1
|
Norman RX, Chen YC, Recchia EE, Loi J, Rosemarie Q, Lesko SL, Patel S, Sherer N, Takaku M, Burkard ME, Suzuki A. One step 4x and 12x 3D-ExM: robust super-resolution microscopy in cell biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607782. [PMID: 39185153 PMCID: PMC11343106 DOI: 10.1101/2024.08.13.607782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Super-resolution microscopy has become an indispensable tool across diverse research fields, offering unprecedented insights into biological architectures with nanometer scale resolution. Compared to traditional nanometer-scale imaging methods such as electron microscopy, super-resolution microscopy offers several advantages, including the simultaneous labeling of multiple target biomolecules with high specificity and simpler sample preparation, making it accessible to most researchers. In this study, we introduce two optimized methods of super-resolution imaging: 4-fold and 12-fold 3D-isotropic and preserved Expansion Microscopy (4x and 12x 3D-ExM). 3D-ExM is a straightforward expansion microscopy method featuring a single-step process, providing robust and reproducible 3D isotropic expansion for both 2D and 3D cell culture models. With standard confocal microscopy, 12x 3D-ExM achieves a lateral resolution of under 30 nm, enabling the visualization of nanoscale structures, including chromosomes, kinetochores, nuclear pore complexes, and Epstein-Barr virus particles. These results demonstrate that 3D-ExM provides cost-effective and user-friendly super-resolution microscopy, making it highly suitable for a wide range of cell biology research, including studies on cellular and chromatin architectures.
Collapse
Affiliation(s)
- Roshan X Norman
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, Hematology/Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Yu-Chia Chen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Emma E Recchia
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jonathan Loi
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Quincy Rosemarie
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sydney L Lesko
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Smit Patel
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nathan Sherer
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Motoki Takaku
- Department of Biomedical Science, University of North Dakota School of Medicine and Health Science, Grand Forks, North Dakota, USA
| | - Mark E Burkard
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, Hematology/Oncology, University of Wisconsin-Madison, Madison, Wisconsin
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Aussie Suzuki
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Lead Contact
| |
Collapse
|
2
|
Feng R, Xie J, Gao L. EDTP enhances and protects the fluorescent signal of GFP in cleared and expanded tissues. Sci Rep 2024; 14:15279. [PMID: 38961181 PMCID: PMC11222453 DOI: 10.1038/s41598-024-66398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Advanced 3D high-resolution imaging techniques are essential for investigating biological challenges, such as neural circuit analysis and tumor microenvironment in intact tissues. However, the fluorescence signal emitted by endogenous fluorescent proteins in cleared or expanded biological samples gradually diminishes with repeated irradiation and prolonged imaging, compromising its ability to accurately depict the underlying scientific problem. We have developed a strategy to preserve fluorescence in cleared and expanded tissue samples during prolonged high-resolution three-dimensional imaging. We evaluated various compounds at different concentrations to determine their ability to enhance fluorescence intensity and resistance to photobleaching while maintaining the structural integrity of the tissue. Specifically, we investigated the impact of EDTP utilization on GFP, as it has been observed to significantly improve fluorescence intensity, resistance to photobleaching, and maintain fluorescence during extended room temperature storage. This breakthrough will facilitate extended hydrophilic and hydrogel-based clearing and expansion methods for achieving long-term high-resolution 3D imaging of cleared biological tissues by effectively safeguarding fluorescent proteins within the tissue.
Collapse
Affiliation(s)
- Ruili Feng
- Fudan University, Shanghai, 200433, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
| | - Jiongfang Xie
- Fudan University, Shanghai, 200433, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Liang Gao
- Fudan University, Shanghai, 200433, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| |
Collapse
|
3
|
Bullard MR, Cervantes JCM, Quaicoe NB, Jin A, Adams DA, Lin JM, Iliadis E, Seidler TM, Cervantes-Sandoval I, He HY. Accelerated protein retention expansion microscopy using microwave radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593228. [PMID: 38766072 PMCID: PMC11100821 DOI: 10.1101/2024.05.11.593228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Protein retention expansion microscopy (ExM) retains genetically encoded fluorescent proteins or antibody-conjugated fluorescent probes in fixed tissue and isotropically expands the tissue through a swellable polymer network to allow nanoscale (<70 nm) resolution on diffraction-limited confocal microscopes. Despite numerous advantages ExM brings to biological studies, the full protocol is time-consuming and can take multiple days to complete. Here, we adapted the ExM protocol to the vibratome-sectioned brain tissue of Xenopus laevis tadpoles and implemented a microwave-assisted protocol to reduce the workflow from days to hours. In addition to the significantly accelerated processing time, our microwave-assisted ExM (M/WExM) protocol maintains the superior resolution and signal-to-noise ratio of the original ExM protocol. Furthermore, the M/WExM protocol yields higher magnitude of expansion, suggesting that in addition to accelerating the process through increased diffusion rate of reagents, microwave radiation may also facilitate the expansion process. To demonstrate the applicability of this method to other specimens and protocols, we adapted the microwave-accelerated protocol to whole mount adult brain tissue of Drosophila melanogaster fruit flies, and successfully reduced the total processing time of a widely-used Drosophila IHC-ExM protocol from 6 days to 2 days. Our results demonstrate that with appropriate adjustment of the microwave parameters (wattage, pulse duration, interval, and number of cycles), this protocol can be readily adapted to different model organisms and tissue types to greatly increase the efficiency of ExM experiments.
