1
|
Heuser SK, Li J, Pudewell S, LoBue A, Li Z, Cortese-Krott MM. Biochemistry, pharmacology, and in vivo function of arginases. Pharmacol Rev 2025; 77:100015. [PMID: 39952693 DOI: 10.1124/pharmrev.124.001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 01/22/2025] Open
Abstract
The enzyme arginase catalyzes the hydrolysis of l-arginine into l-ornithine and urea. The 2 existing isoforms Arg1 and Arg2 exhibit different cellular localizations and metabolic functions. Arginase activity is crucial for nitrogen detoxification in the urea cycle, synthesis of polyamines, and control of l-arginine bioavailability and nitric oxide (NO) production. Despite significant progress in the understanding of the biochemistry and function of arginases, several open questions remain. Recent studies have revealed that the regulation and function of Arg1 and Arg2 are cell type-specific, species-specific, and profoundly different in mice and humans. The main differences are in the distribution and function of Arg1 and Arg2 in immune and erythroid cells. Contrary to what was previously thought, Arg1 activity appears to be only partially related to vascular NO signaling under homeostatic conditions in the vascular wall, but its expression is increased under disease conditions and may be targeted by treatment with arginase inhibitors. Arg2 appears to be mainly a catabolic enzyme involved in the synthesis of l-ornithine, polyamine, and l-proline but may play a putative role in blood pressure control, at least in mice. The immunosuppressive role of arginase-mediated arginine depletion is a promising target for cancer treatment. This review critically revises and discusses the biochemistry, pharmacology, and in vivo function of arginases, focusing on the insights gained from the analysis of cell-specific Arg1 and Arg2 knockout mice and human studies using arginase inhibitors or pegylated recombinant arginase. SIGNIFICANCE STATEMENT: Further basic and translational research is needed to deepen our understanding of the regulation of Arg1 and Arg2 in different cell types in consideration of their localization, species-specificity, and multiple biochemical and physiological roles. This will lead to better pharmacological strategies to target arginase activity in liver, cardiovascular, hematological, immune/infectious diseases, and cancer.
Collapse
Affiliation(s)
- Sophia K Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Department of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Zhixin Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Nalepa M, Toczyłowska B, Owczarek A, Skweres A, Ziemińska E, Węgrzynowicz M. Striatum-enriched protein, arginase 2 localizes to medium spiny neurons and controls striatal metabolic profile. Neurochem Int 2025; 182:105907. [PMID: 39581474 DOI: 10.1016/j.neuint.2024.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Arginase 2 (Arg2) is the predominant arginase isoenzyme in the brain, however its distribution appears to be limited to selected, region-specific subpopulations of cells. Although striatum is highly enriched with Arg2, precise localization and function of striatal Arg2 have never been studied. Here, we confirm that Arg2 is the only arginase isoenzyme in the striatum, and, using genetic model of total Arg2 loss, we show that Arg2 in this region is fully responsible for arginase catalytic activity, and its loss doesn't induce compensatory activation of Arg1. We exhibit that Arg2 is present in medium spiny neurons (MSNs), striatum-specific projecting neurons, where it localizes in soma and neuronal processes, and is absent in astrocytes or microglia. Finally, analysis of NMR spectroscopy-measured metabolic profiles of striata of Arg2-null mice enabled to recognize two metabolites (NADH and malonic acid) to be significantly altered compared to control animals. Multivariate comparison of the data using orthogonal projections to latent structures discriminant analysis, allowed for discrimination between control and Arg2-null mice and identified metabolites that contributed the most to this between-group dissimilarity. Our study reveals for the first time the localization of Arg2 in MSNs and demonstrates significant role of this enzyme in regulating striatal metabolism. These findings may be especially interesting in the context of Huntington's disease (HD), a disorder that specifically affects MSNs and in which, with the use of mouse models, the onset of pathological phenotypes was recently shown to be preceded by progressive impairment of striatal Arg2, a phenomenon of an unknown significance for disease pathogenesis.
Collapse
Affiliation(s)
- Martyna Nalepa
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Toczyłowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Owczarek
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Skweres
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Ziemińska
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Węgrzynowicz
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Ghosh N, Mahalanobish S, Sil PC. Reprogramming of urea cycle in cancer: Mechanism, regulation and prospective therapeutic scopes. Biochem Pharmacol 2024; 228:116326. [PMID: 38815626 DOI: 10.1016/j.bcp.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hepatic urea cycle, previously known as ornithine cycle, is the chief biochemical pathway that deals with the disposal of excessive nitrogen in form of urea, resulted from protein breakdown and concomitant condensation of ammonia. Enzymes involved in urea cycle are expressed differentially outside hepatic tissue and are mostly involved in production of arginine from citrulline in arginine-depleted condition. Inline, cancer cells frequently adapt metabolic rewiring to support sufficient biomass production in order to sustain tumor cell survival, multiplication and subsequent growth. For the accomplishment of this aim, metabolic reprogramming in cancer cells is set in way so that cellular nitrogen and carbon repertoire can be utilized and channelized maximally towards anabolic reactions. A strategy to meet such outcome is to cut down unnecessary catabolic reactions and nitrogen elimination. Thus, transfigured urea cycle is a hallmark of neoplasia. During oncogenesis, altered expression and regulation of enzymes involved in urea cycle is a revolutionary approach meet to maximum incorporation of nitrogen for sustaining tumor specific biogenesis. Currently, we have reviewed neoplasm-specific deregulations of urea cycle-enzymes in different types and stages of cancers suggesting its context-oriented dynamic nature. Considering such insight to be valuable in terms of prospective cancer diagnosis and therapeutics adaptive evolution of deregulated urea cycle has been enlightened.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
4
|
Bagheripour F, Jeddi S, Kashfi K, Ghasemi A. Anti-obesity and anti-diabetic effects of L-citrulline are sex-dependent. Life Sci 2024; 339:122432. [PMID: 38237764 DOI: 10.1016/j.lfs.2024.122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
AIMS Anti-diabetic and anti-obesity effects of L-citrulline (Cit) have been reported in male rats. This study determined sex differences in response to Cit in Wistar rats. MAIN METHODS Type 2 diabetes (T2D) was induced using a high-fat diet followed by low-dose of streptozotocin (30 mg/kg) injection. Male and female Wistar rats were divided into 4 groups (n = 6/group): Control, control+Cit, T2D, and T2D + Cit. Cit (4 g/L in drinking water) was administered for 8 weeks. Obesity indices were recorded, serum fasting glucose and lipid profile were measured, and glucose and pyruvate tolerance tests were performed during the Cit intervention. White (WAT) and brown (BAT) adipose tissues were weighted, and the adiposity index was calculated at the end of the study. KEY FINDINGS Cit was more effective in decreasing fasting glucose (18 % vs. 11 %, P = 0.0100), triglyceride (20 % vs. 14 %, P = 0.0173), and total cholesterol (16 % vs. 11 %, P = 0.0200) as well as decreasing gluconeogenesis and improving glucose tolerance, in females compared to male rats with T2D. Following Cit administration, decreases in WAT weight (16 % vs. 14 % for gonadal, 21 % vs. 16 % for inguinal, and 18 % vs. 13 % for retroperitoneal weight, all P < 0.0001) and increases in BAT weight (58 % vs. 19 %, for interscapular and 10 % vs. 7 % for axillary, all P < 0.0001) were higher in females than male rats with T2D. The decrease in adiposity index was also higher (11 % vs. 9 %, P = 0.0007) in females. SIGNIFICANCE The anti-obesity and anti-diabetic effects of Cit in rats are sex-dependent, with Cit being more effective in female than male rats.
