University School of Medicine, Kanagawa; Department of Neurology and
Neurological Science (T.Y.), Graduate School, Tokyo Medical and Dental
University; and Department of Neurology (T. Irioka), Yokosuka Kyosai Hospital,
Kanagawa, Japan
| | - Yukio Tsuura
- From the Division of Neuropathology and Neurochemistry (M.W., V.E., C.S., G.R.,
R.H.), Department of Neurology, and Department of Neuroimmunology (J.B.), Center
for Brain Research, Medical University of Vienna, Austria; Department of
Electrical and Electronics Engineering (M.M.), Faculty of Engineering, Nagasaki
Institute of Applied Science; Department of Neurology and Strokology (S.Y.),
Nagasaki University Hospital; Neurology Clinic with Neuromorphomics Laboratory
(H.S.), Nitobe Memorial Nakano General Hospital, Tokyo; Division of Surgical
Pathology (H.S.), Tokyo Medical and Dental University Hospital; The Center for
Personalized Medicine for Healthy Aging (K.I.), Tokyo Medical and Dental
University; Departments of Diagnostic Pathology and Clinical Laboratory (Y.T.),
Yokosuka Kyosai Hospital, Kanagawa; Department of Neurology (T. Iizuka),
Kitasato University School of Medicine, Kanagawa; Department of Neurology and
Neurological Science (T.Y.), Graduate School, Tokyo Medical and Dental
University; and Department of Neurology (T. Irioka), Yokosuka Kyosai Hospital,
Kanagawa, Japan
| | - Takahiro Iizuka
- From the Division of Neuropathology and Neurochemistry (M.W., V.E., C.S., G.R.,
R.H.), Department of Neurology, and Department of Neuroimmunology (J.B.), Center
for Brain Research, Medical University of Vienna, Austria; Department of
Electrical and Electronics Engineering (M.M.), Faculty of Engineering, Nagasaki
Institute of Applied Science; Department of Neurology and Strokology (S.Y.),
Nagasaki University Hospital; Neurology Clinic with Neuromorphomics Laboratory
(H.S.), Nitobe Memorial Nakano General Hospital, Tokyo; Division of Surgical
Pathology (H.S.), Tokyo Medical and Dental University Hospital; The Center for
Personalized Medicine for Healthy Aging (K.I.), Tokyo Medical and Dental
University; Departments of Diagnostic Pathology and Clinical Laboratory (Y.T.),
Yokosuka Kyosai Hospital, Kanagawa; Department of Neurology (T. Iizuka),
Kitasato University School of Medicine, Kanagawa; Department of Neurology and
Neurological Science (T.Y.), Graduate School, Tokyo Medical and Dental
University; and Department of Neurology (T. Irioka), Yokosuka Kyosai Hospital,
Kanagawa, Japan
| | - Takanori Yokota
- From the Division of Neuropathology and Neurochemistry (M.W., V.E., C.S., G.R.,
R.H.), Department of Neurology, and Department of Neuroimmunology (J.B.), Center
for Brain Research, Medical University of Vienna, Austria; Department of
Electrical and Electronics Engineering (M.M.), Faculty of Engineering, Nagasaki
Institute of Applied Science; Department of Neurology and Strokology (S.Y.),
Nagasaki University Hospital; Neurology Clinic with Neuromorphomics Laboratory
(H.S.), Nitobe Memorial Nakano General Hospital, Tokyo; Division of Surgical
Pathology (H.S.), Tokyo Medical and Dental University Hospital; The Center for
Personalized Medicine for Healthy Aging (K.I.), Tokyo Medical and Dental
University; Departments of Diagnostic Pathology and Clinical Laboratory (Y.T.),
Yokosuka Kyosai Hospital, Kanagawa; Department of Neurology (T. Iizuka),
Kitasato University School of Medicine, Kanagawa; Department of Neurology and
Neurological Science (T.Y.), Graduate School, Tokyo Medical and Dental
University; and Department of Neurology (T. Irioka), Yokosuka Kyosai Hospital,
Kanagawa, Japan
| | | | | |
Collapse
|
22
|
Pottorf TS, Rotterman TM, McCallum WM, Haley-Johnson ZA, Alvarez FJ. The Role of Microglia in Neuroinflammation of the Spinal Cord after Peripheral Nerve Injury. Cells 2022; 11:cells11132083. [PMID: 35805167 PMCID: PMC9265514 DOI: 10.3390/cells11132083] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injuries induce a pronounced immune reaction within the spinal cord, largely governed by microglia activation in both the dorsal and ventral horns. The mechanisms of activation and response of microglia are diverse depending on the location within the spinal cord, type, severity, and proximity of injury, as well as the age and species of the organism. Thanks to recent advancements in neuro-immune research techniques, such as single-cell transcriptomics, novel genetic mouse models, and live imaging, a vast amount of literature has come to light regarding the mechanisms of microglial activation and alluding to the function of microgliosis around injured motoneurons and sensory afferents. Herein, we provide a comparative analysis of the dorsal and ventral horns in relation to mechanisms of microglia activation (CSF1, DAP12, CCR2, Fractalkine signaling, Toll-like receptors, and purinergic signaling), and functionality in neuroprotection, degeneration, regeneration, synaptic plasticity, and spinal circuit reorganization following peripheral nerve injury. This review aims to shed new light on unsettled controversies regarding the diversity of spinal microglial-neuronal interactions following injury.
Collapse
Affiliation(s)
- Tana S. Pottorf
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Travis M. Rotterman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA;
| | - William M. McCallum
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Zoë A. Haley-Johnson
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Francisco J. Alvarez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
- Correspondence:
| |
Collapse
|
23
|
Ruz-Caracuel I, Pian-Arias H, Corral Í, Carretero-Barrio I, Bueno-Sacristán D, Pérez-Mies B, García-Cosío M, Caniego-Casas T, Pizarro D, García-Narros MI, Piris-Villaespesa M, Pestaña D, de Pablo R, Galán JC, Masjuan J, Palacios J. Neuropathological findings in fatal COVID-19 and their associated neurological clinical manifestations. Pathology 2022; 54:738-745. [PMID: 35691726 PMCID: PMC9182090 DOI: 10.1016/j.pathol.2022.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022]
Abstract
Severe cases of Coronavirus Disease 2019 (COVID-19) can present with multiple neurological symptoms. The available neuropathological studies have described different lesions; the most frequent was the presence of neuroinflammation and vascular-related lesions. The objective of this study was to report the neuropathological studies performed in a medical institution, with abundant long intensive care unit stays, and their associated clinical manifestations. This is a retrospective monocentric case series study based on the neuropathological reports of 13 autopsies with a wide range of illness duration (13–108 days). A neuroinflammatory score was calculated based on the quantification of CD8- and CD68-positive cells in representative areas of the central nervous system. This score was correlated afterwards with illness duration and parameters related to systemic inflammation. Widespread microglial and cytotoxic T-cell activation was found in all patients. There was no correlation between the neuroinflammatory score and the duration of the illness; nor with parameters of systemic inflammation such as the peak of IL-6 or the HScore (a parameter of systemic macrophage activation syndrome). Two patients had global hypoxic ischaemic damage and five patients had subacute infarcts. One patient had many more brain vascular microthrombi compared to the others and multiple subacute pituitary infarcts. SARS-CoV-2 RNA was not detected with qRT-PCR. The proportion of brain lesions in severe COVID-19 patients could be related to illness duration. In our series, with abundant long hospitalisation stays, neuroinflammation was present in all patients and was more prominent between day 34 and day 45 after onset of symptoms. Clinical correlation showed that two patients with the highest neuroinflammatory scores had severe encephalopathies that were not attributable to any other cause. The second most frequent lesions were related to vascular pathology.