Collapse
Affiliation(s)
| | | | | | - Amanda Jin
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Danya A. Adams
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Jessica M. Lin
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Elena Iliadis
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Tess M. Seidler
- Department of Biology, Georgetown University, Washington, DC 20057
| | | | - Hai-yan He
- Department of Biology, Georgetown University, Washington, DC 20057
| |
Collapse
|
4
|
Langner E, Puapatanakul P, Pudlowski R, Yaseen Alsabbagh D, Miner JH, Horani A, Dutcher SK, Brody SL, Wang JT, Suleiman HY, Mahjoub MR. Ultrastructure expansion microscopy (U-ExM) of mouse and human kidneys for analysis of subcellular structures. Cytoskeleton (Hoboken) 2024:10.1002/cm.21870. [PMID: 38715433 PMCID: PMC11540979 DOI: 10.1002/cm.21870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Ultrastructure expansion microscopy (U-ExM) involves the physical magnification of specimens embedded in hydrogels, which allows for super-resolution imaging of subcellular structures using a conventional diffraction-limited microscope. Methods for expansion microscopy exist for several organisms, organs, and cell types, and used to analyze cellular organelles and substructures in nanoscale resolution. Here, we describe a simple step-by-step U-ExM protocol for the expansion, immunostaining, imaging, and analysis of cytoskeletal and organellar structures in kidney tissue. We detail the critical modified steps to optimize isotropic kidney tissue expansion, and preservation of the renal cell structures of interest. We demonstrate the utility of the approach using several markers of renal cell types, centrioles, cilia, the extracellular matrix, and other cytoskeletal elements. Finally, we show that the approach works well on mouse and human kidney samples that were preserved using different fixation and embedding conditions. Overall, this protocol provides a simple and cost-effective approach to analyze both preclinical and clinical renal samples in high detail, using conventional lab supplies and standard widefield or confocal microscopy.
Collapse
Affiliation(s)
- Ewa Langner
- Department of Medicine, Washington University, St Louis, MO
| | - Pongpratch Puapatanakul
- Department of Medicine, Washington University, St Louis, MO
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | - Amjad Horani
- Department of Pediatrics, Washington University, St Louis, MO
| | | | | | | | | | - Moe R. Mahjoub
- Department of Medicine, Washington University, St Louis, MO
- Department of Cell Biology and Physiology, Washington University, St Louis, MO
| |
Collapse
|
5
|
Woodworth MA, Lakadamyali M. Toward a comprehensive view of gene architecture during transcription. Curr Opin Genet Dev 2024; 85:102154. [PMID: 38309073 PMCID: PMC10989512 DOI: 10.1016/j.gde.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
The activation of genes within the nucleus of eukaryotic cells is a tightly regulated process, orchestrated by a complex interplay of various physical properties and interacting factors. Studying the multitude of components and features that collectively contribute to gene activation has proven challenging due to the complexities of simultaneously visualizing the dynamic and transiently interacting elements that coalesce within the small space occupied by each individual gene. However, various labeling and imaging advances are now starting to overcome this challenge, enabling visualization of gene activation at different lengths and timescales. In this review, we aim to highlight these microscopy-based advances and suggest how they can be combined to provide a comprehensive view of the mechanisms regulating gene activation.
Collapse
Affiliation(s)
- Marcus A Woodworth
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Langner E, Puapatanakul P, Pudlowski R, Alsabbagh DY, Miner JH, Horani A, Dutcher SK, Brody SL, Wang JT, Suleiman HY, Mahjoub MR. Ultrastructure expansion microscopy (U-ExM) of mouse and human kidneys for analysis of subcellular structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580708. [PMID: 38405695 PMCID: PMC10889020 DOI: 10.1101/2024.02.16.580708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Ultrastructure expansion microscopy (U-ExM) involves the physical magnification of specimens embedded in hydrogels, which allows for super-resolution imaging of subcellular structures using a conventional diffraction-limited microscope. Methods for expansion microscopy exist for several organisms, organs, and cell types, and used to analyze cellular organelles and substructures in nanoscale resolution. Here, we describe a simple step-by-step U-ExM protocol for the expansion, immunostaining, imaging, and analysis of cytoskeletal and organellar structures in kidney tissue. We detail the critical modified steps to optimize isotropic kidney tissue expansion, and preservation of the renal cell structures of interest. We demonstrate the utility of the approach using several markers of renal cell types, centrioles, cilia, the extracellular matrix, and other cytoskeletal elements. Finally, we show that the approach works well on mouse and human kidney samples that were preserved using different fixation and storage conditions. Overall, this protocol provides a simple and cost-effective approach to analyze both pre-clinical and clinical renal samples in high detail, using conventional lab supplies and standard widefield or confocal microscopy.
