1
|
Zou H, Gong L, Wang Z, Huang C, Luo Y, Jia X, Yu J, Lin D, Zhang Y. Effects of Trimethylamine N-Oxide in Improving Exercise Performance in Mice: A 1H-NMR-Based Metabolomic Analysis Approach. Molecules 2024; 29:4128. [PMID: 39274977 PMCID: PMC11397221 DOI: 10.3390/molecules29174128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
To improve exercise performance, the supplement of nutrients has become a common practice before prolonged exercise. Trimethylamine N-oxide (TMAO) has been shown to ameliorate oxidative stress damage, which may be beneficial in improving exercise capacity. Here, we assessed the effects of TMAO on mice with exhaustive swimming, analyzed the metabolic changes, and identified significantly altered metabolic pathways of skeletal muscle using a nuclear magnetic resonance-based (NMR-based) metabolomics approach to uncover the effects of TMAO improving exercise performance of mice. We found that TMAO pre-administration markedly prolonged the exhaustive time in mice. Further investigation showed that TMAO pre-administration increased levels of 3-hydroxybutyrate, isocitrate, anserine, TMA, taurine, glycine, and glutathione and disturbed the three metabolic pathways related to oxidative stress and protein synthesis in skeletal muscle. Our results provide a metabolic mechanistic understanding of the effects of TMAO supplements on the exercise performance of skeletal muscle in mice. This work may be beneficial in exploring the potential of TMAO to be applied in nutritional supplementation to improve exercise performance. This work will lay a scientific foundation and be beneficial to exploring the potential of TMAO to apply in nutritional supplementation.
Collapse
Affiliation(s)
- Hong Zou
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- Physical Education Department, Xiamen University, Xiamen 361005, China
| | - Lijing Gong
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Zhiyuan Wang
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China
| | - Yue Luo
- School of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Xiao Jia
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Jingjing Yu
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yimin Zhang
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
2
|
Fan Y, Zhang M, Ma J, Zhang Y, Yang J. Metabolomics analysis of the serum metabolic signature of nonalcoholic fatty liver disease combined with prediabetes model rats after the intervention of Lycium barbarum polysaccharides combined with aerobic activity. Biomed Chromatogr 2023; 37:e5562. [PMID: 36480472 DOI: 10.1002/bmc.5562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Metabolic disorders accompany nonalcoholic fatty liver disease (NAFLD), associated with prediabetes. Lycium barbarum polysaccharides (LBP) seem to be a potential prebiotic, and aerobic exercise has shown protective effects on NAFLD with prediabetes. However, their combined effects on NAFLD and prediabetes remain unclear. This study investigated the effects of LBP and aerobic exercise alone, and their combined effects on the metabolomics of serum, and explored the potential mechanisms utilizing a high-fat diet-induced rat model of NAFLD and prediabetes. It provided the metabolic basis for the pathogenesis and early diagnosis of prediabetes complicated with NAFLD. Untargeted metabolomics profiling was performed using ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap mass spectrometry to analyze the changes in overall metabolites in each group of samples. An orthogonal partial least squares-discriminant analysis model with variable importance on projection >1 and p < 0.05 were used as the screening criteria to screen the significant differential metabolites and analyze the expression changes and functional pathways. Different intervention treatments showed clear discrimination by univariate and multivariate analyses. The model group had a high relative level of expression of lipids. Comparison between the two groups showed steroids with high expression after LBP and aerobic exercise treatment separately and alkaloids and fatty acyls with high expression after aerobic exercise and the combination intervention, respectively. Comparison of the five groups showed some of the metabolites to be differently expressed after the intervention improved lipid and fatty acid metabolism. The three types of intervention had sound effects on the changes in liver index for the diseases studied. Furthermore, the combination treatment may be a better choice for disease prevention and treatment than a single treatment. Our analysis of metabolomics confirmed that the different treatments had significant regulatory effects on the metabolic pathways. Our findings strongly support the possibility that aerobic exercise combined with LBP can be regarded as a potential therapeutic method for NAFLD in prediabetics.
Collapse
Affiliation(s)
- Yanna Fan
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Mengwei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Jiamin Ma
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Yannan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Jianjun Yang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Hou JL, Yang WY, Zhang Q, Feng H, Wang XB, Li H, Zhou S, Xiao SM. Integration of Metabolomics and Transcriptomics to Reveal the Metabolic Characteristics of Exercise-Improved Bone Mass. Nutrients 2023; 15:nu15071694. [PMID: 37049535 PMCID: PMC10097349 DOI: 10.3390/nu15071694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
(1) Background: Exercise is effective in promoting and maintaining bone mass. The aim of this study was to detect the exercise-induced metabolic changes in bone tissue of zebrafish. (2) Methods: Thirty-eight zebrafish (Danio rerio, six months old) were analyzed. The exercise group (n = 19) received 8 weeks of counter-current swimming training. The control group (n = 19) was not subjected to exercise. Mineralization was quantified, and alkaline phosphatase (Alp) and anti-tartrate acid phosphatase (Trap) activities were estimated (n = 12). The metabolomics (n = 12) and transcriptomics (n = 14) data of bone tissue were used for the integration analyses. (3) Results: The results showed that the exercise training improved the bone mineralization of zebrafish, e.g., the exercise group (5.74 × 104 ± 7.63 × 103) had a higher mean optical density than the control group (5.26 × 104 ± 8.56 × 103, p = 0.046) for the caudal vertebrae. The amount of mineralized matrix in scales of the exercised zebrafish was also higher (0.156 ± 0.012 vs. 0.102 ± 0.003, p = 0.005). Both histological staining and biochemical analysis revealed increased Alp activity (0.81 ± 0.26 vs. 0.76 ± 0.01, p = 0.002) and decreased Trap activity (1.34 ± 0.01 vs. 1.36 ± 0.01, p = 0.005) in the exercise group. A total of 103 different metabolites (DMs, VIP ≥ 1, fold change (FC) ≥ 1.20 or ≤0.83, p < 0.050) were identified. Alanine, aspartate and glutamate metabolism, β-alanine metabolism, pyrimidine metabolism, and pantothenate and CoA biosynthesis were the significantly enriched metabolic pathways (p < 0.050). A total of 35 genes (q ≤ 0.050 (BH), |Log2FC| ≥ 0.5) were coenriched with the 103 DMs in the four identified pathways. Protein–protein interaction network analysis of the 35 genes showed that entpd3, entpd1, and cmpk2 were the core genes. (4) Conclusions: The results of this study suggest that alanine, aspartate and glutamate metabolism, β-alanine metabolism, pyrimidine metabolism, and pantothenate and CoA biosynthesis contributed to exercise-induced improvements in bone mass.
Collapse
Affiliation(s)
- Jin-Li Hou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wan-Yu Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao Feng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Bao Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Sheng Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.Z.); (S.-M.X.); Tel.: +86-20-8757-7692 (S.Z.); +86-20-8733-0151 (S.-M.X.)
| | - Su-Mei Xiao
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: (S.Z.); (S.-M.X.); Tel.: +86-20-8757-7692 (S.Z.); +86-20-8733-0151 (S.-M.X.)
| |
Collapse
|
4
|
Kugler BA, Thyfault JP, McCoin CS. Sexually dimorphic hepatic mitochondrial adaptations to exercise: a mini-review. J Appl Physiol (1985) 2023; 134:685-691. [PMID: 36701482 PMCID: PMC10027083 DOI: 10.1152/japplphysiol.00711.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Exercise is a physiological stress that disrupts tissue and cellular homeostasis while enhancing systemic metabolic energy demand mainly through the increased workload of skeletal muscle. Although the extensive focus has been on skeletal muscle adaptations to exercise, the liver senses these disruptions in metabolic energy homeostasis and responds to provide the required substrates to sustain increased demand. Hepatic metabolic flexibility is an energetically costly process that requires continuous mitochondrial production of the cellular currency ATP. To do so, the liver must maintain a healthy functioning mitochondrial pool, attained through well-regulated and dynamic processes. Intriguingly, some of these responses are sex-dependent. This mini-review examines the hepatic mitochondrial adaptations to exercise with a focus on sexual dimorphism.
Collapse
Affiliation(s)
- Benjamin A Kugler
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John P Thyfault
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
| | - Colin S McCoin
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
| |
Collapse
|
5
|
Mutalub YB, Abdulwahab M, Mohammed A, Yahkub AM, AL-Mhanna SB, Yusof W, Tang SP, Rasool AHG, Mokhtar SS. Gut Microbiota Modulation as a Novel Therapeutic Strategy in Cardiometabolic Diseases. Foods 2022; 11:2575. [PMID: 36076760 PMCID: PMC9455664 DOI: 10.3390/foods11172575] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
The human gut harbors microbial ecology that is in a symbiotic relationship with its host and has a vital function in keeping host homeostasis. Inimical alterations in the composition of gut microbiota, known as gut dysbiosis, have been associated with cardiometabolic diseases. Studies have revealed the variation in gut microbiota composition in healthy individuals as compared to the composition of those with cardiometabolic diseases. Perturbation of host-microbial interaction attenuates physiological processes and may incite several cardiometabolic disease pathways. This imbalance contributes to cardiometabolic diseases via metabolism-independent and metabolite-dependent pathways. The aim of this review was to elucidate studies that have demonstrated the complex relationship between the intestinal microbiota as well as their metabolites and the development/progression of cardiometabolic diseases. Furthermore, we systematically itemized the potential therapeutic approaches for cardiometabolic diseases that target gut microbiota and/or their metabolites by following the pathophysiological pathways of disease development. These approaches include the use of diet, prebiotics, and probiotics. With the exposition of the link between gut microbiota and cardiometabolic diseases, the human gut microbiota therefore becomes a potential therapeutic target in the development of novel cardiometabolic agents.