Collapse
Affiliation(s)
| | - Héctor Pian-Arias
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Íñigo Corral
- Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Universidad de Alcalá de Henares, Madrid, Spain
| | - Irene Carretero-Barrio
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Universidad de Alcalá de Henares, Madrid, Spain
| | | | - Belén Pérez-Mies
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Universidad de Alcalá de Henares, Madrid, Spain; CIBERONC, Madrid, Spain
| | - Mónica García-Cosío
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Universidad de Alcalá de Henares, Madrid, Spain; CIBERONC, Madrid, Spain
| | - Tamara Caniego-Casas
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; CIBERONC, Madrid, Spain
| | - David Pizarro
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | | | | | - David Pestaña
- Universidad de Alcalá de Henares, Madrid, Spain; Anesthesiology and Surgical Critical Care Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Raúl de Pablo
- Universidad de Alcalá de Henares, Madrid, Spain; Department of Intensive Care Medicine, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Juan Carlos Galán
- Clinical Microbiology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; CIBERESP, Madrid, Spain
| | - Jaime Masjuan
- Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Universidad de Alcalá de Henares, Madrid, Spain.
| | - José Palacios
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Universidad de Alcalá de Henares, Madrid, Spain; CIBERONC, Madrid, Spain.
| |
Collapse
|
24
|
Wang YS, Liu D, Wang X, Luo QL, Ding L, Fan DY, Cai QL, Tang CY, Yang W, Guan YG, Li TF, Wang PG, Luan GM, An J. Rasmussen's encephalitis is characterized by relatively lower production of IFN-β and activated cytotoxic T cell upon herpes viruses infection. J Neuroinflammation 2022; 19:70. [PMID: 35337341 PMCID: PMC8957159 DOI: 10.1186/s12974-022-02379-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background The etiology of Rasmussen's encephalitis (RE), a rare chronic neurological disorder characterized by CD8+ T cell infiltration and unihemispheric brain atrophy, is still unknown. Various human herpes viruses (HHVs) have been detected in RE brain, but their contribution to RE pathogenesis is unclear. Methods HHVs infection and relevant immune response were compared among brain tissues from RE, temporal lobe epilepsy (TLE) and traumatic brain injury (TBI) patients. Viral antigen or genome, CD8+ T cells, microglia and innate immunity molecules were analyzed by immunohistochemical staining, DNA dot blot assay or immunofluorescence double staining. Cytokines were measured by multiplex flow cytometry. Cell apoptosis was visualized by TUNEL staining. Viral infection, immune response and the severity of unihemispheric atrophy were subjected to correlation analysis. Results Antigens of various HHVs were prevalent in RE and TLE brains, and the cumulative viral score of HHVs positively correlated with the unihemispheric atrophy in RE patients. CD8+ T cells infiltration were observed in both RE and TLE brains and showed co-localization with HHV antigens, but their activation, as revealed by Granzyme B (GZMB) release and apoptosis, was found only in RE. In comparison to TLE, RE brain tissues contained higher level of inflammatory cytokines, but the interferon-β level, which was negatively correlated with cumulative viral score, was relatively lower. In line with this, the DNA sensor STING and IFI16, rather than other innate immunity signaling molecules, were insufficiently activated in RE. Conclusions Compared with TBI, both RE and TLE had prevalently HHV infection and immune response in brain tissues. However, in comparison to TLE, RE showed insufficient activation of antiviral innate immunity but overactivation of cytotoxic T cells. Our results show the relatively lower level of antiviral innate immunity and overactivation of cytotoxic T cells in RE cases upon HHV infection, the overactivated T cells might be a compensate to the innate immunity but the causative evidence is lack in our study and need more investigation in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02379-0.
Collapse
Affiliation(s)
- Yi-Song Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dong Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xin Wang
- Clinical Laboratory, Peking University International Hospital, Beijing, 102206, China
| | - Qiao-Li Luo
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ling Ding
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic Of China
| | - Dong-Ying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qi-Liang Cai
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic Of China
| | - Chong-Yang Tang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Wei Yang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yu-Guang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Tian-Fu Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Guo-Ming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China. .,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China. .,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| |
Collapse
|
25
|
Tang C, Wang X, Deng J, Xiong Z, Guan Y, Zhou J, Li T, Luan G. Increased inflammasome-activated pyroptosis mediated by caspase-1 in Rasmussen's encephalitis. Epilepsy Res 2022; 179:106843. [PMID: 34954463 DOI: 10.1016/j.eplepsyres.2021.106843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Rasmussen's encephalitis (RE) is a rare, progressive disease characterized by unilateral cerebral hemisphere atrophy. Studies showed that inflammatory response and overexpressed chemokines were present in RE patients. The present study aims to determine whether caspase-1- mediated neuronal pyroptosis occurred in RE. METHODS Immunohistochemistry and Western blotting analysis were used to examine the expression of Gasdermin D (GSDMD), NOD-like receptor protein 1 (NLRP1), NOD-like receptor protein 3 (NLRP3), caspase-1, and pro-caspase-1 in RE and control cortical specimens (n = 14). Perilesional tissue specimens from six focal cortical dysplasia (FCD) cases were used as controls. Double staining showed the colocalization of GSDMD, NLRP1, NLRP3 and caspase-1. Enzyme-linked immunosorbent assay (ELISA) was used to quantify the amount of interleukin (IL)-1β and IL-18 in RE cortical specimens. RESULTS Compared with the control cortex, we found higher GSDMD expression in the cytoplasm of neurons in RE cortex but no detectable expression in astrocytes and microglia. Further analysis revealed that NLRP1, NLRP3, caspase-1 and its precursor pro-caspase-1 were also upregulated in the RE, and predominantly localized in the cytoplasm of the neurons. In addition, significantly higher levels of IL-1β and IL-18 were present in the RE group compared with the control group. CONCLUSION Our results suggest that pyroptosis represents an important pathway for neuronal loss in the pathological processes associated with RE, and that targeting the canonical inflammasome pathway of pyroptosis may provide potential therapeutic value for RE.
Collapse
Affiliation(s)
- Chongyang Tang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Xiongfei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jiahui Deng
- Key Laboratory of Epilepsy, Beijing 100093, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China
| | - Zhonghua Xiong
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jian Zhou
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; Key Laboratory of Epilepsy, Beijing 100093, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; Key Laboratory of Epilepsy, Beijing 100093, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China.
| |
Collapse
|
26
|
Vanderdonckt P, Aloisi F, Comi G, de Bruyn A, Hartung HP, Huitinga I, Kuhlmann T, Lucchinetti CF, Metz I, Reynolds R, Lassmann H. OUP accepted manuscript. Brain Commun 2022; 4:fcac094. [PMID: 35480225 PMCID: PMC9039502 DOI: 10.1093/braincomms/fcac094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/04/2022] [Accepted: 04/13/2022] [Indexed: 12/05/2022] Open
Abstract
Although major progress in multiple sclerosis research has been made during the last decades, key questions related to the cause and the mechanisms of brain and spinal cord pathology remain unresolved. These cover a broad range of topics, including disease aetiology, antigenic triggers of the immune response inside and/or outside the CNS and mechanisms of inflammation, demyelination neurodegeneration and tissue repair. Most of these questions can be addressed with novel molecular technologies in the injured CNS. Access to brain and spinal cord tissue from multiple sclerosis patients is, therefore, of critical importance. High-quality tissue is provided in part by the existing brain banks. However, material from early and highly active disease stages is limited. An initiative, realized under the patronage of the European Charcot Foundation, gathered together experts from different disciplines to analyse the current state of multiple sclerosis tissues collected post-mortem or as biopsies. Here, we present an account of what material is currently available and where it can be accessed. We also provide recommendations on how tissue donation from patients in early disease stages could be potentially increased and for procedures of tissue sampling and preservation. We also suggest to create a registry of the available tissues that, depending on the source (autopsy versus biopsy), could be made accessible to clinicians and researchers.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Giancarlo Comi
- Centro Sclerosi Multipla Ospedale Gallarate and European Charcot Foundation, San Rafaele Scientific Institute, Milano, Italy
| | | | - Hans-Peter Hartung
- Department of Neurology UKD, Germany Medical Faculty, Heinrich Heine Universität, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Camperdown, Australia
- Department of Neurology, University of Vienna, Wien, Austria
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Tanja Kuhlmann
- Institut für Neuropathologie, Universitätsklinikum Münster/UKM, Münster, Germany
| | | | - Imke Metz
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | | | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Wien, Austria
- Correspondence to: Hans Lassmann Center for Brain Research Medical University of Vienna Spitalgasse 4, A-1090 Wien, Austria E-mail:
| |
Collapse
|
27
|
Tröscher AR, Gruber J, Wagner JN, Böhm V, Wahl AS, von Oertzen TJ. Inflammation Mediated Epileptogenesis as Possible Mechanism Underlying Ischemic Post-stroke Epilepsy. Front Aging Neurosci 2021; 13:781174. [PMID: 34966269 PMCID: PMC8711648 DOI: 10.3389/fnagi.2021.781174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/23/2021] [Indexed: 01/19/2023] Open
Abstract
Post-stroke Epilepsy (PSE) is one of the most common forms of acquired epilepsy, especially in the elderly population. As people get increasingly older, the number of stroke patients is expected to rise and concomitantly the number of people with PSE. Although many patients are affected by post-ischemic epileptogenesis, not much is known about the underlying pathomechanisms resulting in the development of chronic seizures. A common hypothesis is that persistent neuroinflammation and glial scar formation cause aberrant neuronal firing. Here, we summarize the clinical features of PSE and describe in detail the inflammatory changes after an ischemic stroke as well as the chronic changes reported in epilepsy. Moreover, we discuss alterations and disturbances in blood-brain-barrier leakage, astrogliosis, and extracellular matrix changes in both, stroke and epilepsy. In the end, we provide an overview of commonalities of inflammatory reactions and cellular processes in the post-ischemic environment and epileptic brain and discuss how these research questions should be addressed in the future.
