1
|
Tyagunov AE, Anurov MV, Titkova SM, Kurashinova LS, Loban KM, Tyagunov AA, Sazhin AV. Intestinal fatty acid-binding protein (I-FABP) as biomarker of ischemic damage in experimentally induced 12-h small bowel obstruction. Updates Surg 2024; 76:2693-2700. [PMID: 39277557 DOI: 10.1007/s13304-024-01979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Laboratory tests have low diagnostic specificity for strangulated intestinal obstruction. The diagnostic potential of the intestinal fatty acid-binding protein (I-FABP) expressed in the tips of the intestinal villi continues to be explored. The number of white blood cells, blood plasma levels of L-lactate, C-reactive protein (CRP) and I-FABP were measured in rats with experimentally induced 12-h strangulated and non-strangulated intestinal obstruction. The results of the laboratory tests were compared with the changes in the morphology of the intestinal wall. The studied diagnostic markers, except for CRP, were elevated by 12-h L-lactate and I-FABP concentrations were significantly higher in the strangulated obstruction group than in other groups. L-lactate (cutoff value: 3.01 mmol/L) had 86.1% sensitivity and 66.7% specificity for strangulated obstruction (AUC 0.815, p < 0.001). I-FABP levels above 5.432 ng/ml indicated strangulated obstruction with 83.33% sensitivity and 88.9% specificity (AUC 0.906, p < 0.001). Villi destruction was observed at 2 h in the strangulated obstruction group. I-FABP levels peaked at 4 h and plateaued at 12 h. Functional changes were observed in the non-strangulated group; they were accompanied by a significant increase in I-FABP concentrations that lasted until 12 h. Compared with traditional diagnostic markers of strangulated intestinal obstruction, I-FABP demonstrated higher accuracy in the first 12 h, although its concentrations reached the plateau already at 4 h and did not increase thereafter. The functional changes in small bowel wall in non-strangulated obstruction were accompanied by continuous increase in I-FABP concentrations up to 12 h, which may have influenced the diagnostic accuracy of the marker.
Collapse
|
2
|
Playford RJ. Effects of Chicken Egg Powder, Bovine Colostrum, and Combination Therapy for the Treatment of Gastrointestinal Disorders. Nutrients 2024; 16:3684. [PMID: 39519517 PMCID: PMC11547998 DOI: 10.3390/nu16213684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Natural-based products are of interest to the pharmaceutical industry as potential sources of novel medicinal compounds. They are also used by consumers/patients as standalone therapies or as an adjunct to Western medicines. Two natural-based products of interest are chicken egg and bovine colostrum (the milk produced in the first few days following calving). Both products are rich in immunoglobulins, antimicrobial peptides, growth factors, and macro- and micro-nutrients. In vitro, in vivo, and a limited number of clinical studies suggest therapeutic benefits of both components given alone and together. Combination therapy is of particular interest, as preclinical studies suggest synergistic effects on growth, repair, and gut protection, including microbiome-induced damage. This article describes the main constituents of egg and bovine colostrum, studies of their use alone and together for a wide range of conditions, highlights areas requiring further research, and describes novel indications such as GLP-1-associated gut symptoms. While well placed in the food supplement arena, additional high-quality clinical trials are required to establish their benefits in clinical practice.
Collapse
Affiliation(s)
- Raymond John Playford
- School of Medical & Biomedical Sciences, University of West London, St Mary's Road, Ealing, London W5 3TX, UK
| |
Collapse
|
3
|
Nomura S, Sumi D, Nagatsuka H, Suzuki T, Goto K. Effects of endurance exercise under hypoxic conditions on the gastric emptying rate and intestinal cell damage. Eur J Appl Physiol 2024:10.1007/s00421-024-05523-1. [PMID: 39453456 DOI: 10.1007/s00421-024-05523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/22/2024] [Indexed: 10/26/2024]
Abstract
The present study examined the effects of gastric emptying rate and intestinal cell damage following a single session of endurance exercise under "hypoxic" or "normoxic" conditions at the same relative intensity. Eleven healthy males performed two trials on different days, consisting of a 60 min run on a treadmill at 70% maximal running velocity (vMax) while inspiring hypoxic (FiO2: 14.5%; HYP) or normoxic air (FiO2: 20.9%; NOR). The average running velocity was 11.4 ± 0.7 km/h in NOR and 10.8 ± 0.5 km/h in HYP, respectively. Venous blood samples were collected to evaluate plasma intestinal fatty acid binding protein (I-FABP) as an indicator of exercise-induced intestinal cell damage. The gastric emptying rate was determined by the 13C-sodium acetate breath test. Running velocities at 70% vMax and arterial oxygen saturation were significantly lower under HYP than NOR (p < 0.001). Peak heart rate and rating of perceived exertion during exercise did not differ significantly between the trials. Maximum 13C excretion time (an indication of the gastric emptying rate) was significantly delayed in the HYP (NOR: 38.5 ± 5.0 min, HYP: 45.5 ± 9.6 min; p = 0.010). Furthermore, the score of nausea increased slightly, but increased significantly after exercise only in the HYP (p = 0.04). However, exercise-induced changes in plasma I-FABP, adrenaline, and noradrenaline concentrations did not differ significantly between the two trials. These results suggest that endurance exercise under hypoxic conditions impairs digestive function in the stomach compared to exercise under normoxic conditions performed at the same relative intensity.
Collapse
Affiliation(s)
- Sayaka Nomura
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Daichi Sumi
- Research Center for Urban Health and Sports, Osaka Metropolitan University, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Haruna Nagatsuka
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Tomotaka Suzuki
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
4
|
Fayed RH, Ali SE, Yassin AM, Madian K, Bawish BM. Terminalia bellirica and Andrographis paniculata dietary supplementation in mitigating heat stress-induced behavioral, metabolic and genetic alterations in broiler chickens. BMC Vet Res 2024; 20:388. [PMID: 39227945 PMCID: PMC11370032 DOI: 10.1186/s12917-024-04233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Heat stress (HS) is one of the most significant environmental stressors on poultry production and welfare worldwide. Identification of innovative and effective solutions is necessary. This study evaluated the effects of phytogenic feed additives (PHY) containing Terminalia bellirica and Andrographis paniculata on behavioral patterns, hematological and biochemical parameters, Oxidative stress biomarkers, and HSP70, I-FABP2, IL10, TLR4, and mTOR genes expression in different organs of broiler chickens under chronic HS conditions. A total of 208 one-day-old Avian-480 broiler chicks were randomly allocated into four treatments (4 replicate/treatment, 52 birds/treatment): Thermoneutral control treatment (TN, fed basal diet); Thermoneutral treatment (TN, fed basal diet + 1 kg/ton feed PHY); Heat stress treatment (HS, fed basal diet); Heat stress treatment (HS, fed basal diet + 1 kg/ton feed PHY). RESULTS The findings of the study indicate that HS led to a decrease in feeding, foraging, walking, and comfort behavior while increasing drinking and resting behavior, also HS increased red, and white blood cells (RBCs and WBCs) counts, and the heterophile/ lymphocyte (H/L) ratio (P < 0.05); while both mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were decreased (P < 0.05). In addition, HS negatively impacted lipid, protein, and glucose levels, liver and kidney function tests, and oxidative biomarkers by increasing malondialdehyde (MDA) levels and decreasing reduced glutathion (GSH) activity (P < 0.05). Heat stress (HS) caused the upregulation in HSP70, duodenal TLR4 gene expression, and the downregulation of I-FABP2, IL10, mTOR in all investigated tissues, and hepatic TLR4 (P < 0.05) compared with the TN treatment. Phytogenic feed additives (PHY) effectively mitigated heat stress's negative impacts on broilers via an improvement of broilers' behavior, hematological, biochemical, and oxidative stress biomarkers with a marked decrease in HSP70 expression levels while all tissues showed increased I-FABP2, IL10, TLR4, and mTOR (except liver) levels (P < 0.05). CONCLUSION Phytogenic feed additives (PHY) containing Terminalia bellirica and Andrographis paniculata have ameliorated the HS-induced oxidative stress and improved the immunity as well as the gut health and welfare of broiler chickens.
Collapse
Affiliation(s)
- Rabie H Fayed
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - K Madian
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Basma M Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
5
|
Lee BJ, Russell SL, Meade RD, McCormick JJ, King KE, Kenny GP. Markers of enterocyte damage, microbial translocation, and systemic inflammation following 9 h of heat exposure in young and older adults. Appl Physiol Nutr Metab 2024; 49:1241-1251. [PMID: 38772045 DOI: 10.1139/apnm-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Heat stress induced damage to the gastrointestinal barrier can induce local and systemic inflammatory reactions implicated in heat-stroke. Gastrointestinal barrier damage has been shown to be greater in older relative to young adults following hyperthermia. However, comparisons between young and older adults have been limited to brief exposures (3 h), which may not reflect the duration of heat stress experienced during heat waves. We therefore evaluated markers of intestinal epithelial damage (log transformed intestinal fatty acid binding protein, IFABPLOG), microbial translocation (soluble cluster of differentiation 14, sCD14LOG), and systemic inflammation (tumour necrosis factor alpha, TNF-αLOG; interleukin 6, IL-6LOG; C-reactive protein, CRP) in 19 young (interquartile range: 21-27 years; 10 females) and 37 older (68-73 years; 10 females) adults before and after 9 h of rest in 40 °C (9% relative humidity). The magnitude of the increase in IFABPLOG was 0.38 log pg/mL (95% CI, 0.10, 0.65 log pg/mL) greater in the older relative to young cohort (P = 0.049) after 9 h heat exposure. At baseline both IL-6LOG and CRP concentrations were higher in the older (IL-6: 2.67 (1.5) log pg/mL, CRP: 0.28 (1.5) mg/mL) relative to the young (IL-6: 1.59 log pg/mL, SD 1.2; CRP: 0.11 mg/mL, SD 1.7) group (both P ≤ 0.001). The change in IL-6 and CRP was similar between groups following 9 h heat exposure (IL-6: P = 0.053; CRP: P = 0.241). Neither sCD14LOG and TNF-αLOG were different between groups at baseline nor altered after 9 h heat exposure. Our data indicate that age may modify intestinal epithelial injury following 9 h of passive heat exposure.
Collapse
Affiliation(s)
- Ben J Lee
- Occupational and Environmental Physiology Group, Centre for Physical Activity, Sport, Exercise Sciences, Coventry University, United Kingdom
| | - Sophie L Russell
- Clinical Sciences and Translational Medicine, Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
6
|
Compare D, Sgamato C, Rocco A, Coccoli P, Ambrosio C, Nardone G. The Leaky Gut and Human Diseases: "Can't Fill the Cup if You Don't Plug the Holes First". Dig Dis 2024; 42:548-566. [PMID: 39047703 DOI: 10.1159/000540379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The gut barrier is a sophisticated and dynamic system that forms the frontline defense between the external environment and the body's internal milieu and includes various structural and functional components engaged not only in digestion and nutrient absorption but also in immune regulation and overall health maintenance. SUMMARY When one or more components of the intestinal barrier lose their structure and escape their function, this may result in a leaky gut. Mounting evidence emphasizes the crucial role of the gut microbiome in preserving the integrity of the gut barrier and provides insights into the pathophysiological implications of conditions related to leaky gut in humans. Assessment of intestinal permeability has evolved from invasive techniques to noninvasive biomarkers, but challenges remain in achieving consensus about the best testing methods and their accuracy. Research on the modulation of gut permeability is just starting, and although no medical guidelines for the treatment of leaky gut syndrome are available, several treatment strategies are under investigation with promising results. KEY MESSAGES This review discusses the composition of the intestinal barrier, the pathophysiology of the leaky gut and its implications on human health, the measurement of intestinal permeability, and the therapeutic strategies to restore gut barrier integrity.
Collapse
Affiliation(s)
- Debora Compare
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Costantino Sgamato
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Alba Rocco
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Pietro Coccoli
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Carmen Ambrosio
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Gerardo Nardone
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| |
Collapse
|
7
|
Ulluwishewa D, Nicholls G, Henderson H, Bernstein D, Fraser K, Barnett MPG, Barnes MJ. Effects of bovine whey protein on exercise-induced gut permeability in healthy adults: a randomised controlled trial. Eur J Appl Physiol 2024; 124:2045-2056. [PMID: 38386104 PMCID: PMC11199293 DOI: 10.1007/s00421-024-05423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE Intestinal permeability is a critical component of gut barrier function. Barrier dysfunction can be triggered by certain stressors such as exercise, and if left unmanaged can lead to local and systemic disorders. The aim of this study was to investigate the effects of a specific whey protein fraction in alleviating exercise-induced gut permeability as assessed by recovery of lactulose/rhamnose (L/R) and lactulose/mannitol (L/M) urinary probes. METHODS Eight males and eight females (aged 18-50) completed two arms of a double-blind, placebo-controlled, crossover study. For each arm participants performed two baseline intestinal permeability assessments, following which they consumed the treatment (2 g/day of milk powder containing 200 mg of whey protein) or placebo (2 g/day of milk powder) for 14 days, before performing a post-exercise permeability assessment. The exercise protocol involved a 20-min run at 80% of maximal oxygen uptake on a 1% incline. RESULTS Mixed model analysis revealed an increase in L/R (23%; P < 0.001) and L/M (20%; P < 0.01) recovery following exercise. However, there was no treatment or treatment × exercise effect. CONCLUSION The exercise protocol utilised in our study induces gut permeability. However, consuming whey protein, at the dose and timing prescribed, is not able to mitigate this effect.