Collapse
|
7
|
Pownall ME, Miao L, Vejnar CE, M’Saad O, Sherrard A, Frederick MA, Benitez MD, Boswell CW, Zaret KS, Bewersdorf J, Giraldez AJ. Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin. Science 2023; 381:92-100. [PMID: 37410825 PMCID: PMC10372697 DOI: 10.1126/science.ade5308] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/17/2023] [Indexed: 07/08/2023]
Abstract
Nanoscale chromatin organization regulates gene expression. Although chromatin is notably reprogrammed during zygotic genome activation (ZGA), the organization of chromatin regulatory factors during this universal process remains unclear. In this work, we developed chromatin expansion microscopy (ChromExM) to visualize chromatin, transcription, and transcription factors in vivo. ChromExM of embryos during ZGA revealed how the pioneer factor Nanog interacts with nucleosomes and RNA polymerase II (Pol II), providing direct visualization of transcriptional elongation as string-like nanostructures. Blocking elongation led to more Pol II particles clustered around Nanog, with Pol II stalled at promoters and Nanog-bound enhancers. This led to a new model termed "kiss and kick", in which enhancer-promoter contacts are transient and released by transcriptional elongation. Our results demonstrate that ChromExM is broadly applicable to study nanoscale nuclear organization.
Collapse
Affiliation(s)
- Mark E. Pownall
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Liyun Miao
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Charles E. Vejnar
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Ons M’Saad
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University; New Haven, CT 06510, USA
| | - Alice Sherrard
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Megan A. Frederick
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria D.J. Benitez
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Curtis W. Boswell
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine; New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University; New Haven, CT 06510, USA
- Department of Physics, Yale University; New Haven, CT 06510, USA
- Nanobiology Institute, Yale University; West Haven, CT 06477, USA
| | - Antonio J. Giraldez
- Department of Genetics, Yale University School of Medicine; New Haven, CT 06510, USA
- Yale Stem Cell Center, Yale University School of Medicine; New Haven, CT 06510, USA
- Yale Cancer Center, Yale University School of Medicine; New Haven, CT 06510, USA
| |
Collapse
|
8
|
Wen G, Leen V, Rohand T, Sauer M, Hofkens J. Current Progress in Expansion Microscopy: Chemical Strategies and Applications. Chem Rev 2023; 123:3299-3323. [PMID: 36881995 DOI: 10.1021/acs.chemrev.2c00711] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Expansion microscopy (ExM) is a newly developed super-resolution technique, allowing visualization of biological targets at nanoscale resolution on conventional fluorescence microscopes. Since its introduction in 2015, many efforts have been dedicated to broaden its application range or increase the resolution that can be achieved. As a consequence, recent years have witnessed remarkable advances in ExM. This review summarizes recent progress in ExM, with the focus on the chemical aspects of the method, from chemistries for biomolecule grafting to polymer synthesis and the impact on biological analysis. The combination of ExM with other microscopy techniques, in search of additional resolution improvement, is also discussed. In addition, we compare pre- and postexpansion labeling strategies and discuss the impact of fixation methods on ultrastructure preservation. We conclude this review with a perspective on existing challenges and future directions. We believe that this review will provide a comprehensive understanding of ExM and facilitate its usage and further development.
Collapse
Affiliation(s)
- Gang Wen
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Volker Leen
- Chrometra Scientific, Kortenaken 3470, Belgium
| | - Taoufik Rohand
- Laboratory of Analytical and Molecular Chemistry, Faculty Polydisciplinaire of Safi, University Cadi Ayyad Marrakech, BP 4162, 46000 Safi, Morocco
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
9
|
Cui Y, Zhang X, Li X, Lin J. Multiscale microscopy to decipher plant cell structure and dynamics. THE NEW PHYTOLOGIST 2023; 237:1980-1997. [PMID: 36477856 DOI: 10.1111/nph.18641] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
New imaging methodologies with high contrast and molecular specificity allow researchers to analyze dynamic processes in plant cells at multiple scales, from single protein and RNA molecules to organelles and cells, to whole organs and tissues. These techniques produce informative images and quantitative data on molecular dynamics to address questions that cannot be answered by conventional biochemical assays. Here, we review selected microscopy techniques, focusing on their basic principles and applications in plant science, discussing the pros and cons of each technique, and introducing methods for quantitative analysis. This review thus provides guidance for plant scientists in selecting the most appropriate techniques to decipher structures and dynamic processes at different levels, from protein dynamics to morphogenesis.