Collapse
Affiliation(s)
| | - Joachim Gruber
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Judith N Wagner
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Vincent Böhm
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Anna-Sophia Wahl
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Tim J von Oertzen
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| |
Collapse
|
28
|
Ai J, Wang Y, Liu D, Fan D, Wang Q, Li T, Luan G, Wang P, An J. Genetic Factors in Rasmussen's Encephalitis Characterized by Whole-Exome Sequencing. Front Neurosci 2021; 15:744429. [PMID: 34675770 PMCID: PMC8523672 DOI: 10.3389/fnins.2021.744429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 12/01/2022] Open
Abstract
Rasmussen’s encephalitis (RE) is a rare chronic neurological disorder characterized by unihemispheric brain atrophy and epileptic seizures. The mechanisms of RE are complex. Adaptive immunity, innate immunity and viral infection are all involved in the development of RE. However, there are few studies on the role of genetic factors in the mechanisms of RE. Thus, the objective of this study was to reveal the genetic factors in the mechanisms of RE. Whole-exome sequencing (WES) was performed in 15 RE patients. Ten patients with temporal lobe epilepsy (TLE), which is a common and frequently intractable seizure disorder, were used as the controls. Thirty-one non-silent single nucleotide variants (SNVs) affecting 16 genes were identified in the RE cases. The functions of the genes with SNVs were associated with antigen presentation, antiviral infection, epilepsy, schizophrenia and nerve cell regeneration. Genetic factors of RE were found first in this study. These results suggest that RE patients have congenital abnormalities in adaptive immunity and are susceptible to some harmful factors, which lead to polygenic abnormal disease.
Collapse
Affiliation(s)
- Junhong Ai
- Department of Microbiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Yisong Wang
- Department of Microbiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Dong Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongying Fan
- Department of Microbiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Qiqi Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Peigang Wang
- Department of Microbiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Jing An
- Department of Microbiology, School of Basic Medical Science, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
29
|
Thakur KT, Miller EH, Glendinning MD, Al-Dalahmah O, Banu MA, Boehme AK, Boubour AL, Bruce SS, Chong AM, Claassen J, Faust PL, Hargus G, Hickman RA, Jambawalikar S, Khandji AG, Kim CY, Klein RS, Lignelli-Dipple A, Lin CC, Liu Y, Miller ML, Moonis G, Nordvig AS, Overdevest JB, Prust ML, Przedborski S, Roth WH, Soung A, Tanji K, Teich AF, Agalliu D, Uhlemann AC, Goldman JE, Canoll P. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 2021; 144:2696-2708. [PMID: 33856027 PMCID: PMC8083258 DOI: 10.1093/brain/awab148] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 11/14/2022] Open
Abstract
Many patients with SARS-CoV-2 infection develop neurological signs and symptoms; although, to date, little evidence exists that primary infection of the brain is a significant contributing factor. We present the clinical, neuropathological and molecular findings of 41 consecutive patients with SARS-CoV-2 infections who died and underwent autopsy in our medical centre. The mean age was 74 years (38-97 years), 27 patients (66%) were male and 34 (83%) were of Hispanic/Latinx ethnicity. Twenty-four patients (59%) were admitted to the intensive care unit. Hospital-associated complications were common, including eight patients (20%) with deep vein thrombosis/pulmonary embolism, seven (17%) with acute kidney injury requiring dialysis and 10 (24%) with positive blood cultures during admission. Eight (20%) patients died within 24 h of hospital admission, while 11 (27%) died more than 4 weeks after hospital admission. Neuropathological examination of 20-30 areas from each brain revealed hypoxic/ischaemic changes in all brains, both global and focal; large and small infarcts, many of which appeared haemorrhagic; and microglial activation with microglial nodules accompanied by neuronophagia, most prominently in the brainstem. We observed sparse T lymphocyte accumulation in either perivascular regions or in the brain parenchyma. Many brains contained atherosclerosis of large arteries and arteriolosclerosis, although none showed evidence of vasculitis. Eighteen patients (44%) exhibited pathologies of neurodegenerative diseases, which was not unexpected given the age range of our patients. We examined multiple fresh frozen and fixed tissues from 28 brains for the presence of viral RNA and protein, using quantitative reverse-transcriptase PCR, RNAscope® and immunocytochemistry with primers, probes and antibodies directed against the spike and nucleocapsid regions. The PCR analysis revealed low to very low, but detectable, viral RNA levels in the majority of brains, although they were far lower than those in the nasal epithelia. RNAscope® and immunocytochemistry failed to detect viral RNA or protein in brains. Our findings indicate that the levels of detectable virus in coronavirus disease 2019 brains are very low and do not correlate with the histopathological alterations. These findings suggest that microglial activation, microglial nodules and neuronophagia, observed in the majority of brains, do not result from direct viral infection of brain parenchyma, but more likely from systemic inflammation, perhaps with synergistic contribution from hypoxia/ischaemia. Further studies are needed to define whether these pathologies, if present in patients who survive coronavirus disease 2019, might contribute to chronic neurological problems.