Collapse
Affiliation(s)
- Fatemeh Bagheripour
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhou LY, Liu K, Yin WJ, Xie YL, Wang JL, Zuo SR, Tang ZY, Wu YF, Zuo XC. Arginase2 mediates contrast-induced acute kidney injury via facilitating nitrosative stress in tubular cells. Redox Biol 2023; 67:102929. [PMID: 37856999 PMCID: PMC10587771 DOI: 10.1016/j.redox.2023.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
Contrast-induced acute kidney injury(CI-AKI) is the third cause of AKI. Although tubular injury has been regarded as an important pathophysiology of CI-AKI, the underlying mechanism remains elusive. Here, we found arginase2(ARG2) accumulated in the tubules of CI-AKI mice, and was upregulated in iohexol treated kidney tubular cells and in blood samples of CI-AKI mice and patients, accompanied by increased nitrosative stress and apoptosis. However, all of the above were reversed in ARG2 knockout mice, as evidenced by the ameliorated kidney dysfunction and the tubular injury, and decreased nitrosative stress and apoptosis. Mechanistically, HO-1 upregulation could alleviate iohexol or ARG2 overexpression mediated nitrosative stress. Silencing and overexpressing ARG2 was able to upregulate and downregulate HO-1 expression, respectively, while HO-1 siRNA had no effect on ARG2 expression, indicating that ARG2 might inhibit HO-1 expression at the transcriptional level, which facilitated nitrosative stress during CI-AKI. Additionally, CREB1, a transcription factor, bound to the promoter region of ARG2 and stimulated its transcription. Similar findings were yielded in cisplatin- or vancomycin-induced AKI models. Taken together, ARG2 is a crucial target of CI-AKI, and activating CREB1/ARG2/HO-1 axis can mediate tubular injury by promoting nitrosative stress, highlighting potential therapeutic strategy for treating CI-AKI.
Collapse
Affiliation(s)
- Ling-Yun Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kun Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Jun Yin
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yue-Liang Xie
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiang-Lin Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Ru Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Yao Tang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Feng Wu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China; Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
Aihara S, Torisu K, Uchida Y, Imazu N, Nakano T, Kitazono T. Spermidine from arginine metabolism activates Nrf2 and inhibits kidney fibrosis. Commun Biol 2023; 6:676. [PMID: 37380734 DOI: 10.1038/s42003-023-05057-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
Kidney metabolism may be greatly altered in chronic kidney disease. Here we report that arginine metabolism is the most altered in unilateral ureteral obstruction (UUO)-induced fibrosis of the kidneys in metabolomic analysis. Spermidine is the most increased metabolite of arginine. In human glomerulonephritis, the amount of spermidine shown by immunostaining is associated with the amount of fibrosis. In human proximal tubule cells, spermidine induces nuclear factor erythroid 2-related factor 2 (Nrf2). Subsequently, fibrotic signals, such as transforming growth factor β1 secretion, collagen 1 mRNA, and oxidative stress, represented by a decrease in the mitochondrial membrane potential is suppressed by spermidine. UUO kidneys of Arg2 knockout mice show less spermidine and significantly exacerbated fibrosis compared with wild-type mice. Nrf2 activation is reduced in Arg2 knockout UUO kidneys. Spermidine treatment prevents significant fibrotic progression in Arg2 knockout mice. Spermidine is increased in kidney fibrosis, but further increases in spermidine may reduce fibrosis.
Collapse
Affiliation(s)
- Seishi Aihara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yushi Uchida
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Imazu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
El Gazzar WB, Allam MM, Shaltout SA, Mohammed LA, Sadek AM, Nasr HE. Pioglitazone modulates immune activation and ameliorates inflammation induced by injured renal tubular epithelial cells via PPARγ/miRNA‑124/STAT3 signaling. Biomed Rep 2022; 18:2. [PMID: 36544854 PMCID: PMC9756109 DOI: 10.3892/br.2022.1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Acute kidney injury (AKI) is commonly a result of renal ischemia reperfusion injury (IRI), which produces clinical complications characterized by the rapid deterioration of renal function, leading to chronic kidney disease and increases the risk of morbidity and mortality. Currently, only supportive treatment is available. AKI, which is accompanied by immune activation and inflammation, is caused by proximal tubular injury. The present study investigated the role of tubular epithelial cells as drivers of inflammation in renal IRI and their potential function as antigen-presenting cells, as well as the molecular mechanisms by which peroxisome proliferator-activated receptor-γ (PPARγ) agonists [such as pioglitazone (Pio)] exert reno-protective action in renal IRI. A total of 50 Wistar male albino rats were divided into five groups: Sham + DMSO, Sham + Pio, IRI + DMSO, IRI + prophylactic preoperative (pre) Pio and IRI + postoperative Pio. The histopathological changes in renal tissue samples and the renal epithelial cell expression of CD86, miRNA-124, STAT3, pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS) and Arginase-II were analyzed by immunohistochemistry, reverse transcription-quantitative PCR, western blotting and ELISA respectively. IRI was a potent inducer for CD86 immunoexpression. An ameliorative action of Pio was demonstrated via decreased CD86 immunoexpression, upregulation of miRNA-124, decreased STAT3 expression and beneficial anti-inflammatory effects. The tubular epithelium served a notable role in the inflammatory response in renal IRI. Pio exerted its anti-inflammatory effects via PPARγ/miRNA-124/STAT3 signaling.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt,Correspondence to: Dr Walaa Bayoumie El Gazzar, Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, Hashemite University, Zarqa 13133, Jordan
| | - Mona Maher Allam
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Sherif Ahmed Shaltout
- Department of Pharmacology, Public Health and Clinical Skills, Faculty of Medicine, Hashemite University, Zarqa 13133, Jordan,Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Lina Abdelhady Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Ashraf Mohamed Sadek
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan,Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 1181, Egypt
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| |
Collapse
|
8
|
Liang X, Potenza DM, Brenna A, Ma Y, Ren Z, Cheng X, Ming XF, Yang Z. Hypoxia Induces Renal Epithelial Injury and Activates Fibrotic Signaling Through Up-Regulation of Arginase-II. Front Physiol 2021; 12:773719. [PMID: 34867480 PMCID: PMC8640467 DOI: 10.3389/fphys.2021.773719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
The ureohydrolase, type-II arginase (Arg-II), is a mitochondrial enzyme metabolizing L-arginine into urea and L-ornithine and is highly expressed in renal proximal tubular cells (PTC) and upregulated by renal ischemia. Recent studies reported contradictory results on the role of Arg-II in renal injury. The aim of our study is to investigate the function of Arg-II in renal epithelial cell damage under hypoxic conditions. Human renal epithelial cell line HK2 was cultured under hypoxic conditions for 12–48 h. Moreover, ex vivo experiments with isolated kidneys from wild-type (WT) and genetic Arg-II deficient mice (Arg-II–/–) were conducted under normoxic and hypoxic conditions. The results show that hypoxia upregulates Arg-II expression in HK2 cells, which is inhibited by silencing both hypoxia-inducible factors (HIFs) HIF1α and HIF2α. Treatment of the cells with dimethyloxaloylglycine (DMOG) to stabilize HIFα also enhances Arg-II. Interestingly, hypoxia or DMOG upregulates transforming growth factor β1 (TGFβ1) levels and collagens Iα1, which is prevented by Arg-II silencing, while TGFβ1-induced collagen Iα1 expression is not affected by Arg-II silencing. Inhibition of mitochondrial complex-I by rotenone abolishes hypoxia-induced reactive oxygen species (mtROS) and TGFβ1 elevation in the cells. Ex vivo experiments show elevated Arg-II and TGFβ1 expression and the injury marker NGAL in the WT mouse kidneys under hypoxic conditions, which is prevented in the Arg-II–/– mice. Taking together, the results demonstrate that hypoxia activates renal epithelial HIFs-Arg-II-mtROS-TGFβ1-cascade, participating in hypoxia-associated renal injury and fibrosis.