Collapse
Affiliation(s)
- Yahkub Babatunde Mutalub
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
- Department of Clinical Pharmacology, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi 74027, Nigeria
| | - Monsurat Abdulwahab
- Department of Midwifery, College of Nursing Sciences, Abubakar Tafawa Balewa University Teaching Hospital, Bauchi 74027, Nigeria
| | - Alkali Mohammed
- Department of Medicine, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi 74027, Nigeria
| | - Aishat Mutalib Yahkub
- College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi 74027, Nigeria
| | - Sameer Badri AL-Mhanna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Wardah Yusof
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Suk Peng Tang
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
| |
Collapse
|
6
|
Diamantidou D, Deda O, Zervos I, Taitzoglou I, Gika H, Theodoridis G, Michopoulos F. Hepatic Metabolic Profiling of Lifelong Exercise Training Rats. J Proteome Res 2022; 21:2075-2084. [PMID: 35939535 DOI: 10.1021/acs.jproteome.2c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regular physical exercise has been investigated as a primary preventive measure of several chronic diseases and premature death. Moreover, it has been shown to synchronize responses across multiple organs. In particular, hepatic tissue has proven to be a descriptive matrix to monitor the effect of physical activity. In this study, we performed an untargeted metabolomics-based analysis of hepatic tissue extracts from rats that have undergone either lifelong or chronic exercise training. For this purpose, 56 hepatic samples were collected and were analyzed by UHPLC-TOF-MS in negative ionization mode. This approach involved untargeted metabolite detection on hepatic tissue extracts accompanied by an in-house retention time/accurate mass library enabling confident metabolite identification. Unsupervised (PCA) and supervised (OPLS-DA) multivariate analysis showed significant metabolic perturbation on a panel of 28 metabolites, including amino acids, vitamins, nucleotides, and sugars. The training regime employed in this study resulted in a probable acceleration of the bioenergetic processes (glycolysis, glycogen metabolism), promoted catabolism of purines, and supplied biosynthetic precursors via the pentose phosphate pathway and pentose and glucuronate interconversions. Overall, the applied methodology was able to discriminate the different training schedules based on the rat liver metabolome.
Collapse
Affiliation(s)
- Dimitra Diamantidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.,Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Olga Deda
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece.,Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis Zervos
- Laboratory of Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Taitzoglou
- Laboratory of Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Helen Gika
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece.,Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.,Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | | |
Collapse
|
7
|
Barbu E, Popescu MR, Popescu AC, Balanescu SM. Inflammation as A Precursor of Atherothrombosis, Diabetes and Early Vascular Aging. Int J Mol Sci 2022; 23:963. [PMID: 35055149 PMCID: PMC8778078 DOI: 10.3390/ijms23020963] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular disease was for a long time considered a disease of the old age, but it is becoming increasingly clear that a cumulus of factors can cause early vascular aging (EVA). Inflammation plays a key role in vascular stiffening and also in other pathologies that induce vascular damage. There is a known and confirmed connection between inflammation and atherosclerosis. However, it has taken a long time to prove the beneficial effects of anti-inflammatory drugs on cardiovascular events. Diabetes can be both a product of inflammation and a cofactor implicated in the progression of vascular disease. When diabetes and inflammation are accompanied by obesity, this ominous trifecta leads to an increased incidence of atherothrombotic events. Research into earlier stages of vascular disease, and documentation of vulnerability to premature vascular disease, might be the key to success in preventing clinical events. Modulation of inflammation, combined with strict control of classical cardiovascular risk factors, seems to be the winning recipe. Identification of population subsets with a successful vascular aging (supernormal vascular aging-SUPERNOVA) pattern could also bring forth novel therapeutic interventions.
Collapse
Affiliation(s)
| | - Mihaela-Roxana Popescu
- Department of Cardiology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 011461 Bucharest, Romania; (E.B.); (S.-M.B.)
| | - Andreea-Catarina Popescu
- Department of Cardiology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 011461 Bucharest, Romania; (E.B.); (S.-M.B.)
| | | |
Collapse
|
8
|
Dong M, Yi Q, Shen D, Yan J, Jiang H, Xie J, Zhao L, Gao H. A combined metabolomics and molecular biology approach to reveal hepatic injury and underlying mechanisms after chronic l-lactate exposure in mice. Comput Struct Biotechnol J 2022; 20:3935-3945. [PMID: 35950184 PMCID: PMC9352416 DOI: 10.1016/j.csbj.2022.07.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Minjian Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Qingqing Yi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Danjie Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiapin Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Haowei Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiaojiao Xie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Corresponding authors at: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- Corresponding authors at: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
9
|
Berilli P, Fanaro GB, Santos JP, Reyes Reyes FG, Iglesias AH, Reis M, Cazarin CBB, Maróstica Junior MR. White tea modulates antioxidant defense of endurance-trained rats. Curr Res Physiol 2022; 5:256-264. [PMID: 35800140 PMCID: PMC9253650 DOI: 10.1016/j.crphys.2022.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The interest in nutritional strategies that may counteract the deleterious oxidative effects induced by strenuous exercises is remarkable. Herein, the impact of white tea (Camellia sinensis) (WT), a polyphenol-rich beverage, on antioxidant status in endurance-trained rats after one session of exhaustive exercise were evaluated. Male Wistar rats were divided into groups, which received: control groups - water, and testing groups - WT1 (0.25%; w/v) or WT2 (0.5%; w/v). Drinks were consumed, ad libitum, for 5 or 10 weeks, concomitantly with the running training. Exhaustive running tests were applied before and after the experimental periods. WT intake increased the serum antioxidant capacity of rats in a dose-dependent manner (P < 0.001), which was unaccompanied by the activity of endogenous antioxidant enzymes SOD, GPx, and GR, and GSH content. Inflammatory markers in serum [IL-1β (P = 0.004) and IL-6 (P = 0.001)] could be downregulated by tea intake. In liver tissue, lower levels of lipid oxidation (P < 0.05) and improved antioxidant defenses (SOD, GPx, GR, and GSH, P < 0.05) were related to the consumption of 10.13039/100010269WT in both doses, supporting protective effects in this responsible metabolic organ. In conclusion, long-term consumption of WT could be a promising adjuvant to exercise-stress management, emphasizing its ability to regulate antioxidant responses and prevent oxidative tissue damage. White tea intake improved antioxidant status of blood and liver of runner rats. White tea intake promoted protective effect against liver lipid peroxidation after an exhaustive exercise. Long term white tea intake did not enhance physical performance.
Collapse
|
10
|
The Relationship among Physical Activity, Intestinal Flora, and Cardiovascular Disease. Cardiovasc Ther 2021; 2021:3364418. [PMID: 34729078 PMCID: PMC8526197 DOI: 10.1155/2021/3364418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs), which are associated with high morbidity and mortality worldwide, include atherosclerosis (AS), hypertension, heart failure (HF), atrial fibrillation, and myocardial fibrosis. CVDs are influenced by the diversity, distribution, and metabolites of intestinal microflora, and their risk can be reduced through physical activity (PA) such as regular exercise. PA benefits the metabolic changes that occur in the gut microbiota (GM). The major metabolites of the GM influence pathogenesis of CVDs through various pathways. However, the relationship between PA and GM is less well understood. In this review, we discuss the impacts of different types of PA on intestinal microflora including the diversity, distribution, metabolites, and intestinal barrier function including intestinal permeability, with a focus on the mechanisms by which PA affects GM. We also discuss how GM influences CVDs. Finally, we summarize current research and knowledge on the effects of PA on CVD via regulation of the GM and intestinal function. More understanding of relevant relationship between PA and GM may provide hope for the prevention or treatment of CVDs. Furthermore, a better understanding of regulation of the GM and intestinal function may lead to novel diagnostic and therapeutic strategies, improving the clinical care of CVD patients.
Collapse
|
11
|
Wang Y, Zhou W, Lyu C, Li Q, Kou F, Jiang M, Wei H. Metabolomics study on the intervention effect of Radix Salviae Miltiorrhizae extract in exercise-induced exhaustion rat using gas chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122805. [PMID: 34224965 DOI: 10.1016/j.jchromb.2021.122805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/18/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
The metabolomics approach based on the gas chromatography coupled to mass spectrometry (GC-MS) was adopted to explore the underlying mechanism of the anti-fatigue effect of Radix Salviae Miltiorrhizae (RSM), a famous herbal medicine in China used for multiple biological functions, in load-weighted swimming test in rat, combined with biochemical parameters evaluations. As a result, the metabolomics study followed by orthogonal partial least-square (OPLS) analysis could differentiate metabolic profiling between the control and exhaustive exercise group, showing the rats underwent an obvious metabolic perturbation, whereas RSM treatment restored scores plot close to normal and showed regulatory effects on the muscle metabolic profiles. The changed metabolic pathways of the potential biomarkers in response to the effect of RSM treatment for exhaustive exercise rats included in glucose metabolism (glucose, lactic acid, alanine), glutathione metabolism (glycine, glutamate, 5-oxo-proline), TCA cycle (succinic acid), arginine biosynthesis (glutamine, ornithine, urea), glyoxylate and dicarboxylate metabolism (serine, glycine), oxidative stress (taurine) and purine metabolism (inosine). In addition, intervention of RSM increased hepatic glycogen, muscle glycogen and serum glucose, and decreased triglyceride and blood urea nitrogen levels, indicating RSM treatment may regulate energy metabolism by increasing the rate of fat utilization, decrease the protein and carbohydrate utilization. Furthermore, RSM reduced exhaustive exercise-induced accumulation of the lipid peroxidation byproduct malonaldehyde and elevated antioxidants' levels, including reduced glutathione and superoxide dismutase, which might be a positive reflection of improved oxidant-antioxidant balance. Moreover, RSM could protect against exercise-induced muscle damage by attenuating creatine kinase release. In summary, RSM provided a good anti-fatigue effect by regulating energy metabolism, oxidant-antioxidant balance, and the endogenous metabolites in the exercising muscle. This study demonstrates that metabolomics is an effective tool for the estimation of the potential anti-fatigue effect of RSM and for the illustration of its pharmacological mechanism.
Collapse
Affiliation(s)
- Yuyan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenbin Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunming Lyu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang Kou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Jiang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
12
|
Metabolomics and Lipidomics: Expanding the Molecular Landscape of Exercise Biology. Metabolites 2021; 11:metabo11030151. [PMID: 33799958 PMCID: PMC8001908 DOI: 10.3390/metabo11030151] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Dynamic changes in circulating and tissue metabolites and lipids occur in response to exercise-induced cellular and whole-body energy demands to maintain metabolic homeostasis. The metabolome and lipidome in a given biological system provides a molecular snapshot of these rapid and complex metabolic perturbations. The application of metabolomics and lipidomics to map the metabolic responses to an acute bout of aerobic/endurance or resistance exercise has dramatically expanded over the past decade thanks to major analytical advancements, with most exercise-related studies to date focused on analyzing human biofluids and tissues. Experimental and analytical considerations, as well as complementary studies using animal model systems, are warranted to help overcome challenges associated with large human interindividual variability and decipher the breadth of molecular mechanisms underlying the metabolic health-promoting effects of exercise. In this review, we provide a guide for exercise researchers regarding analytical techniques and experimental workflows commonly used in metabolomics and lipidomics. Furthermore, we discuss advancements in human and mammalian exercise research utilizing metabolomic and lipidomic approaches in the last decade, as well as highlight key technical considerations and remaining knowledge gaps to continue expanding the molecular landscape of exercise biology.