Collapse
Affiliation(s)
- Yaning Cui
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xi Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojuan Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
10
|
Bissen D, Kracht MK, Foss F, Acker-Palmer A. Expansion microscopy of mouse brain organotypic slice cultures to study protein distribution. STAR Protoc 2022; 3:101507. [PMID: 35776645 PMCID: PMC9249947 DOI: 10.1016/j.xpro.2022.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Assessing protein distribution with super-resolution in tissue is often complicated and restrictive. Here, we describe a protocol for immunostaining and expansion microscopy imaging of mouse brain organotypic slice cultures. We detail an Imaris analysis workflow to analyze the surface vs intracellular distribution of AMPA receptors at super-resolution during homeostatic plasticity. We have optimized the protocol for brain organotypic slice culture and tested in acute brain slices. This protocol is suitable to study protein distribution under multiple plasticity paradigms. For complete details on the use and execution of this protocol, please refer to Bissen et al. (2021). Enables immunostaining and visualization of epitopes deep within brain slices Utilizes expansion microscopy to increase imaging resolution Optimized for brain organotypic slice cultures and tested in acute brain slices Analysis workflow for protein distribution (surface vs. intracellular pool) using Imaris
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany.
| | - Maximilian Ken Kracht
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Faulkner EL, Pike JA, Densham RM, Garlick E, Thomas SG, Neely RK, Morris JR. Imaging nanoscale nuclear structures with expansion microscopy. J Cell Sci 2022; 135:276027. [PMID: 35748225 PMCID: PMC9450888 DOI: 10.1242/jcs.259009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Commonly applied super-resolution light microscopies have provided insight into subcellular processes at the nanoscale. However, imaging depth, speed, throughput and cost remain significant challenges, limiting the numbers of three-dimensional (3D) nanoscale processes that can be investigated and the number of laboratories able to undertake such analysis. Expansion microscopy (ExM) solves many of these limitations, but its application to imaging nuclear processes has been constrained by concerns of unequal nuclear expansion. Here, we demonstrate the conditions for isotropic expansion of the nucleus at a resolution equal to or better than 120–130 nm (pre-expansion). Using the DNA damage response proteins BRCA1, 53BP1 (also known as TP53BP1) and RAD51 as exemplars, we quantitatively describe the 3D nanoscale organisation of over 50,000 DNA damage response structures. We demonstrate the ability to assess chromatin-regulated events and show the simultaneous assessment of four elements. This study thus demonstrates how ExM can contribute to the investigation of nanoscale nuclear processes. Summary: Expansion microscopy provides quantitative insight into the impact of chromatin modifiers on spatiotemporal organisation of the DNA repair proteins BRCA1, 53BP1 and RAD51 at a resolution of 65–70 nm.
Collapse
Affiliation(s)
- Emma L Faulkner
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,COMPARE, University of Birmingham and University of Nottingham, Midlands, UK
| | - Ruth M Densham
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, B15 2TT, UK
| | - Evelyn Garlick
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,COMPARE, University of Birmingham and University of Nottingham, Midlands, UK
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,COMPARE, University of Birmingham and University of Nottingham, Midlands, UK
| | - Robert K Neely
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, B15 2TT, UK
| |
Collapse
|
12
|
AbdullGaffar B. Quantum Mechanics and Surgical Pathology: A Brief Introduction. Adv Anat Pathol 2022; 29:108-116. [PMID: 34799487 DOI: 10.1097/pap.0000000000000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Quantum mechanics (QM) and surgical pathology might seem totally unrelated fields of science. Because QM or particle physics explains the very basic structure and function of nature, there are growing interconnections between the fundamentals and applications of QM and biologic sciences. QM is not only applied to the structure of atoms but also probes the structure of biologic molecules, explains their mutational changes and has provided an insight into the basic mechanisms of many different biologic systems. Many of the current applications in biologic sciences, medicine, and surgical pathology rely on the principles of QM. Because surgical pathology uses quantum phenomena such as light and studies disease's alterations that are ultimately governed by quantum changes at nanoscale levels, QM will have potential future implications for the progress of surgical pathology. These might include quantum-enhanced refinements in light, ancillary tools, and interpretation assistance computerized systems. The future of applying the concepts, discoveries, and tools of QM in surgical pathology might create something analogous to quantum biology; that is, quantum pathology or "QuPath."
Collapse
|
13
|
Cell3: a new vision for study of the endomembrane system in mammalian cells. Biosci Rep 2021; 41:230388. [PMID: 34874399 PMCID: PMC8655501 DOI: 10.1042/bsr20210850c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
The endomembrane system of mammalian cells provides massive capacity for the segregation of biochemical reactions into discrete locations. The individual organelles of the endomembrane system also require the ability to precisely transport material between these compartments in order to maintain cell homeostasis; this process is termed membrane traffic. For several decades, researchers have been systematically identifying and dissecting the molecular machinery that governs membrane trafficking pathways, with the overwhelming majority of these studies being carried out in cultured cells growing as monolayers. In recent years, a number of methodological innovations have provided the opportunity for cultured cells to be grown as 3-dimensional (3D) assemblies, for example as spheroids and organoids. These structures have the potential to better replicate the cellular environment found in tissues and present an exciting new opportunity for the study of cell function. In this mini-review, we summarize the main methods used to generate 3D cell models and highlight emerging studies that have started to use these models to study basic cellular processes. We also describe a number of pieces of work that potentially provide the basis for adaptation for deeper study of how membrane traffic is coordinated in multicellular assemblies. Finally, we comment on some of the technological challenges that still need to be overcome if 3D cell biology is to become a mainstream tool toward deepening our understanding of the endomembrane system in mammalian cells.