Collapse
Affiliation(s)
- Xiujie Liang
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Duilio Michele Potenza
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Andrea Brenna
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yiqiong Ma
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Zhilong Ren
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Xin Cheng
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Xiu-Fen Ming
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Zhihong Yang
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Role of tubular epithelial arginase-II in renal inflammaging. NPJ Aging Mech Dis 2021; 7:5. [PMID: 33654066 PMCID: PMC7925687 DOI: 10.1038/s41514-021-00057-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/26/2021] [Indexed: 11/26/2022] Open
Abstract
The aging kidney undergoes complex changes and is vulnerable to injury and development of chronic kidney disease (CKD) with preponderance affecting more women than men. Evidence has been presented that the type-II L-arginine:ureohydrolase, arginase-II (Arg-II) plays a role in the acceleration of aging. Arg-II is highly expressed in the kidney. However, the role of Arg-II in renal aging is not known. This study is to investigate whether Arg-II is involved in the kidney aging process dependently on sex. Arg-II level in the kidney of wild type (WT) mice is significantly elevated with aging, which is accompanied by an increase in expression of the inflammatory cytokines/chemokines, tissue macrophages, factors involved in fibrosis, and tubulointestitial fibrosis in both males and females. This renal aging phenotype is significantly suppressed in arg-II−/− mice, mainly in the females in which Arg-II level is higher than in the males. Importantly, numerous factors such as IL-1β, MCP1, VCAM-1, and TGFβ1 are mainly localized in the proximal tubular S3 segment cells expressing Arg-II in the aging kidney. In human proximal tubular cells (HK-2), TNF-α enhances adhesion molecule expression dependently on Arg-II upregulation. Overexpression of Arg-II in the cells enhances TGFβ1 levels which is prevented by mitochondrial ROS inhibition. In summary, our study reveals that renal proximal tubular Arg-II plays an important role in the kidney aging process in females. Arg-II could be a promising therapeutic target for the treatment and prevention of aging-associated kidney diseases.
Collapse
|
10
|
Mohammad MA, Didelija IC, Marini JC. Arginase II Plays a Central Role in the Sexual Dimorphism of Arginine Metabolism in C57BL/6 Mice. J Nutr 2020; 150:3133-3140. [PMID: 33188387 PMCID: PMC7726119 DOI: 10.1093/jn/nxaa318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Sex differences in plasma concentration of arginine and arginase activity of different tissues have been reported in mice. In addition, male but not female C57BL/6 mice have a dietary arginine requirement for growth. OBJECTIVE The goal of this research was to test the hypothesis that arginase II is a key factor in the sexual dimorphism of arginine metabolism. METHODS Young adult male and female wild type (WT), and heterozygous and arginase II knockout mice on a C57BL/6 background mice were infused with labeled citrulline, arginine, ornithine, phenylalanine, and tyrosine to determine the rates of appearance and interconversion of these amino acids. Tissue arginase activity was measured in the liver, heart, jejunum, kidney, pancreas, and spleen with an arginine radioisotope. The effect of genotype, sex, and their interaction was tested. RESULTS Female mice produced ∼36% more citrulline than their male littermates, which translated into a greater arginine endogenous synthesis, flux, and plasma concentration (42, 6, and 27%, respectively; P < 0.001). Female mice also had a greater phenylalanine flux (10%) indicating a greater rate of whole protein breakdown; however, they had a lower protein synthesis rate than males (18%; P < 0.001). The ablation of arginase II reduced the production of citrulline and the de novo synthesis of arginine in females and increased the rate of appearance of arginine and plasma arginine concentration in male mice (16 and 22%, respectively; P < 0.001). No effect of arginase II deletion, however, was observed for whole-body protein kinetics. Arginase II activity was present in the pancreas, kidney, jejunum, and spleen; WT females had a ∼2-fold greater renal arginase activity than their WT counterparts. CONCLUSIONS A clear sexual dimorphism exists in the endogenous synthesis of arginine and its disposal. Female mice have a greater arginine availability than their male littermates. The ablation of arginase II increases arginine availability in male mice.
Collapse
Affiliation(s)
- Mahmoud A Mohammad
- USDA/ARS (Agricultural Research Service) Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Food Science and Nutrition Department, National Research Centre, Dokki, Giza, Egypt
| | - Inka C Didelija
- USDA/ARS (Agricultural Research Service) Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
11
|
Sultanova RF, Schibalski R, Yankelevich IA, Stadler K, Ilatovskaya DV. Sex differences in renal mitochondrial function: a hormone-gous opportunity for research. Am J Physiol Renal Physiol 2020; 319:F1117-F1124. [PMID: 33135479 DOI: 10.1152/ajprenal.00320.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sex differences (biological distinctions between males and females) present a complex interplay of genetic, developmental, biological, and environmental factors. More and more studies are shedding light on the importance of sex differences in normal physiology and susceptibility to cancer, cardiovascular and renal conditions, and neurodegenerative diseases. This mini-review is devoted to the role of sex dimorphisms in renal function, with a focus on the distinctions between male and female mitochondria. Here, we cover the aspects of renal mitochondrial bioenergetics where sex differences have been reported to date, for instance, biogenesis, reactive oxygen species production, and oxidative stress. Special attention is devoted to the effects of sex hormones, such as estrogen and testosterone, on mitochondrial bioenergetics in the kidney in physiology and pathophysiology.
Collapse
Affiliation(s)
- Regina F Sultanova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Ryan Schibalski
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Irina A Yankelevich
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Insitute of Experimental Medicine, St. Petersburg, Russia
| | | | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
12
|
Wetzel MD, Stanley K, Wang WW, Maity S, Madesh M, Reeves WB, Awad AS. Selective inhibition of arginase-2 in endothelial cells but not proximal tubules reduces renal fibrosis. JCI Insight 2020; 5:142187. [PMID: 32956070 PMCID: PMC7566719 DOI: 10.1172/jci.insight.142187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023] Open
Abstract
Fibrosis is the final common pathway in the pathophysiology of most forms of chronic kidney disease (CKD). As treatment of renal fibrosis still remains largely supportive, a refined understanding of the cellular and molecular mechanisms of kidney fibrosis and the development of novel compounds are urgently needed. Whether arginases play a role in the development of fibrosis in CKD is unclear. We hypothesized that endothelial arginase-2 (Arg2) promotes the development of kidney fibrosis induced by unilateral ureteral obstruction (UUO). Arg2 expression and arginase activity significantly increased following renal fibrosis. Pharmacologic blockade or genetic deficiency of Arg2 conferred kidney protection following renal fibrosis, as reflected by a reduction in kidney interstitial fibrosis and fibrotic markers. Selective deletion of Arg2 in endothelial cells (Tie2Cre/Arg2fl/fl) reduced the level of fibrosis after UUO. In contrast, selective deletion of Arg2 specifically in proximal tubular cells (Ggt1Cre/Arg2fl/fl) failed to reduce renal fibrosis after UUO. Furthermore, arginase inhibition restored kidney nitric oxide (NO) levels, oxidative stress, and mitochondrial function following UUO. These findings indicate that endothelial Arg2 plays a major role in renal fibrosis via its action on NO and mitochondrial function. Blocking Arg2 activity or expression could be a novel therapeutic approach for prevention of CKD.
Collapse
|
13
|
Jensen BL. The enzyme L-arginase type 2 in proximal tubular epithelium links urea accumulation and protection against ischemic insults in kidney. Acta Physiol (Oxf) 2020; 229:e13489. [PMID: 32359196 DOI: 10.1111/apha.13489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Boye L. Jensen
- Department of Cardiovascular and Renal Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
| |
Collapse
|
14
|
Arginase 2 is a mediator of ischemia-reperfusion injury in the kidney through regulation of nitrosative stress. Kidney Int 2020; 98:673-685. [PMID: 32739205 DOI: 10.1016/j.kint.2020.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/23/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
Kidney ischemia-reperfusion injury is a major cause of acute kidney injury (AKI). Following reduced kidney perfusion, the pathological overproduction of reactive oxygen and reactive nitrogen species play a substantial role in the development of kidney ischemia-reperfusion injury. Arginase 2 (ARG2) competes with nitric oxide synthase for the same substrate, L-arginine, and is implicated in the regulation of reactive nitrogen species. Therefore, we investigated the role of ARG2 in kidney ischemia-reperfusion injury using human proximal tubule cells (HK-2) and a mouse model of kidney ischemia-reperfusion injury. ARG2 was predominantly expressed in kidney tubules of the cortex, which was increased after ischemia-reperfusion injury. In HK-2 cells, ARG2 was expressed in punctate form in the cytoplasm and upregulated after hypoxia-reoxygenation. ARG2 knockdown reduced the level of reactive oxygen species and 3-nitrotyrosine after hypoxia-reoxygenation injury compared with control siRNA. Consistent with these results, in Arg2 knockout mice, abnormal kidney function and the increased acute tubular necrosis score induced by ischemia-reperfusion injury was significantly reduced without any obvious blood pressure changes. Additionally, an accumulation of 3-nitrotyrosine and apoptosis of renal tubule cells were attenuated in Arg2 knockout mice compared with wild-type mice. Inhibition of arginase by Nω-hydroxy-nor-L-arginine alleviated kidney ischemia-reperfusion injury like the results found in Arg2 knockout mice. Thus, ARG2 plays a pivotal role in ischemia-reperfusion-induced AKI by means of nitrosative stress. Hence, an ARG2-specific inhibitor may effectively treat kidney ischemia-reperfusion injury.