Collapse
|
13
|
Xu J, Liu G, Hegde SM, Palta P, Boerwinkle E, Gabriel KP, Yu B. Physical Activity-Related Metabolites Are Associated with Mortality: Findings from the Atherosclerosis Risk in Communities (ARIC) Study. Metabolites 2021; 11:metabo11010059. [PMID: 33477977 PMCID: PMC7835806 DOI: 10.3390/metabo11010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
Habitual physical activity can diminish the risk of premature death. Identifying a pattern of metabolites related to physical activity may advance our understanding of disease etiology. We quantified 245 serum metabolites in 3802 participants from the Atherosclerosis Risk in Communities (ARIC) study using chromatography-mass spectrometry. We regressed self-reported moderate-to-vigorous intensity leisure-time physical activity (LTPA) against each metabolite, adjusting for traditional risk factors. A standardized metabolite risk score (MRS) was constructed to examine its association with all-cause mortality using the Cox proportional hazard model. We identified 10 metabolites associated with LTPA (p < 2.04 × 10-4) and established that an increase of one unit of the metabolic equivalent of task-hours per week (MET·hr·wk-1) in LTPA was associated with a 0.012 SD increase in MRS. During a median of 27.5 years of follow-up, we observed 1928 deaths. One SD increase of MRS was associated with a 10% lower risk of death (HR = 0.90, 95% CI: 0.85-0.95). The highest vs. the lowest MRS quintile rank was associated with a 22% reduced risk of death (HR = 0.78, 95% CI: 0.62-0.94). The effects were consistent across race and sex groups. In summary, we identified a set of metabolites associated with LTPA and an MRS associated with a lower risk of death. Our study provides novel insights into the potential mechanisms underlying the health impacts of physical activity.
Collapse
Affiliation(s)
- Jun Xu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
| | - Guning Liu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
| | - Sheila M. Hegde
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Priya Palta
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
- Human Genome Sequencing Center, Balor College of Medicine, Houston, TX 77030, USA
| | - Kelley P. Gabriel
- Department of Epidemiology, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.X.); (G.L.); (E.B.)
- Correspondence:
| |
Collapse
|
14
|
Intensive Running Enhances NF-κB Activity in the Mice Liver and the Intervention Effects of Quercetin. Nutrients 2020; 12:nu12092770. [PMID: 32932805 PMCID: PMC7551556 DOI: 10.3390/nu12092770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Emerging evidence has supported that intensive exercise induces weakened performance and immune and metabolic disorders. We systematically evaluated the effects of quercetin against hepatic inflammatory damage caused by repeated intensive exercise and explored the potential mechanism. Methods: Male BALB/c mice were administered quercetin (100 mg/kg BW) for four weeks, and performed a treadmill running protocol of 28 m/min, 5° slope, 90 min/day concurrently for the last seven days. Results: Quercetin administration reduced the leakage of aspartic acid and alanine aminotransferase and improved ultrastructural abnormalities such as swelling, and degeneration caused by high-intensity running in mice. Quercetin significantly decreased the hepatic and plasmatic levels of inflammatory cytokines IL-1β, IL-6, TNF-α, inducible nitric oxide synthase, cyclooxygenase-2 and intercellular adhesion molecule-1—provoked by over-exercise. Furthermore, diminished activation and nuclear translocation of NF-κB were found after quercetin treatment through inhibiting IKKα and Iκbα phosphorylation of intensive running mice. Conclusion: Quercetin offers protection for mouse livers against intensive sports-induced inflammatory injury, and the suppression of the NF-κB signal transduction pathway may play a role in its anti-inflammatory effects. Our findings broaden our understanding of natural phytochemicals as a promising strategy to prevent excessive exercise damage.
Collapse
|
15
|
Shi R, Zhang J, Fang B, Tian X, Feng Y, Cheng Z, Fu Z, Zhang J, Wu J. Runners' metabolomic changes following marathon. Nutr Metab (Lond) 2020; 17:19. [PMID: 32190096 PMCID: PMC7071712 DOI: 10.1186/s12986-020-00436-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Marathon, as a long-distance aerobic exercise, has become a fashionable or popular sport. However, little is known about the holistic metabolic changes occurring within the serum metabolome of athletes after the completion of a marathon. Objectives The goal of current study was to have an in-depth understanding of the impact of marathon on human metabolomics as well as the relationships among a variety of metabolites. Methods The 20 studied subjects were all adult males who participated in a marathon. The serum samples of these participants were collected before and after the marathon and the biochemical metabolites in the serum were identified by an untargeted two-dimensional gas chromatography time-of-flight mass spectrometry. Results All participants completed the marathon within 3 h. Compared to those before exercise, serum urea and creatine kinase, as well as cortisol, elevated significantly (p < 0.05), whereas testosterone decreased significantly (p < 0.01). Metabolomic analysis showed that, compared to those before the competition, metabolites pyruvic acid, glyceric acid, malic acid, cis-aconitic acid, galacturonic acid, methyl fumaric acid, maltotriose, and others increased significantly after the competition (p < 0.05), but glucosamine and O-succinyl-L-homoserine decreased significantly (p < 0.05). Amino acid indexes, such as alanine, L-tyrosine and phenylalanine, increased significantly after exercise compared with those before exercise (p < 0.05), whereas serine, valine and asparagine decreased significantly (p < 0.05). Lipid metabolism indexes, glycerol, glyceric acid, octanoic acid, and quinic acid increased significantly (p < 0.05). Theophylline, xanthine and other indicators of caffeine metabolism increased significantly (p < 0.05). Furthermore, marathon performance, fat percentage, VO2max, and hemoglobin were correlated with the serum metabonomic indicators, so were serum testosterone and cortisol. Conclusion These results illustrate that the metabolism of glucose and lipid of the athletes was enhanced following the marathon match. In addition, the metabolism of glucosamine was decreased and the metabolism of caffeine was increased. Our data provide new insights for marathon performance and nutritional status.
Collapse
Affiliation(s)
- Rengfei Shi
- 1School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Jin Zhang
- 1School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Biqing Fang
- 1School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Xiangyang Tian
- 1School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Yu Feng
- 1School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Zepeng Cheng
- 1School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Zhongyu Fu
- 1School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Jingjing Zhang
- 1School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Jiaxi Wu
- 2Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Huaihai Middle Road, Shanghai, 200031 China
| |
Collapse
|
16
|
Su L, Mao J, Hao M, Lu T, Mao C, Ji D, Tong H, Fei C. Integrated Plasma and Bile Metabolomics Based on an UHPLC-Q/TOF-MS and Network Pharmacology Approach to Explore the Potential Mechanism of Schisandra chinensis-Protection From Acute Alcoholic Liver Injury. Front Pharmacol 2020; 10:1543. [PMID: 32009955 PMCID: PMC6975200 DOI: 10.3389/fphar.2019.01543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
Schisandra chinensis (SC) is a well-known important traditional Chinese medicine (TCM) that has been used to treat liver disease in China for a long time. However, its overall effects and mechanism of action are unclear. The present study aimed to explore the potential mechanism of SC in protection against alcoholic liver injury (ALI). In this research, to enable a full assessment of metabolic changes in ALI in Sprague-Dawley rats and to increase our understanding of physiological changes in normal and pathological states, ultra-high performance liquid chromatography combined with quadrupole time of flight mass spectrometry (UHPLC-Q/TOF-MS) was used to probe potential biomarkers to learn more about ALI and to evaluate the overall effect of SC for ALI in rats. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to investigate global metabolomic alterations and to evaluate the therapeutic effects of SC in rats. The component–target–pathway network of SC was then constructed on the basis of the network pharmacology, and the liver injury-relevant signaling pathways were thus dissected and validated. The results showed that SC has conspicuous therapeutic efficacy for ALI, as suggested by the results of the pathological section and biochemical index assays, such as those for Alanine aminotransferase (ALT), Aspartate transaminase (AST), Alkaline phosphatase (AKP), γ-glutamyl transferase (γ-GT/GGT), Reactive oxygen species (ROS), and Malondialdehyde (MDA). Furthermore, 21 kinds of potential biomarkers were identified in plasma samples of ALI rats, and 20 kinds of potential biomarkers were identified in their bile samples. The biomarkers were mainly related to inflammation and dysfunctions of amino acids and energy metabolism. The recovery of these dysfunctions partly led to the curative effect of SC on ALI.
Collapse
Affiliation(s)
- Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Nanjing University of Chinese Medicine, The Key Laboratory of Chinese Herbal Medicine Processing of Jiangsu Province, Nanjing, China
| | - Jing Mao
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Hao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Nanjing University of Chinese Medicine, The Key Laboratory of Chinese Herbal Medicine Processing of Jiangsu Province, Nanjing, China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Nanjing University of Chinese Medicine, The Key Laboratory of Chinese Herbal Medicine Processing of Jiangsu Province, Nanjing, China
| | - Huangjin Tong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Chenghao Fei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Serra MC, Accardi CJ, Ma C, Park Y, Tran V, Jones DP, Hafer-Macko CE, Ryan AS. Metabolomics of Aerobic Exercise in Chronic Stroke Survivors: A Pilot Study. J Stroke Cerebrovasc Dis 2019; 28:104453. [PMID: 31668688 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/27/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Understanding the metabolic response to exercise may aid in optimizing stroke management. Therefore, the purpose of this pilot study was to evaluate plasma metabolomic profiles in chronic stroke survivors following aerobic exercise training. METHODS Participants (age: 62 ± 1 years, body mass index: 31 ± 1 kg/m2, mean ± standard error of the mean) were randomized to 6 months of treadmill exercise (N = 17) or whole-body stretching (N = 8) with preintervention and postintervention measurement of aerobic capacity (VO2peak). Linear models for microarray data expression analysis was performed to determine metabolic changes over time, and Mummichog was used for pathway enrichment analysis following analysis of plasma samples by high-performance liquid chromatography coupled to ultrahigh resolution mass spectrometry. RESULTS VO2peak change was greater following exercise than stretching (18.9% versus -.2%; P < .01). Pathway enrichment analysis of differentially expressed metabolites results showed significant enrichment in 4 pathways following treadmill exercise, 3 of which (heparan-, chondroitin-, keratan-sulfate degradation) involved connective tissue metabolism and the fourth involve lipid signaling (linoleate metabolism). More pathways were altered in pre and post comparisons of stretching, including branched-chain amino acid, tryptophan, tyrosine, and urea cycle, which could indicate loss of lean body mass. CONCLUSIONS These preliminary data show different metabolic changes due to treadmill training and stretching in chronic stroke survivors and suggest that in addition to improved aerobic capacity, weight-bearing activity, like walking, could protect against loss of lean body mass. Future studies are needed to examine the relationship between changes in metabolomic profiles to reductions in cardiometabolic risk after treadmill rehabilitation.