Collapse
Affiliation(s)
| | - Grayson Nicholls
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | | | | | - Karl Fraser
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Matthew P G Barnett
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Matthew J Barnes
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| |
Collapse
|
8
|
Yalçıntaş YM, Baydemir B, Duman H, Eker F, Bayraktar Biçen A, Ertürk M, Karav S. Exploring the impact of colostrum supplementation on athletes: a comprehensive analysis of clinical trials and diverse properties. Front Immunol 2024; 15:1395437. [PMID: 38799427 PMCID: PMC11116638 DOI: 10.3389/fimmu.2024.1395437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Colostrum, an invaluable food produced by mammals during the postnatal period, contains important bioactive components. It is a valuable therapeutic substance that can be used to treat a variety of disorders, in addition to its primary function of providing passive immunity to newborns. Undoubtedly, a strong dedication to intense effort and demanding training schedules is necessary to succeed in today's sports environment. Peak physical fitness, strategic skill development, and mental toughness are highly valued in the environments in which athletes compete. However, the inherent difficulties brought about by athletes' intense schedules are matched with the demanding character of modern sports. The intensity of athletic activity frequently provides little time for sufficient relaxation, nutritional preparation, and overall recovery, which can contribute to mental and physical tiredness. Athletes need to develop all-encompassing strategies to overcome these obstacles. These strategies should prioritize self-care and recovery in addition to maximizing training efficiency. The bioactive components of colostrum bring forth various therapeutic effects against the challenges experienced by athletes; including diarrhea, upper respiratory tract infections, muscle injuries, intestinal disorders, etc. This review examined the different therapeutic effects of the bioactive components of colostrum on athletes, the effect of the use of colostrum as a whole on the performance of athletes, and the clinical research conducted in this field. While the majority of studies report positive effects of colostrum, further research is needed.
Collapse
Affiliation(s)
- Yalçın Mert Yalçıntaş
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| | - Barış Baydemir
- Department of Coaching Education, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| | | | | | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| |
Collapse
|
9
|
Hajihashemi P, Haghighatdoost F, Kassaian N, Hoveida L, Tamizifar B, Nili H, Rahim Khorasani M, Adibi P. Bovine Colostrum in Increased Intestinal Permeability in Healthy Athletes and Patients: A Meta-Analysis of Randomized Clinical Trials. Dig Dis Sci 2024; 69:1345-1360. [PMID: 38361147 DOI: 10.1007/s10620-023-08219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/27/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Increasing intestinal permeability causes chronic inflammation, which is one of the etiological factors of many diseases that presently constitute global challenges. AIMS Considering the importance of developing therapies to eliminate the increased intestinal permeability, in this systematic review and meta-analysis, we analyze the impact of bovine colostrum (BC) on the gut barrier and its permeability. METHODS Online databases, including PubMed, ISI Web of Science, and Scopus, were searched to find pertinent articles up to March 2022. Weighted mean difference (WMD) and 95% confidence intervals (CI) were considered as effect sizes. The random-effects model was used to pool the study results. RESULTS A total of ten articles were included in the meta-analysis. The pooled effect revealed a significant reduction in the 5-h urinary lactulose/rhamnose ratio after BC consumption [mean difference (MD): -0.24; 95% CI -0.43 to -0.04; I2 = 99%] and urinary lactulose/mannitol ratio (MD: -0.01; 95% CI -0.02 to -0.001; I2 = 29.8%). No differences were observed in the plasma intestinal fatty acid-binding protein (I-FABP) between BC and control groups (MD: 2.30; 95% CI -293.9 to 298.5; I2 = 92%). CONCLUSIONS BC supplementation significantly reduced intestinal permeability; however, to confirm the results, more randomized clinical trials considering different quality, dose, and duration are needed.
Collapse
Affiliation(s)
- Parisa Hajihashemi
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Haghighatdoost
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazila Kassaian
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Hoveida
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, PO Box: 84515/155, Isfahan, Iran.
| | - Babak Tamizifar
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Nili
- Zeitoon Vaccine Innovators Company, Isfahan Town of Science and Technology, Isfahan, Iran
| | - Marzieh Rahim Khorasani
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Knipping K, Kartaram SW, Teunis M, Zuithoff NPA, Buurman N, M’Rabet L, van Norren K, Witkamp R, Pieters R, Garssen J. Salivary concentrations of secretory leukocyte protease inhibitor and matrix metallopeptidase-9 following a single bout of exercise are associated with intensity and hydration status. PLoS One 2023; 18:e0291297. [PMID: 37992002 PMCID: PMC10664895 DOI: 10.1371/journal.pone.0291297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/25/2023] [Indexed: 11/24/2023] Open
Abstract
AIM To investigate the effects of exercise on salivary concentrations of inflammatory markers by analyzing a panel of 25 inflammatory markers in subjects who had participated in bicycle ergometer tests varying in workload and hydration status. METHODS Fifteen healthy young men (20-35 years) had performed 4 different exercise protocols of 1 hour duration in a randomly assigned cross-over design, preceded by a rest protocol. Individual workloads depended on participant's pre-assessed individual maximum workload (Wmax): rest (protocol 1), 70% Wmax in hydrated (protocol 2) and dehydrated (protocol 3) state, 50% Wmax (protocol 4) and intermittent 85%/55% Wmax in 2 min blocks (protocol 5). Saliva samples were collected before (T0) and immediately after exercise (T1), and at several time points after exercise (2 hours (T3), 3 hours (T4), 6 hours (T5) and 24 hours (T6)). Secretory Leukocyte Protease Inhibitor (SLPI), Matrix Metallopeptidase-9 (MMP-9) and lactoferrin was analyzed using a commercial ELISA kit, a panel of 22 cytokines and chemokines were analyzed using a commercial multiplex immunoassay. Data was analyzed using a multilevel mixed linear model, with multiple test correction. RESULTS Among a panel of 25 inflammatory markers, SLPI concentrations were significantly elevated immediately after exercise in all protocols compared to rest and higher concentrations reflected the intensity of exercise and hydration status. MMP-9 showed a significant increase in the 70% Wmax dehydrated, 50% Wmax and intermittent protocols. CONCLUSIONS Salivary concentrations of SLPI and MMP-9 seem associated with exercise intensity and hydration status and may offer non-invasive biomarkers to study (local) inflammatory responses to different exercise intensities in human studies.
Collapse
Affiliation(s)
- Karen Knipping
- Danone Nutricia Research, Utrecht, The Netherlands
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Shirley W. Kartaram
- Research Group Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Marc Teunis
- Research Group Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Nicolaas P. A. Zuithoff
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Laura M’Rabet
- Research Group Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Klaske van Norren
- Nutritional Biology, Division Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Renger Witkamp
- Nutritional Biology, Division Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Raymond Pieters
- Research Group Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, The Netherlands
- Institute for Risk Assessment Sciences, Immunotoxicology (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Danone Nutricia Research, Utrecht, The Netherlands
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Rajcic D, Kromm F, Hernández-Arriaga A, Brandt A, Baumann A, Staltner R, Camarinha-Silva A, Bergheim I. Supplementing L-Citrulline Can Extend Lifespan in C. elegans and Attenuate the Development of Aging-Related Impairments of Glucose Tolerance and Intestinal Barrier in Mice. Biomolecules 2023; 13:1579. [PMID: 38002262 PMCID: PMC10669166 DOI: 10.3390/biom13111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
L-Citrulline (L-Cit) is discussed to possess a protective effect on intestinal barrier dysfunction but also to diminish aging-associated degenerative processes. Here, the effects of L-Cit on lifespan were assessed in C. elegans, while the effects of L-Cit on aging-associated decline were determined in C57BL/6J mice. For lifespan analysis, C. elegans were treated with ±5 mM L-Cit. Twelve-month-old male C57BL/6J mice (n = 8-10/group) fed a standard chow diet received drinking water ± 2.5 g/kg/d L-Cit or 5 g/kg/d hydrolyzed soy protein (Iso-N-control) for 16 or 32 weeks. Additionally, 4-month-old C57BL/6J mice were treated accordingly for 8 weeks. Markers of senescence, glucose tolerance, intestinal barrier function, and intestinal microbiota composition were analyzed in mice. L-Cit treatment significantly extended the lifespan of C. elegans. The significant increase in markers of senescence and signs of impaired glucose tolerance found in 16- and 20-month-old control mice was attenuated in L-Cit-fed mice, which was associated with protection from intestinal barrier dysfunction and a decrease in NO2- levels in the small intestine, while no marked differences in intestinal microbiota composition were found when comparing age-matched groups. Our results suggest that pharmacological doses of L-Cit may have beneficial effects on lifespan in C. elegans and aging-associated decline in mice.
Collapse
Affiliation(s)
- Dragana Rajcic
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Franziska Kromm
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | | | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany (A.C.-S.)
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Kelly MR, Emerson DM, McDermott BP, Atkins WC, Butts CL, Laursen RM, Troyanos C, Duckett A, Siedlik J. Gastrointestinal cell injury and perceived symptoms after running the Boston Marathon. Front Physiol 2023; 14:1268306. [PMID: 37908334 PMCID: PMC10615131 DOI: 10.3389/fphys.2023.1268306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
Gastrointestinal (GI) disturbances are a prevalent cause of marathon related complaints, and in extreme cases can promote life-threatening conditions such as exertional heat stroke. Our aim was to study intestinal cell injury [via intestinal fatty acid binding protein (I-FABP)] and perceived GI distress symptoms among marathon runners. We also examined potential risk factors (e.g., inadequate sleep) that could exacerbate GI disturbances in healthy, trained endurance runners. This was a parallel mixed-methods study design. 2019 Boston Marathon participants were recruited via email and subjects completed surveys before the race describing demographics and training history. Participants completed a GI questionnaire to assess presence and severity of symptoms, a survey regarding risk factors (e.g., recent illness, medications) that could promote GI disturbances, and provided a urine sample at three time points (immediately pre-race, post-race, and 24-h post-race). Due to weather, blood samples were only collected immediately and 24-h post-race. A total of 40 runners (males: n = 19, age = 44.9 ± 10.8 years; females: n = 21, age = 44.8 ± 10.6 years) completed this study. I-FABP significantly decreased from post-race (3367.5 ± 2633.5 pg/mL) to 24-h post-race (1657.3 ± 950.7 pg/mL, t (39) = -4.228, p < .001, d = -.669). There was a significant difference in overall GI symptom scores across the three time points (F (2, 39) = 41.37, p < .001). The highest average score occurred post-race (.84 ± .68), compared to pre-race (.09 ± .12) and 24-h post-race (.44 ± .28). Post-race I-FABP (r = .31, p = .048) and post-race urine specific gravity (r = .33, p = .041) were significantly correlated with post-race GI symptom scores. Our study provides further support to the individualized nature of GI disturbances, with participants experiencing a wide range of risk factors that can influence the extent of GI damage and perceived symptoms during and after exercise.
Collapse
Affiliation(s)
- Melani R. Kelly
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, United States
- Department of Exercise Science and Outdoor Recreation, Utah Valley University, Orem, UT, United States
| | - Dawn M. Emerson
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, United States
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States
| | - Brendon P. McDermott
- Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, United States
| | - Whitley C. Atkins
- Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, United States
| | - Cory L. Butts
- Department of Exercise and Nutrition Sciences, Weber State University, Ogden, UT, United States
| | - R. Mark Laursen
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States
| | | | - Andrew Duckett
- Department of Athletics, Boston University, Boston, MA, United States
| | - Jacob Siedlik
- Department of Exercise Science and Pre-Health Professions, Creighton University, Omaha, NE, United States
| |
Collapse
|
13
|
Nocella C, Cavarretta E, Fossati C, Pigozzi F, Quaranta F, Peruzzi M, De Grandis F, Costa V, Sharp C, Manara M, Nigro A, Cammisotto V, Castellani V, Picchio V, Sciarretta S, Frati G, Bartimoccia S, D’Amico A, Carnevale R. Dark Chocolate Intake Positively Modulates Gut Permeability in Elite Football Athletes: A Randomized Controlled Study. Nutrients 2023; 15:4203. [PMID: 37836487 PMCID: PMC10574486 DOI: 10.3390/nu15194203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Gut barrier disruption can lead to enhanced intestinal permeability, which allows endotoxins, pathogens, and other proinflammatory substances to move through the intestinal barrier into circulation. Intense exercise over a prolonged period increases intestinal permeability, which can be further worsened by the increased production of reactive oxygen species (ROS) and pro-inflammatory cytokines. The aim of this study was to assess the degree of intestinal permeability in elite football players and to exploit the effect of cocoa polyphenols on intestinal permeability induced by intensive physical exercise. Biomarkers of intestinal permeability, such as circulating levels of zonulin, a modulator of tight junctions, occludin, a tight junction protein, and LPS translocation, were evaluated in 24 elite football players and 23 amateur athletes. Moreover, 24 elite football players were randomly assigned to either a dark chocolate (>85% cocoa) intake (n = 12) or a control group (n = 12) for 30 days in a randomized controlled trial. Biochemical analyses were performed at baseline and after 30 days of chocolate intake. Compared to amateur athletes, elite football players showed increased intestinal permeability as indicated by higher levels of zonulin, occludin, and LPS. After 30 days of dark chocolate intake, decreased intestinal permeability was found in elite athletes consuming dark chocolate. In the control group, no changes were observed. In vitro, polyphenol extracts significantly improved intestinal damage in the human intestinal mucosa cell line Caco-2. These results indicate that chronic supplementation with dark chocolate as a rich source of polyphenols positively modulates exercise-induced intestinal damage in elite football athletes.
