1
|
Zhang W, Lu Y, Shen R, Wu Y, Liu C, Fang X, Zhang L, Liu B, Rong L. Inhibiting ceramide synthase 5 expression in microglia decreases neuroinflammation after spinal cord injury. Neural Regen Res 2025; 20:2955-2968. [PMID: 39610106 PMCID: PMC11826471 DOI: 10.4103/nrr.nrr-d-23-01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/24/2024] [Accepted: 04/15/2024] [Indexed: 11/30/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00026/figure1/v/2024-11-26T163120Z/r/image-tiff Microglia, the resident monocyte of the central nervous system, play a crucial role in the response to spinal cord injury. However, the precise mechanism remains unclear. To investigate the molecular mechanisms by which microglia regulate the neuroinflammatory response to spinal cord injury, we performed single-cell RNA sequencing dataset analysis, focusing on changes in microglial subpopulations. We found that the MG1 subpopulation emerged in the acute/subacute phase of spinal cord injury and expressed genes related to cell pyroptosis, sphingomyelin metabolism, and neuroinflammation at high levels. Subsequently, we established a mouse model of contusive injury and performed intrathecal injection of siRNA and molecular inhibitors to validate the role of ceramide synthase 5 in the neuroinflammatory responses and pyroptosis after spinal cord injury. Finally, we established a PC12-BV2 cell co-culture system and found that ceramide synthase 5 and pyroptosis-associated proteins were highly expressed to induce the apoptosis of neuron cells. Inhibiting ceramide synthase 5 expression in a mouse model of spinal cord injury effectively reduced pyroptosis. Furthermore, ceramide synthase 5-induced pyroptosis was dependent on activation of the NLRP3 signaling pathway. Inhibiting ceramide synthase 5 expression in microglia in vivo reduced neuronal apoptosis and promoted recovery of neurological function. Pla2g7 formed a "bridge" between sphingolipid metabolism and ceramide synthase 5-mediated cell death by inhibiting the NLRP3 signaling pathway. Collectively, these findings suggest that inhibiting ceramide synthase 5 expression in microglia after spinal cord injury effectively suppressed microglial pyroptosis mediated by NLRP3, thereby exerting neuroprotective effects.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Ruoqi Shen
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yingjie Wu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chenrui Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xingxing Fang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Li Q, Wang Z, Li F, Liu S, Ding Y, Yan J, Feng X, Li M. AIM2 exacerbates hypoxic-ischemic brain damage in neonatal rats via promoting neuronal pyroptosis. Brain Res Bull 2025; 224:111305. [PMID: 40101806 DOI: 10.1016/j.brainresbull.2025.111305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Pyroptosis has been reported to play a pathogenic role in neonatal hypoxic-ischemic brain damage (HIBD). Absence in melanoma 2 (AIM2) is an inflammasome involved in pyroptosis. OBJECTIVE This study aimed to investigate the role of AIM2 in hypoxic-ischemia (HI)-induced pyroptosis and brain damage in a neonatal rat HIBD model. METHODS In vivo, we injected a lentivirus that overexpressed or knocked down AIM2 into the lateral ventricle of rats within 24 h after birth and prepared a 7-day Sprague Dawley (SD) rat HIBD model. In vitro, we transfected lentiviruses overexpressing or knocking down AIM2 into cultured primary neurons and established an oxygen/glucose deprivation/reoxygenation (OGD/R) model. 2,3,5-triphenyltetrazolium chloride (TTC) staining was used to determine infarct size. Hematoxylin and eosin and Nissl staining were used to evaluate morphological changes in the damaged brain. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) assays were used to determine cell viability and toxicity. Pyroptosis was observed using transmission electron microscopy. RESULTS AIM2 expression significantly increased in the HI-induced cortex of neonatal rats. Lentivirus-mediated overexpression of AIM2 significantly aggravates HI-induced brain injury and OGD/R-induced neuronal injury in vivo and in vitro. The lentivirus-mediated AIM2 knockdown significantly reversed these adverse effects. In addition, AIM2 overexpression increased HI-induced pyroptosis in neonatal rats in vivo and in vitro, whereas AIM2 knockdown suppressed HI-induced pyroptosis via the AIM2/Caspase-1/GSDMD pathway. CONCLUSION These findings show that the upregulation of AIM2 activates pyroptosis and plays a pathogenic role in neonatal HIBD.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Neonatology, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu Province, China; Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zengqin Wang
- Department of Neonatology, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu Province, China
| | - Fengli Li
- Department of Intensive Care Unit, Zibo Central Hospital, Zibo, Shandong Province, China
| | - Songlin Liu
- Department of Neonatology, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu Province, China
| | - Yuhong Ding
- Department of Neonatology, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu Province, China
| | - Junmei Yan
- Department of Neonatology, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu Province, China.
| | - Xing Feng
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Mei Li
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
3
|
Maurya R, Sharma A, Naqvi S. Decoding NLRP3 Inflammasome Activation in Alzheimer's Disease: A Focus on Receptor Dynamics. Mol Neurobiol 2025:10.1007/s12035-025-04918-1. [PMID: 40232645 DOI: 10.1007/s12035-025-04918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder marked by progressive cognitive decline and significant neuropsychiatric disturbances. Neuroinflammation, mediated by the NLRP3 inflammasome, is increasingly recognized as a critical factor in AD pathogenesis. The NLRP3 inflammasome, a crucial component of the innate immune system, is activated in response to both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In AD, amyloid-beta (Aβ) plaques and tau aggregates act as DAMPs, triggering NLRP3 inflammasome activation in microglia and astrocytes. This activation leads to the production of pro-inflammatory cytokines IL-1β and IL-18, contributing to chronic neuroinflammation and neuronal death. This review explores the intricate mechanisms involved in NLRP3 activation, with a particular focus on TREM-2, Msn Kinase MINK, NF-κB, Toll-like receptors, and P2X7 receptors. Understanding these mechanisms offers insight into the multifaceted regulation of the NLRP3 inflammasome and its impact on AD pathology. By elucidating the roles of TREM-2, MINK1, NF-κB, TLRs, and P2X7 receptors, this review highlights potential therapeutic targets for modulating NLRP3 activity. Targeting these pathways could offer novel strategies for mitigating neuroinflammation and slowing the progression of AD. The interplay between these receptors and signaling pathways underscores the complexity of NLRP3 inflammasome regulation and its significance in AD, providing a foundation for future research aimed at developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Ranika Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Saba Naqvi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
| |
Collapse
|
4
|
Cheng L, Meng X, Tian D, Zheng B, Xiao Y, Zhao X, Xu Y, Yang H, Bi J, Li F, Xie Z. Targeting UAF1 Alleviate Neurotoxicity by Inhibiting APP/NLRP3 Axis-Mediated Pyroptosis and Apoptosis. Neurochem Res 2025; 50:135. [PMID: 40183841 PMCID: PMC11971201 DOI: 10.1007/s11064-025-04379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
The accumulation of amyloid β (Aβ) protein, derived from the amyloid precursor protein (APP), plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) by inducing neuronal cell injury. This study investigated the specific functions of ubiquitin-specific protease 1-associated factor 1 (UAF1) in mediating the neurotoxic effects triggered on Aβ. To model AD-related neuronal injury in vitro and in vitro, SH-SY5Y cells exposed to Aβ25-35 and APPswe/PS1dE9 (APP/PS1) transgenic mice were utilized. Compared with control mice, UAF1 levels were significantly elevated in the hippocampus of experimental mice. In vitro experiments showed that UAF1 knockdown reduced Aβ-induced apoptosis and enhanced cell viability. Furthermore, UAF1 knockdown markedly suppressed Aβ25-35 -induced pyroptosis in SH-SY5Y cells and reduced the production of IL-1β and IL-18 through the nucleotide-binding domain and leucine-rich repeat containing family pyrin domain-containing 3 (NLRP3)/Gasdermin D pathway. Mechanistic analyses revealed that UAF1 directly binds to NLRP3 to mediate its effects. In vivo, UAF1 knockdown mitigated cognitive deficits, decreased APP expression, Aβ plaque deposition, and reduced hyperphosphorylated Tau levels. These findings underscore the critical role of UAF1 in regulating neuronal apoptosis and pyroptosis, thereby highlighting its potential as a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Xianguang Meng
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Street, Jinan, 250013, China
| | - Dandan Tian
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Bin Zheng
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Yinfan Xiao
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Xueying Zhao
- Department of Blood Transfusion, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Yingying Xu
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Hui Yang
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Jianzhong Bi
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Fan Li
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China.
| | - Zhaohong Xie
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China.
| |
Collapse
|
5
|
Li H, Xiao Q, Zhu L, Kang J, Zhan Q, Peng W. Targeting ceramide-induced microglial pyroptosis: Icariin is a promising therapy for Alzheimer's disease. J Pharm Anal 2025; 15:101106. [PMID: 40256246 PMCID: PMC12008632 DOI: 10.1016/j.jpha.2024.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 04/22/2025] Open
Abstract
Alzheimer's disease (AD), a progressive dementia, is one of the most common neurodegenerative diseases. Clinical trial results of amyloid-β (Aβ) and tau regulators based on the pretext of straightforward amyloid and tau immunotherapy were disappointing. There are currently no effective strategies for slowing the progression of AD. Herein, we spotlight the dysregulation of lipid metabolism, particularly the elevation of ceramides (Cers), as a critical yet underexplored facet of AD pathogenesis. Our study delineates the role of Cers in promoting microglial pyroptosis, a form of programmed cell death distinct from apoptosis and necroptosis, characterized by cellular swelling, and membrane rupture mediated by the NLRP3 inflammasome pathway. Utilizing both in vivo experiments with amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice and in vitro assays with BV-2 microglial cells, we investigate the activation of microglial pyroptosis by Cers and its inhibition by icariin (ICA), a flavonoid with known antioxidant and anti-inflammatory properties. Our findings reveal a significant increase in Cers levels and pyroptosis markers (NOD-like receptor family, pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, gasdermin D (gasdermin D (GSDMD)), and interleukin-18 (IL-18)) in the brains of AD model mice, indicating a direct involvement of Cers in AD pathology through the induction of microglial pyroptosis. Conversely, ICA treatment effectively reduces these pyroptotic markers and Cer levels, thereby attenuating microglial pyroptosis and suggesting a novel therapeutic mechanism of action against AD. This study not only advances our understanding of the pathogenic role of Cers in AD but also introduces ICA as a promising candidate for AD therapy, capable of mitigating neuroinflammation and pyroptosis through the cyclooxygenase-2 (COX-2)-NLRP3 inflammasome-gasdermin D (GSDMD) axis. Our results pave the way for further exploration of Cer metabolism disorders in neurodegenerative diseases and highlight the therapeutic potential of targeting microglial pyroptosis in AD.
Collapse
Affiliation(s)
- Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, China
| | - Qiao Xiao
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, China
| | - Lemei Zhu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, China
| | - Jin Kang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Qiong Zhan
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, China
| |
Collapse
|
6
|
Shao N, Ding Z, Liu F, Zhang X, Wang X, Hu S, Ye S, Wang T, Si W, Cai B. Huang-Pu-Tong-Qiao Formula Alleviates Hippocampal Neuron Damage by Inhibiting NLRP3 Inflammasome-mediated Pyroptosis in Alzheimer's Disease. Mol Neurobiol 2025; 62:4545-4561. [PMID: 39466576 DOI: 10.1007/s12035-024-04547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Huang-Pu-Tong-Qiao (HPTQ), a Traditional Chinese Medicine formula, has achieved remarkable efficacy in clinically treating Alzheimer's disease (AD). Pyroptosis refers to the inflammatory necrosis of cells, which contributes to AD pathological progression. However, it is unclear whether the therapeutic effect of HPTQ on AD is related to reducing pyroptosis. In this study, the network pharmacology analysis was used to predict the molecular mechanism of HPTQ in treating AD and validated our hypothesis through mice and cell experiments. APP/PS1 transgenic mice and Aβ25-35-injured HT22 cells were used as AD models in vivo and in vitro. The pharmacological effects and mechanisms of HPTQ on AD were evaluated by Morris water maze, Y-maze, transmission electron microscope, immunofluorescence, Hoechst/PI staining, western blot, and ELISA. Network pharmacology reveals the correlation between the therapeutic effect of HPTQ on AD and the NOD-like receptor signaling pathway. In APP/PS1 mice, HPTQ reduced the escape latency and maintained cell membrane integrity. In HT22 cells, 15% HPTQ-medicated serum and 10 µM MCC950 increased cell viability and decreased PI positive rate compared with the Model group. In addition, HPTQ treatment in AD animal and cell models reduced the protein expressions of NLRP3, ASC, cleaved caspase-1, GSDMD, GSDMD-N, IL-1β, and IL-18. The experimental results of MCC950 specifically inhibiting the NLRP3 expression suggested that HPTQ might reduce neuronal pyroptosis by reducing NLRP3 inflammasome. Network pharmacology and experimental validation suggested that HPTQ alleviated NLRP3 inflammasome-mediated neuronal pyroptosis in AD, which could provide valuable candidate drugs for AD clinical treatment.