Collapse
|
15
|
Moretto J, Girard C, Demougeot C. The role of arginase in aging: A systematic review. Exp Gerontol 2019; 116:54-73. [DOI: 10.1016/j.exger.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
|
16
|
Abstract
Cancer cells reprogramme metabolism to maximize the use of nitrogen and carbon for the anabolic synthesis of macromolecules that are required during tumour proliferation and growth. To achieve this aim, one strategy is to reduce catabolism and nitrogen disposal. The urea cycle (UC) in the liver is the main metabolic pathway to convert excess nitrogen into disposable urea. Outside the liver, UC enzymes are differentially expressed, enabling the use of nitrogen for the synthesis of UC intermediates that are required to accommodate cellular needs. Interestingly, the expression of UC enzymes is altered in cancer, revealing a revolutionary mechanism to maximize nitrogen incorporation into biomass. In this Review, we discuss the metabolic benefits underlying UC deregulation in cancer and the relevance of these alterations for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Peter Szlosarek
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
- Barts Health NHS Trust, St Bartholomew's Hospital, London, UK
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
17
|
Huang J, Montani JP, Verrey F, Feraille E, Ming XF, Yang Z. Arginase-II negatively regulates renal aquaporin-2 and water reabsorption. FASEB J 2018; 32:5520-5531. [PMID: 29718707 PMCID: PMC6405175 DOI: 10.1096/fj.201701209r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Type-II l-arginine:ureahydrolase, arginase-II (Arg-II), is abundantly
expressed in the kidney. The physiologic role played by Arg-II in the kidney remains
unknown. Herein, we report that in mice that are deficient in Arg-II
(Arg-II−/−), total and membrane-associated aquaporin-2
(AQP2) protein levels were significantly higher compared with wild-type (WT)
controls. Water deprivation enhanced Arg-II expression, AQP2 levels, and membrane
association in collecting ducts. Effects of water deprivation on AQP2 were stronger
in Arg-II−/− mice than in WT mice. Accordingly, a decrease
in urine volume and an increase in urine osmolality under water deprivation were more
pronounced in Arg-II−/− mice than in WT mice, which
correlated with a weaker increase in plasma osmolality in
Arg-II−/− mice. There was no difference in vasopressin
release under water deprivation conditions between either genotype of mice. Although
total AQP2 and phosphorylated AQP2-S256 levels (mediated by PKA) in kidneys under
water deprivation conditions were significantly higher in
Arg-II−/− mice compared with WT animals, there is no
difference in the ratio of AQP2-S256:AQP2. In cultured mouse collecting duct
principal mCCDcl1 cells, expression of both Arg-II and AQP2 were enhanced
by the vasopressin type 2 receptor agonist, desamino-d-arginine
vasopressin (dDAVP). Silencing Arg-II enhanced the expression and membrane
association of AQP2 by dDAVP without influencing cAMP levels. In conclusion,
in vivo and in vitro experiments demonstrate
that Arg-II negatively regulates AQP2 and the urine-concentrating capability in
kidneys via a mechanism that is not associated with the modulation
of the cAMP pathway.—Huang, J., Montani, J.-P., Verrey, F., Feraille, E.,
Ming, X.-F., Yang, Z. Arginase-II negatively regulates renal aquaporin-2 and water
reabsorption.
Collapse
Affiliation(s)
- Ji Huang
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| | - Jean-Pierre Montani
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| | - François Verrey
- Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Eric Feraille
- Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland.,Department of Cell Biology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Xiu-Fen Ming
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| | - Zhihong Yang
- Division of Physiology, Department of Medicine, Cardiovascular and Aging Research, University of Fribourg, Fribourg, Switzerland.,Kidney Control of Homeostasis, National Center of Competence in Research, Zurich, Switzerland
| |
Collapse
|
18
|
Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol Rev 2018; 98:641-665. [PMID: 29412048 PMCID: PMC5966718 DOI: 10.1152/physrev.00037.2016] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
The arginase enzyme developed in early life forms and was maintained during evolution. As the last step in the urea cycle, arginase cleaves l-arginine to form urea and l-ornithine. The urea cycle provides protection against excess ammonia, while l-ornithine is needed for cell proliferation, collagen formation, and other physiological functions. In mammals, increases in arginase activity have been linked to dysfunction and pathologies of the cardiovascular system, kidney, and central nervous system and also to dysfunction of the immune system and cancer. Two important aspects of the excessive activity of arginase may be involved in diseases. First, overly active arginase can reduce the supply of l-arginine needed for the production of nitric oxide (NO) by NO synthase. Second, too much l-ornithine can lead to structural problems in the vasculature, neuronal toxicity, and abnormal growth of tumor cells. Seminal studies have demonstrated that increased formation of reactive oxygen species and key inflammatory mediators promote this pathological elevation of arginase activity. Here, we review the involvement of arginase in diseases affecting the cardiovascular, renal, and central nervous system and cancer and discuss the value of therapies targeting the elevated activity of arginase.
Collapse
Affiliation(s)
- R William Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Paulo C Rodriguez
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Haroldo A Toque
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - S Priya Narayanan
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Ruth B Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| |
Collapse
|
19
|
Long-term dietary restriction up-regulates activity and expression of renal arginase II in aging mice. J Biosci 2018; 42:275-283. [PMID: 28569251 DOI: 10.1007/s12038-017-9683-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Arginase II is a mitochondrial enzyme that catalyses the hydrolysis of L-arginine into urea and ornithine. It is present in other extra-hepatic tissues that lack urea cycle. Therefore, it is plausible that arginase II has a physiological role other than urea cycle which includes polyamine, proline, glutamate synthesis and regulation of nitric oxide production. The high expression of arginase II in kidney, among extrahepatic tissues, might have an important role associated with kidney functions. The present study is aimed to determine the age-associated alteration in the activity and expression of arginase II in the kidney of mice of different ages. The effect of dietary restriction to modulate the agedependent changes of arginase II was also studied. Results showed that renal arginase II activity declines significantly with the progression of age (p less than 0.01 and p less than 0.001 in 6- and 18-month-old mice, respectively as compared to 2-month old mice) and is due to the reduction in its protein as well as the mRNA level (p less than 0.001 in both 6- and 18-month-old mice as compared to 2-month-old mice). Long-term dietary restriction for three months has significantly up-regulated arginase II activity and expression level in both 2- and 18-month-old mice (p less than 0.01 and p less than 0.001, respectively as compared to AL group). These findings clearly indicate that the reducing level of arginase II during aging might have an impact on the declining renal functions. This age-dependent down-regulation of arginase II in the kidney can be attenuated by dietary restriction which may help in the maintenance of such functions.
Collapse
|
20
|
Kuldanek S, Silliman CC. Mortality after red blood cell transfusions from previously pregnant donors: complexities in the interpretation of large data. J Thorac Dis 2018; 10:648-652. [PMID: 29608196 PMCID: PMC5864649 DOI: 10.21037/jtd.2018.01.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Susan Kuldanek
- School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | | |
Collapse
|
21
|
Didelija IC, Mohammad MA, Marini JC. Ablation of Arginase II Spares Arginine and Abolishes the Arginine Requirement for Growth in Male Mice. J Nutr 2017; 147:1510-1516. [PMID: 28679627 PMCID: PMC5525112 DOI: 10.3945/jn.117.251249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/28/2017] [Accepted: 06/12/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Arginine is considered a semiessential amino acid in many species, including humans, because under certain conditions its demand exceeds endogenous production. Arginine availability, however, is determined not only by its production but also by its disposal. Manipulation of disposal pathways has the potential to increase availability and thus abolish the requirement for arginine.Objective: The objective of the study was to test the hypothesis that arginase II ablation increases arginine availability for growth.Methods: In a completely randomized design with a factorial arrangement of treatments, postweaning growth was determined for 3 wk in male and female wild-type (WT) mice and arginase II knockout mice (ARGII) on a C57BL/6J background fed arginine-sufficient [Arg(+); 8 g arginine/kg] or arginine-free [Arg(-)] diets. Tracers were used to determine citrulline and arginine kinetics.Results: A sex dimorphism in arginine metabolism was detected; female mice had a greater citrulline flux (∼30%, P < 0.001), which translated to greater de novo synthesis of arginine (∼31%, P < 0.001). Female mice also had greater arginine fluxes (P < 0.015) and plasma arginine concentrations (P < 0.01), but a reduced arginine clearance rate (P < 0.001). Ablation of arginase II increased plasma arginine concentrations in both sexes (∼27%, P < 0.01) but increased arginine flux only in males (P < 0.01). The absence of arginine in the diet limited the growth of male WT mice (P < 0.01), but had no effect on male ARGII mice (P = 0.12). In contrast, WT females on the Arg(-) diet grew at the same rate and achieved final weight similar to that of female WT mice fed the Arg(+) diet (P = 0.47).Conclusion: The ablation of arginase II in male mice spares arginine that can then be used for growth and to meet other metabolic functions, thus abolishing arginine requirements.