Collapse
Affiliation(s)
- Kiran T Thakur
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Emily Happy Miller
- Department of Medicine, Division of Infectious Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the NewYork Presbyterian Hospital, New York, NY 10032, USA
| | - Michael D Glendinning
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Matei A Banu
- Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Amelia K Boehme
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Alexandra L Boubour
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Samuel S Bruce
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Alexander M Chong
- Department of Medicine, Division of Infectious Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the NewYork Presbyterian Hospital, New York, NY 10032, USA
| | - Jan Claassen
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Richard A Hickman
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Sachin Jambawalikar
- Department of Radiology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Alexander G Khandji
- Department of Radiology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Carla Y Kim
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Robyn S Klein
- Departments of Medicine, Pathology and Immunology, Neurosciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela Lignelli-Dipple
- Department of Radiology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Chun-Chieh Lin
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Yang Liu
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Michael L Miller
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Gul Moonis
- Department of Radiology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Anna S Nordvig
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Jonathan B Overdevest
- Department of Otolaryngology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, The New York Presbyterian Hospital, New York, NY 10032, USA
| | - Morgan L Prust
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Serge Przedborski
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - William H Roth
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Allison Soung
- Departments of Medicine, Pathology and Immunology, Neurosciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kurenai Tanji
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Andrew F Teich
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Dritan Agalliu
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the NewYork Presbyterian Hospital, New York, NY 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| |
Collapse
|
30
|
Poloni TE, Medici V, Moretti M, Visonà SD, Cirrincione A, Carlos AF, Davin A, Gagliardi S, Pansarasa O, Cereda C, Tronconi L, Guaita A, Ceroni M. COVID-19-related neuropathology and microglial activation in elderly with and without dementia. Brain Pathol 2021; 31:e12997. [PMID: 34145669 PMCID: PMC8412067 DOI: 10.1111/bpa.12997] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
The actual role of SARS-CoV-2 in brain damage remains controversial due to lack of matched controls. We aim to highlight to what extent is neuropathology determined by SARS-CoV-2 or by pre-existing conditions. Findings of 9 Coronavirus disease 2019 (COVID-19) cases and 6 matched non-COVID controls (mean age 79 y/o) were compared. Brains were analyzed through immunohistochemistry to detect SARS-CoV-2, lymphocytes, astrocytes, endothelium, and microglia. A semi-quantitative scoring was applied to grade microglial activation. Thal-Braak stages and the presence of small vessel disease were determined in all cases. COVID-19 cases had a relatively short clinical course (0-32 days; mean: 10 days), and did not undergo mechanical ventilation. Five patients with neurocognitive disorder had delirium. All COVID-19 cases showed non-SARS-CoV-2-specific changes including hypoxic-agonal alterations, and a variable degree of neurodegeneration and/or pre-existent SVD. The neuroinflammatory picture was dominated by ameboid CD68 positive microglia, while only scant lymphocytic presence and very few traces of SARS-CoV-2 were detected. Microglial activation in the brainstem was significantly greater in COVID-19 cases (p = 0.046). Instead, microglial hyperactivation in the frontal cortex and hippocampus was clearly associated to AD pathology (p = 0.001), regardless of the SARS-CoV-2 infection. In COVID-19 cases complicated by delirium (all with neurocognitive disorders), there was a significant enhancement of microglia in the hippocampus (p = 0.048). Although higher in cases with both Alzheimer's pathology and COVID-19, cortical neuroinflammation is not related to COVID-19 per se but mostly to pre-existing neurodegeneration. COVID-19 brains seem to manifest a boosting of innate immunity with microglial reinforcement, and adaptive immunity suppression with low number of brain lymphocytes probably related to systemic lymphopenia. Thus, no neuropathological evidence of SARS-CoV-2-specific encephalitis is detectable. The microglial hyperactivation in the brainstem, and in the hippocampus of COVID-19 patients with delirium, appears as a specific topographical phenomenon, and probably represents the neuropathological basis of the "COVID-19 encephalopathic syndrome" in the elderly.
Collapse
Affiliation(s)
- Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Abbiategrasso Brain BankGolgi‐Cenci FoundationMilanItaly
- Department of RehabilitationASP Golgi‐RedaelliMilanItaly
| | - Valentina Medici
- Department of Neurology and Neuropathology, Abbiategrasso Brain BankGolgi‐Cenci FoundationMilanItaly
| | - Matteo Moretti
- Department of Public Health, Experimental and Forensic MedicineUniversity of PaviaPaviaItaly
| | - Silvia Damiana Visonà
- Department of Public Health, Experimental and Forensic MedicineUniversity of PaviaPaviaItaly
| | - Alice Cirrincione
- Department of Neurology and Neuropathology, Abbiategrasso Brain BankGolgi‐Cenci FoundationMilanItaly
| | - Arenn Faye Carlos
- Department of Neurology and Neuropathology, Abbiategrasso Brain BankGolgi‐Cenci FoundationMilanItaly
| | - Annalisa Davin
- Department of Neurology and Neuropathology, Abbiategrasso Brain BankGolgi‐Cenci FoundationMilanItaly
| | - Stella Gagliardi
- Genomic and Post‐Genomic CenterIRCCS Mondino FoundationPaviaItaly
| | | | - Cristina Cereda
- Genomic and Post‐Genomic CenterIRCCS Mondino FoundationPaviaItaly
| | - Livio Tronconi
- Department of Public Health, Experimental and Forensic MedicineUniversity of PaviaPaviaItaly
- Department of Forensic MedicineIRCCS Mondino FoundationPaviaItaly
| | - Antonio Guaita
- Department of Neurology and Neuropathology, Abbiategrasso Brain BankGolgi‐Cenci FoundationMilanItaly
| | - Mauro Ceroni
- Department of Brain and Behavioral DisordersUniversity of PaviaPaviaItaly
- Department of General NeurologyIRCCS Mondino FoundationPaviaItaly
| |
Collapse
|
31
|
Enlow W, Bordeleau M, Piret J, Ibáñez FG, Uyar O, Venable MC, Goyette N, Carbonneau J, Tremblay ME, Boivin G. Microglia are involved in phagocytosis and extracellular digestion during Zika virus encephalitis in young adult immunodeficient mice. J Neuroinflammation 2021; 18:178. [PMID: 34399779 PMCID: PMC8369691 DOI: 10.1186/s12974-021-02221-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) has been associated with several neurological complications in adult patients. METHODS We used a mouse model deficient in TRIF and IPS-1 adaptor proteins, which are involved in type I interferon production, to study the role of microglia during brain infection by ZIKV. Young adult mice were infected intravenously with the contemporary ZIKV strain PRVABC59 (1 × 105 PFUs/100 µL). RESULTS Infected mice did not present overt clinical signs of the disease nor body weight loss compared with noninfected animals. However, mice exhibited a viremia and a brain viral load that were maximal (1.3 × 105 genome copies/mL and 9.8 × 107 genome copies/g of brain) on days 3 and 7 post-infection (p.i.), respectively. Immunohistochemistry analysis showed that ZIKV antigens were distributed in several regions of the brain, especially the dorsal hippocampus. The number of Iba1+/TMEM119+ microglia remained similar in infected versus noninfected mice, but their cell body and arborization areas significantly increased in the stratum radiatum and stratum lacunosum-moleculare layers of the dorsal hippocampus cornu ammoni (CA)1, indicating a reactive state. Ultrastructural analyses also revealed that microglia displayed increased phagocytic activities and extracellular digestion of degraded elements during infection. Mice pharmacologically depleted in microglia with PLX5622 presented a higher brain viral load compared to untreated group (2.8 × 1010 versus 8.5 × 108 genome copies/g of brain on day 10 p.i.) as well as an increased number of ZIKV antigens labeled with immunogold in the cytoplasm and endoplasmic reticulum of neurons and astrocytes indicating an enhanced viral replication. Furthermore, endosomes of astrocytes contained nanogold particles together with digested materials, suggesting a compensatory phagocytic activity upon microglial depletion. CONCLUSIONS These results indicate that microglia are involved in the control of ZIKV replication and/or its elimination in the brain. After depletion of microglia, the removal of ZIKV-infected cells by phagocytosis could be partly compensated by astrocytes.
Collapse
Affiliation(s)
- William Enlow
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Neurosciences Axis, Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Jocelyne Piret
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Fernando González Ibáñez
- Neurosciences Axis, Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Olus Uyar
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Marie-Christine Venable
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Nathalie Goyette
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Julie Carbonneau
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Marie-Eve Tremblay
- Neurosciences Axis, Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada. .,Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada. .,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada. .,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| | - Guy Boivin
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
32
|
Wiendl H, Gross CC, Bauer J, Merkler D, Prat A, Liblau R. Fundamental mechanistic insights from rare but paradigmatic neuroimmunological diseases. Nat Rev Neurol 2021; 17:433-447. [PMID: 34050331 DOI: 10.1038/s41582-021-00496-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/04/2023]
Abstract
The pathophysiology of complex neuroimmunological diseases, such as multiple sclerosis and autoimmune encephalitis, remains puzzling - various mechanisms that are difficult to dissect seem to contribute, hampering the understanding of the processes involved. Some rare neuroimmunological diseases are easier to study because their presentation and pathogenesis are more homogeneous. The investigation of these diseases can provide fundamental insights into neuroimmunological pathomechanisms that can in turn be applied to more complex diseases. In this Review, we summarize key mechanistic insights into three such rare but paradigmatic neuroimmunological diseases - Susac syndrome, Rasmussen encephalitis and narcolepsy type 1 - and consider the implications of these insights for the study of other neuroimmunological diseases. In these diseases, the combination of findings in humans, different modalities of investigation and animal models has enabled the triangulation of evidence to validate and consolidate the pathomechanistic features and to develop diagnostic and therapeutic strategies; this approach has provided insights that are directly relevant to other neuroimmunological diseases and applicable in other contexts. We also outline how next-generation technologies and refined animal models can further improve our understanding of pathomechanisms, including cell-specific and antigen-specific CNS immune responses, thereby paving the way for the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany.