Collapse
Affiliation(s)
- Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhixian Ding
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fei Liu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoyan Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaojuan Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shenglin Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Shu Ye
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Tingting Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Wenwen Si
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
7
|
Bhuiyan P, Zhang W, Liang G, Jiang B, Vera R, Chae R, Kim K, Louis LS, Wang Y, Liu J, Chuang DM, Wei H. Intranasal Delivery of Lithium Salt Suppresses Inflammatory Pyroptosis in the Brain and Ameliorates Memory Loss and Depression-like Behavior in 5XFAD Mice. J Neuroimmune Pharmacol 2025; 20:26. [PMID: 40095208 PMCID: PMC11914297 DOI: 10.1007/s11481-025-10185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a devastating neurodegenerative disease (AD) and has no treatment that can cure or halt the disease progression. This study explored the therapeutic potential of lithium salt dissolved in Ryanodex formulation vehicle (RFV) and delivered to the brain by intranasal application. We first compared lithium concentrations in the brain and blood of wild-type mice following intranasal or oral administration of lithium chloride (LiCl) dissolved in either RFV or water. The beneficial and side effects of intranasal versus oral LiCl in RFV in these mice were assessed and potential mechanisms underlying the efficacy of anti-inflammation and anti-pyroptosis in the brains were also investigated in both wild-type and 5XFAD Alzheimer's Disease (AD) mice brains. METHODS For the study of brain versus blood lithium concentrations, wild-type (WT) B6SJLF1/J mice at 2 months of age were treated with intranasal or oral LiCl (3 mmol/kg) dissolved in RFV or in water. Brain and blood lithium concentrations were measured at various times after drugs administration. Brain/blood lithium concentration ratios were then determined. For studying therapeutic efficacy versus side effects and their underlying mechanisms, 5XFAD and WT B6SJLF1/J mice were treated with intranasal LiCl (3 mmol/kg) daily, Monday to Friday each week, in RFV beginning at 2 or 9 months of age with a 12-week treatment duration. Animal behaviors were assessed for depression (tail suspension), cognition (fear conditioning and Y maze), olfaction (buried food test), and motor functions (rotarod) at the age of 5 and 12 months. Blood and brain tissue were harvested from these mice at 13 months. Blood biomarkers for the functions of thyroid (thyroid stimulating hormone, TSH) and kidney (creatinine) were measured using ELISA. Changes in protein expression levels of the endoplasmic reticulum Ca2+ release channels type 1 InsP3 receptors (InsP3R-1), malondialdehyde (MDA)-modified proteins and 4-hydroxy-2-nonenal (4-HNE), pyroptosis regulatory proteins (NLR family pyrin domain containing 3 (NLRP3), cleaved caspase-1, N-terminal of Gasdermin D (GSDMD)), cytotoxic (IL-1β, IL-18, IL-6, TNF-α) and cytoprotective (IL-10) cytokines and synapse proteins (PSD-95, synapsin-1) were determined using immunoblotting. Mouse body weights were monitored regularly. RESULTS Compared to oral LiCl in RFV nanoparticles, intranasal treatment of WT mice with LiCl in RFV markedly decreased blood concentrations at the time range of 30-120 min. The ratio of brain/blood lithium concentration after intranasal lithium chloride in RFV significantly increased, in comparison to those after oral administration lithium chloride in RFV or intranasal administration of lithium chloride in water. Intranasal lithium chloride in RFV inhibited both memory loss and depressive behavior in adult and aged 5XFAD mice. Additionally intranasal treatment of aged 5XFAD mice with LiCl in RFV effectively suppressed the increases in InsP3R-1, intracellular oxidative stress markers (4-HNE-bound and MDA-modified proteins), pyroptosis activation proteins (NLRP3, cleaved caspase-1, N-terminal GSDMD) and cytotoxic cytokines (IL-1β, IL-6, TNF-α), but reversed the down-regulation of cytoprotective cytokine IL-10. Intranasal LiCl in RFV also alleviated the loss of the postsynaptic synapse proteins PSD-95, but not synapsin-1, in aged 5XFAD mice. Blood level of the kidney function marker creatinine was significantly increased in 5XFAD than in WT mice in an age-dependent manner and this elevation was abolished by intranasal delivery of LiCl in RFV. Intranasal LiCl in RFV for 12 weeks in both WT or 5XFAD mice did not affect blood biomarkers for thyroid function, nor did it affect smell or muscle function or body weight. CONCLUSION Intranasal administration of LiCl in RFV significantly decreased lithium blood concentrations and increased brain/blood lithium concentration ratio, in comparison to its oral administration. Intranasal administration of LiCl in RFV robustly protected against both memory loss and depressive-like behavior, while had no side effects concerning thyroid and kidney toxicity in 5XFAD mice. These lithium-induced beneficial effects were strongly associated with lithium's suppression of InsP3R-1 Ca2+ channel receptor increase, pathological neuroinflammation and activation of the pyroptosis pathway, as well as the loss of the synaptic protein PSD-95. Intranasal delivery of lithium salt in RFV could become an effective and potent inhibitor of pathological inflammation/pyroptosis in the CNS and serve as a new treatment for both AD-associated dementia and depression with minimal unwanted side effects including peripheral organ toxicity.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Wenjia Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Bailin Jiang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Robert Vera
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Rebecca Chae
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Kyulee Kim
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Lauren St Louis
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Ying Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jia Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 26600, People's Republic of China
| | - De-Maw Chuang
- Scientist Emeritus, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A..
| |
Collapse
|
8
|
Thal DR, Poesen K, Vandenberghe R, De Meyer S. Alzheimer's disease neuropathology and its estimation with fluid and imaging biomarkers. Mol Neurodegener 2025; 20:33. [PMID: 40087672 PMCID: PMC11907863 DOI: 10.1186/s13024-025-00819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the extracellular deposition of the amyloid-β peptide (Aβ) and the intraneuronal accumulation of abnormal phosphorylated tau (τ)-protein (p-τ). Most frequently, these hallmark lesions are accompanied by other co-pathologies in the brain that may contribute to cognitive impairment, such as vascular lesions, intraneuronal accumulation of phosphorylated transactive-response DNA-binding protein 43 (TDP-43), and/or α-synuclein (αSyn) aggregates. To estimate the extent of these AD and co-pathologies in patients, several biomarkers have been developed. Specific tracers target and visualize Aβ plaques, p-τ and αSyn pathology or inflammation by positron emission tomography. In addition to these imaging biomarkers, cerebrospinal fluid, and blood-based biomarker assays reflecting AD-specific or non-specific processes are either already in clinical use or in development. In this review, we will introduce the pathological lesions of the AD brain, the related biomarkers, and discuss to what extent the respective biomarkers estimate the pathology determined at post-mortem histopathological analysis. It became evident that initial stages of Aβ plaque and p-τ pathology are not detected with the currently available biomarkers. Interestingly, p-τ pathology precedes Aβ deposition, especially in the beginning of the disease when biomarkers are unable to detect it. Later, Aβ takes the lead and accelerates p-τ pathology, fitting well with the known evolution of biomarker measures over time. Some co-pathologies still lack clinically established biomarkers today, such as TDP-43 pathology or cortical microinfarcts. In summary, specific biomarkers for AD-related pathologies allow accurate clinical diagnosis of AD based on pathobiological parameters. Although current biomarkers are excellent measures for the respective pathologies, they fail to detect initial stages of the disease for which post-mortem analysis of the brain is still required. Accordingly, neuropathological studies remain essential to understand disease development especially in early stages. Moreover, there is an urgent need for biomarkers reflecting co-pathologies, such as limbic predominant, age-related TDP-43 encephalopathy-related pathology, which is known to modify the disease by interacting with p-τ. Novel biomarker approaches such as extracellular vesicle-based assays and cryptic RNA/peptides may help to better detect these co-pathologies in the future.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Steffi De Meyer
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Junyi L, Yueyang W, Bin L, Xiaohong D, Wenhui C, Ning Z, Hong Z. Gut Microbiota Mediates Neuroinflammation in Alzheimer's Disease: Unraveling Key Factors and Mechanistic Insights. Mol Neurobiol 2025; 62:3746-3763. [PMID: 39317889 DOI: 10.1007/s12035-024-04513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
The gut microbiota, the complex community of microorganisms that inhabit the gastrointestinal tract, has emerged as a key player in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease (AD). AD is characterized by progressive cognitive decline and neuronal loss, associated with the accumulation of amyloid-β plaques, neurofibrillary tangles, and neuroinflammation in the brain. Increasing evidence suggests that alterations in the composition and function of the gut microbiota, known as dysbiosis, may contribute to the development and progression of AD by modulating neuroinflammation, a chronic and maladaptive immune response in the central nervous system. This review aims to comprehensively analyze the current role of the gut microbiota in regulating neuroinflammation and glial cell function in AD. Its objective is to deepen our understanding of the pathogenesis of AD and to discuss the potential advantages and challenges of using gut microbiota modulation as a novel approach for the diagnosis, treatment, and prevention of AD.
Collapse
Affiliation(s)
- Liang Junyi
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Wang Yueyang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Liu Bin
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China.
| | - Dong Xiaohong
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Cai Wenhui
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Ning
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang Province, China
| | - Zhang Hong
- Heilongjiang Jiamusi Central Hospital, Jiamusi, Heilongjiang Province, China
| |
Collapse
|
10
|
Zhang B, Chen L, Kang M, Ai L, Tao Y. Gegen Qinlian Decoction improves Alzheimer's disease through TLR4/NF-κB/NLRP3 pathway. Tissue Cell 2025; 95:102818. [PMID: 40056656 DOI: 10.1016/j.tice.2025.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a neurodegenerative disease that leads to dementia, but effective treatments are lacking. This study aims to evaluate the therapeutic effects of Gegen Qinlian Decoction (GGQLD) on AD and investigate the underlying mechanisms. METHODS Using network pharmacology and bioinformatics, we identified 376 active ingredients of GGQLD and 427 drug targets. Among these, 7 potential targets (CASP1, MKI67, NFKB1, TLR4, NLRP3, IL1B, and AKT1) were identified as intersecting targets of both GGQLD and AD. Functional enrichment analysis revealed that GGQLD regulates pyroptosis-related pathways. In vivo, GGQLD was administered to AD rat models to assess its effects on spatial learning, memory, and brain tissue injury. RESULTS GGQLD significantly reduced latency time by 40 % and increased platform crossings by 60 % in AD rats, demonstrating improved spatial learning and memory abilities. It also reduced hippocampal tissue damage and abnormal Aβ deposition. Mechanistically, GGQLD downregulated pyroptosis-related targets (TLR4, NF-κB, NLRP3, IL-1β, and Caspase-1), which were significantly upregulated in AD. ROC analysis demonstrated strong diagnostic significance for these genes, with AUC values exceeding 0.70. Functional enrichment and KEGG analysis further indicated that GGQLD exerts its therapeutic effects through multiple pathways, particularly the NOD-like receptor pathway, Necroptosis, and NF-kappa B pathway. CONCLUSIONS This study demonstrates that GGQLD improves spatial learning, reduces brain tissue damage, and alleviates inflammation in AD through the regulation of pyroptosis-related pathways, providing evidence for its potential as a therapeutic agent for AD.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sun University, Guangzhou, Guangdong 510120, China
| | - Liudan Chen
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sun University, Guangzhou, Guangdong 510120, China
| | - Mengru Kang
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sun University, Guangzhou, Guangdong 510120, China
| | - Liang Ai
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sun University, Guangzhou, Guangdong 510120, China
| | - Yangu Tao
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sun University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
11
|
Wang X, Shao X, Yu L, Sun J, Yin XS, Chen Z, Xu Y, Wang N, Zhang D, Qiu W, Liu F, Ma C. Changes in the pH value of the human brain in Alzheimer's disease pathology correlated with CD68-positive microglia: a community-based autopsy study in Beijing, China. Mol Brain 2025; 18:10. [PMID: 39930501 PMCID: PMC11808972 DOI: 10.1186/s13041-025-01180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
The microenvironment of the central nervous system is highly complex and plays a crucial role in maintaining the function of neurons, which influences Alzheimer's disease (AD) progression. The pH value of the brain is a critical aspect of the brain microenvironment in regulating various physiological processes. However, the specific mechanisms and role of this mechanism are not yet fully understood. To better understand the relationship between brain pH and AD, we analyzed the brain pH of the frontal lobe and AD pathology scores in postmortem brain samples from 368 donors from the National Human Brain Bank for Development and Function, 96 of whom were diagnosed with AD pathology. Analysis revealed a significant decrease in brain pH in AD patients, which was strongly correlated with β-amyloid plaques and phosphorylated tau proteins. Here, we elucidated the differential protein expression level of CD68-positive microglia between control and AD groups (t = 3.198, df = 20, P = 0.0045), and its protein expression level was correlated negatively with the brain pH value (F = 26.93, p = 0.0006). Our findings revealed that increased activation of CD68-positive microglia and disrupted lysosomal homeostasis in the pathological brain tissue of individuals with AD may lead to a decrease in brain pH.