Collapse
|
14
|
Gorilak P, Pružincová M, Vachova H, Olšinová M, Schmidt Cernohorska M, Varga V. Expansion microscopy facilitates quantitative super-resolution studies of cytoskeletal structures in kinetoplastid parasites. Open Biol 2021; 11:210131. [PMID: 34465213 PMCID: PMC8437234 DOI: 10.1098/rsob.210131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Expansion microscopy (ExM) has become a powerful super-resolution method in cell biology. It is a simple, yet robust approach, which does not require any instrumentation or reagents beyond those present in a standard microscopy facility. In this study, we used kinetoplastid parasites Trypanosoma brucei and Leishmania major, which possess a complex, yet well-defined microtubule-based cytoskeleton, to demonstrate that this method recapitulates faithfully morphology of structures as previously revealed by a combination of sophisticated electron microscopy (EM) approaches. Importantly, we also show that due to the rapidness of image acquisition and three-dimensional reconstruction of cellular volumes ExM is capable of complementing EM approaches by providing more quantitative data. This is demonstrated on examples of less well-appreciated microtubule structures, such as the neck microtubule of T. brucei or the pocket, cytosolic and multivesicular tubule-associated microtubules of L. major. We further demonstrate that ExM enables identifying cell types rare in a population, such as cells in mitosis and cytokinesis. Three-dimensional reconstruction of an entire volume of these cells provided details on the morphology of the mitotic spindle and the cleavage furrow. Finally, we show that established antibody markers of major cytoskeletal structures function well in ExM, which together with the ability to visualize proteins tagged with small epitope tags will facilitate studies of the kinetoplastid cytoskeleton.
Collapse
Affiliation(s)
- Peter Gorilak
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic,Charles University, Faculty of Science, Albertov 6, Prague, 128 00, Czech Republic
| | - Martina Pružincová
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Hana Vachova
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Marie Olšinová
- IMCF at BIOCEV, Faculty of Science, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Marketa Schmidt Cernohorska
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Vladimir Varga
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| |
Collapse
|
15
|
Campbell LA, Pannoni KE, Savory NA, Lal D, Farris S. Protein-retention expansion microscopy for visualizing subcellular organelles in fixed brain tissue. J Neurosci Methods 2021; 361:109285. [PMID: 34242703 PMCID: PMC8370715 DOI: 10.1016/j.jneumeth.2021.109285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Protein expansion microscopy (proExM) is a powerful technique that crosslinks proteins to a swellable hydrogel to physically expand and optically clear biological samples. The resulting increased resolution (~70 nm) and physical separation of labeled proteins make it an attractive tool for studying the localization of subcellular organelles in densely packed tissues, such as the brain. However, the digestion and expansion process greatly reduce fluorescence signals making it necessary to optimize ExM conditions per sample for specific end goals. NEW METHOD Here we compare the staining and digestion conditions of existing proExM workflows to identify the optimal protocol for visualizing subcellular organelles (mitochondria and the Golgi apparatus) within reporter-labeled neurons in fixed mouse brain tissue. RESULTS We found that immunostaining before proExM and using a proteinase K based digestion for 8 h consistently resulted in robust fluorescence retention for immunolabeled subcellular organelles and genetically-encoded reporters. COMPARISON WITH EXISTING METHODS With these methods, we more accurately quantified mitochondria size and number and better visualized Golgi ultrastructure in individual CA2 neurons in the mouse hippocampus. CONCLUSIONS This organelle optimized proExM protocol will be broadly useful for investigators interested in visualizing the spatial distribution of immunolabeled subcellular organelles in various reporter mouse lines, reducing effort, time and resources on the optimization process.
Collapse
Affiliation(s)
- Logan A Campbell
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, USA
| | - Katy E Pannoni
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, USA
| | - Niesha A Savory
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Dinesh Lal
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Shannon Farris
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Zhu C, Wang A, Chen L, Guo L, Ye J, Chen Q, Wang Q, Yao G, Xia Q, Cai T, Guo J, Yang Z, Sun Z, Xu Y, Lu G, Zhang Z, Cao J, Liu Y, Xu H. Measurement of expansion factor and distortion for expansion microscopy using isolated renal glomeruli as landmarks. JOURNAL OF BIOPHOTONICS 2021; 14:e202100001. [PMID: 33856738 DOI: 10.1002/jbio.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/14/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Expansion microscopy has enabled super resolution imaging of biological samples. The accurate measurement of expansion factor and distortion typically requires locating and imaging the same region of interest in the sample before and after expansion, which is often time-consuming to achieve. Here we introduce a convenient method for relocation by utilizing isolated porcine glomeruli as landmarks during expansion. Following heat denaturation and proteinase K digestion protocols, the glomeruli exhibit expansion factor of 3.5 to 4 (only 7%-16% less expanded than the hydrogel), and 1% to 2% of relative distortion. Due to its appropriate size of 100 to 300 μm, the location of the glomerulus in the sample are visible to eyes, while its detailed shape only requires bright field microscopy. For expansion factors ranging from 3 to 10, the region in the vicinity of the glomerulus can be easily re-identified, and sometimes allows quantification of expansion factor and distortion under bright field without fluorescent labels.