Collapse
Affiliation(s)
- Monica C Serra
- San Antonio GRECC, South Texas VA and the Division of Geriatrics, Gerontology & Palliative Medicine and the Sam & Ann Barshop Institute for Longevity & Aging Studies, UT Health San Antonio, San Antonio, Texas.
| | - Carolyn J Accardi
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Chunyu Ma
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Younja Park
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia; College of Pharmacy, Korea University, Sejong City, Korea
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Charlene E Hafer-Macko
- Baltimore VA Research Service and GRECC and the Division of Gerontology and Geriatric Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alice S Ryan
- Baltimore VA Research Service and GRECC and the Division of Gerontology and Geriatric Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Carneiro G, Radcenco AL, Evaristo J, Monnerat G. Novel strategies for clinical investigation and biomarker discovery: a guide to applied metabolomics. Horm Mol Biol Clin Investig 2019; 38:/j/hmbci.ahead-of-print/hmbci-2018-0045/hmbci-2018-0045.xml. [PMID: 30653466 DOI: 10.1515/hmbci-2018-0045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/13/2018] [Indexed: 01/16/2023]
Abstract
Metabolomics is an emerging technology that is increasing both in basic science and in human applications, providing a physiological snapshot. It has been highlighted as one of the most wide ranging and reliable tools for the investigation of physiological status, the discovery of new biomarkers and the analysis of metabolic pathways. Metabolomics uses innovative mass spectrometry (MS) allied to chromatography or nuclear magnetic resonance (NMR). The recent advances in bioinformatics, databases and statistics, have provided a unique perception of metabolites interaction and the dynamics of metabolic pathways at a system level. In this context, several studies have applied metabolomics in physiology- and disease-related works. The application of metabolomics includes, physiological and metabolic evaluation/monitoring, individual response to different exercise, nutritional interventions, pathological processes, responses to pharmacological interventions, biomarker discovery and monitoring for distinct aspects, such as: physiological capacity, fatigue/recovery and aging among other applications. For metabolomic analyses, despite huge improvements in the field, several complex methodological steps must be taken into consideration. In this regard, the present article aims to summarize the novel aspects of metabolomics and provide a guide for metabolomics for professionals related to physiologist and medical applications.
Collapse
Affiliation(s)
- Gabriel Carneiro
- Proteomics Laboratoy, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andres Lopez Radcenco
- Departamento de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Montevideo, Uruguay
| | - Joseph Evaristo
- Proteomics Laboratoy, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Monnerat
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, IBCCF-UFRJ, Av. Carlos Chagas Filho 373 - CCS - Bloco G, Rio de Janeiro 21941-902, Brazil, Phone/Fax: +55 21 25626555
| |
Collapse
|
19
|
Gamble LJ, Frye C, Hansen C, Locasale J, Liu X, Davis M, Wakshlag J. Serum metabolomics of Alaskan sled dogs during endurance racing. COMPARATIVE EXERCISE PHYSIOLOGY 2018. [DOI: 10.3920/cep180010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Long distance racing sled dogs are fed diets high in fat since lipid metabolism has long been thought to be the major substrate utilised during endurance racing. However, recent studies suggests that sled dogs are equally, if not more, dependent on carbohydrate metabolism. Considering the metabolic disparity regarding the energetics of endurance exercise, our study aimed to explore the serum metabolomic profiles of sled dogs running a 1,609 km (1000 mile) race. We hypothesised that there would be amino acid depletion due to gluconeogenesis and alteration in the citric acid cycle (CAC) based on the limited carbohydrate diet they consume. Serum was obtained from 6 Alaskan sled dogs approximately 24 h prior to the race (Whitehorse), at the midrace checkpoint (Dawson City), and again at the finish (Fairbanks). Serum was analysed using liquid chromatography-mass spectrometry for over 200 metabolites involved in amino acid, lipid, and carbohydrate metabolism with MetaboAnalyst Software 3.0. Major metabolic changes observed were decreased free fatty acids and enhanced acyl-carnitine derivatives during the race compared to baseline. Serum depletion of nearly all amino acids except for branched chain amino acids and phenylalanine was observed suggesting extensive protein catabolism. Many of the CAC intermediates were variable with increases in abnormal end glycation products. These results highlight that sled dogs display general amino acid depletion for pyruvate, acetyl CoA and CAC pathway intermediates with increased carnitine bound lipid metabolites, suggesting rate limiting beta-oxidation during endurance exercise, particularly at mid race. Further metabolomic studies to assess the influence of exercise and nutritional regimens are warranted to better understand substrate utilisation in working dogs.
Collapse
Affiliation(s)
- L.-J. Gamble
- Department of Clinical Science, Cornell University College of Veterinary Medicine, 930 N Campus, Ithaca, NY 14853, USA
| | - C.W. Frye
- Department of Clinical Science, Cornell University College of Veterinary Medicine, 930 N Campus, Ithaca, NY 14853, USA
| | - C.M. Hansen
- Department of Veterinary Medicine, University of Alaska, 505 South Chandalar Drive, Fairbanks, AK 99775, USA
| | - J.W. Locasale
- Duke Molecular and Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC 27701, USA
| | - X. Liu
- Duke Molecular and Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC 27701, USA
| | - M.S. Davis
- Center for Veterinary Health Sciences, Oklahoma State University College of Veterinary Medicine, 2065 W. Farm Road, Stillwater, OK 74078, USA
| | - J.J. Wakshlag
- Department of Clinical Science, Cornell University College of Veterinary Medicine, 930 N Campus, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L. Response of Gut Microbiota to Metabolite Changes Induced by Endurance Exercise. Front Microbiol 2018; 9:765. [PMID: 29731746 PMCID: PMC5920010 DOI: 10.3389/fmicb.2018.00765] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
A few animal studies have shown that wheel running could reverse an unhealthy status by shifting the gut microbial composition, but no investigations have studied the effect of endurance running, such as marathon running, on human gut microbial communities. Since many findings have shown that marathon running immediately causes metabolic changes in blood, urine, muscles and lymph that potentially impact the gut microbiota (GM) within several hours. Here, we investigated whether the GM immediately responds to the enteric changes in amateur half-marathon runners. Alterations in the metabolic profile and microbiota were investigated in fecal samples based on an untargeted metabolomics methodology and 16S rDNA sequencing analysis. A total of 40 fecal metabolites were found significantly changed after finishing a half-marathon race. The most significantly different metabolites were organic acids (the major increased metabolites) and nucleic acid components (the major decreased metabolites). The enteric changes induced by running did not affect the α-diversity of the GM, but the abundances of certain microbiota members were shown to be significantly different before and after running. The family Coriobacteriaceae was identified as a potential biomarker that links exercise with health improvement. Functional prediction showed a significantly activated “Cell motility” function of GM within participants after running. Correlation analysis indicated that the observed differential GM in our study might have been the shared outcome of running and diet. This study provided knowledge regarding the health impacts of marathon running from the perspective of GM for the first time. Our data indicated that long-distance endurance running can immediately cause striking metabolic changes in the gut environment. Gut microbes can rapidly respond to the altered fecal metabolites by adjusting certain bacterial taxa. These findings highlighted the health-promoting benefits of exercise from the perspective of GM.
Collapse
Affiliation(s)
- Xia Zhao
- Bioinformatics Center, Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Zhujun Zhang
- Department of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bin Hu
- Center for Prenatal Diagnosis, Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Huang
- Department of Stomatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Yuan
- College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
| | - Lingyun Zou
- Bioinformatics Center, Department of Microbiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
21
|
Exercise-Induced Alterations in Skeletal Muscle, Heart, Liver, and Serum Metabolome Identified by Non-Targeted Metabolomics Analysis. Metabolites 2017; 7:metabo7030040. [PMID: 28786928 PMCID: PMC5618325 DOI: 10.3390/metabo7030040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 02/08/2023] Open
Abstract
Background: The metabolic and physiologic responses to exercise are increasingly interesting, given that regular physical activity enhances antioxidant capacity, improves cardiac function, and protects against type 2 diabetes. The metabolic interactions between tissues and the heart illustrate a critical cross-talk we know little about. Methods: To better understand the metabolic changes induced by exercise, we investigated skeletal muscle (plantaris, soleus), liver, serum, and heart from exercise trained (or sedentary control) animals in an established rat model of exercise-induced aerobic training via non-targeted GC-MS metabolomics. Results: Exercise-induced alterations in metabolites varied across tissues, with the soleus and serum affected the least. The alterations in the plantaris muscle and liver were most alike, with two metabolites increased in each (citric acid/isocitric acid and linoleic acid). Exercise training additionally altered nine other metabolites in the plantaris (C13 hydrocarbon, inosine/adenosine, fructose-6-phosphate, glucose-6-phosphate, 2-aminoadipic acid, heptadecanoic acid, stearic acid, alpha-tocopherol, and oleic acid). In the serum, we identified significantly decreased alpha-tocopherol levels, paralleling the increases identified in plantaris muscle. Eleven unique metabolites were increased in the heart, which were not affected in the other compartments (malic acid, serine, aspartic acid, myoinositol, glutamine, gluconic acid-6-phosphate, glutamic acid, pyrophosphate, campesterol, phosphoric acid, creatinine). These findings complement prior studies using targeted metabolomics approaches to determine the metabolic changes in exercise-trained human skeletal muscle. Specifically, exercise trained vastus lateralus biopsies had significantly increased linoleic acid, oleic acid, and stearic acid compared to the inactive groups, which were significantly increased in plantaris muscle in the present study. Conclusions: While increases in alpha-tocopherol have not been identified in muscle after exercise to our knowledge, the benefits of vitamin E (alpha-tocopherol) supplementation in attenuating exercise-induced muscle damage has been studied extensively. Skeletal muscle, liver, and the heart have primarily different metabolic changes, with few similar alterations and rare complementary alterations (alpha-tocopherol), which may illustrate the complexity of understanding exercise at the organismal level.