Collapse
Affiliation(s)
- Cristina Nocella
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.P.); (V.C.); (S.B.)
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (C.F.); (F.P.); (F.Q.)
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (C.F.); (F.P.); (F.Q.)
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, Via Trionfale 5952, 00136 Rome, Italy; (F.D.G.); (A.N.)
| | - Federico Quaranta
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (C.F.); (F.P.); (F.Q.)
| | - Mariangela Peruzzi
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.P.); (V.C.); (S.B.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Fabrizio De Grandis
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, Via Trionfale 5952, 00136 Rome, Italy; (F.D.G.); (A.N.)
| | - Vincenzo Costa
- Associazione Sportiva (A.S.) Roma Football Club, Piazzale Dino Viola 1, 00128 Rome, Italy; (V.C.); (C.S.); (M.M.)
| | - Carwyn Sharp
- Associazione Sportiva (A.S.) Roma Football Club, Piazzale Dino Viola 1, 00128 Rome, Italy; (V.C.); (C.S.); (M.M.)
| | - Massimo Manara
- Associazione Sportiva (A.S.) Roma Football Club, Piazzale Dino Viola 1, 00128 Rome, Italy; (V.C.); (C.S.); (M.M.)
| | - Antonia Nigro
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, Via Trionfale 5952, 00136 Rome, Italy; (F.D.G.); (A.N.)
| | - Vittoria Cammisotto
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.P.); (V.C.); (S.B.)
| | - Valentina Castellani
- Department of General Surgery and Surgical Specialty, Sapienza University of Rome, 00161 Rome, Italy;
| | - Vittorio Picchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Simona Bartimoccia
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.P.); (V.C.); (S.B.)
| | - Alessandra D’Amico
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
14
|
Álvarez-Herms J, González A, Corbi F, Odriozola I, Odriozola A. Possible relationship between the gut leaky syndrome and musculoskeletal injuries: the important role of gut microbiota as indirect modulator. AIMS Public Health 2023; 10:710-738. [PMID: 37842270 PMCID: PMC10567981 DOI: 10.3934/publichealth.2023049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 10/17/2023] Open
Abstract
This article aims to examine the evidence on the relationship between gut microbiota (GM), leaky gut syndrome and musculoskeletal injuries. Musculoskeletal injuries can significantly impair athletic performance, overall health, and quality of life. Emerging evidence suggests that the state of the gut microbiota and the functional intestinal permeability may contribute to injury recovery. Since 2007, a growing field of research has supported the idea that GM exerts an essential role maintaining intestinal homeostasis and organic and systemic health. Leaky gut syndrome is an acquired condition where the intestinal permeability is impaired, and different bacteria and/or toxins enter in the bloodstream, thereby promoting systemic endotoxemia and chronic low-grade inflammation. This systemic condition could indirectly contribute to increased local musculoskeletal inflammation and chronificate injuries and pain, thereby reducing recovery-time and limiting sport performance. Different strategies, including a healthy diet and the intake of pre/probiotics, may contribute to improving and/or restoring gut health, thereby modulating both systemically as local inflammation and pain. Here, we sought to identify critical factors and potential strategies that could positively improve gut microbiota and intestinal health, and reduce the risk of musculoskeletal injuries and its recovery-time and pain. In conclusion, recent evidences indicate that improving gut health has indirect consequences on the musculoskeletal tissue homeostasis and recovery through the direct modulation of systemic inflammation, the immune response and the nociceptive pain.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
- Phymo Lab, Physiology, and Molecular laboratory, Spain
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| | - Francisco Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| |
Collapse
|
15
|
Miranda C, Igrejas G, Poeta P. Bovine Colostrum: Human and Animal Health Benefits or Route Transmission of Antibiotic Resistance-One Health Perspective. Antibiotics (Basel) 2023; 12:1156. [PMID: 37508251 PMCID: PMC10376235 DOI: 10.3390/antibiotics12071156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
After calving, bovine colostrum is obtained from the mammary gland of the dam in the first days and fed to newborn ruminant to prevent microbial infections. Each bovine colostrum has a unique biochemical composition with high nutraceutical value compared to milk. However, bovine colostrum is influenced by various factors, such as environmental, individual, and genetic factors, as well as processing methods. Proper colostrum management is crucial for obtaining high-quality colostrum and mitigating bacterial contamination. This is important not only for the health and survival of calves but also for the health of humans who consume colostrum and its co-products. It is essential to ensure that the consumed colostrum is free of pathogens to reap its benefits. Health-promoting products based on colostrum have gained significant interest. However, colostrum can contain pathogens that, if not eliminated, can contribute to their transmission and spread, as well as antibiotic resistance. The aim of this review was to promote the animal and human health benefits of bovine colostrum by improving its microbial quality and highlighting potential routes of dissemination of antibiotic-resistant pathogens. Implementing hygienic measures is one of the key factors in mitigating colostrum bacterial contamination and obtaining safe and high-quality colostrum. This helps reduce the exposure of pathogens to newborn calves, other animals, and humans, in a One Health analysis.
Collapse
Affiliation(s)
- Carla Miranda
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Toxicology Research Unit (TOXRUN), Advanced Polytechnic and University Cooperative (IUCS-CESPU), University Institute of Health Sciences, 4585-116 Gandra, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085 Caparica, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
16
|
Martinez IG, Mika AS, Biesiekierski JR, Costa RJS. The Effect of Gut-Training and Feeding-Challenge on Markers of Gastrointestinal Status in Response to Endurance Exercise: A Systematic Literature Review. Sports Med 2023; 53:1175-1200. [PMID: 37061651 DOI: 10.1007/s40279-023-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Nutrition during exercise is vital in sustaining prolonged activity and enhancing athletic performance; however, exercise-induced gastrointestinal syndrome (EIGS) and exercise-associated gastrointestinal symptoms (Ex-GIS) are common issues among endurance athletes. Despite this, there has been no systematic assessment of existing trials that examine the impact of repetitive exposure of the gastrointestinal tract to nutrients before and/or during exercise on gastrointestinal integrity, function, and/or symptoms. OBJECTIVE This systematic literature review aimed to identify and synthesize research that has investigated the impact of 'gut-training' or 'feeding-challenge' before and/or during exercise on markers of gastrointestinal integrity, function, and symptoms. METHODS Five databases (Ovid MEDLINE, EMBASE, CINAHL Plus, Web of Science Core Collection, and SPORTDiscus) were searched for literature that focused on gut-training or feeding-challenge before and/or during exercise that included EIGS and Ex-GIS variables. Quality assessment was conducted in duplicate and independently using the Cochrane Collaboration's risk-of-bias (RoB 2) tool. RESULTS Overall, 304 studies were identified, and eight studies were included after screening. Gut-training or feeding-challenge interventions included provision of carbohydrates only (n = 7) in various forms (e.g., gels or liquid solutions) during cycling or running, or carbohydrate with protein (n = 1) during intermittent exercise, over a varied duration (4-28 days). Gut discomfort decreased by an average of 47% and 26% with a 2-week repetitive carbohydrate feeding protocol (n = 2) and through repeated fluid ingestion over five trials (n = 1), respectively. Repetitive carbohydrate feeding during exercise for 2 weeks resulted in the reduction of carbohydrate malabsorption by 45-54% (n = 2), but also led to no significant change (n = 1). The effect of gut-training and feeding-challenges on the incidence and severity of Ex-GIS were assessed using different tools (n = 6). Significant improvements in total, upper, and lower gastrointestinal symptoms were observed (n = 2), as well as unclear results (n = 4). No significant changes in gastric emptying rate (n = 2), or markers of intestinal injury and permeability were found (n = 3). Inconclusive results were found in studies that investigated plasma inflammatory cytokine concentration in response to exercise with increased carbohydrate feeding (n = 2). CONCLUSIONS Overall, gut-training or feeding-challenge around exercise may provide advantages in reducing gut discomfort, and potentially improve carbohydrate malabsorption and Ex-GIS, which may have exercise performance implications.
Collapse
Affiliation(s)
- Isabel G Martinez
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Alice S Mika
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Jessica R Biesiekierski
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Ricardo J S Costa
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia.
| |
Collapse
|
17
|
Artym J, Zimecki M. Colostrum and Lactoferrin Protect against Side Effects of Therapy with Antibiotics, Anti-inflammatory Drugs and Steroids, and Psychophysical Stress: A Comprehensive Review. Biomedicines 2023; 11:1015. [PMID: 37189633 PMCID: PMC10136316 DOI: 10.3390/biomedicines11041015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In this article, we review the benefits of applying bovine colostrum (BC) and lactoferrin (LF) in animal models and clinical trials that include corticosteroid application and psychic stress, treatment with non-steroid anti-inflammatory drugs (NSAIDs) and antibiotics. A majority of the reported investigations were performed with native bovine or recombinant human LF, applied alone or in combination with probiotics, as nutraceutics and diet supplements. Apart from reducing adverse side effects of the applied therapeutics, BC and LF augmented their efficacy and improved the wellness of patients. In conclusion, LF and complete native colostrum, preferably administered with probiotic bacteria, are highly recommended for inclusion in therapeutic protocols in NSAIDs and corticosteroid anti-inflammatory, as well as antibiotic, therapies. These colostrum-based products can also be of value for individuals subjected to prolonged psychophysical stress (mediated by endogenous corticosteroids), especially at high ambient temperatures (soldiers and emergency services), as well as physically active people and training athletes. They are also recommended for patients during recovery from trauma and surgery, which are always associated with severe psychophysical stress.
Collapse
Affiliation(s)
| | - Michał Zimecki
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12 Str., 53-114 Wroclaw, Poland
| |
Collapse
|
18
|
Linehan K, Ross RP, Stanton C. Bovine Colostrum for Veterinary and Human Health Applications: A Critical Review. Annu Rev Food Sci Technol 2023; 14:387-410. [PMID: 36972163 DOI: 10.1146/annurev-food-060721-014650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Bovine colostrum harbors a diverse array of bioactive components suitable for the development of functional foods, nutraceuticals, and pharmaceuticals with veterinary and human health applications. Bovine colostrum has a strong safety profile with applications across all age groups for health promotion and the amelioration of a variety of disease states. Increased worldwide milk production and novel processing technologies have resulted in substantial growth of the market for colostrum-based products. This review provides a synopsis of the bioactive components in bovine colostrum, the processing techniques used to produce high-value colostrum-based products, and recent studies utilizing bovine colostrum for veterinary and human health.
Collapse
Affiliation(s)
- Kevin Linehan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland;
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland;
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
- VistaMilk Research Centre, Teagasc Moorepark, County Cork, Ireland
| |
Collapse
|
19
|
Howard EE, Allen JT, Coleman JL, Small SD, Karl JP, O'Fallon KS, Margolis LM. Ketone Monoester Plus Carbohydrate Supplementation Does Not Alter Exogenous and Plasma Glucose Oxidation or Metabolic Clearance Rate During Exercise in Men Compared with Carbohydrate Alone. J Nutr 2023:S0022-3166(23)35281-7. [PMID: 36893935 DOI: 10.1016/j.tjnut.2023.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Increasing β-hydroxybutyrate (βHB) availability through ketone monoester plus carbohydrate (KE+CHO) supplementation is suggested to enhance physical performance by sparing glucose use during exercise. However, no studies have examined the effect of ketone supplementation on glucose kinetics during exercise. OBJECTIVES This exploratory study primarily aimed to determine the effect of KE+CHO supplementation on glucose oxidation and physical performance during steady-state exercise compared with carbohydrate. METHODS Using a randomly assigned, crossover design (clinicaltrials.gov, NCT04737694), 12 men consumed KE+CHO (573 mg ketone monoester/kg body mass, 110 g glucose) or carbohydrate (110 g glucose) before and during 90 min of steady-state treadmill exercise [54 ± 3% peak oxygen uptake (V̇˙O2peak)] wearing a weighted vest (30% body mass; 25 ± 3 kg). Glucose oxidation and turnover were determined using indirect calorimetry and stable isotopes. Participants performed an unweighted time to exhaustion (TTE; 85% V̇˙O2peak) after steady-state exercise and a weighted (25 ± 3 kg) 6.4 km time trial (TT) the next day after consuming a bolus of KE+CHO or carbohydrate. Data were analyzed by paired t-tests and mixed model ANOVA. RESULTS βHB concentrations were higher (P < 0.05) after exercise [2.1 mM (95% CI: 1.6, .6)] and the TT [2.6 mM (2.1, 3.1)] in KE+CHO compared with carbohydrate. TTE was lower [-104 s (-201, -8)], and TT performance was slower [141 s (19,262)] in KE+CHO than in carbohydrate (P < 0.05). Exogenous [-0.01 g/min (-0.07, 0.04)] and plasma [-0.02 g/min (-0.08, 0.04)] glucose oxidation and metabolic clearance rate {MCR [0.38 mg·kg-1·min-1 (-0.79, 1.54)]} were not different, and glucose rate of appearance [-0.51 mg·kg-1·min-1 (-0.97, -0.04)], and disappearance [-0.50 mg·kg-1·min-1 (-0.96, -0.04)] were lower (P < 0.05) in KE+CHO compared with carbohydrate during steady-state exercise. CONCLUSIONS In the current study, the rates of exogenous and plasma glucose oxidation and MCR were not different between treatments during steady-state exercise, suggesting blood glucose utilization is similar between KE+CHO and carbohydrate. KE+CHO supplementation also results in lower physical performance compared with carbohydrate. This trial was registered at www. CLINICALTRIALS gov as NCT04737694.