Collapse
Affiliation(s)
- Chen Zhu
- Institute for Advanced Study, Soochow University, Suzhou, China
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou, China
| | - Aidong Wang
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lili Chen
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liangsheng Guo
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiajia Ye
- Institute for Advanced Study, Soochow University, Suzhou, China
- School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Qilin Chen
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Wang
- Institute for Advanced Study, Soochow University, Suzhou, China
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou, China
| | - Guojia Yao
- Institute for Advanced Study, Soochow University, Suzhou, China
- School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Qin Xia
- Institute for Advanced Study, Soochow University, Suzhou, China
- School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Tianyu Cai
- Institute for Advanced Study, Soochow University, Suzhou, China
- School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Jiayun Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zhenyu Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zhenglong Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yuwei Xu
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guoyuan Lu
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zexin Zhang
- Institute for Advanced Study, Soochow University, Suzhou, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Jingyuan Cao
- Department of Nephrology, Taizhou People's Hospital, the Fifth Affiliated Hospital of Nantong University, Taizhou, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Huizhong Xu
- Institute for Advanced Study, Soochow University, Suzhou, China
- School of Physical Science and Technology, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Chen Y, Li X, Zhang D, Wang C, Feng R, Li X, Wen Y, Xu H, Zhang XS, Yang X, Chen Y, Feng Y, Zhou B, Chen BC, Lei K, Cai S, Jia JM, Gao L. A Versatile Tiling Light Sheet Microscope for Imaging of Cleared Tissues. Cell Rep 2021; 33:108349. [PMID: 33147464 DOI: 10.1016/j.celrep.2020.108349] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 01/14/2023] Open
Abstract
We present a tiling light sheet microscope compatible with all tissue clearing methods for rapid multicolor 3D imaging of cleared tissues with micron-scale (4 × 4 × 10 μm3) to submicron-scale (0.3 × 0.3 × 1 μm3) spatial resolution. The resolving ability is improved to sub-100 nm (70 × 70 × 200 nm3) via tissue expansion. The microscope uses tiling light sheets to achieve higher spatial resolution and better optical sectioning ability than conventional light sheet microscopes. The illumination light is phase modulated to adjust the position and intensity profile of the light sheet based on the desired spatial resolution and imaging speed and to keep the microscope aligned. The ability of the microscope to align via phase modulation alone also ensures its accuracy for multicolor 3D imaging and makes the microscope reliable and easy to operate. Here we describe the working principle and design of the microscope. We demonstrate its utility by imaging various cleared tissues.
Collapse
Affiliation(s)
- Yanlu Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Xiaoliang Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Dongdong Zhang
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Chunhui Wang
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Ruili Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Xuzhao Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Yao Wen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Hao Xu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Xinyi Shirley Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yongyi Chen
- Department of Clinical laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bo Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Kai Lei
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Shang Cai
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Liang Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
18
|
Bissen D, Kracht MK, Foss F, Hofmann J, Acker-Palmer A. EphrinB2 and GRIP1 stabilize mushroom spines during denervation-induced homeostatic plasticity. Cell Rep 2021; 34:108923. [PMID: 33789115 PMCID: PMC8028307 DOI: 10.1016/j.celrep.2021.108923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/20/2020] [Accepted: 03/09/2021] [Indexed: 12/03/2022] Open
Abstract
Despite decades of work, much remains elusive about molecular events at the interplay between physiological and structural changes underlying neuronal plasticity. Here, we combined repetitive live imaging and expansion microscopy in organotypic brain slice cultures to quantitatively characterize the dynamic changes of the intracellular versus surface pools of GluA2-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) across the different dendritic spine types and the shaft during hippocampal homeostatic plasticity. Mechanistically, we identify ephrinB2 and glutamate receptor interacting protein (GRIP) 1 as mediating AMPAR relocation to the mushroom spine surface following lesion-induced denervation. Moreover, stimulation with the ephrinB2 specific receptor EphB4 not only prevents the lesion-induced disappearance of mushroom spines but is also sufficient to shift AMPARs to the surface and rescue spine recovery in a GRIP1 dominant-negative background. Thus, our results unravel a crucial role for ephrinB2 during homeostatic plasticity and identify a potential pharmacological target to improve dendritic spine plasticity upon injury.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany
| | - Maximilian Ken Kracht
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jan Hofmann
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Büttner M, Lagerholm CB, Waithe D, Galiani S, Schliebs W, Erdmann R, Eggeling C, Reglinski K. Challenges of Using Expansion Microscopy for Super-resolved Imaging of Cellular Organelles. Chembiochem 2021; 22:686-693. [PMID: 33049107 PMCID: PMC7894168 DOI: 10.1002/cbic.202000571] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/07/2020] [Indexed: 12/26/2022]
Abstract
Expansion microscopy (ExM) has been successfully used to improve the spatial resolution when imaging tissues by optical microscopy. In ExM, proteins of a fixed sample are crosslinked to a swellable acrylamide gel, which expands when incubated in water. Therefore, ExM allows enlarged subcellular structures to be resolved that would otherwise be hidden to standard confocal microscopy. Herein, we aim to validate ExM for the study of peroxisomes, mitochondria, nuclei and the plasma membrane. Upon comparison of the expansion factors of these cellular compartments in HEK293 cells within the same gel, we found significant differences, of a factor of above 2, in expansion factors. For peroxisomes, the expansion factor differed even between peroxisomal membrane and matrix marker; this underlines the need for a thorough validation of expansion factors of this powerful technique. We further give an overview of possible quantification methods for the determination of expansion factors of intracellular organelles, and we highlight some potentials and challenges.