Collapse
Affiliation(s)
- Xue Wang
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiangqi Shao
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Liang Yu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jianru Sun
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiang-Sha Yin
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Zhen Chen
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yuanyuan Xu
- Experimental Teaching Center, School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Naili Wang
- Experimental Teaching Center, School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Di Zhang
- Experimental Teaching Center, School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fan Liu
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
12
|
Qi Y, Zhang J, Zhang Y, Zhu H, Wang J, Xu X, Jin S, Wang C, Zhang F, Zhao M, Wu Z, Zhu H, Yan P. Curcuma wenyujin extract alleviates cognitive deficits and restrains pyroptosis through PINK1/Parkin mediated autophagy in Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156482. [PMID: 39954619 DOI: 10.1016/j.phymed.2025.156482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/15/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Pyroptosis and mitophagy have gained significant attention in Alzheimer's disease (AD) treatment. Curcumae Radix (CR), the dried radix of Curcuma wenyujin Y. H. Chen et C. Ling, is a traditional Chinese medicine (TCM) extensively utilized for neurological disorders. Yet, its impact and mechanistic role in AD remain unclear. PURPOSE This study aims to explore the active fraction of CR in AD treatment and its potential mechanisms. METHODS CR extracts were qualitatively analyzed using UHPLC-Triple-TOF/MS. Aβ1-42-induced mice received daily intragastric drug treatments for three weeks. Cognitive abilities of AD model mice were assessed through Y maze, novel object recognition, and eight-arm maze tests. Therapeutic targets of CR extracts were identified using quantitative proteomics. In both in vivo and in vitro settings, effects on pyroptosis and mitophagy were examined by Western blot (WB), immunofluorescence (IF) staining, and ELISA assays. RESULTS The ethyl acetate (EAC) fraction of CR extract exhibited optimal anti-AD effects. CR extracts enhanced memory and cognition in Aβ1-42-induced mice, improved neuronal morphology, and reduced Aβ accumulation in the brain. Proteomics analysis suggested the anti-AD properties of CR might involve inflammation reduction, cell survival enhancement, and mitophagy modulation. CR treatments in both AD mice and Aβ-induced SH-SY5Y cells resulted in reduced pyroptosis, increased LC3 and Beclin1 levels, and activation of the PINK1/Parkin pathway. CONCLUSION The EAC fraction of CR is effective in AD treatment by mitigating pyroptosis, reducing neuroinflammation, and promoting mitophagy, actions facilitated through the PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Yu Qi
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingwen Zhang
- Department of Pharmacy, Taizhou Second People's Hospital, Taizhou, Zhejiang 317200, China
| | - Yuanlong Zhang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haoyun Zhu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiabao Wang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiao Xu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shengjie Jin
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chunlai Wang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fang Zhang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhigang Wu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haoru Zhu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Pengcheng Yan
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
13
|
Miao HT, Wang J, Shao JJ, Song RX, Li WG, Sun JK, Jia SY, Zhang DX, Li XM, Zhao JY, Zhang LM. Astrocytic NLRP3 cKO mitigates depression-like behaviors induced by mild TBI in mice. Neurobiol Dis 2025; 205:106785. [PMID: 39793767 DOI: 10.1016/j.nbd.2024.106785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Reports indicate that depression is a common mental health issue following traumatic brain injury (TBI). Our prior research suggests that Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-related neuroinflammation, modulated by glial cells such as astrocytes, is likely to play a crucial role in the progression of anxiety and cognitive dysfunction. However, there is limited understanding of the potential of astrocytic NLRP3 in treating depression under mild TBI condition. This study aimed to determine whether astrocytic NLRP3 knockout (KO) could mitigate depressive-like behaviors following mild TBI and explore potential variations in such behaviors between genders post-mild TBI. METHODS Mild TBI was induced in mice using Feeney's weight-drop method. Behavioral assessments included neurological severity scores (NSS), social interaction test (SI), tail suspension test (TST), and forced swimming test (FST). Pathological changes were evaluated through immunofluorescence and local field potential (LFP) recordings at various time points post-injury. RESULTS Our findings indicated that astrocyte-specific NLRP3 KO decreased cleaved caspase-1 colocalized with astrocytes, decreased pathogenic astrocytes and increased Postsynaptic density protein 95 (PSD95) intensity, and significantly alleviated mild TBI-induced depression-like behaviors. It also led to the upregulation of protective astrocytes and apoptosis-associated factors, including cleaved caspase-3 post-mild TBI. Additionally, astrocyte-specific NLRP3 deletion resulting in improved θ and γ power and θ-γ phase coupling in the social interaction test (SI). Notably, under mild TBI conditions, astrocyte-specific NLRP3 exhibited greater neuroprotective effects in female knockout mice compared to males. CONCLUSION Astrocyte NLRP3 knockout demonstrated a protective mechanism in mice subjected to mild TBI, possibly attributed to the inhibition of pyroptosis through the NLRP3 signaling pathway in astrocytes.
Collapse
Affiliation(s)
- Hui-Tao Miao
- Department of Anesthesiology, Hebei Province, Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China,; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Jun Wang
- Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jing-Jing Shao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Hebei Province, Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Wen-Guang Li
- Graduated School, Hebei Medical University, Shijiazhuang, China
| | - Jian-Kai Sun
- Graduated School, Hebei Medical University, Shijiazhuang, China
| | - Shi-Yan Jia
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Ming Li
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Jian-Yong Zhao
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province, Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China,.
| |
Collapse
|
14
|
Li J, Yang Y, Zhao C, Zhao J, Wang X, Ye S, Wang D, Zhou C, Li J, Wang S, Li K, Liu C, He X, Qin J. Microglial C/EBPβ-Fcgr1 regulatory axis blocking inhibits microglial pyroptosis and improves neurological recovery. J Neuroinflammation 2025; 22:29. [PMID: 39891259 PMCID: PMC11786472 DOI: 10.1186/s12974-025-03362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
CAAT/Enhancer Binding Protein β (C/EBPβ) is associated with inflammatory responses in neurodegenerative pathologies, particularly in the brain. However, the regulatory role of C/EBPβ in spinal cord injury and its impact on neurological recovery remain unknown. In this study, we observed significant upregulation of C/EBPβ in microglia after spinal cord injury in mice and was associated with neuroinflammation. Knocking down C/EBPβ in the spinal cord attenuated microglia pyroptosis, reduced the production of proinflammatory cytokines, and inhibited neuronal apoptosis. Mechanistically, C/EBPβ promoted the transcription of Fcgr1, which was involved in activating microglia pyroptosis. In both in-vivo and in-vitro experiments, knocking down Cebpb or Fcgr1, or the pyroptosis inhibitor VX765 inhibited neuronal apoptosis and improved neurological recovery in mice. These findings indicate that C/EBPβ functions as a key regulator that participates in the microglia pyroptosis-mediated neuroinflammation by activating Fcgr1 transcription.
Collapse
Affiliation(s)
- Jing Li
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yubing Yang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chenguang Zhao
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinghao Zhao
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaohui Wang
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shengshou Ye
- Department of Neurology, Qinghai Cardiocerebrovascular Disease Specialised Hospital, Xining, Qinghai, China
| | - Dong Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chengdong Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Li
- Institute of Photonics and Photon-technology, Northwest University, Xi'an, Shaanxi, China
| | - Shuang Wang
- Institute of Photonics and Photon-technology, Northwest University, Xi'an, Shaanxi, China
| | - Ke Li
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chunmiao Liu
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xijing He
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Orthopedics, Xi'an International Rehabilitation Medical Center, Xi'an, Shaanxi, China
| | - Jie Qin
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Liu H, You M, Yang H, Wu X, Zhang S, Huang S, Gao H, Xie L. Exploring the molecular characterization of PANoptosis-related genes with features of immune dysregulation in Alzheimer's disease based on bulk and single-nuclei RNA sequencing. Metab Brain Dis 2025; 40:109. [PMID: 39841296 DOI: 10.1007/s11011-025-01540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
The immune system has emerged as a major factor in the pathogenesis of Alzheimer's disease (AD). PANoptosis is a newly defined programmed cell death mechanism related to many inflammatory diseases. This study aimed to identify the differentially expressed (DE) PANoptosis-related genes with characteristics of immune dysregulation (PRGIDs) in AD using bioinformatics analysis of bulk RNA-seq and single-nuclei RNA sequencing (snRNA-seq) data. To improve the robustness of gene selection, we integrated 3 microarray and 6 snRNA-seq datasets from the Gene Expression Omnibus (GEO), which allowed us to not only examine overall gene expression patterns but also assess the cellular specificity of gene expression at the single-cell level. This approach helped to identify cell-type-specific gene alterations that may be masked in bulk RNA-seq analyses. Relevant PANoptosis, immune dysregulation, and AD-related genes were obtained from the Genecards database. The AlzData database was also used in this study. Expression validation, the least absolute shrinkage and selection operator (LASSO) regression model, and CytoHubba algorithms were applied for key DE-PRGIDs selection. LASSO, Logistic, and Cox regressions were used to construct prognostic models. The receiver operating characteristic (ROC) curve and correlation analyses were conducted on key DE-PRGIDs. The Seurat package in R software was employed for performing snRNA-seq data processing. Uniform manifold approximation and projection (UMAP) was utilized for cell type annotation and PRGID cell visualization. The violin plot was applied for displaying expression levels of PRGIDs. High-dimensional consensus weighted gene co-expression network analysis (hdWGCNA) was conducted on microglia to identify gene modules and hub genes. Venn diagram analysis identified 250 PRGIDs and 39 DE-PRGIDs. NFKBIA was identified as the key gene. Prognostic models based on the expression level of NFKBIA were obtained. ROC curve analysis revealed its area under the curve (AUC) value: 0.661 in training set and 0.836 in validation set. The heatmap displayed the result of correlation analysis. SnRNA-seq data analysis identified 7 cell types. The UMAP and violin plots revealed highly expressed PRGIDs in microglia with remarkable differences between healthy controls and AD. hdWGCNA identified PVT1 and APOE as hub genes associated with microglia. In conclusion, our findings provide evidence that PANoptosis may play a role in the immune dysregulation observed in AD. PVT1 has been implicated in AD pathogenesis, potentially exerting its effects through the miR-488-3p/FOXD3/SCN2A axis.
Collapse
Affiliation(s)
- Hanjie Liu
- School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Haidian District, 100084, Beijing, P.R. China
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China
| | - Maochun You
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China
| | - Hui Yang
- Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu, 610200, Sichuan, P.R. China
| | - Xiao Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China
| | - Siyu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China
| | - Sihan Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China
| | - Huijuan Gao
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Shijingshan District, 100040, Beijing, P.R. China.
| | - Lushuang Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China.
| |
Collapse
|
16
|
Chen D, Sun Y. Current Status of Plant-Based Bioactive Compounds as Therapeutics in Alzheimer's Diseases. J Integr Neurosci 2025; 24:23090. [PMID: 39862001 DOI: 10.31083/jin23090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) is a common central neurodegenerative disease disorder characterized primarily by cognitive impairment and non-cognitive neuropsychiatric symptoms that significantly impact patients' daily lives and behavioral functioning. The pathogenesis of AD remains unclear and current Western medicines treatment are purely symptomatic, with a singular pathway, limited efficacy, and substantial toxicity and side effects. In recent years, as research into AD has deepened, there has been a gradual increase in the exploration and application of medicinal plants for the treatment of AD. Numerous studies have shown that medicinal plants and their active ingredients can potentially mitigate AD by regulating various molecular mechanisms, including the production and aggregation of pathological proteins, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, neurogenesis, neurotransmission, and the brain-gut microbiota axis. In this review, we analyzed the pathogenesis of AD and comprehensively summarized recent advancements in research on medicinal plants for the treatment of AD, along with their underlying mechanisms and clinical evidence. Ultimately, we aimed to provide a reference for further investigation into the specific mechanisms through which medicinal plants prevent and treat AD, as well as for the identification of efficacious active ingredients derived from medicinal plants.