Collapse
|
22
|
Audet GN, Dineen SM, Stewart DA, Plamper ML, Pathmasiri WW, McRitchie SL, Sumner SJ, Leon LR. Pretreatment with indomethacin results in increased heat stroke severity during recovery in a rodent model of heat stroke. J Appl Physiol (1985) 2017; 123:544-557. [PMID: 28596269 DOI: 10.1152/japplphysiol.00242.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 01/16/2023] Open
Abstract
It has been suggested that medications can increase heat stroke (HS) susceptibility/severity. We investigated whether the nonsteroidal anti-inflammatory drug (NSAID) indomethacin (INDO) increases HS severity in a rodent model. Core temperature (Tc) of male, C57BL/6J mice (n = 45) was monitored continuously, and mice were given a dose of INDO [low dose (LO) 1 mg/kg or high dose (HI) 5 mg/kg in flavored treat] or vehicle (flavored treat) before heating. HS animals were heated to 42.4°C and euthanized at three time points for histological, molecular, and metabolic analysis: onset of HS [maximal core temperature (Tc,Max)], 3 h of recovery [minimal core temperature or hypothermia depth (HYPO)], and 24 h of recovery (24 h). Nonheated (control) animals underwent identical treatment in the absence of heat. INDO (LO or HI) had no effect on physiological indicators of performance (e.g., time to Tc,Max, thermal area, or cooling time) during heating or recovery. HI INDO resulted in 45% mortality rate by 24 h (HI INDO + HS group). The gut showed dramatic increases in gross morphological hemorrhage in HI INDO + HS in both survivors and nonsurvivors. HI INDO + HS survivors had significantly lower red blood cell counts and hematocrit suggesting significant hemorrhage. In the liver, HS induced cell death at HYPO and increased inflammation at Tc,Max, HYPO, and 24 h; however, there was additional effect with INDO + HS group. Furthermore, the metabolic profile of the liver was disturbed by heat, but there was no additive effect of INDO + HS. This suggests that there is an increase in morbidity risk with INDO + HS, likely resulting from significant gut injury.NEW & NOTEWORTHY This paper suggests that in a translational mouse model, NSAIDs may be counterindicated in situations that put an individual at risk of heat injury. We show here that a small, single dose of the NSAID indomethacin before heat stroke has a dramatic and highly damaging effect on the gut, which ultimately leads to increased systemic morbidity.
Collapse
Affiliation(s)
- Gerald N Audet
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts;
| | - Shauna M Dineen
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Delisha A Stewart
- National Institutes of Health Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Triangle Park, North Carolina; and
| | - Mark L Plamper
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Wimal W Pathmasiri
- National Institutes of Health Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Triangle Park, North Carolina; and
| | - Susan L McRitchie
- National Institutes of Health Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Triangle Park, North Carolina; and
| | - Susan J Sumner
- National Institutes of Health Eastern Regional Comprehensive Metabolomics Resource Core, University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, North Carolina
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
23
|
Cardenia V, Rodriguez-Estrada MT, Lorenzini A, Bandini E, Angeloni C, Hrelia S, Malaguti M. Effect of broccoli extract enriched diet on liver cholesterol oxidation in rats subjected to exhaustive exercise. J Steroid Biochem Mol Biol 2017; 169:137-144. [PMID: 27084531 DOI: 10.1016/j.jsbmb.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/24/2022]
Abstract
The effect of broccoli extract (BE)-enriched diet was studied in order to evaluate its ability to counteract liver cholesterol oxidation products (COPs) induced by acute strenuous exercise in rats. Thirty-two female Wistar rats were randomly divided into four groups: control diet without exercise (C), BE-enriched diet without exercise (B), control diet with acute exhaustive exercise (S) and BE-enriched diet with acute exhaustive exercise (BS). The study lasted 45days and on the last day, rats of S and BS groups were forced to run until exhaustion on a treadmill. Glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT) and cholesterol oxidation products (COPs) were determined in liver. Exhaustive exercise was clearly responsible for tissue damage, as evidenced by the increase of lactate dehydrogenase (LDH) plasma activity in the S group. Moreover, the exercise protocol reduced CAT activity in liver, while it did not affect GST, GR and GPx. BE-enriched diet raised GST, GR and CAT activities in rats of BS group. The main COPs found were 7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, cholestanetriol, 24-hydroxycholesterol and 27-hydroxycholesterol. The BE-enriched diet led to reduced cholesterol oxidation following exhaustive exercise; the highest level of COPs was found in the S group, whereas the BS rats showed the lowest amount. This study indicates that the BE-enriched diet increases antioxidant enzyme activities and exerts an antioxidant effect towards cholesterol oxidation in rat liver, suggesting the use of phytochemicals in the prevention of oxidative damage and in the modulation of the redox environment.
Collapse
Affiliation(s)
- Vladimiro Cardenia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum-University of Bologna, Cesena, Italy
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Erika Bandini
- Scientific Institute of Romagna for the Study and Treatment of Cancer (IRST), Unit of Gene Therapy Meldola-Forlı', Meldola (FC), Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| |
Collapse
|
24
|
Pillon Barcelos R, Freire Royes LF, Gonzalez-Gallego J, Bresciani G. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise. Free Radic Res 2017; 51:222-236. [PMID: 28166653 DOI: 10.1080/10715762.2017.1291942] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.
Collapse
Affiliation(s)
- Rômulo Pillon Barcelos
- a Instituto de Ciências Biológicas , Universidade de Passo Fundo , Passo Fundo , Brazil.,b Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTOx) , Universidade Federal de Santa Maria (UFSM) , Santa Maria , Brazil
| | - Luiz Fernando Freire Royes
- b Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTOx) , Universidade Federal de Santa Maria (UFSM) , Santa Maria , Brazil.,c Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos , Universidade Federal de Santa Maria (UFSM) , Santa Maria , Brazil
| | - Javier Gonzalez-Gallego
- d Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) , University of León , León , Spain
| | - Guilherme Bresciani
- e Grupo de Investigación en Rendimiento Físico y Salud (IRyS), Escuela de Educación Física , Pontificia Universidad Católica de Valparaiso , Valparaiso , Chile
| |
Collapse
|
25
|
Impact of Exercise and Aging on Rat Urine and Blood Metabolome. An LC-MS Based Metabolomics Longitudinal Study. Metabolites 2017; 7:metabo7010010. [PMID: 28241477 PMCID: PMC5372213 DOI: 10.3390/metabo7010010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 01/02/2023] Open
Abstract
Aging is an inevitable condition leading to health deterioration and death. Regular physical exercise can moderate the metabolic phenotype changes of aging. However, only a small number of metabolomics-based studies provide data on the effect of exercise along with aging. Here, urine and whole blood samples from Wistar rats were analyzed in a longitudinal study to explore metabolic alterations due to exercise and aging. The study comprised three different programs of exercises, including a life-long protocol which started at the age of 5 months and ended at the age of 21 months. An acute exercise session was also evaluated. Urine and whole blood samples were collected at different time points and were analyzed by LC-MS/MS (Liquid Chromatography–tandem Mass Spectrometry). Based on their metabolic profiles, samples from trained and sedentary rats were differentiated. The impact on the metabolome was found to depend on the length of exercise period with acute exercise also showing significant changes. Metabolic alterations due to aging were equally pronounced in sedentary and trained rats in both urine and blood analyzed samples.
Collapse
|
26
|
Mach N, Ramayo-Caldas Y, Clark A, Moroldo M, Robert C, Barrey E, López JM, Le Moyec L. Understanding the response to endurance exercise using a systems biology approach: combining blood metabolomics, transcriptomics and miRNomics in horses. BMC Genomics 2017; 18:187. [PMID: 28212624 PMCID: PMC5316211 DOI: 10.1186/s12864-017-3571-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/09/2017] [Indexed: 02/13/2023] Open
Abstract
Background Endurance exercise in horses requires adaptive processes involving physiological, biochemical, and cognitive-behavioral responses in an attempt to regain homeostasis. We hypothesized that the identification of the relationships between blood metabolome, transcriptome, and miRNome during endurance exercise in horses could provide significant insights into the molecular response to endurance exercise. For this reason, the serum metabolome and whole-blood transcriptome and miRNome data were obtained from ten horses before and after a 160 km endurance competition. Results We obtained a global regulatory network based on 11 unique metabolites, 263 metabolic genes and 5 miRNAs whose expression was significantly altered at T1 (post- endurance competition) relative to T0 (baseline, pre-endurance competition). This network provided new insights into the cross talk between the distinct molecular pathways (e.g. energy and oxygen sensing, oxidative stress, and inflammation) that were not detectable when analyzing single metabolites or transcripts alone. Single metabolites and transcripts were carrying out multiple roles and thus sharing several biochemical pathways. Using a regulatory impact factor metric analysis, this regulatory network was further confirmed at the transcription factor and miRNA levels. In an extended cohort of 31 independent animals, multiple factor analysis confirmed the strong associations between lactate, methylene derivatives, miR-21-5p, miR-16-5p, let-7 family and genes that coded proteins involved in metabolic reactions primarily related to energy, ubiquitin proteasome and lipopolysaccharide immune responses after the endurance competition. Multiple factor analysis also identified potential biomarkers at T0 for an increased likelihood for failure to finish an endurance competition. Conclusions To the best of our knowledge, the present study is the first to provide a comprehensive and integrated overview of the metabolome, transcriptome, and miRNome co-regulatory networks that may have a key role in regulating the metabolic and immune response to endurance exercise in horses. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3571-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Núria Mach
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Yuliaxis Ramayo-Caldas
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Allison Clark
- Health Science Department, Open University of Catalonia (UOC), Barcelona, Spain
| | - Marco Moroldo
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Céline Robert
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Paris-Est University, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Eric Barrey
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jesús Maria López
- Health Science Department, Open University of Catalonia (UOC), Barcelona, Spain
| | - Laurence Le Moyec
- Integrative Biology of Exercise Adaptations unit, UBIAE, EA7362, Evry Val d'Essone University, Evry, France
| |
Collapse
|
27
|
Impact of exercise on fecal and cecal metabolome over aging: a longitudinal study in rats. Bioanalysis 2017; 9:21-36. [DOI: 10.4155/bio-2016-0222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: Physical exercise can reduce adverse conditions during aging, while both exercise and aging act as metabolism modifiers. The present study investigates rat fecal and cecal metabolome alterations derived from exercise during rats’ lifespan. Methods & results: Groups of rats trained life-long or for a specific period of time were under study. The training protocol consisted of swimming, 15–18 min per day, 3–5 days per week, with load of 4–0% of rat's weight. Fecal samples and cecal extracts were analyzed by targeted and untargeted metabolic profiling methods (GC–MS and LC–MS/MS). Effects of exercise and aging on the rats’ fecal and cecal metabolome were observed. Conclusion: Fecal and cecal metabolomics are a promising field to investigate exercise biochemistry and age-related alterations.