Collapse
Affiliation(s)
- Maximilian Büttner
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
- Institute for Anatomy and Cell BiologyMartin-Luther-University Halle-WittenbergGroße Steinstraße 5206108HalleGermany
| | - Christoffer B. Lagerholm
- Wolfson Imaging Centre MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
| | - Dominic Waithe
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
- Wolfson Imaging Centre MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
| | - Silvia Galiani
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
- Wolfson Imaging Centre MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry Systemic BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry Systemic BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Christian Eggeling
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
- Leibniz-Institute of Photonic Technologies & Institute of Applied Optic and BiophysicsFriedrich-Schiller University JenaMax-Wien-Platz 107743JenaGermany
| | - Katharina Reglinski
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
- Leibniz-Institute of Photonic Technologies & Institute of Applied Optic and BiophysicsFriedrich-Schiller University JenaMax-Wien-Platz 107743JenaGermany
- University Hospital JenaBachstraße 1807743JenaGermany
| |
Collapse
|
20
|
Zhao J, Lai HM, Qi Y, He D, Sun H. Current Status of Tissue Clearing and the Path Forward in Neuroscience. ACS Chem Neurosci 2021; 12:5-29. [PMID: 33326739 DOI: 10.1021/acschemneuro.0c00563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Due to the complexity and limited availability of human brain tissues, for decades, pathologists have sought to maximize information gained from individual samples, based on which (patho)physiological processes could be inferred. Recently, new understandings of chemical and physical properties of biological tissues and multiple chemical profiling have given rise to the development of scalable tissue clearing methods allowing superior optical clearing of across-the-scale samples. In the past decade, tissue clearing techniques, molecular labeling methods, advanced laser scanning microscopes, and data visualization and analysis have become commonplace. Combined, they have made 3D visualization of brain tissues with unprecedented resolution and depth widely accessible. To facilitate further advancements and applications, here we provide a critical appraisal of these techniques. We propose a classification system of current tissue clearing and expansion methods that allows users to judge the applicability of individual ones to their questions, followed by a review of the current progress in molecular labeling, optical imaging, and data processing to demonstrate the whole 3D imaging pipeline based on tissue clearing and downstream techniques for visualizing the brain. We also raise the path forward of tissue-clearing-based imaging technology, that is, integrating with state-of-the-art techniques, such as multiplexing protein imaging, in situ signal amplification, RNA detection and sequencing, super-resolution imaging techniques, multiomics studies, and deep learning, for drawing the complete atlas of the human brain and building a 3D pathology platform for central nervous system disorders.
Collapse
Affiliation(s)
- Jiajia Zhao
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Hei Ming Lai
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yuwei Qi
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Dian He
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Haitao Sun
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
In focus in HCB. Histochem Cell Biol 2020; 153:379-384. [PMID: 32500160 PMCID: PMC7272315 DOI: 10.1007/s00418-020-01885-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Kubalová I, Schmidt Černohorská M, Huranová M, Weisshart K, Houben A, Schubert V. Prospects and limitations of expansion microscopy in chromatin ultrastructure determination. Chromosome Res 2020; 28:355-368. [PMID: 32939606 PMCID: PMC7691311 DOI: 10.1007/s10577-020-09637-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 02/04/2023]
Abstract
Expansion microscopy (ExM) is a method to magnify physically a specimen with preserved ultrastructure. It has the potential to explore structural features beyond the diffraction limit of light. The procedure has been successfully used for different animal species, from isolated macromolecular complexes through cells to tissue slices. Expansion of plant-derived samples is still at the beginning, and little is known, whether the chromatin ultrastructure becomes altered by physical expansion. In this study, we expanded isolated barley nuclei and compared whether ExM can provide a structural view of chromatin comparable with super-resolution microscopy. Different fixation and denaturation/digestion conditions were tested to maintain the chromatin ultrastructure. We achieved up to ~4.2-times physically expanded nuclei corresponding to a maximal resolution of ~50-60 nm when imaged by wild-field (WF) microscopy. By applying structured illumination microscopy (SIM, super-resolution) doubling the WF resolution, the chromatin structures were observed at a resolution of ~25-35 nm. WF microscopy showed a preserved nucleus shape and nucleoli. Moreover, we were able to detect chromatin domains, invisible in unexpanded nuclei. However, by applying SIM, we observed that the preservation of the chromatin ultrastructure after the expansion was not complete and that the majority of the tested conditions failed to keep the ultrastructure. Nevertheless, using expanded nuclei, we localized successfully centromere repeats by fluorescence in situ hybridization (FISH) and the centromere-specific histone H3 variant CENH3 by indirect immunolabelling. However, although these repeats and proteins were localized at the correct position within the nuclei (indicating a Rabl orientation), their ultrastructural arrangement was impaired.