Collapse
Affiliation(s)
- Emily E Howard
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Jillian T Allen
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Julie L Coleman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States; Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Stephanie D Small
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States; Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States; Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Kevin S O'Fallon
- Soldier Effectiveness Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA, United States
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States.
| |
Collapse
|
20
|
Lutein Prevents Liver Injury and Intestinal Barrier Dysfunction in Rats Subjected to Chronic Alcohol Intake. Nutrients 2023; 15:nu15051229. [PMID: 36904226 PMCID: PMC10005241 DOI: 10.3390/nu15051229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic alcohol intake can affect both liver and intestinal barrier function. The goal of this investigation was to evaluate the function and mechanism of lutein administration on the chronic ethanol-induced liver and intestinal barrier damage in rats. During the 14-week experimental cycle, seventy rats were randomly divided into seven groups, with 10 rats in each group: a normal control group (Co), a control group of lutein interventions (24 mg/kg/day), an ethanol model group (Et, 8-12 mL/kg/day of 56% (v/v) ethanol), three intervention groups with lutein (12, 24 and 48 mg/kg/day) and a positive control group (DG). The results showed that liver index, ALT, AST and TG levels were increased, and SOD and GSH-Px levels were reduced in the Et group. Furthermore, alcohol intake over a long time increased the level of pro-inflammatory cytokines TNF-α and IL-1β, disrupted the intestinal barrier, and stimulated the release of LPS, causing further liver injury. In contrast, lutein interventions prevented alcohol-induced alterations in liver tissue, oxidative stress and inflammation. In addition, the protein expression of Claudin-1 and Occludin in ileal tissues was upregulated by lutein intervention. In conclusion, lutein can improve chronic alcoholic liver injury and intestinal barrier dysfunction in rats.
Collapse
|
21
|
Rauch CE, Mika AS, McCubbin AJ, Huschtscha Z, Costa RJS. Effect of prebiotics, probiotics, and synbiotics on gastrointestinal outcomes in healthy adults and active adults at rest and in response to exercise-A systematic literature review. Front Nutr 2022; 9:1003620. [PMID: 36570133 PMCID: PMC9768503 DOI: 10.3389/fnut.2022.1003620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction A systematic literature search was undertaken to assess the impact of pre-, pro-, and syn-biotic supplementation on measures of gastrointestinal status at rest and in response to acute exercise. Methods Six databases (Ovid MEDLINE, EMBASE, Cinahl, SportsDISCUS, Web of Science, and Scopus) were used. Included were human research studies in healthy sedentary adults, and healthy active adults, involving supplementation and control or placebo groups. Sedentary individuals with non-communicable disease risk or established gastrointestinal inflammatory or functional diseases/disorders were excluded. Results A total of n = 1,204 participants were included from n = 37 papers reported resting outcomes, and n = 13 reported exercise-induced gastrointestinal syndrome (EIGS) outcomes. No supplement improved gastrointestinal permeability or gastrointestinal symptoms (GIS), and systemic endotoxemia at rest. Only modest positive changes in inflammatory cytokine profiles were observed in n = 3/15 studies at rest. Prebiotic studies (n = 4/5) reported significantly increased resting fecal Bifidobacteria, but no consistent differences in other microbes. Probiotic studies (n = 4/9) increased the supplemented bacterial species-strain. Only arabinoxylan oligosaccharide supplementation increased total fecal short chain fatty acid (SCFA) and butyrate concentrations. In response to exercise, probiotics did not substantially influence epithelial injury and permeability, systemic endotoxin profile, or GIS. Two studies reported reduced systemic inflammatory cytokine responses to exercise. Probiotic supplementation did not substantially influence GIS during exercise. Discussion Synbiotic outcomes resembled probiotics, likely due to the minimal dose of prebiotic included. Methodological issues and high risk of bias were identified in several studies, using the Cochrane Risk of Bias Assessment Tool. A major limitation in the majority of included studies was the lack of a comprehensive approach of well-validated biomarkers specific to gastrointestinal outcomes and many included studies featured small sample sizes. Prebiotic supplementation can influence gut microbial composition and SCFA concentration; whereas probiotics increase the supplemented species-strain, with minimal effect on SCFA, and no effect on any other gastrointestinal status marker at rest. Probiotic and synbiotic supplementation does not substantially reduce epithelial injury and permeability, systemic endotoxin and inflammatory cytokine profiles, or GIS in response to acute exercise.
Collapse
Affiliation(s)
- Christopher E. Rauch
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alice S. Mika
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alan J. McCubbin
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Zoya Huschtscha
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia,*Correspondence: Ricardo J. S. Costa
| |
Collapse
|
22
|
Ma S, Ono M, Mizugaki A, Kato H, Miyashita M, Suzuki K. Cystine/Glutamine Mixture Supplementation Attenuated Fatigue during Endurance Exercise in Healthy Young Men by Enhancing Fatty Acid Utilization. Sports (Basel) 2022; 10:sports10100147. [PMID: 36287760 PMCID: PMC9610368 DOI: 10.3390/sports10100147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Exercise-induced fatigue is a multi-origin physical and mental phenomenon. Efforts to diminish the above predisposition may contribute to endurance, along with athletic well-being, while development of nutritional strategies to optimize condition and exercise performance are essential issues for athletes and trainers. Dietary amino acids are being discussed for their specific health-promoting properties beyond their role as building blocks of proteins. Glutamine, along with cysteine, are two kinds of amino acids that are reported extensively for their anti-oxidation, anti-inflammation, and immune-regulation properties, and are promising in sport applications. In the present study, we designed a randomized, placebo-controlled, crossover trial to examine effects of 7-day supplementation of cystine/glutamine mixture (Cys2/Gln) on self-reporting fatigue index (ratings of perceived exertion, RPE), energy metabolism, and inflammation. We also employed a C2C12 myotube model to examine the capacity of cystine for fatty acid utilization. Cys2/Gln supplementation alleviated fatigue by decreasing RPE and enhanced fatty acid oxidation during a 60 min endurance exercise in human trials, while cystine increased fatty acid utilization in C2C12 myotubes by enhancing mitochondrial respiration. In summary, Cys2/Gln supplementation exerts positive effects on ameliorating exercise-induced fatigue, mechanisms of which can be attributed to enhancement of fatty acid utilization.
Collapse
Affiliation(s)
- Sihui Ma
- Faculty of Sport Sciences, Waseda University, Tokorozawa 3591141, Saitama, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku 1020083, Tokyo, Japan
| | - Miho Ono
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 2108680, Kanagawa, Japan
| | - Ami Mizugaki
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 2108680, Kanagawa, Japan
| | - Hiroyuki Kato
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 2108680, Kanagawa, Japan
| | - Masashi Miyashita
- Faculty of Sport Sciences, Waseda University, Tokorozawa 3591141, Saitama, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 3591141, Saitama, Japan
- Correspondence: ; Tel.: +81-04-2947-6898
| |
Collapse
|
23
|
McKenna Z, Houck J, Ducharme J, Li Z, Berkemeier Q, Fennel Z, Wells A, Mermier C, Deyhle M, Laitano O, Amorim F. The effect of prolonged interval and continuous exercise in the heat on circulatory markers of intestinal barrier integrity. Eur J Appl Physiol 2022; 122:2651-2659. [DOI: 10.1007/s00421-022-05049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022]
|
24
|
The effect of rugby training on indirect markers of gut permeability and gut damage in academy level rugby players. Eur J Appl Physiol 2022; 122:2545-2554. [PMID: 36053363 PMCID: PMC9613545 DOI: 10.1007/s00421-022-05027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
Purpose To assess indirect markers of intestinal endothelial cell damage and permeability in academy rugby players in response to rugby training at the beginning and end of preseason. Methods Blood and urinary measures (intestinal fatty acid binding protein and lactulose:rhamnose) as measures of gastrointestinal cell damage and permeability were taken at rest and after a standardised collision-based rugby training session in 19 elite male academy rugby players (age: 20 ± 1 years, backs: 89.3 ± 8.4 kg; forwards: 111.8 ± 7.6 kg) at the start of preseason. A subsample (n = 5) repeated the protocol after six weeks of preseason training. Gastrointestinal symptoms (GIS; range of thirteen standard symptoms), aerobic capacity (30–15 intermittent fitness test), and strength (1 repetition maximum) were also measured. Results Following the rugby training session at the start of preseason, there was an increase (median; interquartile range) in intestinal fatty acid binding protein (2140; 1260–2730 to 3245; 1985–5143 pg/ml, p = 0.003) and lactulose:rhamnose (0.31; 0.26–0.34 to 0.97; 0.82–1.07, p < 0.001). After six weeks of preseason training players physical qualities improved, and the same trends in blood and urinary measures were observed within the subsample. Overall, the frequency and severity of GIS were low and not correlated to markers of endothelial damage. Conclusions Rugby training resulted in increased intestinal endothelial cell damage and permeability compared to rest. A similar magnitude of effect was observed after six weeks of pre-season training. This was not related to the experience of GIS.
Collapse
|
25
|
Mańkowska K, Marchelek-Myśliwiec M, Kochan P, Kosik-Bogacka D, Konopka T, Grygorcewicz B, Roszkowska P, Cecerska-Heryć E, Siennicka A, Konopka J, Dołęgowska B. Microbiota in sports. Arch Microbiol 2022; 204:485. [PMID: 35834007 PMCID: PMC9283338 DOI: 10.1007/s00203-022-03111-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
The influence of microbiota on the human body is currently the subject of many studies. The composition of bacteria colonizing the gastrointestinal tract varies depending on genetic make-up, lifestyle, use of antibiotics or the presence of diseases. The diet is also important in the species diversity of the microbiota. This study is an analysis of the relationships between physical activity, diet, and the microbiota of the gastrointestinal tract in athletes. This review shows the differences in the microbial composition in various sports disciplines, the influence of probiotics on the microbiome, the consequence of which may be achieved even better sports results. Physical activity increases the number of bacteria, mainly of the Clostridiales order and the genus: Lactobacillus, Prevotella, Bacteroides, and Veillonella, and their number varies depending on the sports discipline. These bacteria are present in athletes in sports that require a high VO2 max. The players’ diet also influences the composition of the microbiota. A diet rich in dietary fiber increases the amount of Lactobacillus or Bifidobacterium bacteria, probiotic microorganisms, which indicates the need to supplement the diet with probiotic preparations. It is impossible to suggest an unambiguous answer to how the microbiota of the gastrointestinal tract changes in athletes and requires further analyzes.
Collapse
Affiliation(s)
- Katarzyna Mańkowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wlkp 72, 70-110, Szczecin, Poland.
| | | | - Piotr Kochan
- Department of Bacteriology, Microbial Ecology and Parasitology, Chair of Microbiology, Jagiellonian University Medical College, Cracow, Poland
| | - Danuta Kosik-Bogacka
- Independent of Pharmaceutical Botany, Department of Medical Biology and Parasitology, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Konopka
- Department of Orthopedics, Traumatology and Oncology of the Musculoskeletal System, Pomeranian Medical University, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wlkp 72, 70-110, Szczecin, Poland
| | - Paulina Roszkowska
- Department of Immunological Diagnostics, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wlkp 72, 70-110, Szczecin, Poland
| | - Aldona Siennicka
- Department of Laboratory Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Justyna Konopka
- Department of Orthodontics, Pomeranian Medical University, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wlkp 72, 70-110, Szczecin, Poland
| |
Collapse
|
26
|
Huang X, Zhou Y, Sun Y, Wang Q. Intestinal fatty acid binding protein: A rising therapeutic target in lipid metabolism. Prog Lipid Res 2022; 87:101178. [PMID: 35780915 DOI: 10.1016/j.plipres.2022.101178] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Fatty acid binding proteins (FABPs) are key proteins in lipid transport, and the isoforms are segregated according to their tissue origins. Several isoforms, such as adipose-FABP and epidermal-FABP, have been shown to participate in multiple pathologic processes due to their ubiquitous expression. Intestinal fatty acid binding protein, also termed FABP2 or I-FABP, is specifically expressed in the small intestine. FABP2 can traffic lipids from the intestinal lumen to enterocytes and bind superfluous fatty acids to maintain a steady pool of fatty acids in the epithelium. As a lipid chaperone, FABP2 can also carry lipophilic drugs to facilitate targeted transport. When the integrity of the intestinal epithelium is disrupted, FABP2 is released into the circulation. Thus, it can potentially serve as a clinical biomarker. In this review, we discuss the pivotal role of FABP2 in intestinal lipid metabolism. We also summarize the molecular interactions that have been reported to date, highlighting the clinical prospects of FABP2 research.