Collapse
|
28
|
Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8696587. [PMID: 27504150 PMCID: PMC4967689 DOI: 10.1155/2016/8696587] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/19/2016] [Indexed: 12/17/2022]
Abstract
The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS) and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min) resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw). Intense exercise and thapsigargin- (Tg-) induced ERS (glucose-regulated protein 78, GRP78) and inflammatory cytokines levels (IL-6 and TNF-α) were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K) induction, Ca2+ restoration, and blockade of the activities of Jun N-terminal kinase (JNK), activating transcription factor 6 (ATF6) and especially NF-κB (p65 and p50 nuclear translocation). A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor), AEBSF (ATF6 inhibitor), and especially PDTC (NF-κB inhibitor) enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals.
Collapse
|
29
|
Yang Q, Sun J, Chen YQ. Multi-dimensional, comprehensive sample extraction combined with LC-GC/MS analysis for complex biological samples: application in the metabolomics study of acute pancreatitis. RSC Adv 2016. [DOI: 10.1039/c5ra26708k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-dimensional sample extraction and optimal LC-GC/MS were combined to obtain as much sample information as possible for metabolomics applications.
Collapse
Affiliation(s)
- Qin Yang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
30
|
Luck MM, Le Moyec L, Barrey E, Triba MN, Bouchemal N, Savarin P, Robert C. Energetics of endurance exercise in young horses determined by nuclear magnetic resonance metabolomics. Front Physiol 2015; 6:198. [PMID: 26347654 PMCID: PMC4544308 DOI: 10.3389/fphys.2015.00198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/29/2015] [Indexed: 01/12/2023] Open
Abstract
Long-term endurance exercise severely affects metabolism in both human and animal athletes resulting in serious risk of metabolic disorders during or after competition. Young horses (up to 6 years old) can compete in races up to 90 km despite limited scientific knowledge of energetic metabolism responses to long distance exercise in these animals. The hypothesis of this study was that there would be a strong effect of endurance exercise on the metabolomic profiles of young horses and that the energetic metabolism response in young horses would be different from that of more experienced horses. Metabolomic profiling is a powerful method that combines Nuclear Magnetic Resonance (NMR) spectrometry with supervised Orthogonal Projection on Latent Structure (OPLS) statistical analysis. 1H-NMR spectra were obtained from plasma samples drawn from young horses (before and after competition). The spectra obtained before and after the race from the same horse (92 samples) were compared using OPLS. The statistical parameters showed the robustness of the model (R2Y = 0.947, Q2Y = 0.856 and cros-validated ANOVA p < 0.001). For confirmation of the predictive value of the model, a test set of 104 sample spectra were projected by the model, which provided perfect predictions as the area under the receiving-operator curve was 1. The metabolomic profile determined with the OPLS model showed that glycemia after the race was lower than glycemia before the race, despite the involvement of lipid and protein catabolism. An OPLS model was calculated to compare spectra obtained on plasma taken after the race from 6-year-old horses and from experienced horses (cross-validated ANOVA p < 0.001). The comparison of metabolomic profiles in young horses to those from experienced horses showed that experienced horses maintained their glycemia with higher levels of lactate and a decrease of plasma lipids after the race.
Collapse
Affiliation(s)
- Margaux M Luck
- Unité de Biologie Intégrative et Adaptation à l'Exercice EA 7362, Université d'Evry Val D'Essonne Evry, France
| | - Laurence Le Moyec
- Unité de Biologie Intégrative et Adaptation à l'Exercice EA 7362, Université d'Evry Val D'Essonne Evry, France
| | - Eric Barrey
- Unité de Biologie Intégrative et Adaptation à l'Exercice EA 7362, Université d'Evry Val D'Essonne Evry, France ; Génétique Animale et Biologie Intégrative, UMR1313, Institut National de la Recherche Agronomique (INRA) Jouy-en-Josas, France
| | - Mohamed N Triba
- Chimie Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Centre National de la Recherche Scientifique, Université Paris 13, Sorbonne Paris Cité, UMR 7244 Bobigny, France
| | - Nadia Bouchemal
- Chimie Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Centre National de la Recherche Scientifique, Université Paris 13, Sorbonne Paris Cité, UMR 7244 Bobigny, France
| | - Philippe Savarin
- Chimie Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Centre National de la Recherche Scientifique, Université Paris 13, Sorbonne Paris Cité, UMR 7244 Bobigny, France
| | - Céline Robert
- Génétique Animale et Biologie Intégrative, UMR1313, Institut National de la Recherche Agronomique (INRA) Jouy-en-Josas, France ; Ecole Nationale Vétérinaire d'Alfort, Université Paris Est Maisons-Alfort, France
| |
Collapse
|
31
|
Analytical protocols based on LC-MS, GC-MS and CE-MS for nontargeted metabolomics of biological tissues. Bioanalysis 2015; 6:1657-77. [PMID: 25077626 DOI: 10.4155/bio.14.119] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Invasive, site-specific metabolite information could be better obtained from tissues. Hence, highly sensitive mass spectrometry-based metabolomics coupled with separation techniques are increasingly in demand in clinical research for tissue metabolomics application. Applying these techniques to nontargeted tissue metabolomics provides identification of distinct metabolites. These findings could help us to understand alterations at the molecular level, which can also be applied in clinical practice as screening markers for early disease diagnosis. However, tissues as solid and heterogeneous samples pose an additional analytical challenge that should be considered in obtaining broad, reproducible and representative analytical profiles. This manuscript summarizes the state of the art in tissue (human and animal) treatment (quenching, homogenization and extraction) for nontargeted metabolomics with mass spectrometry.
Collapse
|
32
|
Huang CC, Lou BS, Hsu FL, Hou CC. Use of urinary metabolomics to evaluate the effect of hyperuricemia on the kidney. Food Chem Toxicol 2014; 74:35-44. [DOI: 10.1016/j.fct.2014.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 07/31/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022]
|
33
|
Horng CT, Huang JK, Wang HY, Huang CC, Chen FA. Antioxidant and antifatigue activities of Polygonatum Alte-lobatum Hayata rhizomes in rats. Nutrients 2014; 6:5327-37. [PMID: 25421533 PMCID: PMC4245592 DOI: 10.3390/nu6115327] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 12/28/2022] Open
Abstract
Polygonatum alte-lobatum Hayata, a rhizomatous perennial herb, belongs to the Liliaceae family and is endemic to Taiwan. We investigated the antioxidant and anti-fatigue activities of P. alte-lobatum in exercised rats. Levels of polyphenols, flavonoids and polysaccharides and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging activity were measured in extracts of P. alte-lobatum (EPA). Sprague-Dawley rats were randomly divided into four groups for 8-week treatment with vehicle (control) and low-, medium-, and high-dose EPA (LEPA, MEPA, HEPA; 0, 75, 150, and 375 mg/kg/day, respectively). Exercise performance was evaluated by exhaustive treadmill exercise time and by changes in body composition and biochemical variables at the end of the experiment. EPA contained polyphenols, flavonoids and polysaccharides, with polysaccharide content at least 26 times greater than that of polyphenols and flavonoids. Trend analysis revealed that EPA dose-dependently scavenged DPPH free radicals. EPA treatment dose-dependently increased endurance running time to exhaustion and superoxide dismutase activity and total antioxidant ability of blood. EPA dose-dependently decreased serum urea nitrogen and malondialdehyde levels after exercise. Hepatic glycogen content, an important energy source for exercise, was significantly increased with EPA treatment. EPA could be a potential agent with an anti-fatigue pharmacological function.
Collapse
Affiliation(s)
- Chi-Ting Horng
- Department of Ophthalmology and Medical Education Center, Kaohsiung Armed Force General Hospital, Kaohsiung 80284, Taiwan.
| | - Jon-Kway Huang
- Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 90741, Taiwan.
| | - Hui-Yun Wang
- Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 90741, Taiwan.
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Fu-An Chen
- Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 90741, Taiwan.
| |
Collapse
|
34
|
Effects of physical activity upon the liver. Eur J Appl Physiol 2014; 115:1-46. [DOI: 10.1007/s00421-014-3031-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023]
|
35
|
Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner TL, Cameron-Smith D. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. Am J Physiol Endocrinol Metab 2014; 307:E539-52. [PMID: 25096178 DOI: 10.1152/ajpendo.00276.2014] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of high-intensity interval training (HIIT) vs. work-matched moderate-intensity continuous exercise (MOD) on metabolism and counterregulatory stress hormones. In a randomized and counterbalanced order, 10 well-trained male cyclists and triathletes completed a HIIT session [81.6 ± 3.7% maximum oxygen consumption (V̇o2 max); 72.0 ± 3.2% peak power output; 792 ± 95 kJ] and a MOD session (66.7 ± 3.5% V̇o2 max; 48.5 ± 3.1% peak power output; 797 ± 95 kJ). Blood samples were collected before, immediately after, and 1 and 2 h postexercise. Carbohydrate oxidation was higher (P = 0.037; 20%), whereas fat oxidation was lower (P = 0.037; -47%) during HIIT vs. MOD. Immediately after exercise, plasma glucose (P = 0.024; 20%) and lactate (P < 0.01; 5.4×) were higher in HIIT vs. MOD, whereas total serum free fatty acid concentration was not significantly different (P = 0.33). Targeted gas chromatography-mass spectromtery metabolomics analysis identified and quantified 49 metabolites in plasma, among which 11 changed after both HIIT and MOD, 13 changed only after HIIT, and 5 changed only after MOD. Notable changes included substantial increases in tricarboxylic acid intermediates and monounsaturated fatty acids after HIIT and marked decreases in amino acids during recovery from both trials. Plasma adrenocorticotrophic hormone (P = 0.019), cortisol (P < 0.01), and growth hormone (P < 0.01) were all higher immediately after HIIT. Plasma norepinephrine (P = 0.11) and interleukin-6 (P = 0.20) immediately after exercise were not significantly different between trials. Plasma insulin decreased during recovery from both HIIT and MOD (P < 0.01). These data indicate distinct differences in specific metabolites and counterregulatory hormones following HIIT vs. MOD and highlight the value of targeted metabolomic analysis to provide more detailed insights into the metabolic demands of exercise.