Collapse
Affiliation(s)
- Ivona Kubalová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Markéta Schmidt Černohorská
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics,, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martina Huranová
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics,, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
23
|
Abdallah H, Formosa B, Liyanaarachchi A, Saigh M, Silvers S, Arslanturk S, Taatjes DJ, Larsson L, Jena BP, Gatti DL. Res-CR-Net, a residual network with a novel architecture optimized for the semantic segmentation of microscopy images. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/aba8e8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Deep neural networks (DNN) have been widely used to carry out segmentation tasks in both electron microscopy (EM) and light/fluorescence microscopy (LM/FM). Most DNNs developed for this purpose are based on some variation of the encoder-decoder U-Net architecture. Here we show how Res-CR-Net, a new type of fully convolutional neural network that does not adopt a U-Net architecture, excels at segmentation tasks traditionally considered very hard, like recognizing the contours of nuclei, cytoplasm and mitochondria in densely packed cells in either EM or LM/FM images.
Collapse
|
24
|
Katoh Y, Chiba S, Nakayama K. Practical method for superresolution imaging of primary cilia and centrioles by expansion microscopy using an amplibody for fluorescence signal amplification. Mol Biol Cell 2020; 31:2195-2206. [PMID: 32726175 PMCID: PMC7550703 DOI: 10.1091/mbc.e20-04-0250] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary cilia are microtubule-based protrusions from the cell surface that are approximately 0.3 µm in diameter and 3 µm in length. Because size approximates the optical diffraction limit, ciliary structures at the subdiffraction level can be observed only by using a superresolution microscope or electron microscope. Expansion microscopy (ExM) is an alternative superresolution imaging technique that uses a swellable hydrogel that enables the physical expansion of specimens. However, the efficacy of ExM has not been fully verified, and further improvements in the method are anticipated. In this study, we applied ExM to the observation of primary cilia and centrioles and compared the acquired images with those obtained using conventional superresolution microscopy. Furthermore, we developed a new tool, called the amplibody, for fluorescence signal amplification, to compensate for the substantial decrease in fluorescence signal per unit volume inherent to physical expansion and for the partial proteolytic digestion of cellular proteins before expansion. We also demonstrate that the combinatorial use of the ExM protocol optimized for amplibodies and Airyscan superresolution microscopy enables the practical observation of cilia and centrioles with high brightness and resolution.
Collapse
Affiliation(s)
- Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuhei Chiba
- Graduate School of Medicine, Osaka City University, Asahi-machi, 1-4-3 Abeno, Osaka 545-8585, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
25
|
Klimas A, Zhao Y. Expansion Microscopy: Toward Nanoscale Imaging of a Diverse Range of Biomolecules. ACS NANO 2020; 14:7689-7695. [PMID: 32628828 PMCID: PMC7456618 DOI: 10.1021/acsnano.0c04374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Expansion microscopy (ExM) has become a powerful imaging tool for visualizing the nanoscale organization of protein and nucleic acid targets in cells and tissues using only a conventional microscope. Until recently, current ExM approaches have had limited applicability to imaging other biomolecules, such as lipids and small molecules. With the new TRITON probes reported by Wen et al. in this issue of ACS Nano, ExM can now be used to perform nanoscale imaging of the cytoskeleton and lipid membranes. In this Perspective, we offer a brief overview of recent developments in ExM, with a focus on biomolecule anchoring and labeling strategies that target a wide range of biomolecules to the water-swellable polymer formed in situ, a key step that ensures biomolecules or labels of interest are separated in space and can be resolved on a conventional microscope. In addition to these new advancements, we discuss challenges and future directions in this exciting field.
Collapse
Affiliation(s)
- Aleksandra Klimas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yongxin Zhao
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Faulkner EL, Thomas SG, Neely RK. An introduction to the methodology of expansion microscopy. Int J Biochem Cell Biol 2020; 124:105764. [PMID: 32407880 DOI: 10.1016/j.biocel.2020.105764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 01/21/2023]
Abstract
Expansion microscopy is a novel, fluorescence imaging technique, which allows three-dimensional nanoscale imaging of specimens on a conventional fluorescence microscope. This is achieved through an innovative sample treatment, which culminates in approximately 4.5-fold expansion of specimens in each dimension. This allows 70 nm lateral and 200 nm axial resolution. To further develop application of the technique, there has been considerable focus on improving the methodology by i) extending the efficacy of labelling, ii) enabling multi-colour labelling of different biomolecules simultaneously, iii) further improving resolving power through alterations to sample preparation and iv) by combination of expansion microscopy with other well-established super resolution techniques. This review will highlight some of these recent advances and suggest ways that the technique could be developed further in the future.
Collapse
Affiliation(s)
- Emma L Faulkner
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Robert K Neely
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK; School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|