Collapse
Affiliation(s)
- Xi Huang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youci Zhou
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunwei Sun
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qijun Wang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
27
|
A Systematic Review of the Influence of Bovine Colostrum Supplementation on Leaky Gut Syndrome in Athletes: Diagnostic Biomarkers and Future Directions. Nutrients 2022; 14:nu14122512. [PMID: 35745242 PMCID: PMC9227274 DOI: 10.3390/nu14122512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Bovine colostrum (BC) contains a myriad of bioactive molecules that are renowned for possessing unique medicinal benefits in children and adults, and BC supplements are considered safe and cost-effective options to manage/prevent the incidence of upper respiratory tract infections and gut-related problems in athletes. In this review, we will try to answer the question: How will BC supplementation ameliorate gut permeability problems among athletes? Methods: Literature searches were performed using PRISMA guidance to identify studies assessing the influence of BC supplements on gut permeability. Studies were selected using four databases: PubMed, Web of Science, Scopus, and EBSCO, and a total number of 60 articles were retrieved by using appropriate keywords. Results: Nine studies were selected that met the eligibility criteria for this review. The data analysis revealed that vigorous exercise profoundly increases intestinal permeability, and BC supplementation helps to reverse gut permeability in athletes. Conclusion: BC supplementation may be highly beneficial in improving gut permeability in athletes. However, well-designed, placebo-controlled, and randomized studies are needed to evaluate the long-term safety and efficacy and to determine the optimal dose schedules of BC supplementation in high-performance athletes.
Collapse
|
28
|
Chantler S, Griffiths A, Matu J, Davison G, Holliday A, Jones B. A systematic review: Role of dietary supplements on markers of exercise-associated gut damage and permeability. PLoS One 2022; 17:e0266379. [PMID: 35417467 PMCID: PMC9007357 DOI: 10.1371/journal.pone.0266379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 03/19/2022] [Indexed: 12/12/2022] Open
Abstract
Nutrition strategies and supplements may have a role to play in diminishing exercise associated gastrointestinal cell damage and permeability. The aim of this systematic review was to determine the influence of dietary supplements on markers of exercise-induced gut endothelial cell damage and/or permeability. Five databases were searched through to February 2021. Studies were selected that evaluated indirect markers of gut endothelial cell damage and permeability in response to exercise with and without a specified supplement, including with and without water. Acute and chronic supplementation protocols were included. Twenty-seven studies were included. The studies investigated a wide range of supplements including bovine colostrum, glutamine, probiotics, supplemental carbohydrate and protein, nitrate or nitrate precursors and water across a variety of endurance exercise protocols. The majority of studies using bovine colostrum and glutamine demonstrated a reduction in selected markers of gut cell damage and permeability compared to placebo conditions. Carbohydrate intake before and during exercise and maintaining euhydration may partially mitigate gut damage and permeability but coincide with other performance nutrition strategies. Single strain probiotic strains showed some positive findings, but the results are likely strain, dosage and duration specific. Bovine colostrum, glutamine, carbohydrate supplementation and maintaining euhydration may reduce exercise-associated endothelial damage and improve gut permeability. In spite of a large heterogeneity across the selected studies, appropriate inclusion of different nutrition strategies could mitigate the initial phases of gastrointestinal cell disturbances in athletes associated with exercise. However, research is needed to clarify if this will contribute to improved athlete gastrointestinal and performance outcomes.
Collapse
Affiliation(s)
- Sarah Chantler
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- Yorkshire Carnegie Rugby Union Club, Leeds, United Kingdom
| | - Alex Griffiths
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Jamie Matu
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| | - Adrian Holliday
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, the University of Cape Town and the Sports Science Institute of South Africa, Cape Town, South Africa
- Leeds Rhinos Rugby League Club, Leeds, United Kingdom
- England Performance Unit, Rugby Football League, Leeds, United Kingdom
| |
Collapse
|
29
|
McKenna ZJ, Fennel ZJ, Berkemeier QN, Nava RC, Amorim FT, Deyhle MR, Mermier CM. Exercise in hypobaric hypoxia increases markers of intestinal injury and symptoms of gastrointestinal distress. Exp Physiol 2022; 107:326-336. [PMID: 35224797 DOI: 10.1113/ep090266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDING What is the central question of this study? What is the effect of hypobaric hypoxia on markers of exercise-induced intestinal injury and symptoms of GI distress? What is the main finding and its importance? Exercise performed at 4300 m of simulated altitude increased I-FABP, CLDN-3, and LBP which together suggest that exercise-induced intestinal injury may be aggravated by concurrent hypoxic exposure. Increases in I-FABP, LBP, CLDN-3 were correlated to exercise-induced GI symptoms, providing some evidence of a link between intestinal barrier injury and symptoms of GI distress. ABSTRACT We sought to determine the effect of exercise in hypobaric hypoxia on markers of intestinal injury and gastrointestinal (GI) symptoms. Using a randomized and counterbalanced design, 9 males completed two experimental trials: one at local altitude of 1585 m (NORM) and one at 4300 m of simulated hypobaric hypoxia (HYP). Participants performed 60-minutes of cycling at a workload that elicited 65% of their NORM VO2 max. GI symptoms were assessed before and every 15-minutes during exercise. Pre- and post-exercise blood samples were assessed for intestinal fatty acid binding protein (I-FABP), claudin-3 (CLDN-3), and lipopolysaccharide binding protein (LBP). All participants reported at least one GI symptom in HYP compared to just 1 participant in NORM. I-FABP significantly increased from pre- to post-exercise in HYP (708±191 to 1215±518 pg mL-1 ; p = 0.011, d = 1.10) but not NORM (759±224 to 828±288 pg mL-1 ; p>0.99, d = 0.27). CLDN-3 significantly increased from pre- to post-exercise in HYP (13.8±0.9 to 15.3±1.2 ng mL-1 ; p = 0.003, d = 1.19) but not NORM (13.7±1.8 to 14.2±1.6 ng mL-1 ; p = .435, d = 0.45). LBP significantly increased from pre- to post-exercise in HYP (10.8±1.2 to 13.9±2.8 μg mL-1 ; p = 0.006, d = 1.12) but not NORM (11.3±1.1 to 11.7±0.9 μg mL-1 ; p>0.99, d = 0.32). I-FABP (d = 0.85), CLDN-3 (d = 0.95), and LBP (d = 0.69) were all significantly higher post-exercise in HYP compared to NORM (p≤0.05). Overall GI discomfort was significantly correlated to ΔI-FABP (r = 0.71), ΔCLDN-3 (r = 0.70), and ΔLBP (r = 0.86). These data indicate that cycling exercise performed in hypobaric hypoxia can cause intestinal injury, which might cause some commonly reported GI symptoms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Zachary J Fennel
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Quint N Berkemeier
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Roberto C Nava
- Harvard Medical School, Boston, MA, USA.,Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Fabiano T Amorim
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Christine M Mermier
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| |
Collapse
|
30
|
Tabone M, García-Merino JA, Bressa C, Rocha Guzman NE, Herrera Rocha K, Chu Van E, Castelli FA, Fenaille F, Larrosa M. Chronic Consumption of Cocoa Rich in Procyanidins Has a Marginal Impact on Gut Microbiota and on Serum and Fecal Metabolomes in Male Endurance Athletes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1878-1889. [PMID: 35112856 DOI: 10.1021/acs.jafc.1c07547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cocoa is used in the sports world as a supplement, although there is no consensus on its use. We investigated the effect of cocoa intake on intestinal ischemia (intestinal fatty acid-binding protein (I-FABP)), serum lipopolysaccharide (LPS) levels, gastrointestinal symptoms, and gut microbiota in endurance athletes during their training period on an unrestricted diet. We also performed a metabolomics analysis of serum and feces after a bout of exercise before and after supplementation. Cocoa consumption had no effect on I-FABP, LPS, or gastrointestinal symptoms. Cocoa intake significantly increased the abundance of Blautia and Lachnospira genera and decreased the abundance of the Agathobacter genus, which was accompanied by elevated levels of polyphenol fecal metabolites 4-hydroxy-5-(phenyl)-valeric acid and O-methyl-epicatechin-O-glucuronide. Our untargeted approach revealed that cocoa had no significant effects on serum and fecal metabolites and that its consumption had little impact on the metabolome after a bout of physical exercise.
Collapse
Affiliation(s)
- Mariangela Tabone
- MAS Microbiota Group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Jose Angel García-Merino
- MAS Microbiota Group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Carlo Bressa
- MAS Microbiota Group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Nuria Elizabeth Rocha Guzman
- Grupo de Investigación en Alimentos Funcionales y Nutracéuticos, Unidad de Posgrado, Investigación y Desarrollo Tecnológico, TecNM/Instituto Tecnológico de Durango, Durango 34080, México
| | - Karen Herrera Rocha
- Grupo de Investigación en Alimentos Funcionales y Nutracéuticos, Unidad de Posgrado, Investigación y Desarrollo Tecnológico, TecNM/Instituto Tecnológico de Durango, Durango 34080, México
| | - Emeline Chu Van
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Florence A Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Mar Larrosa
- MAS Microbiota Group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
- Department of Nutrition and Food Science, School of Pharmacy, Complutense University of Madrid (UCM), Madrid 28040, Spain
| |
Collapse
|
31
|
Tataka Y, Haramura M, Hamada Y, Ono M, Toyoda S, Yamada T, Hiratsu A, Suzuki K, Miyashita M. Effects of oral cystine and glutamine on exercise-induced changes in gastrointestinal permeability and damage markers in young men. Eur J Nutr 2022; 61:2331-2339. [PMID: 35106632 PMCID: PMC9279189 DOI: 10.1007/s00394-022-02806-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Although acute prolonged strenuous exercise has been shown to increase markers of gastrointestinal permeability and damage, little is known regarding the efficacy of nutritional supplement interventions on the attenuation of exercise-induced gastrointestinal syndrome. This study addressed the effects of oral amino acid supplementation on markers of gastrointestinal permeability and damage in response to exercise. METHODS Sixteen active men aged 22.7 ± 2.6 years (mean ± standard deviation) completed placebo or cystine and glutamine supplementation trials in random order. Participants received either a placebo or cystine and glutamine supplements, three times a day for 5 days, separated by a 2-week washout period. On day 6, participants took their designated supplements 30 min before running at a speed corresponding to 75% of maximal oxygen uptake for 1 h, followed by a 4-h rest period. Blood samples were collected pre-exercise, immediately post-exercise, 30 min post-exercise, and 1, 2 and 4 h post-exercise on day 6. The plasma lactulose to mannitol ratio (L:M) and plasma intestinal fatty acid-binding protein (I-FABP) were used as markers of gastrointestinal permeability and damage, respectively. RESULTS Plasma L:M (linear mixed model, coefficient ± standard error: - 0.011 ± 0.004, P = 0.0090) and changes (i.e., from pre-exercise) in plasma I-FABP (linear mixed model, - 195.3 ± 65.7 coefficient ± standard error (pg/mL), P = 0.0035) were lower in the cystine and glutamine supplementation trial than in the placebo trial. CONCLUSION Oral cystine and glutamine supplementation attenuated the markers of gastrointestinal permeability and damage after 1 h of strenuous running in young men. TRIAL REGISTRATION NUMBER UMIN000026008. DATE OF REGISTRATION 13 December 2018.
Collapse
Affiliation(s)
- Yusei Tataka
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Miki Haramura
- Waseda Institute for Sport Sciences, Waseda University, Saitama, Japan
| | - Yuka Hamada
- Waseda Institute for Sport Sciences, Waseda University, Saitama, Japan
| | - Miho Ono
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kanagawa, Japan
| | - Sakiko Toyoda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kanagawa, Japan
| | | | - Ayano Hiratsu
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Masashi Miyashita
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
32
|
Wilson P. Sport supplements and the athlete's gut: a review. Int J Sports Med 2021; 43:840-849. [PMID: 34814219 DOI: 10.1055/a-1704-3086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vigorous or prolonged exercise poses a challenge to gastrointestinal system functioning and is associated with digestive symptoms. This narrative review addresses 1) the potential of dietary supplements to enhance gut function and reduce exercise-associated gastrointestinal symptoms and 2) strategies for reducing gastrointestinal-related side effects resulting from popular sports supplements. Several supplements, including probiotics, glutamine, and bovine colostrum, have been shown to reduce markers of gastrointestinal damage and permeability with exercise. Yet, the clinical ramifications of these findings are uncertain, as improvements in symptoms have not been consistently observed. Among these supplements, probiotics modestly reduced exercise-associated gastrointestinal symptoms in a few studies, suggesting they are the most evidenced-based choice for athletes looking to manage such symptoms through supplementation. Carbohydrate, caffeine, and sodium bicarbonate are evidence-based supplements that can trigger gastrointestinal symptoms. Using glucose-fructose mixtures is beneficial when carbohydrate ingestion is high (>50 g/h) during exercise, and undertaking multiple gut training sessions prior to competition may also be helpful. Approaches for preventing caffeine-induced gastrointestinal disturbances include using low-to-moderate doses (<500 mg) and avoiding/minimizing exacerbating factors (stress, anxiety, other stimulants, fasting). Adverse gastrointestinal effects of sodium bicarbonate can be avoided by using enteric-coated formulations, low doses (0.2 g/kg), or multi-day loading protocols.