Collapse
Affiliation(s)
- Inka C Didelija
- USDA/Agricultural Research Service Children’s Nutrition Research Center and
| | - Mahmoud A Mohammad
- USDA/Agricultural Research Service Children’s Nutrition Research Center and
| | - Juan C Marini
- USDA/Agricultural Research Service Children's Nutrition Research Center and .,Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
22
|
Xiong Y, Yepuri G, Necetin S, Montani JP, Ming XF, Yang Z. Arginase-II Promotes Tumor Necrosis Factor-α Release From Pancreatic Acinar Cells Causing β-Cell Apoptosis in Aging. Diabetes 2017; 66:1636-1649. [PMID: 28356309 DOI: 10.2337/db16-1190] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/21/2017] [Indexed: 11/13/2022]
Abstract
Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L-arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic β-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II-/-) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and β-cell mass, and more proliferative and less apoptotic β-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II-/-) mice contains higher TNF-α levels than the young mice and stimulates β-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to β-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice.
Collapse
Affiliation(s)
- Yuyan Xiong
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| | - Gautham Yepuri
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
| | - Sevil Necetin
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| |
Collapse
|
23
|
Raup-Konsavage WM, Gao T, Cooper TK, Morris SM, Reeves WB, Awad AS. Arginase-2 mediates renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2017; 313:F522-F534. [PMID: 28515179 PMCID: PMC5582893 DOI: 10.1152/ajprenal.00620.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023] Open
Abstract
Novel therapeutic interventions for preventing or attenuating kidney injury following ischemia-reperfusion injury (IRI) remain a focus of significant interest. Currently, there are no definitive therapeutic or preventive approaches available for ischemic acute kidney injury (AKI). Our objective is to determine 1) whether renal arginase activity or expression is increased in renal IRI, and 2) whether arginase plays a role in development of renal IRI. The impact of arginase activity and expression on renal damage was evaluated in male C57BL/6J (wild type) and arginase-2 (ARG2)-deficient (Arg2-/- ) mice subjected to bilateral renal ischemia for 28 min, followed by reperfusion for 24 h. ARG2 expression and arginase activity significantly increased following renal IRI, paralleling the increase in kidney injury. Pharmacological blockade or genetic deficiency of Arg2 conferred kidney protection in renal IRI. Arg2-/- mice had significantly attenuated kidney injury and lower plasma creatinine and blood urea nitrogen levels after renal IRI. Blocking arginases using S-(2-boronoethyl)-l-cysteine (BEC) 18 h before ischemia mimicked arginase deficiency by reducing kidney injury, histopathological changes and kidney injury marker-1 expression, renal apoptosis, kidney inflammatory cell recruitment and inflammatory cytokines, and kidney oxidative stress; increasing kidney nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation, kidney peroxisome proliferator-activated receptor-γ coactivator-1α expression, and mitochondrial ATP; and preserving kidney mitochondrial ultrastructure compared with vehicle-treated IRI mice. Importantly, BEC-treated eNOS-knockout mice failed to reduce blood urea nitrogen and creatinine following renal IRI. These findings indicate that ARG2 plays a major role in renal IRI, via an eNOS-dependent mechanism, and that blocking ARG2 activity or expression could be a novel therapeutic approach for prevention of AKI.
Collapse
Affiliation(s)
- Wesley M Raup-Konsavage
- Division of Nephrology, Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| | - Ting Gao
- Division of Nephrology, Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| | - Timothy K Cooper
- Department of Comparative Medicine, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| | - Sidney M Morris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - W Brian Reeves
- Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas; and
| | - Alaa S Awad
- Division of Nephrology, Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania; .,Department of C&M Physiology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
24
|
Pudlo M, Demougeot C, Girard-Thernier C. Arginase Inhibitors: A Rational Approach Over One Century. Med Res Rev 2016; 37:475-513. [DOI: 10.1002/med.21419] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Marc Pudlo
- PEPITE - EA4267; University Bourgogne Franche-Comté; Besançon France
| | - Céline Demougeot
- PEPITE - EA4267; University Bourgogne Franche-Comté; Besançon France
| | | |
Collapse
|
25
|
You H, Gao T, Cooper TK, Morris SM, Awad AS. Arginase inhibition mediates renal tissue protection in diabetic nephropathy by a nitric oxide synthase 3-dependent mechanism. Kidney Int 2013; 84:1189-97. [PMID: 23760286 PMCID: PMC3783645 DOI: 10.1038/ki.2013.215] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 01/15/2023]
Abstract
Recently we showed that pharmacological blockade or genetic deficiency of arginase-2 confers kidney protection in diabetic mouse models. Here we tested whether the protective effect of arginase inhibition is nitric oxide synthase-3 (eNOS)-dependent in diabetic nephropathy. Experiments were conducted in eNOS knockout and their wild type littermate mice using multiple low doses of vehicle or streptozotocin and treated with continuous subcutaneous infusion of vehicle or the arginase inhibitor S-(2-Boronoethyl)-L-cysteine by an osmotic pump. Inhibition of arginases for 6 weeks in diabetic wild type mice significantly attenuated albuminuria, the increase in plasma creatinine and blood urea nitrogen, histopathological changes, kidney fibronectin and TNF-α expression, kidney macrophage recruitment, and oxidative stress compared to vehicle-treated diabetic wild type mice. Arginase inhibition in diabetic eNOS knockout mice failed to affect any of these parameters but reduced kidney macrophage recruitment and kidney TNF-α expression compared to vehicle-treated diabetic eNOS knockout mice. Furthermore, diabetic wild type and eNOS knockout mice exhibited increased kidney arginase-2 protein, arginase activity and ornithine levels. Thus, arginase inhibition mediates renal tissue protection in diabetic nephropathy by an eNOS-dependent mechanism and has an eNOS-independent effect on kidney macrophage recruitment.
Collapse
Affiliation(s)
- Hanning You
- Division of Nephrology, Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
26
|
Morris SM, Gao T, Cooper TK, Kepka-Lenhart D, Awad AS. Arginase-2 mediates diabetic renal injury. Diabetes 2011; 60:3015-22. [PMID: 21926276 PMCID: PMC3198072 DOI: 10.2337/db11-0901] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/12/2011] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To determine 1) whether renal arginase activity or expression is increased in diabetes and 2) whether arginase plays a role in development of diabetic nephropathy (DN). RESEARCH DESIGN AND METHODS The impact of arginase activity and expression on renal damage was evaluated in spontaneously diabetic Ins2(Akita) mice and in streptozotocin (STZ)-induced diabetic Dilute Brown Agouti (DBA) and arginase-2-deficient mice (Arg2(-/-)). RESULTS Pharmacological blockade or genetic deficiency of arginase-2 conferred kidney protection in Ins2(Akita) mice or STZ-induced diabetic renal injury. Blocking arginases using S-(2-boronoethyl)-L-cysteine for 9 weeks in Ins2(Akita) mice or 6 weeks in STZ-induced diabetic DBA mice significantly attenuated albuminuria, the increase in blood urea nitrogen, histopathological changes, and kidney macrophage recruitment compared with vehicle-treated Ins2(Akita) mice. Furthermore, kidney arginase-2 expression increased in Ins2(Akita) mice compared with control. In contrast, arginase-1 expression was undetectable in kidneys under normal or diabetes conditions. Arg2(-/-) mice mimicked arginase blockade by reducing albuminuria after 6 and 18 weeks of STZ-induced diabetes. In wild-type mice, kidney arginase activity increased significantly after 6 and 18 weeks of STZ-induced diabetes but remained very low in STZ-diabetic Arg2(-/-) mice. The increase in kidney arginase activity was associated with a reduction in renal medullary blood flow in wild-type mice after 6 weeks of STZ-induced diabetes, an effect significantly attenuated in diabetic Arg2(-/-) mice. CONCLUSIONS These findings indicate that arginase-2 plays a major role in induction of diabetic renal injury and that blocking arginase-2 activity or expression could be a novel therapeutic approach for treatment of DN.