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Alexandre Prat
- Department of Neuroscience, University of Montreal, Montreal, Canada
| | - Roland Liblau
- Infinity, Université Toulouse, CNRS, Inserm, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Immunology Department, Toulouse, France
| |
Collapse
|
33
|
Yang AC, Kern F, Losada PM, Agam MR, Maat CA, Schmartz GP, Fehlmann T, Stein JA, Schaum N, Lee DP, Calcuttawala K, Vest RT, Berdnik D, Lu N, Hahn O, Gate D, McNerney MW, Channappa D, Cobos I, Ludwig N, Schulz-Schaeffer WJ, Keller A, Wyss-Coray T. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 2021; 595:565-571. [PMID: 34153974 PMCID: PMC8400927 DOI: 10.1038/s41586-021-03710-0] [Citation(s) in RCA: 402] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/07/2021] [Indexed: 01/08/2023]
Abstract
Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms1-3. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease4-6. Synaptic signalling of upper-layer excitatory neurons-which are evolutionarily expanded in humans7 and linked to cognitive function8-is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.
Collapse
Affiliation(s)
- Andrew C Yang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Fabian Kern
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Patricia M Losada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Maayan R Agam
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina A Maat
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Georges P Schmartz
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Julian A Stein
- Institute for Neuropathology, Saarland University Hospital and Medical Faculty of Saarland University, Homburg, Germany
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Davis P Lee
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kruti Calcuttawala
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan T Vest
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniela Berdnik
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - David Gate
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - M Windy McNerney
- Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
| | - Divya Channappa
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Inma Cobos
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Walter J Schulz-Schaeffer
- Institute for Neuropathology, Saarland University Hospital and Medical Faculty of Saarland University, Homburg, Germany
| | - Andreas Keller
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.
| | - Tony Wyss-Coray
- ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
34
|
Schwabenland M, Salié H, Tanevski J, Killmer S, Lago MS, Schlaak AE, Mayer L, Matschke J, Püschel K, Fitzek A, Ondruschka B, Mei HE, Boettler T, Neumann-Haefelin C, Hofmann M, Breithaupt A, Genc N, Stadelmann C, Saez-Rodriguez J, Bronsert P, Knobeloch KP, Blank T, Thimme R, Glatzel M, Prinz M, Bengsch B. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity 2021; 54:1594-1610.e11. [PMID: 34174183 PMCID: PMC8188302 DOI: 10.1016/j.immuni.2021.06.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/23/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022]
Abstract
COVID-19 can cause severe neurological symptoms, but the underlying pathophysiological mechanisms are unclear. Here, we interrogated the brain stems and olfactory bulbs in postmortem patients who had COVID-19 using imaging mass cytometry to understand the local immune response at a spatially resolved, high-dimensional, single-cell level and compared their immune map to non-COVID respiratory failure, multiple sclerosis, and control patients. We observed substantial immune activation in the central nervous system with pronounced neuropathology (astrocytosis, axonal damage, and blood-brain-barrier leakage) and detected viral antigen in ACE2-receptor-positive cells enriched in the vascular compartment. Microglial nodules and the perivascular compartment represented COVID-19-specific, microanatomic-immune niches with context-specific cellular interactions enriched for activated CD8+ T cells. Altered brain T-cell-microglial interactions were linked to clinical measures of systemic inflammation and disturbed hemostasis. This study identifies profound neuroinflammation with activation of innate and adaptive immune cells as correlates of COVID-19 neuropathology, with implications for potential therapeutic strategies.
Collapse
Affiliation(s)
- Marius Schwabenland
- Institute of Neuropathology and Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Henrike Salié
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Jovan Tanevski
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Saskia Killmer
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Marilyn Salvat Lago
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Alexandra Emilia Schlaak
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Lena Mayer
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Fitzek
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrik E Mei
- German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Tobias Boettler
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Nafiye Genc
- Institute of Neuropathology, University of Goettingen, Goettingen, Germany
| | | | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology and Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Blank
- Institute of Neuropathology and Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marco Prinz
- Institute of Neuropathology and Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Bertram Bengsch
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany; Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
35
|
Tröscher AR, Sakaraki E, Mair KM, Köck U, Racz A, Borger V, Cloppenborg T, Becker AJ, Bien CG, Bauer J. T cell numbers correlate with neuronal loss rather than with seizure activity in medial temporal lobe epilepsy. Epilepsia 2021; 62:1343-1353. [PMID: 33954995 DOI: 10.1111/epi.16914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Medial temporal lobe epilepsy (MTLE) is a drug-resistant focal epilepsy that can be caused by a broad spectrum of different inciting events, including tumors, febrile seizures, and viral infections. In human epilepsy surgical resections as well as in animal models, an involvement of the adaptive immune system was observed. We here analyzed the presence of T cells in various subgroups of MTLE. We aimed to answer the question of how much inflammation was present and whether the presence of T cells was associated with seizures or associated with hippocampal neurodegeneration. METHODS We quantified the numbers of CD3+ T cells and CD8+ cytotoxic T cells in the hippocampus of patients with gangliogliomas (GGs; intrahippocampal and extrahippocampal, with and without sclerosis), febrile seizures, and postinfectious encephalitic epilepsy and compared this with Rasmussen encephalitis, Alzheimer disease, and normal controls. RESULTS We could show that T cell numbers were significantly elevated in MTLE compared to healthy controls. CD3+ as well as CD8+ T cell numbers, however, varied highly among MTLE subgroups. By comparing GG patients with and without hippocampal sclerosis (HS), we were able to show that T-cell numbers were increased in extrahippocampal GG patients with hippocampal neuronal loss and HS, whereas extrahippocampal GG cases without hippocampal neuronal loss (i.e., absence of HS) did not differ from healthy controls. Importantly, T cell numbers in MTLE correlated with the degree of neuronal loss, whereas no correlation with seizure frequency or disease duration was found. Finally, we found that in nearly all MTLE groups, T cell numbers remained elevated even years after the inciting event. SIGNIFICANCE We here provide a detailed histopathological investigation of the involvement of T cells in various subgroups of MTLE, which suggests that T cell influx correlates to neuronal loss rather than seizure activity.
Collapse
Affiliation(s)
- Anna R Tröscher
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Eirini Sakaraki
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Katharina M Mair
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ulrike Köck
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Attila Racz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Thomas Cloppenborg
- Department of Epileptology (Krankenhaus Mara), Medical School, Campus Bielefeld-Bethel Bielefeld, Bielefeld University, Bielefeld, Germany
| | - Albert J Becker
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Medical School, Campus Bielefeld-Bethel Bielefeld, Bielefeld University, Bielefeld, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Ten Bosch GJA, Bolk J, 't Hart BA, Laman JD. Multiple sclerosis is linked to MAPK ERK overactivity in microglia. J Mol Med (Berl) 2021; 99:1033-1042. [PMID: 33948692 PMCID: PMC8313465 DOI: 10.1007/s00109-021-02080-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022]
Abstract
Reassessment of published observations in patients with multiple sclerosis (MS) suggests a microglial malfunction due to inappropriate (over)activity of the mitogen-activated protein kinase pathway ERK (MAPKERK). These observations regard biochemistry as well as epigenetics, and all indicate involvement of this pathway. Recent preclinical research on neurodegeneration already pointed towards a role of MAPK pathways, in particular MAPKERK. This is important as microglia with overactive MAPK have been identified to disturb local oligodendrocytes which can lead to locoregional demyelination, hallmark of MS. This constitutes a new concept on pathophysiology of MS, besides the prevailing view, i.e., autoimmunity. Acknowledged risk factors for MS, such as EBV infection, hypovitaminosis D, and smoking, all downregulate MAPKERK negative feedback phosphatases that normally regulate MAPKERK activity. Consequently, these factors may contribute to inappropriate MAPKERK overactivity, and thereby to neurodegeneration. Also, MAPKERK overactivity in microglia, as a factor in the pathophysiology of MS, could explain ongoing neurodegeneration in MS patients despite optimized immunosuppressive or immunomodulatory treatment. Currently, for these patients with progressive disease, no effective treatment exists. In such refractory MS, targeting the cause of overactive MAPKERK in microglia merits further investigation as this phenomenon may imply a novel treatment approach.