Collapse
Affiliation(s)
- Dan Chen
- Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China
| | - Yun Sun
- Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China
| |
Collapse
|
17
|
Jia C, Zhang M, Wu X, Zhang X, Lv Z, Zhao K, Zhang J, Su Y, Zhu F. HERV-W Env Induces Neuron Pyroptosis via the NLRP3-CASP1-GSDMD Pathway in Recent-Onset Schizophrenia. Int J Mol Sci 2025; 26:520. [PMID: 39859234 PMCID: PMC11765033 DOI: 10.3390/ijms26020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/30/2025] Open
Abstract
HERVs (Human endogenous retroviruses) are remnants of ancient exogenous retroviruses that have integrated into the human genome, particularly in germ-line cells. Among these, the envelope protein gene HERV-W env (Human endogenous retroviruses W family envelope protein), located on chromosome 7 and primarily expressed in the human placenta, has been closely linked to various neuropsychiatric disorders, including schizophrenia, as well as autoimmune diseases and cancer. Recent studies have highlighted the abnormal expression of cytokines as a key factor in the pathophysiology of schizophrenia. Notably, elevated serum levels of IL-1β (interleukin 1 beta) in schizophrenia, a cytokine associated with inflammation, are a characteristic feature of pyroptosis-a form of pro-inflammatory programmed cell death. Although previous research has observed significant upregulation of pyroptosis-related genes such as CASP1 (Caspase-1), NLRP3 (NLR family pyrin domain containing 3), and IL1B (interleukin 1 beta) in the serum of schizophrenia patients, and extensive neuron pyroptosis has been documented in various neuropsychiatric disorders, including Alzheimer's disease, epilepsy, and multiple sclerosis, the occurrence of neuron pyroptosis in schizophrenia remains uncertain. Furthermore, the mechanisms underlying pyroptosis in schizophrenia and its potential connection with HERV-W env have yet to be fully elucidated. In this study, we found that the expression levels of pyroptosis-related genes, specifically CASP1, GSDMD (Gasdermin D), and IL1B, were significantly elevated in patients with schizophrenia compared to healthy controls. Furthermore, our analysis revealed a strong positive correlation between HERV-W env expression and the levels of CASP1/GSDMD/IL1B in these patients. Experimental evidence further demonstrated that HERV-W env promoted the activation of Caspase-1 and the cleavage of Gasdermin D, leading to increased release of LDH (lactate dehydrogenase) and IL-1β. Importantly, inhibitors targeting NLRP3, CASP1, and GSDMD significantly reduced the releases of LDH and IL-1β induced by HERV-W env, whereas BID (BH3 interacting domain death agonist) inhibitors did not have a notable effect. This suggests that HERV-W env induces CASP1-GSDMD-dependent pyroptosis through the NLRP3-CASP1-GSDMD signaling pathway. As pyroptosis is increasingly recognized for its connection to neurodegenerative diseases, this study provides insights into the molecular mechanisms of neuronal pyroptosis mediated by the NLRP3 inflammasome in the context of HERV-W env. Additionally, it explores the potential facilitation of HERV-W env in the development of schizophrenia via pyroptosis, proposing that certain pyroptosis indicators could serve as potential biomarkers for schizophrenia. Based on our existing research results and the findings of previous researchers, we infer that HERV-W env acts as a bridge in the onset and progression of schizophrenia. Furthermore, HERV-W env may serve as a potential target for the clinical treatment of schizophrenia, suggesting that monoclonal antibody therapy targeting HERV-W env could represent a novel approach to managing this disease.
Collapse
Affiliation(s)
- Chen Jia
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Mengqi Zhang
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xu Zhang
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhao Lv
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Kexin Zhao
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiahang Zhang
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaru Su
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
18
|
Xiao X, Guan Y, Mo H, Lv K, Chen J, Xie J, Meng Q, Liu J, Lu Y, Gao F, Chen Q. Novel insights into Cntnap4 in Alzheimer's disease: Intestinal flora interaction. Int J Biol Macromol 2025; 285:138508. [PMID: 39647729 DOI: 10.1016/j.ijbiomac.2024.138508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with unclear etiology. This study employs single-cell RNA sequencing (scRNA-seq), high-throughput transcriptome sequencing, 16s rRNA sequencing, and animal experiments to investigate the role of the contactin-associated protein like-4 (Cntnap4) gene in AD and its interaction with intestinal flora. We found that Cntnap4 deficiency in AD mice led to increased Tau protein phosphorylation, amyloid-beta plaque accumulation, and neuronal loss. Astrocytes in Cntnap4-/- mice showed impaired amyloid-beta processing. 16 s rRNA sequencing revealed distinct intestinal flora compositions between Cntnap4-/- and control mice, indicating a potential link between gut microbiota and AD progression. Notably, GABA supplementation improved cognitive impairment, restored synaptic currents, reduced amyloid-beta plaques, and increased neuronal counts. This study highlights Cntnap4's critical role in AD and suggests gut-brain axis involvement, offering novel insights for potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiaodan Xiao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan 523000, China; Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China.
| | - Yanfei Guan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Huiyu Mo
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Kaizhao Lv
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jiaxin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jiaxing Xie
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Qiguang Meng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jianqi Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Yongkeng Lu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Feng Gao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan 523000, China.
| | - Qingzhuang Chen
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Department of Clinical Pharmacy, Guangzhou 514000, China.
| |
Collapse
|
19
|
Ding Y, Li SY, Lv W, Li L, Zhang HW, Zhang Z, Zhang YJ, Zhang ZY, Lu XW. Pyroptosis Signature Gene CHMP4B Regulates Microglia Pyroptosis by Inhibiting GSDMD in Alzheimer's Disease. Mol Neurobiol 2025; 62:77-90. [PMID: 38823000 DOI: 10.1007/s12035-024-04255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
In this study, we aimed to work through the key genes involved in the process of pyroptosis in Alzheimer's disease (AD) to identify potential biomarkers using bioinformatics technology and further explore the underlying molecular mechanisms. The transcriptome data of brain tissue in AD patients were screened from the GEO database, and pyroptosis-related genes were analyzed. The functions of differential genes were analyzed by enrichment analysis and protein-protein interaction. The diagnostic model was established using LASSO and logistic regression analysis, and the correlation of clinical data was analyzed. Based on single-cell analysis of brain tissues of patients with AD, immunofluorescence and western blotting were used to explore the key cells affected by the hub gene. After GSEA, qRT-PCR, western blotting, LDH, ROS, and JC-1 were used to investigate the potential mechanism of the hub gene on pyroptosis. A total of 15 pyroptosis differentially expressed genes were identified. A prediction model consisting of six genes was established by LASSO and logistic regression analysis, and the area under the curve was up to 0.81. As a hub gene, CHMP4B was negatively correlated with the severity of AD. CHMP4B expression was decreased in the hippocampal tissue of patients with AD and mice. Single-cell analysis showed that CHMP4B was downregulated in AD microglia. Overexpression of CHMP4B reduced the release of LDH and ROS and restored mitochondrial membrane potential, thereby alleviating the inflammatory response during microglial pyroptosis. In summary, CHMP4B as a hub gene provides a new strategy for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Yi Ding
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Shi-Yao Li
- Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wei Lv
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lei Li
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Hui-Wen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhiren Zhang
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Yong-Jie Zhang
- Department of Human Anatomy, Human Brain Bank of Nanjing Medical University, Nanjing, China.
| | - Zhi-Yuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
- The Key Laboratory of Antibody Technique of the Ministry of Health, Nanjing Medical University, Nanjing, China.
- Department of Neurology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| | - Xiao-Wei Lu
- Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Chen R, Hu J, Zhang Y, Liu Y, Zhu J, Pan Z, Yang H, Wang Q, Chen Y, Tang S, Min B. Total glucosides of paeony ameliorates chemotherapy-induced neuropathic pain by suppressing microglia pyroptosis through the inhibition of KAT2A-mediated p38 pathway activation and succinylation. Sci Rep 2024; 14:31875. [PMID: 39738348 PMCID: PMC11686281 DOI: 10.1038/s41598-024-83207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a prevalent side effect of chemotherapy. Total glucosides of paeony (TGP) have been shown to be effective in pain management. This study aimed to investigate the efficacy and mechanism of TGP in alleviating CINP. Sprague-Dawley rats were treated with oxaliplatin to establish CINP models, and BV2 microglia were exposed to lipopolysaccharides (LPS) to induce pyroptosis. The impact of TGP on CINP was assessed by measuring mechanical withdrawal threshold (MWT), cold pain threshold (CPT), and thermal pain threshold (TPT), as well as inflammatory factor levels. Pyroptosis was evaluated using flow cytometry, lactate dehydrogenase (LDH) release, and pyroptosis marker levels. Quantitative real-time PCR and molecular docking were employed to identify TGP targets, while phospho-kinase arrays, western blotting, and co-immunoprecipitation were used to elucidate the mechanism. Results indicated that TGP increased MWT, CPT, and TPT and inhibited inflammatory factor release in CINP rats. Furthermore, TGP suppressed LPS-induced pyroptosis and downregulated KAT2A expression in BV2 cells; this suppression was reversed by KAT2A overexpression. Mechanistically, KAT2A overexpression activated the p38 pathway and promoted p38 succinylation at K295. KAT2A knockdown inhibited pyroptosis in LPS-induced BV2 cells, an effect that was reversed by the p38 activator metformin. Additionally, the improvements in MWT, CPT, TPT, and inflammatory factor levels observed in CINP rats treated with TGP were negated by KAT2A overexpression. In conclusion, TGP alleviated CINP by suppressing microglial pyroptosis through inhibition of the KAT2A-mediated p38 pathway activation and succinylation. This study provides insights into a potential new therapeutic approach for CINP.
Collapse
Affiliation(s)
- Rong Chen
- Department of Pain, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jiantao Hu
- Department of Respiratory, Qixingguan District People's Hospital in Bijie City, Bijie, Guizhou, China
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Yunyan District, Guiyang, Guizhou, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jingsong Zhu
- Department of Pain, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zheng Pan
- Department of Neurosurgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qin Wang
- Department of Rheumatology and Hematology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Ying Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Yunyan District, Guiyang, Guizhou, China
| | - Songjiang Tang
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Yunyan District, Guiyang, Guizhou, China.
| | - Baojun Min
- Department of Anesthesiology, Qianxi People's Hospital, No. 38 Lisha East Road, Qianxi, Bijie, Guizhou, China.
| |
Collapse
|
21
|
Zhuang X, Lin J, Song Y, Ban R, Zhao X, Xia Z, Wang Z, Zhang G. The Interplay Between Accumulation of Amyloid-Beta and Tau Proteins, PANoptosis, and Inflammation in Alzheimer's Disease. Neuromolecular Med 2024; 27:2. [PMID: 39751702 DOI: 10.1007/s12017-024-08815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Alzheimer's disease (AD) is a common progressive neurodegenerative disorder, and the vast majority of cases occur in elderly patients. Recently, the accumulation of Aβ and tau proteins has drawn considerable attention in AD research. This review explores the multifaceted interactions between these proteins and their contribution to the pathological landscape of AD, encompassing synaptic dysfunction, neuroinflammation, and PANoptosis. PANoptosis is a collective term for programmed cell death (PCD) modalities that encompass elements of apoptosis, pyroptosis, and necroptosis. The accumulation of Aβ peptides and tau proteins, along with the immune response in brain cells, may trigger PANoptosis, thus advancing the progression of the disease. Recent advancements in molecular imaging and genetics have provided deeper insights into the interactions between Aβ peptides, tau proteins, and the immune response. The review also discusses the role of mitochondrial dysregulation in AD. The exploration of the interplay between neurodegeneration, immune responses, and cell death offers promising avenues for the development of innovative treatments.
Collapse
Affiliation(s)
- Xianbo Zhuang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Jie Lin
- School of Basic Medicine Sciences, Shandong University, Jinan, China
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Yamin Song
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Ru Ban
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Xin Zhao
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
- Department of Neurology, Liaocheng People's Hospital, Shandong University, Jinan, 250012, China.
- Department of Neurology, the Second People's Hospital of Liaocheng, Liaocheng, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, China.
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
| |
Collapse
|
22
|
Carrazana E, Salvadores N. Therapeutic implications of necroptosis activation in Alzheimer´s disease. Alzheimers Res Ther 2024; 16:275. [PMID: 39726013 DOI: 10.1186/s13195-024-01649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
In recent years, a growing body of research has unveiled the involvement of the necroptosis pathway in the pathogenesis of Alzheimer's disease (AD). This evidence has shed light on the mechanisms underlying neuronal death in AD, positioning necroptosis at the forefront as a potential target for therapeutic intervention. This review provides an update on the current knowledge on this emerging, yet rapidly advancing topic, encompassing all published studies that present supporting proof of the role of the necroptosis pathway in the neurodegenerative processes of AD. The implication of misfolded tau and amyloid-β (Aβ) aggregates is highlighted, with evidence suggesting their direct or indirect involvement in necroptosis activation. In summary, the review underscores the significance of understanding the complex interplay between necroptosis, protein aggregates, and neurodegeneration in AD. The findings advocate for a comprehensive approach, combining therapeutic and early diagnostic strategies, to intervene in the disease process before irreversible damage occurs.