Collapse
Affiliation(s)
- Sidney M. Morris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ting Gao
- Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Timothy K. Cooper
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
- Department of Pathology, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Diane Kepka-Lenhart
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alaa S. Awad
- Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
27
|
Prieto CP, Krause BJ, Quezada C, San Martin R, Sobrevia L, Casanello P. Hypoxia-reduced nitric oxide synthase activity is partially explained by higher arginase-2 activity and cellular redistribution in human umbilical vein endothelium. Placenta 2011; 32:932-40. [PMID: 21962305 DOI: 10.1016/j.placenta.2011.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/18/2011] [Accepted: 09/07/2011] [Indexed: 01/08/2023]
Abstract
Hypoxia relates with altered placental vasodilation, and in isolated endothelial cells, it reduces activity of the endothelial nitric oxide synthase (eNOS) and l-arginine transport. It has been reported that arginase-2 expression, an alternative pathway for l-arginine metabolism, is increased in adult endothelial cells exposed to hypoxia as well as in pre-eclamptic placentae. We studied in human umbilical vein endothelial cells (HUVEC) whether hypoxia-reduced NO synthesis results from increased arginase-mediated l-arginine metabolism and changes in subcellular localization of eNOS and arginase-2. In HUVEC exposed (24 h) to 5% (normoxia) or 2% (hypoxia) oxygen, l-arginine transport kinetics, arginase activity (urea assay), and NO synthase (NOS) activity (l-citrulline assay) were determined. Arginase-1, arginase-2 and eNOS expression were determined by RT-PCR and Western blot. Subcellular localization of arginase-2 and eNOS were studied using confocal microscopy and indirect immunofluorescence. Experiments were done in absence or presence of S-(2-boronoethyl)-l-cysteine-HCl (BEC, arginase inhibitor) or N(G)-nitro-l-arginine methyl ester (l-NAME). Hypoxia-induced reduction in eNOS activity was associated with a reduction in eNOS phosphorylation at Serine-1177 and increased phosphorylation at Threonine-495. This was paralleled with an induction in arginase-2 expression and activity, and decreased l-arginine transport. In hypoxia the arginase inhibition, restored NO synthesis and l-arginine transport, without changes in the eNOS post-translational modification status. Hypoxia increased arginase-2/eNOS colocalization, and eNOS redistribution to the cell periphery. Altogether these data reinforce the thought that eNOS cell location, post-translational modification and substrate availability are important mechanisms regulating eNOS activity. If these mechanisms occur in pregnancy diseases where feto-placental oxygen levels are reduced remains to be clarified.
Collapse
Affiliation(s)
- C P Prieto
- Perinatology Research Laboratory (PRL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
28
|
Expression and function of arginine-producing and consuming-enzymes in the kidney. Amino Acids 2011; 42:1237-52. [PMID: 21567240 DOI: 10.1007/s00726-011-0897-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
Abstract
The kidney plays a key role in arginine metabolism. Arginine production is controlled by argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) which metabolize citrulline and aspartate to arginine and fumarate whereas arginine consumption is dependent on arginine:glycine amidinotransferase (GAT), which mediates creatine and ornithine synthesis. Histological and biochemical techniques have been used to study the distribution and activity of these enzymes in anatomically dissected segments, in isolated fragments of tubules and in whole tissues. ASS and ASL mRNAs and proteins are expressed in the proximal tubule. Within this nephron segment, the proximal convoluted tubule has a higher arginine synthesis capacity than the proximal straight tubules. Furthermore, this arginine-synthesizing portion of the nephron matches perfectly with the site of citrulline reabsorption from the glomerular filtrate. The kidney itself can produce citrulline from methylated arginine, but this capacity is limited. Therefore, intestinal citrulline synthesis is required for renal arginine production. Although the proximal convoluted tubule also expresses a significant amount of GAT, only 10% of renal arginine synthesis is metabolized to guanidinoacetic acid, possibly because GAT has a mitochondrial localization. Kidney arginase (AII) is expressed in the cortical and outer medullary proximal straight tubules and does not degrade significant amounts of newly synthesized arginine. The data presented in this review identify the proximal convoluted tubule as the main site of endogenous arginine biosynthesis.
Collapse
|
29
|
Marini JC, Keller B, Didelija IC, Castillo L, Lee B. Enteral arginase II provides ornithine for citrulline synthesis. Am J Physiol Endocrinol Metab 2011; 300:E188-94. [PMID: 20978229 PMCID: PMC3023202 DOI: 10.1152/ajpendo.00413.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis of citrulline from arginine in the small intestine depends on the provision of ornithine. To test the hypothesis that arginase II plays a central role in the supply of ornithine for citrulline synthesis, the contribution of dietary arginine, glutamine, and proline was determined by utilizing multitracer stable isotope protocols in arginase II knockout (AII(-/-)) and wild-type (WT) mice. The lack of arginase II resulted in a lower citrulline rate of appearance (121 vs. 137 μmol·kg(-1)·h(-1)) due to a reduced availability of ornithine; ornithine supplementation was able to restore the rate of citrulline production in AII(-/-) to levels comparable with WT mice. There were significant differences in the utilization of dietary citrulline precursors. The contribution of dietary arginine to the synthesis of citrulline was reduced from 45 to 10 μmol·kg(-1)·h(-1) due to the lack of arginase II. No enteral utilization of arginine was observed in AII(-/-) mice (WT = 25 μmol·kg(-1)·h(-1)), and the contribution of dietary arginine through plasma ornithine was reduced in the transgenic mice (20 vs. 13 μmol·kg(-1)·h(-1)). Dietary glutamine and proline utilization were greater in AII(-/-) than in WT mice (20 vs. 13 and 1.4 vs. 3.7 μmol·kg(-1)·h(-1), respectively). Most of the contribution of glutamine and proline was enteral rather than through plasma ornithine. The arginase isoform present in the small intestinal mucosa has the role of providing ornithine for citrulline synthesis. The lack of arginase II results in a greater contribution of plasma ornithine and dietary glutamine and proline to the synthesis of citrulline.
Collapse
Affiliation(s)
- Juan C Marini
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Houston, TX, USA.
| | | | | | | | | |
Collapse
|
30
|
Direct production of L-ornithine from casein by commercial digestive enzymes and in situ activated arginase. Bioprocess Biosyst Eng 2010; 33:773-7. [PMID: 20593292 DOI: 10.1007/s00449-010-0437-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/18/2010] [Indexed: 01/16/2023]
Abstract
There is a great demand for L-ornithine, which is used as a dietary supplement, and in the pharmaceutical industry. In the present study, when milk casein was hydrolyzed at 37 degrees C by using commercial digestive enzymes, namely, Pancreatin F and Protease A, a significant accumulation of L-ornithine in the hydrolysate and the simultaneous disappearance of L-arginine was noted. In a radiometric assay, transient but distinct arginase activity, which was sufficiently high for L-ornithine production, was detected in the hydrolysate for a certain period during casein hydrolysis. On the basis of the results of the enzymatic analyses, arginase was thought to be proteolytically generated from an inactive precursor, which may generally be contained in Pancreatin F, and ultimately degraded by further proteolysis. This conversion process using the above-mentioned digestive enzymes is useful for the production of L-ornithine directly from protein sources that are abundant in nature.