Collapse
Affiliation(s)
- George J A Ten Bosch
- Department of Medical Oncology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Jolande Bolk
- Department of Anesthesiology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Bert A 't Hart
- Department Anatomy and Neuroscience, Amsterdam University Medical Center (VUmc), Amsterdam, The Netherlands.,Department Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Jon D Laman
- Department Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Maximova OA, Sturdevant DE, Kash JC, Kanakabandi K, Xiao Y, Minai M, Moore IN, Taubenberger J, Martens C, Cohen JI, Pletnev AG. Virus infection of the CNS disrupts the immune-neural-synaptic axis via induction of pleiotropic gene regulation of host responses. eLife 2021; 10:e62273. [PMID: 33599611 PMCID: PMC7891934 DOI: 10.7554/elife.62273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Treatment for many viral infections of the central nervous system (CNS) remains only supportive. Here we address a remaining gap in our knowledge regarding how the CNS and immune systems interact during viral infection. By examining the regulation of the immune and nervous system processes in a nonhuman primate model of West Nile virus neurological disease, we show that virus infection disrupts the homeostasis of the immune-neural-synaptic axis via induction of pleiotropic genes with distinct functions in each component of the axis. This pleiotropic gene regulation suggests an unintended off-target negative impact of virus-induced host immune responses on the neurotransmission, which may be a common feature of various viral infections of the CNS.
Collapse
Affiliation(s)
- Olga A Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Daniel E Sturdevant
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - John C Kash
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Kishore Kanakabandi
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Yongli Xiao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Jeff Taubenberger
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Craig Martens
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Alexander G Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
38
|
Zrzavy T, Schwaiger C, Wimmer I, Berger T, Bauer J, Butovsky O, Schwab JM, Lassmann H, Höftberger R. Acute and non-resolving inflammation associate with oxidative injury after human spinal cord injury. Brain 2021; 144:144-161. [PMID: 33578421 PMCID: PMC7880675 DOI: 10.1093/brain/awaa360] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/08/2020] [Accepted: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
Traumatic spinal cord injury is a devastating insult followed by progressive cord atrophy and neurodegeneration. Dysregulated or non-resolving inflammatory processes can disturb neuronal homeostasis and drive neurodegeneration. Here, we provide an in-depth characterization of innate and adaptive inflammatory responses as well as oxidative tissue injury in human traumatic spinal cord injury lesions compared to non-traumatic control cords. In the lesion core, microglia were rapidly lost while intermediate (co-expressing pro- as well as anti-inflammatory molecules) blood-borne macrophages dominated. In contrast, in the surrounding rim, TMEM119+ microglia numbers were maintained through local proliferation and demonstrated a predominantly pro-inflammatory phenotype. Lymphocyte numbers were low and mainly consisted of CD8+ T cells. Only in a subpopulation of patients, CD138+/IgG+ plasma cells were detected, which could serve as candidate cellular sources for a developing humoral immunity. Oxidative neuronal cell body and axonal injury was visualized by intracellular accumulation of amyloid precursor protein (APP) and oxidized phospholipids (e06) and occurred early within the lesion core and declined over time. In contrast, within the surrounding rim, pronounced APP+/e06+ axon-dendritic injury of neurons was detected, which remained significantly elevated up to months/years, thus providing mechanistic evidence for ongoing neuronal damage long after initial trauma. Dynamic and sustained neurotoxicity after human spinal cord injury might be a substantial contributor to (i) an impaired response to rehabilitation; (ii) overall failure of recovery; or (iii) late loss of recovered function (neuro-worsening/degeneration).
Collapse
Affiliation(s)
- Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Carmen Schwaiger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, Austria
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Womeńs Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jan M Schwab
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH 43210, USA
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
- Department of Physical Medicine & Rehabilitation, The Ohio State University, Columbus, OH 43210, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Tan THL, Perucca P, O'Brien TJ, Kwan P, Monif M. Inflammation, ictogenesis, and epileptogenesis: An exploration through human disease. Epilepsia 2020; 62:303-324. [PMID: 33316111 DOI: 10.1111/epi.16788] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 12/14/2022]
Abstract
Epilepsy is seen historically as a disease of aberrant neuronal signaling manifesting as seizures. With the discovery of numerous auto-antibodies and the subsequent growth in understanding of autoimmune encephalitis, there has been an increasing emphasis on the contribution of the innate and adaptive immune system to ictogenesis and epileptogenesis. Pathogenic antibodies, complement activation, CD8+ cytotoxic T cells, and microglial activation are seen, to various degrees, in different seizure-associated neuroinflammatory and autoimmune conditions. These aberrant immune responses are thought to cause disruptions in neuronal signaling, generation of acute symptomatic seizures, and, in some cases, the development of long-term autoimmune epilepsy. Although early treatment with immunomodulatory therapies improves outcomes in autoimmune encephalitides and autoimmune epilepsies, patient identification and treatment selection are not always clear-cut. This review examines the role of the different components of the immune system in various forms of seizure disorders including autoimmune encephalitis, autoimmune epilepsy, Rasmussen encephalitis, febrile infection-related epilepsy syndrome (FIRES), and new-onset refractory status epilepticus (NORSE). In particular, the pathophysiology and unique cytokine profiles seen in these disorders and their links with diagnosis, prognosis, and treatment decision-making are discussed.
Collapse
Affiliation(s)
- Tracie Huey-Lin Tan
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Tang C, Luan G, Li T. Rasmussen's encephalitis: mechanisms update and potential therapy target. Ther Adv Chronic Dis 2020; 11:2040622320971413. [PMID: 33294146 PMCID: PMC7705182 DOI: 10.1177/2040622320971413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Rasmussen’s encephalitis (RE) is rare neurological diseases characterized as epilepsia partialis continua, invariably hemiparesis, and cognitive impairment. This disease is encountered frequently in childhood and presents with progressive atrophy of the unilateral hemisphere, and there are also sustained neurological complications. Owing to uncertain pathogenesis, the most effective way to limit the influence of seizures currently is cerebral hemispherectomy. In this review, we focus on four main lines of pathogenesis: virus infection, antibody-mediated, cell-mediated immunity, and microglia activation. Although one or more antigenic epitopes may give rise to infiltrating T cell responses in RE brain tissue, no exact antigen was confirmed as the definite cause of the disease. On the other hand, the appearance of antibodies related with RE seem to be a secondary pathological process. Synthetic studies have suggested an adaptive immune mechanism mediated by CD8+ T cells and an innate immune mechanism mediated by activated microglia and neuroglia. Accordingly, opinions have been raised that immunomodulatory treatments aimed at initial damage to the brain that are induced by cytotoxic CD8+ T cell lymphocytes and microglia in the early stage of RE slow down disease progression. However, systematic exploration of the theory behind these therapeutic effects based on multicenter and large sample studies are needed. In addition, dysfunction of the adenosine system, including the main adenosine removing enzyme adenosine kinase and adenosine receptors, has been demonstrated in RE, which might provide a novel therapeutic target for treatment of RE in future.