Collapse
Affiliation(s)
- Elizabeth Carrazana
- Laboratory of Neurodegenerative Diseases, Center for Biomedicine, Universidad Mayor, Temuco, Chile
| | - Natalia Salvadores
- Laboratory of Neurodegenerative Diseases, Center for Biomedicine, Universidad Mayor, Temuco, Chile.
| |
Collapse
|
23
|
Bhuiyan P, Zhang W, Liang G, Jiang B, Vera R, Chae R, Kim K, Louis LS, Wang Y, Liu J, Chuang DM, Wei H. Intranasal Delivery of Lithium Salt Suppresses Inflammatory Pyroptosis in the brain and Ameliorates Memory Loss and Depression-like Behavior in 5XFAD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613794. [PMID: 39345574 PMCID: PMC11430220 DOI: 10.1101/2024.09.18.613794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Alzheimer's disease (AD) is a devastating neurodegenerative disease (AD) and has no treatment that can cure or halt the disease progression. This study explored the therapeutic potential of lithium salt dissolved in Ryanodex formulation vehicle (RFV) and delivered to the brain by intranasal application. We first compared lithium concentrations in the brain and blood of wild-type mice following intranasal or oral administration of lithium chloride (LiCl) dissolved in either RFV or water. The beneficial and side effects of intranasal versus oral LiCl in RFV in these mice were assessed and potential mechanisms underlying the efficacy of anti-inflammation and anti-pyroptosis in the brains were also investigated in both wild-type (WT) and 5XFAD Alzheimer's Disease (AD) mice brains. Methods For the study of brain versus blood lithium concentrations, WT B6SJLF1/J mice at 2 months of age were treated with intranasal or oral LiCl (3 mmol/kg) dissolved in RFV or in water. Brain and blood lithium concentrations were measured at various times after drugs administration. Brain/blood lithium concentration ratios were then determined. For studying therapeutic efficacy versus side effects and their underlying mechanisms, 5XFAD and WT B6SJLF1/J mice were treated with intranasal LiCl (3 mmol/kg) daily, Monday to Friday each week, in RFV beginning at 2 or 9 months of age with a 12-week treatment duration. Animal behaviors were assessed for depression (tail suspension), cognition (fear conditioning and Y maze), olfaction (buried food test), and motor functions (rotarod) at the age of 5 and 12 months. Blood and brain tissue were harvested from these mice at 13 months. Blood biomarkers for the functions of thyroid (thyroid stimulating hormone, TSH) and kidney (creatinine) were measured using ELISA. Changes in protein expression levels of the endoplasmic reticulum Ca2+ release channels type 1 InsP3 receptors (InsP3R-1), malondialdehyde (MDA)-modified proteins and 4-hydroxy-2-nonenal (4-HNE), pyroptosis regulatory proteins (NLR family pyrin domain containing 3 (NLRP3), cleaved caspase-1, N-terminal of Gasdermin D (GSDMD)), cytotoxic (IL-1β, IL-18, IL-6, TNF-α) and cytoprotective (IL-10) cytokines and synapse proteins (PSD-95, synapsin-1) were determined using immunoblotting. Mouse body weights were monitored regularly. Results Compared to oral LiCl in RFV nanoparticles, intranasal treatment of WT mice with LiCl in RFV markedly decreased blood concentrations at the time frame of 30-120 minutes. The ratio of brain/blood lithium concentration after Intranasal lithium chloride in RFV significantly increased, in comparison to those after oral administration lithium chloride in RFV or intranasal administration of lithium chloride in water. Intranasal lithium chloride in RFV inhibited both memory loss and depressive behavior in adult and aged 5XFAD mice. Additionally intranasal treatment of aged 5XFAD mice with LiCl in RFV effectively suppressed the increases in InsP3R-1, intracellular oxidative stress markers (4-HNE-bound and MDA-modified proteins), pyroptosis activation proteins (NLRP3, cleaved caspase-1, N-terminal GSDMD) and cytotoxic cytokines (IL-1β, IL-6, TNF-α), but reversed the down-regulation of cytoprotective cytokine IL-10. Intranasal LiCl in RFV also alleviated the loss of the postsynaptic synapse protein PSD-95, but not synapsin-1, in aged 5XFAD mice. Blood level of the kidney function marker creatinine was significantly increased in 5XFAD than in WT mice in an age-dependent manner and this elevation was abolished by intranasal delivery of LiCl in RFV. Intranasal LiCl in RFV for 12 weeks in both WT or 5XFAD mice did not affect blood biomarkers for thyroid function, nor did it affect smell or muscle function or body weight. Conclusion Intranasal administration of LiCl in RFV significantly decreased lithium blood concentrations and increased brain/blood lithium concentration ratio, in comparison to its oral administration. Intranasal administration of LiCl in RFV robustly protected against both memory loss and depressive-like behavior, while had no side effects concerning thyroid and kidney toxicity in 5XFAD mice. These lithium-induced beneficial effects were strongly associated with lithium's suppression of InsP3R-1 Ca2+ channel receptor increase, pathological neuroinflammation and activation of the pyroptosis pathway, as well as the loss of some synaptic proteins. Intranasal delivery of lithium salt in RFV could become an effective and potent inhibitor of pathological inflammation/pyroptosis in the CNS and serve as a new treatment for both AD-associated dementia and depression with minimal unwanted side effects including peripheral organ toxicity.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Wenjia Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Bailin Jiang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Department of Anesthesiology, Peking University People’s Hospital, Beijing, China
| | - Robert Vera
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Rebecca Chae
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Kyulee Kim
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Lauren St. Louis
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Ying Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jia Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 26600, P. R. China
| | - De-Maw Chuang
- Scientist Emeritus, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
24
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2024:10.1038/s41577-024-01104-7. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
25
|
Pasupalak JK, Rajput P, Gupta GL. Gut microbiota and Alzheimer's disease: Exploring natural product intervention and the Gut-Brain axis for therapeutic strategies. Eur J Pharmacol 2024; 984:177022. [PMID: 39362390 DOI: 10.1016/j.ejphar.2024.177022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Numerous studies conducted over the last ten years have shown a strong correlation between the gut microbiota and the onset and progression of Alzheimer's disease (AD). However, the exact underlying mechanism is still unknown. An ongoing communication mechanism linking the gut and the brain is highlighted by the term "microbiota-gut-brain axis," which was originally coined the "gut-brain axis." Key metabolic, endocrine, neurological, and immunological mechanisms are involved in the microbiota‒gut‒brain axis and are essential for preserving brain homeostasis. Thus, the main emphasis of this review is how the gut microbiota contributes to the development of AD and how various natural products intervene in this disease. The first part of the review provides an outline of various pathways and relationships between the brain and gut microbiota, and the second part provides various mechanisms involved in the gut microbiota and AD. Finally, this review provides knowledge about natural products and their effectiveness in treating gut microbiota-induced AD. AD may be treated in the future by altering the gut microbiota with a customized diet, probiotics/prebiotics, plant products, and natural products. This entails altering the microbiological partners and products (such as amyloid protein) that these partners generate.
Collapse
Affiliation(s)
- Jajati K Pasupalak
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Prabha Rajput
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Girdhari Lal Gupta
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
26
|
Wang C, Zhai J, Zhou X, Chen Y. Lipid metabolism: Novel approaches for managing idiopathic epilepsy. Neuropeptides 2024; 108:102475. [PMID: 39366134 DOI: 10.1016/j.npep.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/15/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Epilepsy is a common neurological condition characterized by abnormal neuronal activity, often leading to cellular damage and death. There is evidence to suggest that lipid imbalances resulting in cellular death play a key role in the development of epilepsy, including changes in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Disrupted lipid metabolism acts as a crucial pathological mechanism in epilepsy, potentially linked to processes such as cellular ferroptosis, lipophagy, and immune modulation of gut microbiota (thus influencing the gut-brain axis). Understanding these mechanisms could open up new avenues for epilepsy treatment. This study investigates the association between disturbances in lipid metabolism and the onset of epilepsy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinxia Zhai
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuemei Zhou
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
27
|
Chen H, Deng C, Meng Z, Zhu M, Yang R, Yuan J, Meng S. Combined Catalpol and Tetramethylpyrazine Promote Axonal Plasticity in Alzheimer's Disease by Inducing Astrocytes to Secrete Exosomes Carrying CDK5 mRNA and Regulating STAT3 Phosphorylation. Mol Neurobiol 2024; 61:10770-10791. [PMID: 38789892 DOI: 10.1007/s12035-024-04251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a common progressive degenerative disease of the central nervous system in aging populations. This study aimed to investigate the effects of combined catalpol and tetramethylpyrazine (CT) in promoting axonal plasticity in AD and the potential underlying mechanism. Astrocytes were treated with different concentrations of compatible CT. Exosomes were collected and subjected to sequencing analysis, which was followed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes. Amyloid precursor protein/presenilin 1 (APP/PS1) double-transfected male mice were used as the in vivo AD models. Astrocyte-derived exosomes that were transfected with cyclin-dependent kinase 5 (CDK5) or CT treatment were injected into the tail vein of mice. The levels of CDK5, synaptic plasticity marker protein neurofilament 200 (NF200), and growth-associated protein 43 (GAP-43) in the hippocampus of mice were compared in each group. Immunofluorescence staining was used to detect the localization of STAT3 and to visualize synaptic morphology via β-tubulin-III (TUBB3). Astrocyte-derived exosomes transfected with siCDK5 or treated with CT were co-cultured with HT-22 cells, which were untransfected or silenced for signal transducer and activator of transcription 3 (STAT3). Amyloid β-protein (Aβ)1-42 was induced in the in vitro AD models. The viability, apoptosis, and expression levels of NF200 and GAP-43 proteins in the hippocampal neurons of each group were compared. In total, 166 differentially expressed genes in CT-induced astrocyte-derived exosomes were included in the KEGG analysis, and they were found to be enriched in 12 pathways, mainly in axon guidance. CT treatment significantly increased the level of CDK5 mRNA in astrocyte-derived exosomes-these exosomes restored CDK5 mRNA and protein levels in the hippocampus of the in vivo AD model mice and the in vitro AD model; promoted p-STAT3 (Ser727), NF200 and GAP-43 proteins; and promoted the regeneration and extension of neuronal synapses. Silencing of CDK5 blocked both neuronal protection as well as induction of axonal plasticity in AD by CT-treated exosomes in vitro and in vivo. Moreover, silencing of STAT3 blocked both neuronal protection as well as induction of axonal plasticity in AD caused by CDK5 overexpression or CT-treated astrocyte-induced exosomes. CT promotes axonal plasticity in AD by inducing astrocytes to secrete exosomes carrying CDK5 mRNA and regulating STAT3 (Ser727) phosphorylation.
Collapse
Affiliation(s)
- Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China
| | - Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China
| | - Zeyu Meng
- Second Clinical Medicine College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Mengting Zhu
- Graduate School of Jiangxi, University of Traditional Chinese Medicine, Nanchang, China
| | - Ruoyu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yuan
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
28
|
Cheng J, Zhao H. NEK7 induces lactylation in Alzheimer's disease to promote pyroptosis in BV-2 cells. Mol Brain 2024; 17:81. [PMID: 39563448 DOI: 10.1186/s13041-024-01156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disorder, is characterized by irreversible brain tissue degeneration. The amyloid-β (Aβ) cascade hypothesis stands as the predominant paradigm explaining AD pathogenesis. This study aimed to elucidate the mechanisms underlying Aβ-induced pyroptosis in AD. AD models were established using amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice and Aβ-treated BV-2 cells (5 µM, 24 h). NEK7 expression was evaluated in vitro and in vivo. Cell pyroptosis was assessed before and after NEK7 expression was inhibited in BV-2 cells. Adeno-associated virus (AAV) vectors carrying short hairpin RNA (shRNA) against NEK7 (AAV-sh-NEK7) were administered to mice to knockdown NEK7 in vivo. Spatial learning and memory abilities were evaluated using the Morris water maze test. The interaction between NEK7 and histone H4 lysine 12 lactylation (H4K12la) were then investigated. The results suggested that NEK7 expression was markedly elevated in both in vitro and in vivo AD models. Treatment with Aβ significantly reduced cell viability and enhanced pyroptosis in BV-2 cells; these effects were reversed by inhibiting NEK7. Furthermore, AD mice with NEK7 knockdown exhibited shorter escape latencies and increased time spent in the target quadrant, suggesting that NEK7 inhibition improved cognitive function and memory retention. Mechanistically, Aβ treatment induced histone lactylation in BV-2 cells, and suppression of lactylation attenuated NEK7 transcriptional activity and mRNA levels. In summary, elevated NEK7 expression promoted histone lactylation in BV-2 cells, thereby facilitating pyroptosis. Inhibition of NEK7 conferred protection against Aβ-induced cellular damage and enhanced cognitive performance and memory retention in AD model mice. Collectively, targeting NEK7 represents a potential therapeutic strategy for alleviating AD symptoms.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Geriatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Hui Zhao
- Department of Geriatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| |
Collapse
|
29
|
Zhou DH, Jia XX, Wu YZ, Zhang WW, Wang Y, Liang DL, Gao LP, Xiao K, Chen C, Dong XP, Shi Q. Aberrant Enhanced NLRP3 Inflammasomes and Cell Pyroptosis in the Brains of Prion-Infected Rodent Models Are Largely Associated with the Proliferative Astrocytes. Mol Neurobiol 2024; 61:9582-9594. [PMID: 38664301 DOI: 10.1007/s12035-024-04169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 10/23/2024]
Abstract
Neuroinflammation is a common pathological feature in a number of neurodegenerative diseases, which is mediated primarily by the activated glial cells. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome-associated neuroinflammatory response is mostly considered. To investigate the situation of the NLRP3-related inflammation in prion disease, we assessed the levels of the main components of NLRP3 inflammasome and its downstream biomarkers in the scrapie-infected rodent brain tissues. The results showed that the transcriptional and expressional levels of NLRP3, caspase-1, and apoptosis-associated speck-like protein (ASC) in the brains of scrapie-infected rodents were significantly increased at terminal stage. The increased NLPR3 overlapped morphologically well with the proliferated GFAP-positive astrocytes, but little with microglia and neurons. Using the brain samples collected at the different time-points after infection, we found the NLRP3 signals increased in a time-dependent manner, which were coincidental with the increase of GFAP. Two main downstream cytokines, IL-1β and IL-18, were also upregulated in the brains of prion-infected mice. Moreover, the gasdermin D (GSDMD) levels, particularly the levels of GSDMD-NT, in the prion-infected brain tissues were remarkably increased, indicating activation of cell pyroptosis. The GSDMD not only co-localized well with the astrocytes but also with neurons at terminal stage, also showing a time-dependent increase after infection. Those data indicate that NLRP3 inflammasomes were remarkably activated in the infected brains, which is largely mediated by the proliferated astrocytes. Both astrocytes and neurons probably undergo a pyroptosis process, which may help the astrocytes to release inflammatory factors and contribute to neuron death during prion infection.