Collapse
Affiliation(s)
- Patrick Wilson
- Human Movement Sciences, Old Dominion University, Norfolk, United States
| |
Collapse
|
33
|
Feng V, Bawa KK, Marzolini S, Kiss A, Oh P, Herrmann N, Lanctôt KL, Gallagher D. Impact of 12-week exercise program on biomarkers of gut barrier integrity in patients with coronary artery disease. PLoS One 2021; 16:e0260165. [PMID: 34797867 PMCID: PMC8604291 DOI: 10.1371/journal.pone.0260165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/28/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction Breakdown of gut barrier integrity has been associated with inflammatory activation and is implicated in the etiology of several chronic medical conditions. Acute exercise is known to increase gut barrier permeability but the impact of chronic exercise is not clear. Most studies to date have examined how acute exercise impacts gut barrier integrity in healthy adults, while few studies have examined the impact of chronic exercise in older adults with comorbidities. We aim to investigate the impact of a 12-week program of aerobic and resistance training on biomarkers of gut barrier integrity in a sample of older adults with coronary artery disease. Methods Participants were adults with coronary artery disease undergoing a moderate-intensity 12-week cardiac rehabilitation exercise program. Fasting blood samples were taken at baseline and study termination. Serum levels of biomarkers of gut barrier integrity (zonulin and fatty acid-binding protein 2 (FABP2)) were measured by ELISA. Cardiorespiratory fitness was assessed by peak oxygen uptake (VO2peak) at study start & completion. Data analyses were performed using SPSS software version 24.0. Results Among study participants (n = 41, 70% male, age = 62.7± 9.35) we found a significant negative association between baseline FABP2 levels and baseline VO2peak in a multiple linear regression model adjusting for covariates (B = -0.3, p = 0.009). Over the course of the exercise program an increase in VO2peak (≥ 5 mL/kg/min) was independently associated with a relative decrease in FABP2 (B = -0.45, p = 0.018) after controlling for medical covariates. Conclusion Our findings indicate that an increase in cardiorespiratory fitness during a 12-week exercise program resulted in a relative improvement in a biomarker of gut barrier integrity. This indicates a potential mechanism by which longer term exercise may improve gut barrier integrity.
Collapse
Affiliation(s)
- Vivian Feng
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kritleen K. Bawa
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Susan Marzolini
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- KITE Toronto Rehabilitation Institute, University Health Network, East York, Ontario, Canada
| | - Alex Kiss
- ICES, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Paul Oh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Krista L. Lanctôt
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- KITE Toronto Rehabilitation Institute, University Health Network, East York, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
34
|
Walter E, W Watt P, Gibson OR, Wilmott AGB, Mitchell D, Moreton R, Maxwell NS. Exercise hyperthermia induces greater changes in gastrointestinal permeability than equivalent passive hyperthermia. Physiol Rep 2021; 9:e14945. [PMID: 34409760 PMCID: PMC8374382 DOI: 10.14814/phy2.14945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 01/09/2023] Open
Abstract
Hyperthermia and exertional heat illness increase gastrointestinal (GI) permeability, although whether the latter is only via hyperthermia is unclear. The aim of this pilot study was to determine whether different changes in GI permeability, characterized by an increased plasma lactulose:rhamnose concentration ratio ([L:R]), occurred in exercise hyperthermia in comparison to equivalent passive hyperthermia. Six healthy adult male participants (age 25 ± 5 years, mass 77.0 ± 6.7 kg, height 181 ± 6 cm, peak oxygen uptake [ V · O 2 peak ] 48 ± 8 ml.kg-1 .min-1 ) underwent exercise under hot conditions (Ex-Heat) and passive heating during hot water immersion (HWI). Heart rate (HR), rectal temperature (TCORE ), rating of perceived exertion (RPE), and whole-body sweat loss (WBSL) were recorded throughout the trials. The L:R ratio, peak HR, change in HR, and change in RPE were higher in Ex-Heat than HWI, despite no differences in trial duration, peak core temperature or WBSL. L:R was strongly correlated (p < 0.05) with HR peak (r = 0.626) and change in HR (r = 0.615) but no other variable. The greater L:R in Ex-Heat, despite equal TCORE responses to HWI, indicates that increased cardiovascular strain occurred during exercise, and exacerbates hyperthermia-induced GI permeability at the same absolute temperature.
Collapse
Affiliation(s)
- Edward Walter
- Department of Intensive CareRoyal Surrey County HospitalGuildfordUK
- Environmental Extremes Lab, Sport and Exercise Science and Medicine Research and Enterprise GroupUniversity of BrightonEastbourneEast SussexUK
| | - Peter W Watt
- Environmental Extremes Lab, Sport and Exercise Science and Medicine Research and Enterprise GroupUniversity of BrightonEastbourneEast SussexUK
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER)Division of Sport, Health and Exercise SciencesCollege of Health, Medicine, and Life SciencesBrunel University LondonUxbridgeUK
| | - Ashley G. B. Wilmott
- Environmental Extremes Lab, Sport and Exercise Science and Medicine Research and Enterprise GroupUniversity of BrightonEastbourneEast SussexUK
- Cambridge Centre for Sport and Exercise Sciences (CCSES)School of Psychology and Sport ScienceAnglia Ruskin UniversityCambridgeUK
| | - Dominic Mitchell
- Environmental Extremes Lab, Sport and Exercise Science and Medicine Research and Enterprise GroupUniversity of BrightonEastbourneEast SussexUK
| | - Robert Moreton
- Environmental Extremes Lab, Sport and Exercise Science and Medicine Research and Enterprise GroupUniversity of BrightonEastbourneEast SussexUK
| | - Neil S. Maxwell
- Environmental Extremes Lab, Sport and Exercise Science and Medicine Research and Enterprise GroupUniversity of BrightonEastbourneEast SussexUK
| |
Collapse
|
35
|
Sauna dehydration as a new physiological challenge model for intestinal barrier function. Sci Rep 2021; 11:15514. [PMID: 34330970 PMCID: PMC8324874 DOI: 10.1038/s41598-021-94814-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
The intestinal barrier plays a crucial role in maintaining gut health, and an increased permeability has been linked to several intestinal and extra-intestinal disorders. There is an increasing demand for interventions aimed at strengthening this barrier and for in vivo challenge models to assess their efficiency. This study investigated the effect of sauna-induced dehydration on intestinal barrier function (clinicaltrials.gov: NCT03620825). Twenty healthy subjects underwent three conditions in random order: (1) Sauna dehydration (loss of 3% body weight), (2) non-steroidal anti-inflammatory drug (NSAID) intake, (3) negative control. Intestinal permeability was assessed by a multi-sugar urinary recovery test, while intestinal damage, bacterial translocation and cytokines were assessed by plasma markers. The sauna dehydration protocol resulted in an increase in gastroduodenal and small intestinal permeability. Presumably, this increase occurred without substantial damage to the enterocytes as plasma intestinal fatty acid-binding protein (I-FABP) and liver fatty acid-binding protein (L-FABP) were not affected. In addition, we observed significant increases in levels of lipopolysaccharide-binding protein (LBP), IL-6 and IL-8, while sCD14, IL-10, IFN-ɣ and TNF-α were not affected. These results suggest that sauna dehydration increased intestinal permeability and could be applied as a new physiological in vivo challenge model for intestinal barrier function.
Collapse
|
36
|
Lingaiah S, Arffman RK, Morin-Papunen L, Tapanainen JS, Piltonen T. Markers of gastrointestinal permeability and dysbiosis in premenopausal women with PCOS: a case-control study. BMJ Open 2021; 11:e045324. [PMID: 34226215 PMCID: PMC8258572 DOI: 10.1136/bmjopen-2020-045324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Altered intestinal permeability and gut barrier dysfunction have been suggested to play a role in the pathogenetic mechanism of polycystic ovary syndrome (PCOS), the most common endocrine and metabolic condition in reproductive-aged women. However, data on intestinal permeability and dysbiosis of the gut microbiota in PCOS is still limited, with conflicting results. To this end, the concentrations of gastrointestinal permeability and gut dysbiosis markers were analysed in women with PCOS. DESIGN Case-control study. SETTING General community. PARTICIPANTS 104 women with PCOS and 203 body mass index (BMI) matched control women at age 46. PRIMARY AND SECONDARY OUTCOME MEASURES Serum levels of zonulin, fatty acid-binding protein 2 (FABP2), urinary levels of indican, and hormonal and metabolic parameters. RESULTS Serum levels of zonulin (128.0±17.0 vs 130.9±14.0 ng/mL, p=0.13) and FABP2 (1.5±0.9 vs 1.5±0.7 ng/mL, p=0.63) and urinary levels of indican (9.5±5.5 vs 8.4±4.2 mg/dL, p=0.07) were comparable in women with PCOS and controls in the whole study population. Likewise, when the study population was divided into different BMI groups as normal weight, overweight and obese, the levels of the above markers were comparable between the study groups. After BMI adjustment, zonulin levels correlated with the levels of high-sensitivity C reactive protein and homoeostasis model assessment of insulin resistance (p<0.05) both in women with PCOS and controls. CONCLUSIONS Intestinal permeability markers zonulin and FABP2, and the dysbiosis marker indican do not seem to be altered in women with PCOS at age 46 compared with BMI-matched controls. Serum zonulin levels correlated with BMI, insulin resistance and inflammatory marker levels, but did not segregate women with PCOS and controls. This suggests that metabolic factors, but not PCOS per se, is the driving force of dysbiosis in premenopausal women with PCOS.
Collapse
Affiliation(s)
- Shilpa Lingaiah
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Riikka K Arffman
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Laure Morin-Papunen
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Terhi Piltonen
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
37
|
Bovine Colostrum Applications in Sick and Healthy People: A Systematic Review. Nutrients 2021; 13:nu13072194. [PMID: 34202206 PMCID: PMC8308243 DOI: 10.3390/nu13072194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/22/2022] Open
Abstract
Colostrum is the first secretion of mammalian glands during the early period after birth giving. Its components are biologically active and have beneficial effects on new-born growth and well-being. Bovine colostrum has the highest concentration of these substances and its supplementation or application may provide health benefits. This systematic review was conducted to update current knowledge on bovine colostrum effects including all administration routes on healthy and sick subjects. Full texts or abstracts of twenty-eight papers as reports of systematic reviews, randomized controlled trials, observational studies and case series were included after searches in Medline, Embase, Cochrane Library and Cinahl databases. The full texts of selected studies were assessed for quality using validated tools and their results were summarized in different categories. Studies were highly heterogeneous as regards to population, intervention, outcome and risk of bias. Bovine colostrum topical application was shown effective on vaginal dryness related symptoms limitation. Its use as food supplement showed interesting effects preventing upper respiratory illness in sportsmen, modulating immune system response and reducing intestinal permeability in healthy and sick subjects. Conflicting results were provided in pediatric population and little evidence is available on its use with older adults. Further studies are mandatory to better understand all factors influencing its activity.
Collapse
|
38
|
Davison G. The Use of Bovine Colostrum in Sport and Exercise. Nutrients 2021; 13:nu13061789. [PMID: 34073917 PMCID: PMC8225123 DOI: 10.3390/nu13061789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
There has been a great deal of interest in bovine colostrum within sports nutrition over the last 25 years. Studies have investigated the effects on body composition, physical performance, recovery, gut damage and permeability, immune function, and illness risk. This narrative review considers available evidence in each of these areas. Although some studies have shown protection against performance decrements caused by periods of intensified training, there is limited evidence for effects on body composition and physical performance. There is stronger evidence for benefit on gut permeability and damage markers and on immune function and illness risk, especially during periods of intensified training. The balance of available evidence for gut permeability and illness risk is positive, but further research is required to fully determine all mechanisms responsible for these effects. Early suggestions that supplementation with bovine colostrum products could increase systemic IGF-1 levels are not supported by the balance of available evidence examining a range of doses over both short- and long-term periods. Nevertheless, dose–response studies would be valuable for determining the minimum efficacious dose, although this is complicated by variability in bioactivity between products, making any dose–response findings applicable only to the specific products used in such studies.