Collapse
Affiliation(s)
- Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Centre of Excellence for Applied Sport Science Research, Queensland Academy of Sport, Brisbane, Australia;
| | - Sok Joo Tan
- School of Human Movement Studies, The University of Queensland, Brisbane, Australia; and
| | | | - James A Broadbent
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Tina L Skinner
- School of Human Movement Studies, The University of Queensland, Brisbane, Australia; and
| | | |
Collapse
|
36
|
Monleon D, Garcia-Valles R, Morales JM, Brioche T, Olaso-Gonzalez G, Lopez-Grueso R, Gomez-Cabrera MC, Viña J. Metabolomic analysis of long-term spontaneous exercise in mice suggests increased lipolysis and altered glucose metabolism when animals are at rest. J Appl Physiol (1985) 2014; 117:1110-9. [PMID: 25190738 DOI: 10.1152/japplphysiol.00585.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Exercise has been associated with several beneficial effects and is one of the major modulators of metabolism. The working muscle produces and releases substances during exercise that mediate the adaptation of the muscle but also improve the metabolic flexibility of the complete organism, leading to adjustable substrate utilization. Metabolomic studies on physical exercise are scarce and most of them have been focused on the effects of intense exercise in professional sportsmen. The aim of our study was to determine plasma metabolomic adaptations in mice after a long-term spontaneous exercise intervention study (18 mo). The metabolic changes induced by long-term spontaneous exercise were sufficient to achieve complete discrimination between groups in the principal component analysis scores plot. We identified plasma indicators of an increase in lipolysis (elevated unsaturated fatty acids and glycerol), a decrease in glucose and insulin plasma levels and in heart glucose consumption (by PET), and altered glucose metabolism (decreased alanine and lactate) in the wheel running group. Collectively these data are compatible with an increase in skeletal muscle insulin sensitivity in the active mice. We also found an increase in amino acids involved in catecholamine synthesis (tyrosine and phenylalanine), in the skeletal muscle pool of creatine phosphate and taurine, and changes in phospholipid metabolism (phosphocholine and choline in lipids) between the sedentary and the active mice. In conclusion, long-term spontaneous wheel running induces significant plasma and tissue (heart) metabolic responses that remain even when the animal is at rest.
Collapse
Affiliation(s)
- Daniel Monleon
- Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | | | - Jose Manuel Morales
- Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Thomas Brioche
- Laboratory "Movement Sport and Health Sciences," University Rennes, France; and
| | | | - Raul Lopez-Grueso
- Sports Research Centre, Miguel Hernandez University of Elche, Elche, Spain
| | | | - Jose Viña
- Department of Physiology, University of Valencia, Valencia, Spain;
| |
Collapse
|
37
|
GC–MS analysis of blood for the metabonomic investigation of the effects of physical exercise and allopurinol administration on rats. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:127-31. [DOI: 10.1016/j.jchromb.2014.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 11/23/2022]
|
38
|
NMR-based metabolomic profiling of overweight adolescents: an elucidation of the effects of inter-/intraindividual differences, gender, and pubertal development. BIOMED RESEARCH INTERNATIONAL 2014; 2014:537157. [PMID: 24800239 PMCID: PMC3985195 DOI: 10.1155/2014/537157] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 12/15/2022]
Abstract
The plasma and urine metabolome of 192 overweight 12–15-year-old adolescents (BMI of 25.4 ± 2.3 kg/m2) were examined in order to elucidate gender, pubertal development measured as Tanner stage, physical activity measured as number of steps taken daily, and intra-/interindividual differences affecting the metabolome detected by proton NMR spectroscopy. Higher urinary excretion of citrate, creatinine, hippurate, and phenylacetylglutamine and higher plasma level of phosphatidylcholine and unsaturated lipid were found for girls compared with boys. The results suggest that gender differences in the metabolome are being commenced already in childhood. The relationship between Tanner stage and the metabolome showed that pubertal development stage was positively related to urinary creatinine excretion and negatively related to urinary citrate content. No relations between physical activity and the metabolome could be identified. The present study for the first time provides comprehensive information about associations between the metabolome and gender, pubertal development, and physical activity in overweight adolescents, which is an important subject group to approach in the prevention of obesity and life-style related diseases. While this study is preliminary, these results may have the potential to translate into clinical applicability upon further investigations; if biomarkers for Tanner stage can be established, these might be used for identification of individuals susceptible to an early pubertal development.
Collapse
|
39
|
Brenmoehl J, Walz C, Renne U, Ponsuksili S, Wolf C, Langhammer M, Schwerin M, Hoeflich A. Metabolic adaptations in the liver of born long-distance running mice. Med Sci Sports Exerc 2014; 45:841-50. [PMID: 23247708 DOI: 10.1249/mss.0b013e31827e0fca] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Long-distance runners have increased needs of energy supply. To unravel genetically based mechanisms required for efficient energy supply, we have analyzed hepatic metabolism of mice characterized by the inborn capacity to perform as long-distance runners. METHODS The mouse model had been established by phenotypic selection for high treadmill performance for 90 generations and was characterized by approximately 3.8-fold higher running capacities (Dummerstorf high Treadmill Performance mouse line [DUhTP]) compared with unselected and also untrained controls (Dummerstorf Control mouse line [DUC]). From 7-wk-old male mice, serum and liver samples were collected and analyzed for messenger RNA, protein, and metabolite levels, respectively. RESULTS In livers from DUhTP mice, we identified significantly higher messenger RNA transcript levels of peroxisome proliferator-activated receptor delta and higher protein levels of sirtuin-1, acetyl-CoA-synthetase, acetyl-CoA-carboxylase, phosphoenolpyruvate carboxykinase, and glutamate-dehydrogenase, suggesting higher gluconeogenesis and lipogenesis in DUhTP mice. In fact, higher hepatic levels of glycogen and triglycerides as well as higher concentrations of carbohydrate, fatty acid, and cholesterol metabolites were found in DUhTP mice. In parallel, in DUhTP mice, which did not have access to running wheels, a marked hyperlipidemia (cholesterol = 160% ± 8%, triglycerides = 174% ± 14% of controls, respectively), and abdominal obesity (DUhTP = 0.396 ± 0.019 g, DUC = 0.291 ± 0.019 g) were found. CONCLUSIONS From our data, we conclude that the physiological basis of genetically fixed higher endurance-running performance in DUhTP marathon mouse is related to increased hepatic gluconeogenesis and lipogenesis. Expression of sirtuin 1 as well as of gluconeogenic and lipogenic key enzymes may be related to peroxisome proliferator-activated receptor delta. Metabolic adaptations presented in our study represent inborn features of superior endurance-running performance.
Collapse
Affiliation(s)
- Julia Brenmoehl
- Research Unit of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda) 2014; 28:330-58. [PMID: 23997192 DOI: 10.1152/physiol.00019.2013] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The concept of a "polypill" is receiving growing attention to prevent cardiovascular disease. Yet similar if not overall higher benefits are achievable with regular exercise, a drug-free intervention for which our genome has been haped over evolution. Compared with drugs, exercise is available at low cost and relatively free of adverse effects. We summarize epidemiological evidence on the preventive/therapeutic benefits of exercise and on the main biological mediators involved.
Collapse
|
41
|
Nunes de Paiva MJ, Menezes HC, de Lourdes Cardeal Z. Sampling and analysis of metabolomes in biological fluids. Analyst 2014; 139:3683-94. [DOI: 10.1039/c4an00583j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Metabolome analysis involves the study of small molecules that are involved in the metabolic responses that occur through patho-physiological changes caused by genetic stimuli or chemical agents.
Collapse
Affiliation(s)
- Maria José Nunes de Paiva
- Departamento de Química
- ICEx
- Universidade Federal de Minas Gerais
- 6627-31270901 Belo Horizonte, Brazil
- Universidade Federal de São João Del Rei
| | - Helvécio Costa Menezes
- Departamento de Química
- ICEx
- Universidade Federal de Minas Gerais
- 6627-31270901 Belo Horizonte, Brazil
| | | |
Collapse
|
42
|
De Guzman JM, Ku G, Fahey R, Youm YH, Kass I, Ingram DK, Dixit VD, Kheterpal I. Chronic caloric restriction partially protects against age-related alteration in serum metabolome. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1091-1104. [PMID: 22661299 PMCID: PMC3705111 DOI: 10.1007/s11357-012-9430-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
Calorie restriction (CR) remains the most robust metabolic intervention to extend lifespan and improve healthspan in several species. Using global and targeted mass spectrometry-based metabolomics approaches, here we show that chronic CR prevents age-related changes in specific metabolic signatures. Global metabolomic analysis using ultra-performance liquid chromatography-tandem mass spectrometry detected more than 7,000 metabolites in sera from ad-libitum-fed young, aged, and aged C57BL/6 mice maintained on 40 % CR. Multivariate statistical analysis of mass spectrometry data revealed a clear separation among the young, aged, and aged-CR mice demonstrating the potential of this approach for producing reliable metabolic profiles that discriminate based on age and diet. We have identified 168 discriminating features with high statistical significance (p ≤ 0.001) and validated and quantified three of these metabolites using targeted metabolite analysis. Calorie restriction prevented the age-related alteration in specific metabolites, namely lysophosphatidylcholines (16:1 and 18:4), sphingomyelin (d18:1/12:0), tetracosahexaenoic acid, and 7α-dihydroxy-4-cholesten-3-one, in the serum. Pathway analysis revealed that CR impacted the age-related changes in metabolic byproducts of lipid metabolism, fatty acid metabolism, and bile acid biosynthesis. Our data suggest that metabolomics approach has the potential to elucidate the metabolic mechanism of CR's potential anti-aging effects in larger-scale investigations.