Collapse
Affiliation(s)
- Dong-Hua Zhou
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Xiao-Xi Jia
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Yue-Zhang Wu
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Wei-Wei Zhang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Yuan Wang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Dong-Lin Liang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Li-Ping Gao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Cao Chen
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Xiao-Ping Dong
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
- China Academy of Chinese Medical Sciences, Beijing, China.
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China.
| | - Qi Shi
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.
- China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
30
|
Jia J, Liu H, Sun L, Xu Y, Zeng X. Thioredoxin-1 Protects Neurons Through Inhibiting NLRP1-Mediated Neuronal Pyroptosis in Models of Alzheimer's Disease. Mol Neurobiol 2024; 61:9723-9734. [PMID: 38976128 DOI: 10.1007/s12035-024-04341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease all over the world. In the last decade, accumulating proofs have evidenced that neuroinflammation is intimately implicated in the pathogenesis of AD and activation of NOD-like receptor family pyrin domain-containing 1 (NLRP1) inflammasome can induce neuronal pyroptosis and in turn lead to neuronal loss in AD. Thioredoxin-1 (Trx-1), a multifunctional molecule with anti-inflammation in human tissues, displays crucial neuroprotective roles in AD. Our previous research preliminarily found that Trx-1 inhibition enhanced the expression of NLRP1, caspase-1, and gasdermin D (GSDMD) in Aβ25-35-treated PC12 cells. However, it is largely unknown if Trx-1 can inhibit NLRP1-mediated neuronal pyroptosis in AD neurons. In this study, it was verified that the protein levels of NLRP1, caspase-1, and GSDMD were significantly increased in Aβ25-35-treated mouse HT22 and primary hippocampal neurons. Suppression of Trx-1 with PX-12, a selective inhibitor of Trx-1, or Trx-1 knockdown further activated NLRP1-mediated neuronal pyroptosis. On the contrary, lentivirus infection-mediated Trx-1 overexpression in differentiated PC12 cells dramatically reversed expression of NLRP1, caspase-1, and GSDMD. Furthermore, Trx-1 overexpression mediated by adeno-associated virus in the hippocampal tissues of APP/PS1 mice likewise attenuated the activation of NLRP1-mediated neuronal pyroptosis, as well as reduced the hippocampal deposition of Aβ and ameliorated the cognitive function of APP/PS1 mice. In conclusion, this article predicates a novel molecular mechanism by which Trx-1 exploits neuroprotection through attenuating NLRP1-mediated neuronal pyroptosis in AD models, suggesting that Trx-1 may be a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Jinjing Jia
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| | - Hongjun Liu
- Department of Neurology, Affiliated Xin'an International Hospital, Jiaxing University Medical College, Jiaxing, China
| | - Liyan Sun
- Department of Clinical Medicine, Jiaxing University Medical College, Jiaxing, China
| | - Yunfeng Xu
- Department of Neurosurgery, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, No. 1882, Central South Road, Jiaxing, China.
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China.
- Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, China.
- Judicial Expertise Center, Jiaxing University, No. 118, Jiahang Road, Jiaxing, China.
| |
Collapse
|
31
|
Hu B, Zhang J, Huang J, Luo B, Zeng X, Jia J. NLRP3/1-mediated pyroptosis: beneficial clues for the development of novel therapies for Alzheimer's disease. Neural Regen Res 2024; 19:2400-2410. [PMID: 38526276 PMCID: PMC11090449 DOI: 10.4103/1673-5374.391311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024] Open
Abstract
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis, which is a lytic, inflammatory form of cell death. There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer's disease. In this review, we summarize the possible pathogenic mechanisms of Alzheimer's disease, focusing on neuroinflammation. We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer's disease. Finally, we examine the neuroprotective activity of small-molecule inhibitors, endogenous inhibitor proteins, microRNAs, and natural bioactive molecules that target NLRP3 and NLRP1, based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Bairu Luo
- Department of Clinical Pathology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, Zhejiang Province, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| |
Collapse
|
32
|
Han J, Ye L, Wang Y. Pyroptosis: An Accomplice in the Induction of Multisystem Complications Triggered by Obstructive Sleep Apnea. Biomolecules 2024; 14:1349. [PMID: 39595526 PMCID: PMC11592050 DOI: 10.3390/biom14111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a common respiratory disorder, primarily characterized by two pathological features: chronic intermittent hypoxia (CIH) and sleep deprivation (SD). OSA has been identified as a risk factor for numerous diseases, and the inflammatory response related to programmed cell necrosis is believed to play a significant role in the occurrence and progression of multisystem damage induced by OSA, with increasing attention being paid to pyroptosis. Recent studies have indicated that OSA can elevate oxidative stress levels in the body, activating the process of pyroptosis within different tissues, ultimately accelerating organ dysfunction. However, the molecular mechanisms of pyroptosis in the multisystem damage induced by OSA remain unclear. Therefore, this review focuses on four major systems that have received concentrated attention in existing research in order to explore the role of pyroptosis in promoting renal diseases, cardiovascular diseases, neurocognitive diseases, and skin diseases in OSA patients. Furthermore, we provide a comprehensive overview of methods for inhibiting pyroptosis at different molecular levels, with the goal of identifying viable targets and therapeutic strategies for addressing OSA-related complications.
Collapse
Affiliation(s)
- Jingwen Han
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; (J.H.); (L.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Lisong Ye
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; (J.H.); (L.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Yan Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| |
Collapse
|
33
|
Yang W, Huang X, Lv W, Jin Y, Zhu Y. LINC00365 promotes miR-221-5p to inhibit pyroptosis via Dicer in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 57:529-541. [PMID: 39439418 DOI: 10.3724/abbs.2024173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Pyroptosis, a newly discovered form of programmed cell death, is involved in the occurrence, development and drug resistance of a variety of tumors and has attracted increasing attention in recent years. LINC00365 is a novel lncRNA that has rarely been reported before. We previously reported that LINC00365 expression in colorectal cancer is closely associated with poor patient outcomes. Additionally, LINC00365 was confirmed to be positively correlated with miR-221-5p, and miR-221-5p is negatively correlated with gasdermin-D (GSDMD) in colorectal cancer tissues. Bioinformatics analysis and luciferase reporter gene experiments revealed that GSDMD is the target gene of miR-221-5p. Cell function experiments and nude mouse tumor transplantation assays confirmed that LINC00365 could regulate the expressions of pyroptosis-related proteins such as Caspase-1, Caspase-11, NLRP3 and GSDMD. RNA pulldown and RNA immunoprecipitation experiments further elucidated the mechanism by which LINC00365 regulates miR-221-5p. In the present study, we observe that LINC00365 promotes the expression of miR-221-5p by binding to the Dicer enzyme to inhibit GSDMD and plays an antipyroptotic role. Our findings suggest that LINC00365 may serve as a molecular biomarker for estimating the prognosis of patients with colorectal cancer and as a potential therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Weiqing Yang
- School of Graduate Studies, Wannan Medical College, Wuhu 241002, China
- Department of Oncology, the First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| | - Xiang Huang
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Weibin Lv
- School of Graduate Studies, Wannan Medical College, Wuhu 241002, China
- Department of Oncology, the First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| | - Yuelong Jin
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Yiping Zhu
- Department of Oncology, the First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
34
|
Rui W, Wu Y, Yang Y, Xie W, Qin D, Ming J, Ye Z, Lu L, Zong M, Tang X, Fan L, Li S. Myeloid gasdermin D drives early-stage T cell immunity and peripheral inflammation in a mouse model of Alzheimer's disease. J Neuroinflammation 2024; 21:266. [PMID: 39427168 PMCID: PMC11491014 DOI: 10.1186/s12974-024-03255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND It is now realized that peripheral inflammation and abnormal immune responses, especially T cells, contribute to the development of Alzheimer's disease (AD). Gasdermin D (GSDMD) -mediated pyroptosis has been associated with several neuroinflammatory diseases, but whether GSDMD is involved in the peripheral inflammation and T cell immunity during AD remains unclear. METHODS We dynamically investigated GSDMD activation in the peripheral and central nervous system of 5×FAD mouse model and dissected the role of myeloid GSDMD using genetic knockout mice, especially its influence on peripheral T cell responses and AD inflammation. RNA sequencing and in vitro coculture were used to elucidate the underlying immune mechanisms involved. Targeted inhibitor experiments and clinical correlation analysis were used to further verify the function of GSDMD in AD. RESULTS In the present study, caspase activated GSDMD in the spleen of 5×FAD mice earlier than in the brain during disease progression. Loss of myeloid cell GSDMD was shown to impair early-stage effector T cell activation in the periphery and prevent T cell infiltration into the brain, with an overall reduction in neuroinflammation. Furthermore, myeloid cell GSDMD induced T cell PD-1 expression through the IL-1β/NF-κB pathway, restricting regulatory T cells. The administration of a GSDMD inhibitor combined with an anti-PD-1 antibody was found to mitigate the development of AD-associated inflammation. In some AD patients, plasma sPD-1 is positively correlated with IL-Iβ and clinical features. CONCLUSIONS Our study systematically identified a role for GSDMD in the AD-related peripheral inflammation and early-stage T cell immunity. These findings also suggest the therapeutic potential of targeting GSDMD for the early intervention in AD.
Collapse
Affiliation(s)
- Wenjuan Rui
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuqing Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongbing Yang
- Department of Medical Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China
| | - Wenting Xie
- Department of Neurology, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, 230031, China
| | - Dengli Qin
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jie Ming
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhihan Ye
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Liu Lu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xianglong Tang
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210024, China.