Collapse
Affiliation(s)
- Chongyang Tang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Department of Neurology, SanBo Brain Hospital, Capital Medical University No. 50 Xiangshanyikesong Road, Haidian District, Beijing, 100093, China
| |
Collapse
|
41
|
Stojić-Vukanić Z, Hadžibegović S, Nicole O, Nacka-Aleksić M, Leštarević S, Leposavić G. CD8+ T Cell-Mediated Mechanisms Contribute to the Progression of Neurocognitive Impairment in Both Multiple Sclerosis and Alzheimer's Disease? Front Immunol 2020; 11:566225. [PMID: 33329528 PMCID: PMC7710704 DOI: 10.3389/fimmu.2020.566225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Neurocognitive impairment (NCI) is one of the most relevant clinical manifestations of multiple sclerosis (MS). The profile of NCI and the structural and functional changes in the brain structures relevant for cognition in MS share some similarities to those in Alzheimer's disease (AD), the most common cause of neurocognitive disorders. Additionally, despite clear etiopathological differences between MS and AD, an accumulation of effector/memory CD8+ T cells and CD8+ tissue-resident memory T (Trm) cells in cognitively relevant brain structures of MS/AD patients, and higher frequency of effector/memory CD8+ T cells re-expressing CD45RA (TEMRA) with high capacity to secrete cytotoxic molecules and proinflammatory cytokines in their blood, were found. Thus, an active pathogenetic role of CD8+ T cells in the progression of MS and AD may be assumed. In this mini-review, findings supporting the putative role of CD8+ T cells in the pathogenesis of MS and AD are displayed, and putative mechanisms underlying their pathogenetic action are discussed. A special effort was made to identify the gaps in the current knowledge about the role of CD8+ T cells in the development of NCI to "catalyze" translational research leading to new feasible therapeutic interventions.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Senka Hadžibegović
- Institut des Maladies Neurodégénératives, CNRS, UMR5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR5293, Bordeaux, France
| | - Olivier Nicole
- Institut des Maladies Neurodégénératives, CNRS, UMR5293, Bordeaux, France.,Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR5293, Bordeaux, France
| | - Mirjana Nacka-Aleksić
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Sanja Leštarević
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
42
|
Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, Mushumba H, Fitzek A, Allweiss L, Dandri M, Dottermusch M, Heinemann A, Pfefferle S, Schwabenland M, Sumner Magruder D, Bonn S, Prinz M, Gerloff C, Püschel K, Krasemann S, Aepfelbacher M, Glatzel M. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 2020; 19:919-929. [PMID: 33031735 PMCID: PMC7535629 DOI: 10.1016/s1474-4422(20)30308-2] [Citation(s) in RCA: 901] [Impact Index Per Article: 180.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prominent clinical symptoms of COVID-19 include CNS manifestations. However, it is unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, gains access to the CNS and whether it causes neuropathological changes. We investigated the brain tissue of patients who died from COVID-19 for glial responses, inflammatory changes, and the presence of SARS-CoV-2 in the CNS. METHODS In this post-mortem case series, we investigated the neuropathological features in the brains of patients who died between March 13 and April 24, 2020, in Hamburg, Germany. Inclusion criteria comprised a positive test for SARS-CoV-2 by quantitative RT-PCR (qRT-PCR) and availability of adequate samples. We did a neuropathological workup including histological staining and immunohistochemical staining for activated astrocytes, activated microglia, and cytotoxic T lymphocytes in the olfactory bulb, basal ganglia, brainstem, and cerebellum. Additionally, we investigated the presence and localisation of SARS-CoV-2 by qRT-PCR and by immunohistochemistry in selected patients and brain regions. FINDINGS 43 patients were included in our study. Patients died in hospitals, nursing homes, or at home, and were aged between 51 years and 94 years (median 76 years [IQR 70-86]). We detected fresh territorial ischaemic lesions in six (14%) patients. 37 (86%) patients had astrogliosis in all assessed regions. Activation of microglia and infiltration by cytotoxic T lymphocytes was most pronounced in the brainstem and cerebellum, and meningeal cytotoxic T lymphocyte infiltration was seen in 34 (79%) patients. SARS-CoV-2 could be detected in the brains of 21 (53%) of 40 examined patients, with SARS-CoV-2 viral proteins found in cranial nerves originating from the lower brainstem and in isolated cells of the brainstem. The presence of SARS-CoV-2 in the CNS was not associated with the severity of neuropathological changes. INTERPRETATION In general, neuropathological changes in patients with COVID-19 seem to be mild, with pronounced neuroinflammatory changes in the brainstem being the most common finding. There was no evidence for CNS damage directly caused by SARS-CoV-2. The generalisability of these findings needs to be validated in future studies as the number of cases and availability of clinical data were low and no age-matched and sex-matched controls were included. FUNDING German Research Foundation, Federal State of Hamburg, EU (eRARE), German Center for Infection Research (DZIF).
Collapse
Affiliation(s)
- Jakob Matschke
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany; Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck-Riems, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Jan P Sperhake
- Institute of Legal Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Ann Sophie Schröder
- Institute of Legal Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Carolin Edler
- Institute of Legal Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Institute of Legal Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Fitzek
- Institute of Legal Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- I Department of Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- I Department of Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany; Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck-Riems, Germany
| | - Matthias Dottermusch
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Heinemann
- Institute of Legal Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Pfefferle
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | | | - Daniel Sumner Magruder
- Institute of Medical Systems Biology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
43
|
Rasmussen's encephalitis: From immune pathogenesis towards targeted-therapy. Seizure 2020; 81:76-83. [DOI: 10.1016/j.seizure.2020.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
|
44
|
Kipp M. Does Siponimod Exert Direct Effects in the Central Nervous System? Cells 2020; 9:cells9081771. [PMID: 32722245 PMCID: PMC7463861 DOI: 10.3390/cells9081771] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes in lymph nodes. Different sphingosine 1-phosphate receptor subtypes are expressed in the brain and spinal cord, and their pharmacological effects may improve disease development and neuropathology. Siponimod (BAF312) is a novel sphingosine 1-phosphate receptor modulator that has recently been approved for the treatment of active secondary progressive multiple sclerosis (MS). In this review article, we summarize recent evidence suggesting that the active role of siponimod in patients with progressive MS may be due to direct interaction with central nervous system cells. Additionally, we tried to summarize our current understanding of the function of siponimod and discuss the effects observed in the case of MS.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| |
Collapse
|
45
|
Yshii L, Bost C, Liblau R. Immunological Bases of Paraneoplastic Cerebellar Degeneration and Therapeutic Implications. Front Immunol 2020; 11:991. [PMID: 32655545 PMCID: PMC7326021 DOI: 10.3389/fimmu.2020.00991] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Paraneoplastic cerebellar degeneration (PCD) is a rare immune-mediated disease that develops mostly in the setting of neoplasia and offers a unique prospect to explore the interplay between tumor immunity and autoimmunity. In PCD, the deleterious adaptive immune response targets self-antigens aberrantly expressed by tumor cells, mostly gynecological cancers, and physiologically expressed by the Purkinje neurons of the cerebellum. Highly specific anti-neuronal antibodies in the serum and cerebrospinal fluid represent key diagnostic biomarkers of PCD. Some anti-neuronal antibodies such as anti-Yo autoantibodies (recognizing the CDR2/CDR2L proteins) are only associated with PCD. Other anti-neuronal antibodies, such as anti-Hu, anti-Ri, and anti-Ma2, are detected in patients with PCD or other types of paraneoplastic neurological manifestations. Importantly, these autoantibodies cannot transfer disease and evidence for a pathogenic role of autoreactive T cells is accumulating. However, the precise mechanisms responsible for disruption of self-tolerance to neuronal self-antigens in the cancer setting and the pathways involved in pathogenesis within the cerebellum remain to be fully deciphered. Although the occurrence of PCD is rare, the risk for such severe complication may increase with wider use of cancer immunotherapy, notably immune checkpoint blockade. Here, we review recent literature pertaining to the pathophysiology of PCD and propose an immune scheme underlying this disabling disease. Additionally, based on observations from patients' samples and on the pre-clinical model we recently developed, we discuss potential therapeutic strategies that could blunt this cerebellum-specific autoimmune disease.