Collapse
Affiliation(s)
- Glen Davison
- School of Sport and Exercise Sciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7PE, UK
| |
Collapse
|
39
|
Gaskell SK, Rauch CE, Parr A, Costa RJS. Diurnal versus Nocturnal Exercise-Effect on the Gastrointestinal Tract. Med Sci Sports Exerc 2021; 53:1056-1067. [PMID: 33065594 DOI: 10.1249/mss.0000000000002546] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The study aimed to determine the effect of diurnal versus nocturnal exercise on gastrointestinal integrity and functional responses, plasma lipopolysaccharide binding protein (LBP) and soluble CD14 (sCD14) concentrations (as indirect indicators of endotoxin responses), systemic inflammatory cytokine profile, gastrointestinal symptoms, and feeding tolerance. METHODS Endurance runners (n = 16) completed 3 h of 60% V˙O2max (22.7°C, 45% relative humidity) running, on one occasion performed at 0900 h (400 lx; DAY) and on another occasion at 2100 h (2 lx; NIGHT). Blood samples were collected pre- and postexercise and during recovery to determine plasma concentrations of cortisol, catecholamines, claudin-3, I-FABP, LBP, and sCD14 and inflammatory cytokine profiles by ELISA. Orocecal transit time (OCTT) was determined by lactulose challenge test given at 150 min, with concomitant breath hydrogen (H2) and gastrointestinal symptom determination. RESULTS Cortisol increased substantially pre- to postexercise on NIGHT (+182%) versus DAY (+4%) (trial-time, P = 0.046), with no epinephrine (+41%) and norepinephrine (+102%) trial differences. I-FABP, but not claudin-3, increased pre- to postexercise on both trials (mean = 2269 pg·mL-1, 95% confidence interval = 1351-3187, +143%) (main effect of time [MEOT], P < 0.001). sCD14 increased pre- to postexercise (trial-time, P = 0.045, +5.6%) and was greater on DAY, but LBP decreased (MEOT, P = 0.019, -11.2%) on both trials. No trial difference was observed for systemic cytokine profile (MEOT, P = 0.004). Breath H2 responses (P = 0.019) showed that OCTT was significantly delayed on NIGHT (>84 min, with n = 3 showing no breath H2 turning point by 180 min postexercise) compared with DAY (mean = 54 min, 95% confidence interval = 29-79). NIGHT resulted in greater total gastrointestinal symptoms (P = 0.009) compared with DAY. No difference in feeding tolerance markers was observed between trials. CONCLUSION Nocturnal exercise instigates greater gastrointestinal functional perturbations and symptoms compared with diurnal exercise. However, there are no circadian differences to gastrointestinal integrity and systemic perturbations in response to the same exertional stress and controlled procedures.
Collapse
Affiliation(s)
- Stephanie K Gaskell
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria, AUSTRALIA
| | | | | | | |
Collapse
|
40
|
Edwards KH, Ahuja KD, Watson G, Dowling C, Musgrave H, Reyes J, Cherry J, Kitic CM. The influence of exercise intensity and exercise mode on gastrointestinal damage. Appl Physiol Nutr Metab 2021; 46:1105-1110. [PMID: 33725465 DOI: 10.1139/apnm-2020-0883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Strenuous exercise increases gastrointestinal damage, but the dose-response relationship is yet to be elucidated. It is also commonly believed that running causes greater gastrointestinal damage than cycling. Two randomised, crossover studies aimed to 1) quantify gastrointestinal damage with increasing exercise intensity, and 2) determine if running was associated with greater gastrointestinal damage than cycling. Following a maximal oxygen uptake (V̇O2max) test, participants completed 3 cycling trials at different intensities (60 min at 40%, 60% and 80% V̇O2max; n = 10 (5 female, 5 male)) (INTENSITY), or 1 running and 1 cycling trial (45 min at 70% V̇O2max; n = 11 (3 female, 8 male)) (MODE). Venous blood samples were collected pre- and post-exercise to measure gastrointestinal damage via intestinal fatty acid binding protein (I-FABP). In INTENSITY, I-FABP magnitude of change was greater at 80% V̇O2max than 40% V̇O2max (p < 0.01). In MODE, I-FABP magnitude of change was greater with cycling (mean (SD)) (84.7 (133.2)% d = 1.07) compared with running (19.3 (33.1)%, d = 0.65) with a moderate effect (d = 0.68, p = 0.024). Rating of perceived exertion (RPE) and heart rate (HR) were higher during cycling (RPE p < 0.0001; HR p < 0.0001) but rectal temperature was not different between modes (p = 0.94). While gastrointestinal damage increases with increasing exercise intensity, running was not associated with greater gastrointestinal damage than cycling. Novelty: A fraction of the anaerobic threshold, rather than a fraction of V̇O2max, may be more predictive of intensity that results in exercise induced gastrointestinal damage. The mode of exercise may not be as important as intensity for inducing gastrointestinal damage. Improving anaerobic threshold may reduce susceptibility to gastrointestinal damage when exercising at high intensities.
Collapse
Affiliation(s)
- Kate H Edwards
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Kiran D Ahuja
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Greig Watson
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Courtney Dowling
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Harrison Musgrave
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Jessica Reyes
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - James Cherry
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Cecilia M Kitic
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| |
Collapse
|
41
|
Ribeiro FM, Petriz B, Marques G, Kamilla LH, Franco OL. Is There an Exercise-Intensity Threshold Capable of Avoiding the Leaky Gut? Front Nutr 2021; 8:627289. [PMID: 33763441 PMCID: PMC7982409 DOI: 10.3389/fnut.2021.627289] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Endurance-sport athletes have a high incidence of gastrointestinal disorders, compromising performance and impacting overall health status. An increase in several proinflammatory cytokines and proteins (LPS, I-FABP, IL-6, IL-1β, TNF-α, IFN-γ, C-reactive protein) has been observed in ultramarathoners and triathlon athletes. One of the most common effects of this type of physical activity is the increase in intestinal permeability, known as leaky gut. The intestinal mucosa's degradation can be identified and analyzed by a series of molecular biomarkers, including the lactulose/rhamnose ratio, occludin and claudin (tight junctions), lipopolysaccharides, and I-FABP. Identifying the molecular mechanisms involved in the induction of leaky gut by physical exercise can assist in the determination of safe exercise thresholds for the preservation of the gastrointestinal tract. It was recently shown that 60 min of vigorous endurance training at 70% of the maximum work capacity led to the characteristic responses of leaky gut. It is believed that other factors may contribute to this effect, such as altitude, environmental temperature, fluid restriction, age and trainability. On the other hand, moderate physical training and dietary interventions such as probiotics and prebiotics can improve intestinal health and gut microbiota composition. This review seeks to discuss the molecular mechanisms involved in the intestinal mucosa's adaptation and response to exercise and discuss the role of the intestinal microbiota in mitigating these effects.
Collapse
Affiliation(s)
- Filipe M Ribeiro
- Post-graduation Program in Physical Education, Catholic University of Brasilia, Brasilia, Brazil.,Center for Proteomic and Biochemical Analysis, Post-graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil.,Laboratory of Molecular Exercise Physiology, University Center - UDF, Brasilia, Brazil
| | - Bernardo Petriz
- Center for Proteomic and Biochemical Analysis, Post-graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil.,Laboratory of Molecular Exercise Physiology, University Center - UDF, Brasilia, Brazil.,Postgraduate Program in Health Promotion, University of Franca (Unifran), São Paulo, Brazil
| | - Gabriel Marques
- Laboratory of Molecular Exercise Physiology, University Center - UDF, Brasilia, Brazil
| | - Lima H Kamilla
- Center for Proteomic and Biochemical Analysis, Post-graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
| | - Octavio L Franco
- Post-graduation Program in Physical Education, Catholic University of Brasilia, Brasilia, Brazil.,Center for Proteomic and Biochemical Analysis, Post-graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil.,S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, Brazil
| |
Collapse
|
42
|
Changes in gastrointestinal cell integrity after marathon running and exercise-associated collapse. Eur J Appl Physiol 2021; 121:1179-1187. [PMID: 33512586 DOI: 10.1007/s00421-021-04603-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/10/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Endurance exercise and hyperthermia are associated with compromised intestinal permeability and endotoxaemia. The presence of intestinal fatty acid-binding protein (I-FABP) in the systemic circulation suggests intestinal wall damage, but this marker has not previously been used to investigate intestinal integrity after marathon running. METHODS Twenty-four runners were recruited as controls prior to completing a standard marathon and had sequential I-FABP measurements before and on completion of the marathon, then at four and 24 h later. Eight runners incapacitated with exercise-associated collapse (EAC) with hyperthermia had I-FABP measured at the time of collapse and 1 hour later. RESULTS I-FABP was increased immediately on completing the marathon (T0; 2593 ± 1373 ng·l-1) compared with baseline (1129 ± 493 ng·l-1; p < 0.01) in the controls, but there was no significant difference between baseline and the levels at four hours (1419 ± 1124 ng·l-1; p = 0.7), or at 24 h (1086 ± 302 ng·l-1; p = 0.5). At T0, EAC cases had a significantly higher I-FABP concentration (15,389 ± 8547 ng.l-1) compared with controls at T0 (p < 0.01), and remained higher at 1 hour after collapse (13,951 ± 10,476 ng.l-1) than the pre-race control baseline (p < 0.05). CONCLUSION I-FABP is a recently described biomarker whose presence in the circulation is associated with intestinal wall damage. I-FABP levels increase after marathon running and increase further if the endurance exercise is associated with EAC and hyperthermia. After EAC, I-FABP remains high in the circulation for an extended period, suggesting ongoing intestinal wall stress.
Collapse
|
43
|
Ogden HB, Fallowfield JL, Child RB, Davison G, Fleming SC, Edinburgh RM, Delves SK, Millyard A, Westwood CS, Layden JD. Reliability of gastrointestinal barrier integrity and microbial translocation biomarkers at rest and following exertional heat stress. Physiol Rep 2021; 8:e14374. [PMID: 32170836 PMCID: PMC7070100 DOI: 10.14814/phy2.14374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Exertional heat stress adversely distrupts (GI) barrier integrity and, through subsequent microbial translocation (MT), negativly impacts health. Despite widespread application, the temporal reliability of popular GI barrier integity and MT biomarkers is poorly characterised. METHOD Fourteen males completed two 80-min exertional heat stress tests (EHST) separated by 7-14 days. Venous blood was drawn pre, immediately- and 1-hr post both EHSTs. GI barrier integrity was assessed using the serum Dual-Sugar Absorption Test (DSAT), Intestinal Fatty-Acid-Binding Protein (I-FABP) and Claudin-3 (CLDN-3). MT was assessed using plasma Lipopolysaccharide Binding Protein (LBP), total 16S bacterial DNA and Bacteroides DNA. RESULTS No GI barrier integrity or MT biomarker, except absolute Bacteroides DNA, displayed systematic trial order bias (p ≥ .05). I-FABP (trial 1 = Δ 0.834 ± 0.445 ng ml-1 ; trial 2 = Δ 0.776 ± 0.489 ng ml-1 ) and CLDN-3 (trial 1 = Δ 0.317 ± 0.586 ng ml-1 ; trial 2 = Δ 0.371 ± 0.508 ng ml-1 ) were increased post-EHST (p ≤ .01). All MT biomarkers were unchanged post-EHST. Coefficient of variation and typical error of measurement post-EHST were: 11.5% and 0.004 (ratio) for the DSAT 90-min postprobe ingestion; 12.2% and 0.004 (ratio) at 150-min postprobe ingestion; 12.1% and 0.376 ng ml-1 for I-FABP; 4.9% and 0.342 ng ml-1 for CLDN-3; 9.2% and 0.420 µg ml-1 for LBP; 9.5% and 0.15 pg µl-1 for total 16S DNA; and 54.7% and 0.032 for Bacteroides/total 16S DNA ratio. CONCLUSION Each GI barrier integrity and MT translocation biomarker, except Bacteroides/total 16S ratio, had acceptable reliability at rest and postexertional heat stress.
Collapse
Affiliation(s)
- Henry B Ogden
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, United Kingdom
| | | | - Robert B Child
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, United Kingdom
| | | | | | | | - Alison Millyard
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, United Kingdom
| | - Caroline S Westwood
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, United Kingdom
| | - Joseph D Layden
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, United Kingdom
| |
Collapse
|
44
|
Chantler S, Griffiths A, Matu J, Davison G, Jones B, Deighton K. The Effects of Exercise on Indirect Markers of Gut Damage and Permeability: A Systematic Review and Meta-analysis. Sports Med 2021; 51:113-124. [PMID: 33201454 PMCID: PMC7806566 DOI: 10.1007/s40279-020-01348-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM Exercise appears to cause damage to the endothelial lining of the human gastrointestinal tract and elicit a significant increase in gut permeability. OBJECTIVE The aim of this review was to determine the effect of an acute bout of exercise on gut damage and permeability outcomes in healthy populations using a meta-analysis. METHODS PubMed, The Cochrane Library as well as MEDLINE, SPORTDiscus and CINHAL, via EBSCOhost were searched through February 2019. Studies were selected that evaluated urinary (ratio of disaccharide/monosaccharide excretion) or plasma markers [intestinal Fatty Acid Binding Protein (i-FABP)] of gut permeability and gut cell damage in response to a single bout of exercise. RESULTS A total of 34 studies were included. A random-effects meta-analysis was performed, and showed a large and moderate effect size for markers of gut damage (i-FABP) (ES 0.81; 95% CI 0.63-0.98; n = 26; p < 0.001) and gut permeability (Disaccharide Sugar/Monosaccharide Sugar) (ES 0.70; 95% CI 0.29-1.11; n = 17; p < 0.001), respectively. Exercise performed in hot conditions (> 23 °C) further increased markers of gut damage compared with thermoneutral conditions [ES 1.06 (95% CI 0.88-1.23) vs. 0.66 (95% CI 0.43-0.89); p < 0.001]. Exercise duration did not have any significant effect on gut damage or permeability outcomes. CONCLUSIONS These findings demonstrate that a single bout of exercise increases gut damage and gut permeability in healthy participants, with gut damage being exacerbated in hot environments. Further investigation into nutritional strategies to minimise gut damage and permeability after exercise is required. PROSPERO database number (CRD42018086339).
Collapse
Affiliation(s)
- Sarah Chantler
- Carnegie Applied Rugby Research (CARR) Centre, Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Cavendish G08, Headingley Campus, Leeds, LS6 3QT, UK.