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Sheng Li
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
35
|
Chiarini A, Armato U, Gui L, Yin M, Chang S, Dal Prà I. Early divergent modulation of NLRP2's and NLRP3's inflammasome sensors vs. AIM2's one by signals from Aβ·Calcium-sensing receptor complexes in human astrocytes. Brain Res 2024; 1846:149283. [PMID: 39426463 DOI: 10.1016/j.brainres.2024.149283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Alzheimer's disease (AD), the most prevalent human dementia, is driven by accruals of extracellular Aβ42 senile patches and intracellular neurofibrillary tangles of hyperphosphorylated Tau (p-Tau) proteins. AD's concurrent neuroinflammation is prompted by innate immunity-related cytosolic protein oligomers named inflammasomes. Upon proper "first" (priming) and "second" (activating) signals, inflammasomes overproduce proinflammatory Interleukin (IL)-1β, and IL-18 while cleaving pyroptosis-promoting Gasdermin D's N-terminal fragments. Our earlier studies highlighted that in pure monocultures, exogenous Aβ25-35-treated nonproliferating human cortical astrocytes (HCAs) made and released surpluses of endogenous Aβ42-oligomers (-os) and p-Tau-os, just as alike-treated human cortical neurons did. Aβ25-35-exposed HCAs also over-released NO, VEGFA, and IL-6. Aβ•CaSR (Aβ·Calcium-Sensing Receptor) complexes generated intracellular signals mediating all such neurotoxic effects since CaSR's negative allosteric modulators (aka NAMs or calcilytics, e.g., NPS2143) fully suppressed them. However, it had hitherto remained unexplored whether signals from Aβ·CaSR complexes also induced the early expression and/or activation of NOD-like 2 (NLRP2) and 3 (NLRP3) and of PYHIN absent in melanoma 2 (AIM2) inflammasomes in monocultured HCAs. To clarify this topic, we used in-situ-Proximity Ligation, qRT-PCR, double antibody arrays, immunoblots, and Caspase 1/4 enzymatic assays. Aβ·CaSR complexes quickly assembled on HCAs surface and issued intracellular signals activating Akt and JAK/STAT axes. In turn, the latter upregulated NLRP2 and NLRP3 PRRs (pattern recognition receptors) yet downregulated AIM2. These effects were specific, being significantly hindered by NPS2143 and inhibitors of PI3K (LY294002), AMPKα (Dorsomorphin), mTOR (Torin1), and JAK/TYK (Brepoticinib). A wide-spectrum inhibitor, Bay11-7082, intensified the Aβ·CaSR/Akt/JAK/STAT axis-driven opposite control of NLRP3's and AIM2's PRR proteins without affecting NLRP2 PRR upregulation. However, the said effects on the PRRs proteins vanished within 24-h. Moreover, Aβ·CaSR signals neither concurrently changed ASC, pro-IL-1β, and Gasdermin-D (holo- and fragments) protein levels and Caspases 1 and 4 enzymatic activities nor induced pyroptosis. Therefore, Aβ·CaSR cues acted as "first (priming) signals" temporarily increasing NLRP2 and NLRP3 PRRs expression without activating the corresponding inflammasomes. The neatly divergent modulation of NLRP3's vs. AIM2's PRR proteins by Aβ·CaSR cues and by Bay11-7082 suggests that, when bacterial or viral DNA fragments are absent, AIM2 might play "anti-inflammasomal" or other roles in HCAs. However, Bay11-7082's no effect on NLRP2 PRR overexpression also reveals that CaSR's downstream mechanisms controlling inflammasomes' sensors are quite complex in HCAs, and hence, given AD's impact on human health, well worth further studies.
Collapse
Affiliation(s)
- Anna Chiarini
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Ubaldo Armato
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Li Gui
- Department of Neurology, Southwest Hospital, Army Medical University, 29 Gaotanyan Street, Chongqing, 400038, China.
| | - Meifang Yin
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Shusen Chang
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Ilaria Dal Prà
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| |
Collapse
|
36
|
Li CL, Wang Q, Wu L, Hu JY, Gao QC, Jiao XL, Zhang YX, Tang S, Yu Q, He PF. The PANoptosis-related hippocampal molecular subtypes and key biomarkers in Alzheimer's disease patients. Sci Rep 2024; 14:23851. [PMID: 39394418 PMCID: PMC11470079 DOI: 10.1038/s41598-024-75377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder, and various molecules associated with PANoptosis are involved in neuroinflammation and neurodegenerative diseases. This work aims to identify key genes, and characterize PANoptosis-related molecular subtypes in AD. Moreover, we establish a scoring system for distinguishing PANoptosis molecular subtypes and constructing diagnostic models for AD differentiation. A total of 5 hippocampal datasets were obtained from the Gene Expression Omnibus (GEO) database. In total, 1324 protein-encoding genes associated with PANoptosis (1313 apoptosis genes, 11 necroptosis genes, and 31 pyroptosis genes) were extracted from the GeneCards database. The Limma package was used to identify differentially expressed genes. Weighted Gene Co-Expression Network Analysis (WGCNA) was conducted to identify gene modules significantly associated with AD. The ConsensusClusterPlus algorithm was used to identify AD subtypes. Gene Set Variation Analysis (GSVA) was used to assess functional and pathway differences among the subtypes. The Boruta, Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms were used to select the three PANoptosis-related Key AD genes (PKADg). A scoring model was constructed based on the Boruta algorithm. PANoptosis diagnostic models were developed using the RF, SVM-RFE, and Logistic Regression (LR) algorithms. The ROC curves were used to assess the model performance. A total of 48 important genes were identified by intersecting 725 differentially expressed genes and 2127 highly correlated module genes from WGCNA with 1324 protein-encoding genes related to PANoptosis. Machine learning algorithms identified 3 key AD genes related to PANoptosis, including ANGPT1, STEAP3, and TNFRSF11B. These genes had strong discriminatory capacities among samples, with Receiver Operating Characteristic Curve (ROC) analysis indicating Area Under the Curve (AUC) values of 0.839, 0.8, and 0.868, respectively. Using the 48 important genes, the ConsensusClusterPlus algorithm identified 2 PANoptosis subtypes among AD patients, i.e., apoptosis subtype and mild subtype. Apoptosis subtype patients displayed evident cellular apoptosis and severe functionality damage in the hippocampal tissue. Meanwhile, mild subtype patients showed milder functionality damage. These two subtypes had significant differences in apoptosis and necroptosis; however, there was no apparent variation in pyroptosis functionality. The scoring model achieved an AUC of 100% for sample differentiation. The RF PANoptosis diagnostic model demonstrated an AUC of 100% in the training set and 85.85% in the validation set for distinguishing AD. This study identified two PANoptosis-related hippocampal molecular subtypes of AD, identified key genes, and established machine learning models for subtype differentiation and discrimination of AD. We found that in the context of AD, PANoptosis may influence disease progression through the modulation of apoptosis and necrotic apoptosis.
Collapse
Affiliation(s)
- Chen-Long Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Jing-Yi Hu
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Qi-Chao Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Xin-Long Jiao
- School of Medical Science, Shanxi Medical University, Taiyuan, China
| | - Yu-Xiang Zhang
- Second Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Shan Tang
- First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Qi Yu
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China.
- School of Management, Shanxi Medical University, Taiyuan, China.
| | - Pei-Feng He
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China.
- School of Management, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
37
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
38
|
Meng X, Wu W, Tang Y, Peng M, Yang J, Yuan S, Hu Z, Liu W. Lactate/Hydroxycarboxylic Acid Receptor 1 in Alzheimer's Disease: Mechanisms and Therapeutic Implications-Exercise Perspective. Mol Neurobiol 2024; 61:7717-7731. [PMID: 38427215 DOI: 10.1007/s12035-024-04067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Lactate has a novel function different from previously known functions despite its traditional association with hypoxia in skeletal muscle. It plays various direct and indirect physiological functions. It is a vital energy source within the central nervous system (CNS) and a signal transmitter regulating crucial processes, such as angiogenesis and inflammation. Activating lactate and its associated receptors elicits effects like synaptic plasticity and angiogenesis alterations. These effects can significantly influence the astrocyte-neuron lactate shuttle, potentially impacting cognitive performance. Decreased cognitive function relates to different neurodegenerative conditions, including Alzheimer's disease (AD), ischemic brain injury, and frontotemporal dementia. Therefore, lactic acid has significant potential for treating neurodegenerative disorders. Exercise is a method that induces the production of lactic acid, which is similar to the effect of lactate injections. It is a harmless and natural way to achieve comparable results. Animal experiments demonstrate that high-intensity intermittent exercise can increase vascular endothelial growth factor (VEGF) levels, thus promoting angiogenesis. In vivo, lactate receptor-hydroxycarboxylic acid receptor 1 (HCAR1) activation can occur by various stimuli, including variations in ion concentrations, cyclic adenosine monophosphate (cAMP) level elevations, and fluctuations in the availability of energy substrates. While several articles have been published on the benefits of physical activity on developing Alzheimer's disease in the CNS, could lactic acid act as a bridge? Understanding how HCAR1 responds to these signals and initiates associated pathways remains incomplete. This review comprehensively analyzes lactate-induced signaling pathways, investigating their influence on neuroinflammation, neurodegeneration, and cognitive decline. Consequently, this study describes the unique role of lactate in the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zelin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
39
|
Baluchnejadmojarad T, Roghani M. Exploring the molecular mechanisms underlying neuroprotective effect of ellagic acid in okadaic acid-induced Alzheimer's phenotype. Metab Brain Dis 2024; 39:1417-1432. [PMID: 39133454 DOI: 10.1007/s11011-024-01405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Pomegranate polyphenol ellagic acid has medicinal potential in neurodegenerative disorders. The advantageous effect of this polyphenol in improving cognition in okadaic acid (OA)-instigated murine model with unraveling some modes of its action was assessed. Rats received ICV okadaic acid (OA) and post-treated with oral ellagic acid for 3 weeks (25 and 100 mg/kg/day). Cognition was analyzed in behavioral tasks besides assessment of oxidative, apoptotic, and inflammatory factors in addition to hippocampal histochemical analysis. Ellagic acid at a dose of 100 mg/kg properly attenuated cognitive abnormalities in novel object recognition (NOR), Y maze, and Barnes maze tests. Additionally, ellagic acid diminished hippocampal changes of malondialdehyde (MDA), protein carbonyl, reactive oxygen species (ROS), glutathione (GSH), glutathione peroxidase, superoxide dismutase (SOD), apoptotic factors caspases 1 and 3, tumor necrosis factor α (TNFα), and acetylcholinesterase (AChE) and beta secretase 1 (BACE 1) besides reversal of AMP-activated protein kinase (AMPK) and hyperphosphorylated tau (p-tau). Moreover, lower glial fibrillary acidic protein (GFAP) and less injury of hippocampal CA1 pyramidal neurons were observed upon ellagic acid. To conclude, neuroprotective potential of ellagic acid was shown which is somewhat attributable to its reversal of oxidative, apoptotic, and neuroinflammatory events in addition to proper regulation of AMPK and p-tau.
Collapse
Affiliation(s)
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
40
|
Yang J, Liang J, Hu N, He N, Liu B, Liu G, Qin Y. The Gut Microbiota Modulates Neuroinflammation in Alzheimer's Disease: Elucidating Crucial Factors and Mechanistic Underpinnings. CNS Neurosci Ther 2024; 30:e70091. [PMID: 39460538 PMCID: PMC11512114 DOI: 10.1111/cns.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is characterized by progressive cognitive decline and neuronal loss, commonly linked to amyloid-β plaques, neurofibrillary tangles, and neuroinflammation. Recent research highlights the gut microbiota as a key player in modulating neuroinflammation, a critical pathological feature of AD. Understanding the role of the gut microbiota in this process is essential for uncovering new therapeutic avenues and gaining deeper insights into AD pathogenesis. METHODS This review provides a comprehensive analysis of how gut microbiota influences neuroinflammation and glial cell function in AD. A systematic literature search was conducted, covering studies from 2014 to 2024, including reviews, clinical trials, and animal studies. Keywords such as "gut microbiota," "Alzheimer's disease," "neuroinflammation," and "blood-brain barrier" were used. RESULTS Dysbiosis, or the imbalance in gut microbiota composition, has been implicated in the modulation of key AD-related mechanisms, including neuroinflammation, blood-brain barrier integrity, and neurotransmitter regulation. These disruptions may accelerate the onset and progression of AD. Additionally, therapeutic strategies targeting gut microbiota, such as probiotics, prebiotics, and fecal microbiota transplantation, show promise in modulating AD pathology. CONCLUSIONS The gut microbiota is a pivotal factor in AD pathogenesis, influencing neuroinflammation and disease progression. Understanding the role of gut microbiota in AD opens avenues for innovative diagnostic, preventive, and therapeutic strategies.
Collapse
Affiliation(s)
- Jianshe Yang
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Junyi Liang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Niyuan Hu
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Ningjuan He
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Bin Liu
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Guoliang Liu
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| | - Ying Qin
- Harbin Institute of Physical EducationHarbinHeilongjiang ProvinceChina
| |
Collapse
|
41
|
Wang L, Zheng G, Wang P, Jia X. Unlocking the secrets of NPSLE: the role of dendritic cell-secreted CCL2 in blood-brain barrier disruption. Front Immunol 2024; 15:1343805. [PMID: 39403387 PMCID: PMC11472714 DOI: 10.3389/fimmu.2024.1343805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/27/2024] [Indexed: 11/02/2024] Open
Abstract
Background This study employed RNA-seq technology and meta-analysis to unveil the molecular mechanisms of neuropsychiatric systemic lupus erythematosus (NPSLE) within the central nervous system. Methods Downloaded transcriptomic data on systemic lupus erythematosus (SLE) from the Gene Expression Omnibus (GEO) and analyzed differential genes in peripheral blood samples of NPSLE patients and healthy individuals. Employed WGCNA to identify key genes related to cognitive impairment and validated findings via RNA-seq. Conducted GO, KEGG, and GSEA analyses, and integrated PPI networks to explore gene regulatory mechanisms. Assessed gene impacts on dendritic cells and blood-brain barrier using RT-qPCR, ELISA, and in vitro models. Results Public databases and RNA-seq data have revealed a significant upregulation of CCL2 (C-C motif chemokine ligand 2) in the peripheral blood of both SLE and NPSLE patients, primarily secreted by mature dendritic cells. Furthermore, the secretion of CCL2 by mature dendritic cells may act through the RSAD2-ISG15 axis and is associated with the activation of the NLRs (Nod Like Receptor Signaling Pathway) signaling pathway in vascular endothelial cells. Subsequent in vitro cell experiments confirmed the high expression of CCL2 in peripheral blood dendritic cells of NPSLE patients, with its secretion being regulated by the RSAD2-ISG15 axis and inducing vascular endothelial cell pyroptosis through the activation of the NLRs signaling pathway. Clinical trial results ultimately confirmed that NPSLE patients exhibiting elevated CCL2 expression also experienced cognitive decline. Conclusions The secretion of CCL2 by dendritic cells induces pyroptosis in vascular endothelial cells, thereby promoting blood-brain barrier damage and triggering cognitive impairment in patients with systemic lupus erythematosus.