Collapse
Affiliation(s)
- Lidia Yshii
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Chloé Bost
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| | - Roland Liblau
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| |
Collapse
|
46
|
Rotterman TM, Alvarez FJ. Microglia Dynamics and Interactions with Motoneurons Axotomized After Nerve Injuries Revealed By Two-Photon Imaging. Sci Rep 2020; 10:8648. [PMID: 32457369 PMCID: PMC7250868 DOI: 10.1038/s41598-020-65363-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/01/2020] [Indexed: 01/08/2023] Open
Abstract
The significance of activated microglia around motoneurons axotomized after nerve injuries has been intensely debated. In particular, whether microglia become phagocytic is controversial. To resolve these issues we directly observed microglia behaviors with two-photon microscopy in ex vivo spinal cord slices from CX3CR1-GFP mice complemented with confocal analyses of CD68 protein. Axotomized motoneurons were retrogradely-labeled from muscle before nerve injuries. Microglia behaviors close to axotomized motoneurons greatly differ from those within uninjured motor pools. They develop a phagocytic phenotype as early as 3 days after injury, characterized by frequent phagocytic cups, high phagosome content and CD68 upregulation. Interactions between microglia and motoneurons changed with time after axotomy. Microglia first extend processes that end in phagocytic cups at the motoneuron surface, then they closely attach to the motoneuron while extending filopodia over the cell body. Confocal 3D analyses revealed increased microglia coverage of the motoneuron cell body surface with time after injury and the presence of CD68 granules in microglia surfaces opposed to motoneurons. Some microglia formed macroclusters associated with dying motoneurons. Microglia in these clusters display the highest CD68 expression and associate with cytotoxic T-cells. These observations are discussed in relation to current theories on microglia function around axotomized motoneurons.
Collapse
Affiliation(s)
- Travis M Rotterman
- Department of Physiology, Emory University, Atlanta, GA, 30322, United States of America.,School of Biological Sciences, Georgia Tech, Atlanta, GA, 30318, United States of America
| | - Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA, 30322, United States of America.
| |
Collapse
|
47
|
Low CSF CD4/CD8+ T-cell proportions are associated with blood-CSF barrier dysfunction in limbic encephalitis. Epilepsy Behav 2020; 102:106682. [PMID: 31846897 DOI: 10.1016/j.yebeh.2019.106682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/10/2019] [Accepted: 11/02/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE Investigating immune cells in autoimmune limbic encephalitis (LE) will contribute to our understanding of its pathophysiology and may help to develop appropriate therapies. The aim of the present study was to analyze immune cells to reveal underlying immune signatures in patients with temporal lobe epilepsy (TLE) with LE. METHODS We investigated 68 patients with TLE with LE compared with 7 control patients with TLE with no signs of LE screened from 154 patients with suspected LE. From the patients with TLE-LE, we differentiated early seizure onset (<20 years, n = 9) and late seizure onset group (≥20 years, n = 59) of patients. Patients underwent neuropsychological assessment, electroencephalography (EEG), brain magnetic resonance imaging (MRI), and peripheral blood (PB) and cerebrospinal fluid (CSF) analysis including flow cytometry. RESULTS We identified a higher CD4/8+ T-cell ratio in the PB in all patients with TLE-LE and in patients with late-onset TLE-LE each compared with controls (Kruskal-Wallis one-way ANOVA (analysis of variance) with Dunn's test, p < 0.05). Moreover, a lower CD4/CD8+ T-cell ratio is detected in all patients with TLE-LE with blood-CSF barrier dysfunction, unlike in those with none (Kruskal-Wallis one-way ANOVA with Dunn's test, p < 0.05). CONCLUSIONS These findings suggest that the proportion of CD4+ and CD8+ T-cells in the CSF of patients with LE associated with blood-CSF barrier dysfunction plays a potential role in CNS (central nervous system) inflammation in these patients. Thus, flow cytometry as a methodology reveals novel insights into LE's genesis and symptomatology. The CD4/8+ T-cell ratio in PB as a biomarker for LE requires further investigation.
Collapse
|
48
|
Lassmann H. Pathology of inflammatory diseases of the nervous system: Human disease versus animal models. Glia 2019; 68:830-844. [PMID: 31605512 PMCID: PMC7065008 DOI: 10.1002/glia.23726] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
Numerous recent studies have been performed to elucidate the function of microglia, macrophages, and astrocytes in inflammatory diseases of the central nervous system. Regarding myeloid cells a core pattern of activation has been identified, starting with the activation of resident homeostatic microglia followed by recruitment of blood borne myeloid cells. An initial state of proinflammatory activation is at later stages followed by a shift toward an‐anti‐inflammatory and repair promoting phenotype. Although this core pattern is similar between experimental models and inflammatory conditions in the human brain, there are important differences. Even in the normal human brain a preactivated microglia phenotype is evident, and there are disease specific and lesion stage specific differences in the contribution between resident and recruited myeloid cells and their lesion state specific activation profiles. Reasons for these findings reside in species related differences and in differential exposure to different environmental cues. Most importantly, however, experimental rodent studies on brain inflammation are mainly focused on autoimmune encephalomyelitis, while there is a very broad spectrum of human inflammatory diseases of the central nervous system, triggered and propagated by a variety of different immune mechanisms.
Collapse
Affiliation(s)
- Hans Lassmann
- Institut fur Hirnforschung, Medical University of Vienna, Wien, Austria
| |
Collapse
|
49
|
Chen Z, Zhong D, Li G. The role of microglia in viral encephalitis: a review. J Neuroinflammation 2019; 16:76. [PMID: 30967139 PMCID: PMC6454758 DOI: 10.1186/s12974-019-1443-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/24/2019] [Indexed: 12/16/2022] Open
Abstract
Viral encephalitis is still very prominent around the world, and traditional antiviral therapies still have shortcomings. Some patients cannot get effective relief or suffer from serious sequelae. At present, people are studying the role of the innate immune system in viral encephalitis. Microglia, as resident cells of the central nervous system (CNS), can respond quickly to various CNS injuries including trauma, ischemia, and infection and maintain the homeostasis of CNS, but this response is not always good; sometimes, it will exacerbate damage. Studies have shown that microglia also act as a double-edged sword during viral encephalitis. On the one hand, microglia can sense ATP signals through the purinergic receptor P2Y12 and are recruited around infected neurons to exert phagocytic activity. Microglia can exert a direct antiviral effect by producing type 1 interferon (IFN-1) to induce IFN-stimulated gene (ISG) expression of themselves or indirect antiviral effects by IFN-1 acting on other cells to activate corresponding signaling pathways. In addition, microglia can also exert an antiviral effect by inducing autophagy or secreting cytokines. On the other hand, microglia mediate presynaptic membrane damage in the hippocampus through complement, resulting in long-term memory impairment and cognitive dysfunction in patients with encephalitis. Microglia mediate fetal congenital malformations caused by Zika virus (ZIKV) infection. The gene expression profile of microglia in HIV encephalitis changes, and they tend to be a pro-inflammatory type. Microglia inhibited neuronal autophagy and aggravated the damage of CNS in HIV encephalitis; E3 ubiquitin ligase Pellino (pelia) expressed by microglia promotes the replication of virus in neurons. The interaction between amyloid-β peptide (Aβ) produced by neurons and activated microglia during viral infection is uncertain. Although neurons can mediate antiviral effects by activating receptor-interacting protein kinases 3 (RIPK3) in a death-independent pathway, the RIPK3 pathway of microglia is unknown. Different brain regions have different susceptibility to viruses, and the gene expression of microglia in different brain regions is specific. The relationship between the two needs to be further confirmed. How to properly regulate the function of microglia and make it exert more anti-inflammatory effects is our next research direction.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilong Jiang Province, People's Republic of China.
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilong Jiang Province, People's Republic of China
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilong Jiang Province, People's Republic of China
| |
Collapse
|