- Yorkshire Carnegie Rugby Union Club, Leeds, UK.
| | - Alex Griffiths
- Carnegie Applied Rugby Research (CARR) Centre, Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Cavendish G08, Headingley Campus, Leeds, LS6 3QT, UK
| | - Jamie Matu
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Canterbury, UK
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Cavendish G08, Headingley Campus, Leeds, LS6 3QT, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, The University of Cape Town and the Sports Science Institute of South Africa, Cape Town, South Africa
- Leeds Rhinos Rugby League Club, Leeds, UK
- England Performance Unit, Rugby Football League, Leeds, UK
| | - Kevin Deighton
- Carnegie Applied Rugby Research (CARR) Centre, Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Cavendish G08, Headingley Campus, Leeds, LS6 3QT, UK
| |
Collapse
|
45
|
Wang Y, Ding L, Yang J, Liu L, Dong L. Intestinal fatty acid-binding protein, a biomarker of intestinal barrier dysfunction, increases with the progression of type 2 diabetes. PeerJ 2021; 9:e10800. [PMID: 33604184 PMCID: PMC7863777 DOI: 10.7717/peerj.10800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate serum intestinal fatty acid-binding protein (I-FABP) in two groups of patients with different duration of hyperglycemia in a cross-sectional study. MATERIALS AND METHODS In the present study, a total of 280 individuals (158 outpatients and 122 inpatients) suffering from hyperglycemia were recruited between May and September 2019. The clinical information of all participants was collected from the hospital information system, including the duration of hyperglycemia, age, gender, hemoglobin A1c (HbA1c), 75-g oral glucose tolerance test including fasting plasma glucose (FPG), 2-hour plasma glucose (2hPG), fasting C-peptide (FC-pep), 2-hour C-peptide (2hC-pep), fasting insulin (FIns), and 2-hour insulin (2hIns). In addition, the morbidity of diabetic complications (retinopathy, neuropathy, and nephropathy) in the inpatient group was determined. Furthermore, the difference between 2hPG and FPG (ΔPG), the difference between 2hC-pep and FC-pep (ΔC-pep), and the difference between 2hIns and FIns (ΔIns) were calculated. The level of serum I-FABP, a biomarker of intestinal barrier (IB) dysfunction, was estimated by an enzyme-linked immunosorbent assay. RESULTS For the outpatient group, the median duration of hyperglycemia was less than a year; the serum I-FABP level was positively correlated with age (R = 0.299, P < 0.001). For the inpatient group, the median duration of hyperglycemia was ten years; correlation analysis showed that the serum I-FABP level was positively associated with age and ΔPG (R = 0.286, P = 0.001; R = 0.250, P = 0.006, respectively) while negatively associated with FC-pep and 2hC-pep (R = - 0.304, P = 0.001; R = - 0.241, P = 0.008, respectively); multiple linear regression analysis showed that the serum I-FABP level was positively associated with the duration of hyperglycemia (β = 0.362, P < 0.001); moreover, patients with retinopathy had a significantly higher I-FABP level than those without retinopathy (P = 0.001). CONCLUSIONS In the outpatients whose duration of hyperglycemia was less than a year, the serum I-FABP level was positively associated with age. In the inpatients with different courses of diabetes, the serum I-FABP level was positively associated with the duration of hyperglycemia and glycemic variability but negatively associated with islet beta-cell function; moreover, the serum I-FABP level was higher in patients with retinopathy than in those without retinopathy, suggesting that the IB dysfunction got worse with the progression of diabetes.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Critical Care Medicine, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Licheng Ding
- Department of Emergency Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jiayue Yang
- Department of Endocrinology and Metabolism, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Lijun Liu
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Dong
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
46
|
Skinner C, Thompson AJ, Thursz MR, Marchesi JR, Vergis N. Intestinal permeability and bacterial translocation in patients with liver disease, focusing on alcoholic aetiology: methods of assessment and therapeutic intervention. Therap Adv Gastroenterol 2020; 13:1756284820942616. [PMID: 33149761 PMCID: PMC7580143 DOI: 10.1177/1756284820942616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/25/2020] [Indexed: 02/04/2023] Open
Abstract
Increased bacterial translocation (BT) across the gut barrier due to greater intestinal permeability (IP) is seen across a range of conditions, including alcohol-related liver disease (ArLD). The phenomenon of BT may contribute to both the pathogenesis and the development of complications in ArLD. There are a number of methods available to assess IP and in this review we look at their various advantages and limitations. The knowledge around BT and IP in ArLD is also reviewed, as well as the therapeutic strategies currently in use and in development.
Collapse
Affiliation(s)
- Charlotte Skinner
- Department of Metabolism, Digestion and Reproduction, St Mary’s Hospital Campus, Imperial College London, London, UK
| | - Alex J. Thompson
- Department of Surgery & Cancer, St. Mary’s Hospital Campus, Imperial College London, London, UK
| | - Mark R. Thursz
- Department of Metabolism, Digestion and Reproduction, St Mary’s Hospital Campus, Imperial College London, London, UK
| | - Julian R. Marchesi
- Department of Metabolism, Digestion and Reproduction, St Mary’s Hospital Campus, Imperial College London, London, UK
| | | |
Collapse
|
47
|
Barekatain R, Chrystal PV, Gilani S, McLaughlan CJ. Expression of selected genes encoding mechanistic pathways, nutrient and amino acid transporters in jejunum and ileum of broiler chickens fed a reduced protein diet supplemented with arginine, glutamine and glycine under stress stimulated by dexamethasone. J Anim Physiol Anim Nutr (Berl) 2020; 105:90-98. [PMID: 32654243 DOI: 10.1111/jpn.13416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Reducing crude protein and supplementation with synthetic amino acids in poultry nutrition is a recent trend to avoid wastage of protein and ammonia in production systems. Stress has been shown to impair intestinal barrier and increase inflammatory response. This study was performed on intestinal tissues of broiler chickens to understand the mechanism of stress induced by a synthetic glucocorticoid, dexamethasone (DEX) and the effect of supplementation of arginine, glutamine and glycine in reduced protein diets. Intestinal tissue samples from a previous study were utilized. Male Ross 308 chickens received a basal diet for the first seven days and then fed with crude protein that was reduced to 194 g/kg in grower experimental diets supplemented with glutamine, glycine and additional arginine at 10, 10 and 5 g/kg respectively. Half of the 96 individual birds were injected with DEX (0.5 mg/kg body weight) or saline on days 14, 16, 18 and 20 of age. mRNA expression for jejunum and ileum for amino acid transporters (y+LAT-1, Bo,+ AT, EAAT-3 and CAT-1), mechanistic genes (SGLT-1, mTOR, IAP and FABP-2) and pro-inflammatory genes (MUC-2, NF-κB, iNOS, IL-8 and IL-1β) were analysed using real-time PCR. The results showed that DEX decreased y+ LAT1 in jejunum, Bo ,+ AT and EAAT-3 in ileum. Arginine increased CAT-1 in the jejunum and ileum under DEX treatment. Through an interaction, DEX reduced IAP in jejunum of glycine and arginine supplemented group and reduced mTOR in jejunum independently. DEX reduced MUC-2 and iNOS in jejunum and increased iNOS and IL8 in the ileum. Amino acid supplementation did not appear to ameliorate these effects; however, there were some positive effects of glycine on NF-κB and arginine through increased CAT-1. Mechanistic understanding of amino acid supplementation in broiler diets warrants further research particularly when dietary protein is reduced below the level tested in the present study.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia.,School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | | | - Saad Gilani
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Clive J McLaughlan
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
| |
Collapse
|
48
|
Suzuki K, Tominaga T, Ruhee RT, Ma S. Characterization and Modulation of Systemic Inflammatory Response to Exhaustive Exercise in Relation to Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9050401. [PMID: 32397304 PMCID: PMC7278761 DOI: 10.3390/antiox9050401] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Exhaustive exercise induces systemic inflammatory responses, which are associated with exercise-induced tissue/organ damage, but the sources and triggers are not fully understood. Herein, the basics of inflammatory mediator cytokines and research findings on the effects of exercise on systemic inflammation are introduced. Subsequently, the association between inflammatory responses and tissue damage is examined in exercised and overloaded skeletal muscle and other internal organs. Furthermore, an overview of the interactions between oxidative stress and inflammatory mediator cytokines is provided. Particularly, the transcriptional regulation of redox signaling and pro-inflammatory cytokines is described, as the activation of the master regulatory factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is involved directly or indirectly in controlling pro-inflammatory genes and antioxidant enzymes expression, whilst nuclear factor-kappa B (NF-κB) regulates the pro-inflammatory gene expression. Additionally, preventive countermeasures against the pathogenesis along with the possibility of interventions such as direct and indirect antioxidants and anti-inflammatory agents are described. The aim of this review is to give an overview of studies on the systematic inflammatory responses to exercise, including our own group as well as others. Moreover, the challenges and future directions in understanding the role of exercise and functional foods in relation to inflammation and oxidative stress are discussed.
Collapse
Affiliation(s)
- Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: (K.S.); (S.M.); Tel.: +81-4-2947-6898 (K.S.); +81-4-2947-6753 (S.M.)
| | - Takaki Tominaga
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.T.); (R.T.R.)
| | - Ruheea Taskin Ruhee
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.T.); (R.T.R.)
| | - Sihui Ma
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: (K.S.); (S.M.); Tel.: +81-4-2947-6898 (K.S.); +81-4-2947-6753 (S.M.)
| |
Collapse
|
49
|
Zhang L, Wang F, Wang J, Wang Y, Fang Y. Intestinal fatty acid-binding protein mediates atherosclerotic progress through increasing intestinal inflammation and permeability. J Cell Mol Med 2020; 24:5205-5212. [PMID: 32220004 PMCID: PMC7205806 DOI: 10.1111/jcmm.15173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/06/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is one of leading phenotypes of cardiovascular diseases, featured with increased vascular intima‐media thickness (IMT) and unstable plaques. The interaction between gastrointestinal system and cardiovascular homeostasis is emerging as a hot topic. Therefore, the present study aimed to explore the role of an intestinal protein, intestinal fatty acid‐binding protein (I‐FABP/FABP2) in the atherosclerotic progress. In western diet–fed ApoE−/− mice, FABP2 was highly expressed in intestine. Silence of intestinal Fabp2 attenuated western diet–induced atherosclerotic phenotypes, including decreasing toxic lipid accumulation, vascular fibrosis and inflammatory response. Mechanistically, intestinal Fabp2 knockdown improved intestinal permeability through increasing the expression of tight junction proteins. Meanwhile, intestinal Fabp2 knockdown mice exhibited down‐regulation of intestinal inflammation in western diet–fed ApoE−/− mice. In clinical patients, the circulating level of FABP2 was obviously increased in patients with cardiovascular disease and positively correlated with the value of carotid intima‐media thickness, total cholesterol and triglyceride. In conclusion, FABP2‐induced intestinal permeability could address a potential role of gastrointestinal system in the development of atherosclerosis, and targeting on intestinal FABP2 might provide a therapeutic approach to protect against atherosclerosis.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Fan Wang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jiajun Wang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yongshun Wang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yan Fang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
50
|
Ogden HB, Child RB, Fallowfield JL, Delves SK, Westwood CS, Layden JD. The Gastrointestinal Exertional Heat Stroke Paradigm: Pathophysiology, Assessment, Severity, Aetiology and Nutritional Countermeasures. Nutrients 2020; 12:E537. [PMID: 32093001 PMCID: PMC7071449 DOI: 10.3390/nu12020537] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
Exertional heat stroke (EHS) is a life-threatening medical condition involving thermoregulatory failure and is the most severe condition along a continuum of heat-related illnesses. Current EHS policy guidance principally advocates a thermoregulatory management approach, despite growing recognition that gastrointestinal (GI) microbial translocation contributes to disease pathophysiology. Contemporary research has focused to understand the relevance of GI barrier integrity and strategies to maintain it during periods of exertional-heat stress. GI barrier integrity can be assessed non-invasively using a variety of in vivo techniques, including active inert mixed-weight molecular probe recovery tests and passive biomarkers indicative of GI structural integrity loss or microbial translocation. Strenuous exercise is strongly characterised to disrupt GI barrier integrity, and aspects of this response correlate with the corresponding magnitude of thermal strain. The aetiology of GI barrier integrity loss following exertional-heat stress is poorly understood, though may directly relate to localised hyperthermia, splanchnic hypoperfusion-mediated ischemic injury, and neuroendocrine-immune alterations. Nutritional countermeasures to maintain GI barrier integrity following exertional-heat stress provide a promising approach to mitigate EHS. The focus of this review is to evaluate: (1) the GI paradigm of exertional heat stroke; (2) techniques to assess GI barrier integrity; (3) typical GI barrier integrity responses to exertional-heat stress; (4) the aetiology of GI barrier integrity loss following exertional-heat stress; and (5) nutritional countermeasures to maintain GI barrier integrity in response to exertional-heat stress.
Collapse
Affiliation(s)
- Henry B. Ogden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Robert B. Child
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2QU, UK;
| | | | - Simon K. Delves
- Institute of Naval Medicine, Alverstoke PO12 2DW, UK; (J.L.F.); (S.K.D.)
| | - Caroline S. Westwood
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Joseph D. Layden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| |
Collapse
|