Collapse
|
31
|
Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston AT, Clement M, Dussiot M, Levillain O, Graff-Dubois S, Nicoletti A, Caligiuri G. Macrophage plasticity in experimental atherosclerosis. PLoS One 2010; 5:e8852. [PMID: 20111605 PMCID: PMC2810335 DOI: 10.1371/journal.pone.0008852] [Citation(s) in RCA: 417] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 01/05/2010] [Indexed: 12/17/2022] Open
Abstract
As in human disease, macrophages (MØ) are central players in the development and progression of experimental atherosclerosis. In this study we have evaluated the phenotype of MØ associated with progression of atherosclerosis in the apolipoprotein E (ApoE) knockout (KO) mouse model. We found that bone marrow-derived MØ submitted to M1 and M2 polarization specifically expressed arginase (Arg) II and Arg I, respectively. This distinct arginase expression was used to evaluate the frequency and distribution of M1 and M2 MØ in cross-sections of atherosclerotic plaques of ApoE KO mice. Early lesions were infiltrated by Arg I+ (M2) MØ. This type of MØ favored the proliferation of smooth muscle cells, in vitro. Arg II+ (M1) MØ appeared and prevailed in lesions of aged ApoE KO mice and lesion progression was correlated with the dominance of M1 over the M2 MØ phenotype. In order to address whether the M2->M1 switch could be due to a phenotypic switch of the infiltrated cells, we performed in vitro repolarization experiments. We found that fully polarized MØ retained their plasticity since they could revert their phenotype. The analysis of the distribution of Arg I- and Arg II-expressing MØ also argued against a recent recruitment of M1 MØ in the lesion. The combined data therefore suggest that the M2->M1 switch observed in vivo is due to a conversion of cells already present in the lesion. Our study suggests that interventional tools able to revert the MØ infiltrate towards the M2 phenotype may exert an atheroprotective action.
Collapse
|
32
|
Levillain O, Rabier D, Duclos B, Gaudreau P, Vinay P. L-arginine metabolism in dog kidney and isolated nephron segments. Metabolism 2008; 57:9-23. [PMID: 18078854 DOI: 10.1016/j.metabol.2007.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 06/25/2007] [Indexed: 11/30/2022]
Abstract
The renal basic amino acid metabolism often differs in rodents, strict carnivores, and omnivore species. Given the pivotal role of L-arginine and L-ornithine in several metabolic pathways and the fact that the dog is closely related to humans, being also an omnivore, we tested whether L-arginine metabolism and L-ornithine catabolism take place in the dog kidney. We examined the metabolism of L-arginine in dog cortical tubules to integrate local L-arginine metabolism into a general physiological and metabolic framework. To achieve these goals, we first ascertained the protein expression of relevant enzymes by Western blot. L-Arginine catabolism was studied in suspensions of canine cortical proximal tubules, medullary thick ascending limbs, and papillary collecting ducts either incubated without exogenous L-arginine being added (small endogenous quantities) or incubated with L-arginine being added in supraphysiological amounts (2 mmol/L with or without the presence of alternative metabolic substrates, 2 mmol/L L-glutamine, or lactate). The results revealed that dog kidneys consumed L-citrulline and released L-arginine and L-ornithine. Argininosuccinate synthetase and lyase, arginase II, and ornithine aminotransferase were detected in the renal cortex. Arginase II activity was found in a suspension of proximal tubules by measuring the amounts of urea and L-ornithine produced. A fraction of this L-ornithine was further partially metabolized through the intramitochondrial ornithine aminotransferase pathway, leading to changes in L-glutamate, glucose, L-alanine, and ammonia metabolism without L-proline accumulation. Medullary thick ascending limbs expressed a very low arginase activity, whereas papillary collecting ducts did not. In conclusion, the dog kidney produces L-arginine. Part of this L-arginine is further catabolized by arginase II, suggesting that its physiological role was to produce L-ornithine for the body.
Collapse
Affiliation(s)
- Olivier Levillain
- Université Claude Bernard Lyon 1, Laboratoire de Physiopathologie Métabolique et Rénale, Institut National de la Santé et de la Recherche Médicale (INSERM), 69372 Lyon Cedex 08, France.
| | | | | | | | | |
Collapse
|
33
|
Cristofori P, Zanetti E, Fregona D, Piaia A, Trevisan A. Renal proximal tubule segment-specific nephrotoxicity: an overview on biomarkers and histopathology. Toxicol Pathol 2007; 35:270-5. [PMID: 17366321 DOI: 10.1080/01926230601187430] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The correspondence between histopathological findings and segment-specific biomarkers was investigated in rats treated with segment-specific nephrotoxicants. Male Wistar rats were treated with a single injection of K2Cr2O7 (25 mg/kg s.c. in saline), cis-Pt (10 mg/kg i.p. in buffered MSO) or HCBD (100 mg/kg i.p. in corn oil). Twenty-four and 48 hours after treatment, the rats were sacrificed and the kidneys were drawn for histopathological and biochemical evaluation, i.e., GS activity in renal cortex and PAH uptake in renal cortical slices. Histopathological findings show that cis-Pt and HCBD cause diffuse necrosis of S3 segment of proximal tubules in the outer stripe of outer medulla, respectively. On the contrary, K2Cr2O7 damages exclusively S1-S2 segments, inducing vacuolization at 24 hr and diffuse necrosis at 48 hr after treatment. GS activity in renal tissue is significantly decreased after HCBD and cis-Pt, but not K2Cr2O7 treatment. In contrast, PAH uptake is significantly reduced by K2Cr2O7, but not by cis-Pt or HCBD treatment (even if HCBD causes a slight decrease 48 hr after treatment). The evidence of this study confirms the high specificity of GS activity as marker of S3 segment injury, that PAH uptake is prevalently active in the S1-S2 segments, and that there is complete correspondence among segment-specific nephrotoxicants, biomarkers of segment-specific damage, and histopathological findings.
Collapse
|
34
|
Levillain O, Ventura G, Déchaud H, Hobeika M, Meseguer A, Moinard C, Cynober L. Sex-differential expression of ornithine aminotransferase in the mouse kidney. Am J Physiol Renal Physiol 2007; 292:F1016-27. [PMID: 17341717 DOI: 10.1152/ajprenal.00408.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mouse kidney expresses the gene of ornithine aminotransferase (Oat). Previous works suggest that Oat is differentially expressed in female and male mouse kidney (Alonso E, Rubio V. Biochem J 259: 131-138, 1989; Levillain O, Diaz JJ, Blanchard O, Dechaud H. Endocrinology 146: 950-959, 2005; Manteuffel-Cymborowska M, Chmurzynska W, Peska M, Grzelakowska-Sztabert B. Int J Biochem Cell Biol 27: 287-295, 1995; Natesan S, Reddy SR. Comp Biochem Physiol B Biochem Mol Biol 130: 585-595, 2001; Yu H, Yoo PK, Aguirre CC, Tsoa RW, Kern RM, Grody WW, Cederbaum SD, Iyer RK. J Histochem Cytochem 51: 1151-1160, 2003). This study was designed to provide a detailed description of the sexual dimorphism of Oat expression in the mouse kidney and to test the influence of sex hormones on its regulation. Experiments were performed on male and female Swiss OF1 mice during their postnatal development, at adulthood, and in orchidectomized and ovariectomized mice. Kidneys, dissected renal zones, and mitochondria were used to analyze OAT mRNA and protein levels and measure OAT activity. The results revealed that before puberty, Oat expression was similar between female and male kidneys whereas from puberty until adulthood Oat expression increased in the female kidney, becoming approximately 2.5-fold higher than in the male kidney. This sex-differential expression of Oat was associated with a sex-specific distribution of Oat along the corticopapillary axis and within the nephron. OAT was three- to fourfold more expressed in the female than the male cortex. In males, Oat was highly expressed in the medulla, mainly in the thick ascending limbs. Renal Oat distribution in orchidectomized mice resembled that in the females. Ovariectomy did not influence Oat expression. Sex differences are explained by the physiological increase in plasma testosterone in males. Expression of medium-chain acyl-CoA synthetase protein confirmed this finding. We report sexual dimorphism of Oat expression in the mouse kidney and show that Oat is naturally downregulated in the presence of testosterone.