Collapse
Affiliation(s)
- Lei Wang
- Department of Medical Imaging, Hebei General Hospital, Shijiazhuang, China
| | - Guimin Zheng
- Department of Rheumatology and Immunology, Hebei General Hospital, Shijiazhuang, China
| | - Peiwen Wang
- 3 Major Classes of Clinical Medicine Department, Grade 2021, Hebei Medical University, Shijiazhuang, China
| | - Xiuchuan Jia
- Department of Medical Imaging, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
42
|
Thal DR, De Strooper B. Regulated cell death in neurodegeneration: pathways and therapeutic horizons. Acta Neuropathol 2024; 148:47. [PMID: 39317858 DOI: 10.1007/s00401-024-02808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Affiliation(s)
- Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute, KU-Leuven, Leuven, Belgium.
| | - Bart De Strooper
- Laboratory for Neurodegenerative Diseases, VIB-KU Leuven, and Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
43
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|
44
|
Liu XT, Chen X, Zhao N, Geng F, Zhu MM, Ren QG. Synergism of ApoE4 and systemic infectious burden is mediated by the APOE-NLRP3 axis in Alzheimer's disease. Psychiatry Clin Neurosci 2024; 78:517-526. [PMID: 39011734 DOI: 10.1111/pcn.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/12/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Systemic infections are associated with the development of AD, especially in individuals carrying the APOE4 genotype. However, the detailed mechanism through which APOE4 affects microglia inflammatory response remains unclear. METHODS We obtained human snRNA-seq data from the Synapse AD Knowledge Portal and assessed the DEGs between APOE3 and APOE4 isoforms in microglia. To verify the interaction between ApoE and infectious products, we used ApoE to stimulate in vitro and in vivo models in the presence or absence of LPS (or ATP). The NLRP3 gene knockout experiment was performed to demonstrate whether the APOE-NLRP3 axis was indispensable for microglia to regulate inflammation and mitochondrial autophagy. Results were evaluated by biochemical analyses and fluorescence imaging. RESULTS Compared with APOE3, up-regulated genes in APOE4 gene carriers were involved in pro-inflammatory responses. ApoE4-stimulation significantly increased the levels of NLRP3 inflammasomes and ROS in microglia. Moreover, compared with ApoE4 alone, the co-incubation of ApoE4 with LPS (or ATP) markedly promoted pyroptosis. Both NF-κB activation and mitochondrial autophagy dysfunction were contributed by the increased level of NLRP3 inflammasomes induced by ApoE4. Furthermore, the pathological impairment induced by ApoE4 could be reversed by NLRP3 KO. CONCLUSIONS Our study highlights the importance of NLRP3 inflammasomes in linking ApoE4 with microglia innate immune function. These findings not only provide a molecular basis for APOE4-mediated neuroinflammatory but also reveal the potential reason for the increased risk of AD in APOE4 gene carriers after contracting infectious diseases.
Collapse
Affiliation(s)
- Xue-Ting Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Xiu Chen
- School of Medicine, Southeast University, Nanjing, China
| | - Na Zhao
- School of Medicine, Southeast University, Nanjing, China
| | - Fan Geng
- School of Medicine, Southeast University, Nanjing, China
| | - Meng-Meng Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Qing-Guo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
| |
Collapse
|
45
|
Botella Lucena P, Heneka MT. Inflammatory aspects of Alzheimer's disease. Acta Neuropathol 2024; 148:31. [PMID: 39196440 DOI: 10.1007/s00401-024-02790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Alzheimer´s disease (AD) stands out as the most common chronic neurodegenerative disorder. AD is characterized by progressive cognitive decline and memory loss, with neurodegeneration as its primary pathological feature. The role of neuroinflammation in the disease course has become a focus of intense research. While microglia, the brain's resident macrophages, have been pivotal to study central immune inflammation, recent evidence underscores the contributions of other cellular entities to the neuroinflammatory process. In this article, we review the inflammatory role of microglia and astrocytes, focusing on their interactions with AD's core pathologies, amyloid beta deposition, and tau tangle formation. Additionally, we also discuss how different modes of regulated cell death in AD may impact the chronic neuroinflammatory environment. This review aims to highlight the evolving landscape of neuroinflammatory research in AD and underscores the importance of considering multiple cellular contributors when developing new therapeutic strategies.
Collapse
Affiliation(s)
- Pablo Botella Lucena
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
46
|
Prud’homme GJ, Wang Q. Anti-Inflammatory Role of the Klotho Protein and Relevance to Aging. Cells 2024; 13:1413. [PMID: 39272986 PMCID: PMC11394293 DOI: 10.3390/cells13171413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The α-Klotho protein (hereafter Klotho) is an obligate coreceptor for fibroblast growth factor 23 (FGF23). It is produced in the kidneys, brain and other sites. Klotho insufficiency causes hyperphosphatemia and other anomalies. Importantly, it is associated with chronic pathologies (often age-related) that have an inflammatory component. This includes atherosclerosis, diabetes and Alzheimer's disease. Its mode of action in these diseases is not well understood, but it inhibits or regulates multiple major pathways. Klotho has a membrane form and a soluble form (s-Klotho). Cytosolic Klotho is postulated but not well characterized. s-Klotho has endocrine properties that are incompletely elucidated. It binds to the FGF receptor 1c (FGFR1c) that is widely expressed (including endothelial cells). It also attaches to soluble FGF23, and FGF23/Klotho binds to FGFRs. Thus, s-Klotho might be a roaming FGF23 coreceptor, but it has other functions. Notably, Klotho (cell-bound or soluble) counteracts inflammation and appears to mitigate related aging (inflammaging). It inhibits NF-κB and the NLRP3 inflammasome. This inflammasome requires priming by NF-κB and produces active IL-1β, membrane pores and cell death (pyroptosis). In accord, Klotho countered inflammation and cell injury induced by toxins, damage-associated molecular patterns (DAMPs), cytokines, and reactive oxygen species (ROS). s-Klotho also blocks the TGF-β receptor and Wnt ligands, which lessens fibrotic disease. Low Klotho is associated with loss of muscle mass (sarcopenia), as occurs in aging and chronic diseases. s-Klotho counters the inhibitory effects of myostatin and TGF-β on muscle, reduces inflammation, and improves muscle repair following injury. The inhibition of TGF-β and other factors may also be protective in diabetic retinopathy and age-related macular degeneration (AMD). This review examines Klotho functions especially as related to inflammation and potential applications.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 220 Walmer Rd, Toronto, ON M5R 3R7, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai 200030, China
- Shanghai Innogen Pharmaceutical Co., Ltd., Shanghai 201318, China
| |
Collapse
|
47
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
48
|
Ma J, Li M, Bao Y, Huang W, He X, Hong Y, Wei W, Liu Z, Gao X, Yang Y, Cui Z, Wang W, Wang J, Zhu W, Zheng N, Pan L, Wang D, Ke Z, Zhou B, Sheng L, Li H. Gut microbiota-brain bile acid axis orchestrates aging-related neuroinflammation and behavior impairment in mice. Pharmacol Res 2024; 208:107361. [PMID: 39159729 DOI: 10.1016/j.phrs.2024.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Emerging evidence shows that disrupted gut microbiota-bile acid (BA) axis is critically involved in the development of neurodegenerative diseases. However, the alterations in spatial distribution of BAs among different brain regions that command important functions during aging and their exact roles in aging-related neurodegenerative diseases are poorly understood. Here, we analyzed the BA profiles in cerebral cortex, hippocampus, and hypothalamus of young and natural aging mice of both sexes. The results showed that aging altered brain BA profiles sex- and region- dependently, in which TβMCA was consistently elevated in aging mice of both sexes, particularly in the hippocampus and hypothalamus. Furthermore, we found that aging accumulated-TβMCA stimulated microglia inflammation in vitro and shortened the lifespan of C. elegans, as well as behavioral impairment and neuroinflammation in mice. In addition, metagenomic analysis suggested that the accumulation of brain TβMCA during aging was partially attributed to reduction in BSH-carrying bacteria. Finally, rejuvenation of gut microbiota by co-housing aged mice with young mice restored brain BA homeostasis and improved neurological dysfunctions in natural aging mice. In conclusion, our current study highlighted the potential of improving aging-related neuro-impairment by targeting gut microbiota-brain BA axis.
Collapse
Affiliation(s)
- Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingxiao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjing Wei
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Yang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengyu Cui
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wantao Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Deheng Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ben Zhou
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
49
|
Lin L, Huang L, Huang S, Chen W, Huang H, Chi L, Su F, Liu X, Yuan K, Jiang Q, Li C, Smith WW, Fu Q, Pei Z. MSC-Derived Extracellular Vesicles Alleviate NLRP3/GSDMD-Mediated Neuroinflammation in Mouse Model of Sporadic Alzheimer's Disease. Mol Neurobiol 2024; 61:5494-5509. [PMID: 38200351 DOI: 10.1007/s12035-024-03914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, with sporadic form being the predominant type. Neuroinflammation plays a critical role in accelerating pathogenic processes in AD. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) regulate inflammatory responses and show great promise for treating AD. Induced pluripotent stem cell (iPSC)-derived MSCs are similar to MSCs and exhibit low immunogenicity and heterogeneity, making them promising cell sources for clinical applications. This study examined the anti-inflammatory effects of MSC-sEVs in a streptozotocin-induced sporadic mouse model of AD (sAD). The intracisternal administration of iPSC-MSC-sEVs alleviated NLRP3/GSDMD-mediated neuroinflammation, decreased amyloid deposition and neuronal apoptosis, and mitigated cognitive dysfunction. Furthermore, it explored the role of miR-223-3p in the iPSC-MSC-sEVs-mediated anti-inflammatory effects in vitro. miR-223-3p directly targeted NLRP3, whereas inhibiting miR-223-3p almost completely reversed the suppression of NLRP3 by MSC-sEVs, suggesting that miR-223-3p may, at least partially, account for MSC-sEVs-mediated anti-inflammation. Results obtained suggest that intracisternal administration of iPSC-MSC-sEVs can reduce cognitive impairment by inhibiting NLRP3/GSDMD neuroinflammation in a sAD mouse model. Therefore, the present study provides a proof-of-principle for applying iPSC-MSC-sEVs to target neuroinflammation in sAD.
Collapse
Affiliation(s)
- Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Longxin Huang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Sen Huang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Weineng Chen
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Heng Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Li Chi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fengjuan Su
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaoqing Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kang Yuan
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiuhong Jiang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Changu Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wanli W Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
50
|
O'Shea TM, Ao Y, Wang S, Ren Y, Cheng AL, Kawaguchi R, Shi Z, Swarup V, Sofroniew MV. Derivation and transcriptional reprogramming of border-forming wound repair astrocytes after spinal cord injury or stroke in mice. Nat Neurosci 2024; 27:1505-1521. [PMID: 38907165 PMCID: PMC11303254 DOI: 10.1038/s41593-024-01684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/15/2024] [Indexed: 06/23/2024]
Abstract
Central nervous system (CNS) lesions become surrounded by neuroprotective borders of newly proliferated reactive astrocytes; however, fundamental features of these cells are poorly understood. Here we show that following spinal cord injury or stroke, 90% and 10% of border-forming astrocytes derive, respectively, from proliferating local astrocytes and oligodendrocyte progenitor cells in adult mice of both sexes. Temporal transcriptome analysis, single-nucleus RNA sequencing and immunohistochemistry show that after focal CNS injury, local mature astrocytes dedifferentiate, proliferate and become transcriptionally reprogrammed to permanently altered new states, with persisting downregulation of molecules associated with astrocyte-neuron interactions and upregulation of molecules associated with wound healing, microbial defense and interactions with stromal and immune cells. These wound repair astrocytes share morphologic and transcriptional features with perimeningeal limitans astrocytes and are the predominant source of neuroprotective borders that re-establish CNS integrity around lesions by separating neural parenchyma from stromal and immune cells as occurs throughout the healthy CNS.
Collapse
Affiliation(s)
- Timothy M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shinong Wang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yilong Ren
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| | - Amy L Cheng
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|