Collapse
Affiliation(s)
- Jennifer M. De Guzman
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| | - Ginger Ku
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| | - Ryan Fahey
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| | - Yun-Hee Youm
- />Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA USA
| | | | - Donald K. Ingram
- />Nutritional Neuroscience and Aging, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA USA
| | - Vishwa Deep Dixit
- />Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA USA
| | - Indu Kheterpal
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| |
Collapse
|
43
|
|
44
|
Tonevitsky AG, Maltseva DV, Abbasi A, Samatov TR, Sakharov DA, Shkurnikov MU, Lebedev AE, Galatenko VV, Grigoriev AI, Northoff H. Dynamically regulated miRNA-mRNA networks revealed by exercise. BMC PHYSIOLOGY 2013; 13:9. [PMID: 24219008 PMCID: PMC3681679 DOI: 10.1186/1472-6793-13-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/28/2013] [Indexed: 12/22/2022]
Abstract
Background MiRNAs are essential mediators of many biological processes. The aim of this study was to investigate the dynamics of miRNA-mRNA regulatory networks during exercise and the subsequent recovery period. Results Here we monitored the transcriptome changes using microarray analysis of the whole blood of eight highly trained athletes before and after 30 min of moderate exercise followed by 30 min and 60 min of recovery period. We combined expression profiling and bioinformatics and analysed metabolic pathways enriched with differentially expressed mRNAs and mRNAs which are known to be validated targets of differentially expressed miRNAs. Finally we revealed four dynamically regulated networks comprising differentially expressed miRNAs and their known target mRNAs with anti-correlated expression profiles over time. The data suggest that hsa-miR-21-5p regulated TGFBR3, PDGFD and PPM1L mRNAs. Hsa-miR-24-2-5p was likely to be responsible for MYC and KCNJ2 genes and hsa-miR-27a-5p for ST3GAL6. The targets of hsa-miR-181a-5p included ROPN1L and SLC37A3. All these mRNAs are involved in processes highly relevant to exercise response, including immune function, apoptosis, membrane traffic of proteins and transcription regulation. Conclusions We have identified metabolic pathways involved in response to exercise and revealed four miRNA-mRNA networks dynamically regulated following exercise. This work is the first study to monitor miRNAs and mRNAs in parallel into the recovery period. The results provide a novel insight into the regulatory role of miRNAs in stress adaptation.
Collapse
|
45
|
He R, Feng J, Xun Q, Qin Q, Hu C. High-intensity training induces EIB in rats through neuron transdifferentiation of adrenal medulla chromaffin cells. Am J Physiol Lung Cell Mol Physiol 2013; 304:L602-12. [PMID: 23418092 DOI: 10.1152/ajplung.00406.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A high prevalence of exercise-induced bronchoconstriction (EIB) can be found in elite athletes, but the underlying mechanisms remain elusive. Airway responsiveness, NGF and epinephrine (EPI) levels, and chromaffin cell structure in high- (HiTr) and moderate-intensity training (MoTr) rats with or without ovalbumin (OVA) sensitization were measured in a total of 120 male Sprague-Dawley rats. The expression of NGF-associated genes in rat adrenal medulla was tested. Both HiTr and OVA intervention significantly increased airway resistance to aerosolized methacholine measured by whole body plethysmography. HiTr significantly increased inflammatory reaction in the lung with a major increase in peribronchial lymphocyte infiltration, whereas OVA significantly increased the infiltration of various inflammatory cells with an over 10-fold increase in eosinophil level in bronchoalveolar lavage. Both HiTr and OVA intervention upregulated circulating NGF level and peripherin level in adrenal medulla, but downregulated phenylethanolamine N-methyl transferase level in adrenal medulla and circulating EPI level. HiTr + OVA and HiTr + ExhEx (exhaustive exercise) interventions significantly enhanced most of the HiTr effects. The elevated NGF level was significantly associated with neuronal conversion of adrenal medulla chromaffin cells (AMCC). The levels of p-Erk1/2, JMJD3, and Mash1 were significantly increased, but the levels of p-p38 and p-JNK were significantly decreased in adrenal medulla in HiTr and OVA rats. Injection of NGF antiserum and moderate-intensity training reversed these changes observed in HiTr and/or OVA rats. Our study suggests that NGF may play a vital role in the pathogenesis of EIB by inducing neuron transdifferentiation of AMCC via MAPK pathways and subsequently decreasing circulating EPI.
Collapse
Affiliation(s)
- Ruoxi He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
46
|
Yde CC, Ditlev DB, Reitelseder S, Bertram HC. Metabonomic Response to Milk Proteins after a Single Bout of Heavy Resistance Exercise Elucidated by 1H Nuclear Magnetic Resonance Spectroscopy. Metabolites 2013; 3:33-46. [PMID: 24957889 PMCID: PMC3901252 DOI: 10.3390/metabo3010033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/18/2012] [Accepted: 01/21/2013] [Indexed: 11/30/2022] Open
Abstract
In the present study, proton NMR-based metabonomics was applied on femoral arterial plasma samples collected from young male subjects (milk protein n = 12 in a crossover design; non-caloric control n = 8) at different time intervals (70, 220, 370 min) after heavy resistance training and intake of either a whey or calcium caseinate protein drink in order to elucidate the impact of the protein source on post-exercise metabolism, which is important for muscle hypertrophy. Dynamic changes in the post-exercise plasma metabolite profile consisted of fluctuations in alanine, beta-hydroxybutyrate, branched amino acids, creatine, glucose, glutamine, glutamate, histidine, lipids and tyrosine. In comparison with the intake of a non-caloric drink, the same pattern of changes in low-molecular weight plasma metabolites was found for both whey and caseinate intake. However, the study indicated that whey and caseinate protein intake had a different impact on low-density and very-low-density lipoproteins present in the blood, which may be ascribed to different effects of the two protein sources on the mobilization of lipid resources during energy deficiency. In conclusion, no difference in the effects on low-molecular weight metabolites as measured by proton NMR-based metabonomics was found between the two protein sources.
Collapse
Affiliation(s)
| | | | - Søren Reitelseder
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | | |
Collapse
|
47
|
Pechlivanis A, Kostidis S, Saraslanidis P, Petridou A, Tsalis G, Veselkov K, Mikros E, Mougios V, Theodoridis GA. 1H NMR Study on the Short- and Long-Term Impact of Two Training Programs of Sprint Running on the Metabolic Fingerprint of Human Serum. J Proteome Res 2012. [DOI: 10.1021/pr300846x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alexandros Pechlivanis
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki,
54124 Greece
| | - Sarantos Kostidis
- Department
of Pharmacy, National University of Athens, Athens, 15771 Greece
| | - Ploutarchos Saraslanidis
- Department
of Physical Education
and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | - Anatoli Petridou
- Department
of Physical Education
and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | - George Tsalis
- Department
of Physical Education
and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | - Kirill Veselkov
- Division of Biomolecular Medicine,
Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ, London, U. K
| | - Emmanuel Mikros
- Department
of Pharmacy, National University of Athens, Athens, 15771 Greece
| | - Vassilis Mougios
- Department
of Physical Education
and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | | |
Collapse
|
48
|
Ertek S, Cicero A. Impact of physical activity on inflammation: effects on cardiovascular disease risk and other inflammatory conditions. Arch Med Sci 2012; 8:794-804. [PMID: 23185187 PMCID: PMC3506236 DOI: 10.5114/aoms.2012.31614] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/21/2012] [Accepted: 08/20/2012] [Indexed: 12/16/2022] Open
Abstract
Since the 19(th) century, many studies have enlightened the role of inflammation in atherosclerosis, changing our perception of "vessel plaque due to oxidized lipoproteins", similar to a "rusted pipe", towards a disease with involvement of many cell types and cytokines with more complex mechanisms. Although "physical activity" and "physical exercise" are two terms with some differences in meaning, compared to sedentary lifestyle, active people have lower cardiovascular risk and lower inflammatory markers. Activities of skeletal muscle reveal "myokines" which have roles in both the immune system and adipose tissue metabolism. In vitro and ex-vivo studies have shown beneficial effects of exercise on inflammation markers. Meanwhile in clinical studies, some conflicting results suggested that type of activity, exercise duration, body composition, gender, race and age may modulate anti-inflammatory effects of physical exercise. Medical data on patients with inflammatory diseases have shown beneficial effects of exercise on disease activity scores, patient well-being and inflammatory markers. Although the most beneficial type of activity and the most relevant patient group for anti-inflammatory benefits are still not clear, studies in elderly and adult people generally support anti-inflammatory effects of physical activity and moderate exercise could be advised to patients with cardiovascular risk such as patients with metabolic syndrome.
Collapse
Affiliation(s)
- Sibel Ertek
- Department of Endocrinology and Metabolism, Ufuk University Medical Faculty, Ankara, Turkey
| | - Arrigo Cicero
- Internal Medicine, Aging and Kidney Disease Department, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
49
|
Chuang HL, Huang YT, Chiu CC, Liao CD, Hsu FL, Huang CC, Hou CC. Metabolomics characterization of energy metabolism reveals glycogen accumulation in gut-microbiota-lacking mice. J Nutr Biochem 2012; 23:752-8. [DOI: 10.1016/j.jnutbio.2011.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 03/10/2011] [Accepted: 03/28/2011] [Indexed: 01/30/2023]
|
50
|
Le Moyec L, Mille-Hamard L, Triba MN, Breuneval C, Petot H, Billat VL. NMR metabolomics for assessment of exercise effects with mouse biofluids. Anal Bioanal Chem 2012; 404:593-602. [PMID: 22706325 DOI: 10.1007/s00216-012-6165-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 11/28/2022]
Abstract
Exercise modulates the metabolome in urine or blood as demonstrated previously for humans and animal models. Using nuclear magnetic resonance (NMR) metabolomics, the present study compares the metabolic consequences of an exhaustive exercise at peak velocity (Vp) and at critical velocity (Vc) on mice. Since small-volume samples (blood and urine) were collected, dilution was necessary to acquire NMR spectra. Consequently, specific processing methods were applied before statistical analysis. According to the type of exercise (control group, Vp group and Vc group), 26 male mice were divided into three groups. Mice were sacrificed 2 h after the end of exercise, and urine and blood samples were drawn from each mouse. Proton NMR spectra were acquired with urine and deproteinized blood. The NMR data were aligned with the icoshift method and normalised using the probabilistic quotient method. Finally, data were analysed with the orthogonal projection of latent-structure analysis. The spectra obtained with deproteinized blood can neither discriminate the control mice from exercised mice nor discriminate according to the duration of the exercise. With urine samples, a significant statistical model can be estimated when comparing the control mice to both groups, Vc and Vp. The best model is obtained according to the exercise duration with all mice. Taking into account the spectral regions having the highest correlations, the discriminant metabolites are allantoin, inosine and branched-chain amino acids. In conclusion, metabolomic profiles assessed with NMR are highly dependent on the exercise. These results show that urine samples are more informative than blood samples and that the duration of the exercise is a more important parameter to influence the metabolomic status than the exercise velocity.
Collapse
Affiliation(s)
- Laurence Le Moyec
- UBIAE INSERM U902, Université Evry Val d'Essonne, Bat Maupertuis, rue du Père Jarlan, 91025, Evry Cedex, France.
| | | | | | | | | | | |
Collapse
|