Collapse
Affiliation(s)
- Olivier Levillain
- Université Claude Bernard Lyon I, Faculté de Médecine Lyon RTH Laennec, Laboratoire de Physiopathologie Métabolique et Rénale, Institut National de la Santé et de la Recherche Médicale (INSERM) U 499, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
35
|
Johnson DT, Harris RA, Blair PV, Balaban RS. Functional consequences of mitochondrial proteome heterogeneity. Am J Physiol Cell Physiol 2006; 292:C698-707. [PMID: 16971502 DOI: 10.1152/ajpcell.00109.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Potential functional consequences of the differences in protein distribution between the mitochondria of the rat liver, heart, brain, and kidney, as determined in the companion paper in this issue (Johnson DT, French S, Blair PV, You JS, Bemis KG, Wang M, Harris RA, and Balaban RS. The tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol Cell Physiol292: C689-C697, 2006), were analyzed using a canonical metabolic pathway approach as well as a functional domain homology analysis. These data were inserted into the Kyoto Encyclopedia of Genes and Genomes pathway framework to give global and metabolic pathway-specific information on the impact of the differential protein distribution on mitochondrial function. Custom pathway analysis was also performed using pathways limited to the mitochondrion. With the use of this approach, several well-known functional differences between these mitochondrial populations were confirmed. These included GABA metabolism in the brain, urea synthesis in the liver, and the domination of oxidative phosphorylation in the heart. By comparing relative protein amounts of mitochondria across tissues, a greater understanding of functional emphasis is possible as well as the nuclear "programming" required to enhance a given function within the mitochondria. For proteins determined to be mitochondrial and lacking a defined role functional domain BLAST analyses were performed. Several proteins associated with DNA structural modification and a novel CoA transferase were identified. A protein was also identified capable of catalyzing the first three steps of de novo pyrimidine synthesis. This analysis demonstrates that the distribution of nuclear encoded proteins significantly modifies the overall functional emphasis of the mitochondria to meet tissue-specific needs. These studies demonstrate the existence of mitochondrial biochemical functions that at present are poorly defined.
Collapse
Affiliation(s)
- D Thor Johnson
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr., Rm. B1D416, Bethesda, MD 20892-1061, USA.
| | | | | | | |
Collapse
|
36
|
Steppan J, Ryoo S, Schuleri KH, Gregg C, Hasan RK, White AR, Bugaj LJ, Khan M, Santhanam L, Nyhan D, Shoukas AA, Hare JM, Berkowitz DE. Arginase modulates myocardial contractility by a nitric oxide synthase 1-dependent mechanism. Proc Natl Acad Sci U S A 2006; 103:4759-64. [PMID: 16537391 PMCID: PMC1450243 DOI: 10.1073/pnas.0506589103] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Indexed: 12/14/2022] Open
Abstract
Cardiac myocytes contain two constitutive NO synthase (NOS) isoforms with distinct spatial locations, which allows for isoform-specific regulation. One regulatory mechanism for NOS is substrate (l-arginine) bioavailability. We tested the hypothesis that arginase (Arg), which metabolizes l-arginine, constrains NOS activity in the cardiac myocyte in an isoform-specific manner. Arg activity was detected in both rat heart homogenates and isolated myocytes. Although both Arg I and II mRNA and protein were present in whole heart, Arg II alone was found in isolated myocytes. Arg inhibition with S-(2-boronoethyl)-l-cysteine (BEC) augmented Ca(2+)-dependent NOS activity and NO production in myocytes, which did not depend on extracellular l-arginine. Arg II coimmunoprecipited with NOS1 but not NOS3. Isolation of myocyte mitochondrial fractions in combination with immuno-electron microscopy demonstrates that Arg II is confined primarily to the mitochondria. Because NOS1 positively modulates myocardial contractility, we determined whether Arg inhibition would increase basal myocardial contractility. Consistent with our hypothesis, Arg inhibition increased basal contractility in isolated myocytes by a NOS-dependent mechanism. Both the Arg inhibitors N-hydroxy-nor-l-arginine and BEC dose-dependently increased basal contractility in rat myocytes, which was inhibited by both nonspecific and NOS1-specific NOS inhibitors N(G)-nitro-l-arginine methyl ester and S-methyl-l-thiocitrulline, respectively. Also, BEC increased contractility in isolated myocytes from WT and NOS3 but not NOS1 knockout mice. We conclude that mitochondrial Arg II negatively regulates NOS1 activity, most likely by limiting substrate availability in its microdomain. These findings have implications for therapy in pathophysiologic states such as aging and heart failure in which myocardial NO signaling is disrupted.
Collapse
Affiliation(s)
- Jochen Steppan
- Departments of Anesthesiology and Critical Care Medicine, Medicine, and Biomedical Engineering, and Institute for Cell Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Sungwoo Ryoo
- Departments of Anesthesiology and Critical Care Medicine, Medicine, and Biomedical Engineering, and Institute for Cell Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Karl H. Schuleri
- Departments of Anesthesiology and Critical Care Medicine, Medicine, and Biomedical Engineering, and Institute for Cell Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Chris Gregg
- Departments of Anesthesiology and Critical Care Medicine, Medicine, and Biomedical Engineering, and Institute for Cell Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Rani K. Hasan
- Departments of Anesthesiology and Critical Care Medicine, Medicine, and Biomedical Engineering, and Institute for Cell Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - A. Ron White
- Departments of Anesthesiology and Critical Care Medicine, Medicine, and Biomedical Engineering, and Institute for Cell Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Lukasz J. Bugaj
- Departments of Anesthesiology and Critical Care Medicine, Medicine, and Biomedical Engineering, and Institute for Cell Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Mehnaz Khan
- Departments of Anesthesiology and Critical Care Medicine, Medicine, and Biomedical Engineering, and Institute for Cell Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Lakshmi Santhanam
- Departments of Anesthesiology and Critical Care Medicine, Medicine, and Biomedical Engineering, and Institute for Cell Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Daniel Nyhan
- Departments of Anesthesiology and Critical Care Medicine, Medicine, and Biomedical Engineering, and Institute for Cell Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Artin A. Shoukas
- Departments of Anesthesiology and Critical Care Medicine, Medicine, and Biomedical Engineering, and Institute for Cell Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Joshua M. Hare
- Departments of Anesthesiology and Critical Care Medicine, Medicine, and Biomedical Engineering, and Institute for Cell Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Dan E. Berkowitz
- Departments of Anesthesiology and Critical Care Medicine, Medicine, and Biomedical Engineering, and Institute for Cell Engineering, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| |
Collapse
|
37
|
Levillain O, Balvay S, Peyrol S. Mitochondrial expression of arginase II in male and female rat inner medullary collecting ducts. J Histochem Cytochem 2005; 53:533-41. [PMID: 15805427 DOI: 10.1369/jhc.4a6489.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microdissected rat proximal straight tubules (PST) and inner medullary collecting ducts (IMCD) highly produce urea from l-arginine, supporting the expression of the mitochondrial arginase II. However, IMCD contain a very low density of mitochondria compared with PST. Recently, arginase II has been localized by immunohistochemistry in rat PST but not IMCD. This study was designed to verify whether rat IMCD express arginase II and to identify its subcellular localization. We developed an antibody raised against arginase II that allowed the detection of a band of 38 kDa corresponding to arginase II on immunoblots. In male and female rat kidneys, Western blot analyses revealed that arginase II was highly expressed in the inner medulla (IM), the outer stripe of the outer medulla (osOM), and the deep cortex. Immunocytochemistry demonstrated that arginase II was homogeneously expressed in IMCD. Proteins of the cytosolic and mitochondrial fractions extracted from osOM and IM and analyzed by Western blot showed that 86% of arginase II was associated with mitochondria. The molecular weight of arginase II was similar in the cytosolic and mitochondrial fractions. Immunoelectron microscopy confirmed the presence of arginase II in the mitochondria of IMCD. In conclusion, arginase II is expressed in mitochondria of male and female rat IMCD.
Collapse
Affiliation(s)
- Olivier Levillain
- Université Claude Bernard, Faculté de Médecine Lyon R.T.H. Laennec, Laboratoire de Physiopathologie Métabolique et Rénale, INSERM U 499, 7, rue G. Paradin, 69372 Lyon Cedex 08, France.
| | | | | |
Collapse
|