1
|
Martins Freire C, King NR, Dzieciatkowska M, Stephenson D, Moura PL, Dobbe JGG, Streekstra GJ, D'Alessandro A, Toye AM, Satchwell TJ. Complete absence of GLUT1 does not impair human terminal erythroid differentiation. Blood Adv 2024; 8:5166-5178. [PMID: 38916993 PMCID: PMC11470287 DOI: 10.1182/bloodadvances.2024012743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
ABSTRACT The glucose transporter 1 (GLUT1) is 1 of the most abundant proteins within the erythrocyte membrane and is required for glucose and dehydroascorbic acid (vitamin C precursor) transport. It is widely recognized as a key protein for red cell structure, function, and metabolism. Previous reports highlighted the importance of GLUT1 activity within these uniquely glycolysis-dependent cells, in particular for increasing antioxidant capacity needed to avoid irreversible damage from oxidative stress in humans. However, studies of glucose transporter roles in erythroid cells are complicated by species-specific differences between humans and mice. Here, using CRISPR-mediated gene editing of immortalized erythroblasts and adult CD34+ hematopoietic progenitor cells, we generate committed human erythroid cells completely deficient in expression of GLUT1. We show that absence of GLUT1 does not impede human erythroblast proliferation, differentiation, or enucleation. This work demonstrates, to our knowledge, for the first time, generation of enucleated human reticulocytes lacking GLUT1. The GLUT1-deficient reticulocytes possess no tangible alterations to membrane composition or deformability in reticulocytes. Metabolomic analyses of GLUT1-deficient reticulocytes reveal hallmarks of reduced glucose import, downregulated metabolic processes and upregulated AMP-activated protein kinase signaling, alongside alterations in antioxidant metabolism, resulting in increased osmotic fragility and metabolic shifts indicative of higher oxidant stress. Despite detectable metabolic changes in GLUT1-deficient reticulocytes, the absence of developmental phenotype, detectable proteomic compensation, or impaired deformability comprehensively alters our understanding of the role of GLUT1 in red blood cell structure, function, and metabolism. It also provides cell biological evidence supporting clinical consensus that reduced GLUT1 expression does not cause anemia in GLUT1-deficiency syndrome.
Collapse
Affiliation(s)
| | - Nadine R. King
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Pedro L. Moura
- Department of Medicine, Center for Haematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Johannes G. G. Dobbe
- Biomedical Engineering and Physics, University of Amsterdam, Amsterdam UMC location, Amsterdam, The Netherlands
| | - Geert J. Streekstra
- Biomedical Engineering and Physics, University of Amsterdam, Amsterdam UMC location, Amsterdam, The Netherlands
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
2
|
Galindo C, Livshits L, Tarabeih L, Barshtein G, Einav S, Feldman Y. The effect of ionic redistributions on the microwave dielectric response of cytosol water upon glucose uptake. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024:10.1007/s00249-024-01708-w. [PMID: 38647542 DOI: 10.1007/s00249-024-01708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
The sensitivity of cytosol water's microwave dielectric (MD) response to D-glucose uptake in Red Blood Cells (RBCs) allows the detailed study of cellular mechanisms as a function of controlled exposures to glucose and other related analytes like electrolytes. However, the underlying mechanism behind the sensitivity to glucose exposure remains a topic of debate. In this research, we utilize MDS within the frequency range of 0.5-40 GHz to explore how ionic redistributions within the cell impact the microwave dielectric characteristics associated with D-glucose uptake in RBC suspensions. Specifically, we compare glucose uptake in RBCs exposed to the physiological concentration of Ca2+ vs. Ca-free conditions. We also investigate the potential involvement of Na+/K+ redistribution in glucose-mediated dielectric response by studying RBCs treated with a specific Na+/K+ pump inhibitor, ouabain. We present some insights into the MD response of cytosol water when exposed to Ca2+ in the absence of D-glucose. The findings from this study confirm that ion-induced alterations in bound/bulk water balance do not affect the MD response of cytosol water during glucose uptake.
Collapse
Affiliation(s)
- Cindy Galindo
- Institute of Applied Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Leonid Livshits
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Lama Tarabeih
- Institute of Applied Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharon Einav
- The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuri Feldman
- Institute of Applied Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
4
|
Freire CM, King NR, Dzieciatkowska M, Stephenson D, Moura PL, Dobbe JGG, Streekstra GJ, D'Alessandro A, Toye AM, Satchwell TJ. Complete absence of GLUT1 does not impair human terminal erythroid differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574621. [PMID: 38293086 PMCID: PMC10827085 DOI: 10.1101/2024.01.10.574621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The Glucose transporter 1 (GLUT1) is one of the most abundant proteins within the erythrocyte membrane and is required for glucose and dehydroascorbic acid (Vitamin C precursor) transport. It is widely recognized as a key protein for red cell structure, function, and metabolism. Previous reports highlighted the importance of GLUT1 activity within these uniquely glycolysis-dependent cells, in particular for increasing antioxidant capacity needed to avoid irreversible damage from oxidative stress in humans. However, studies of glucose transporter roles in erythroid cells are complicated by species-specific differences between humans and mice. Here, using CRISPR-mediated gene editing of immortalized erythroblasts and adult CD34+ hematopoietic progenitor cells, we generate committed human erythroid cells completely deficient in expression of GLUT1. We show that absence of GLUT1 does not impede human erythroblast proliferation, differentiation, or enucleation. This work demonstrates for the first-time generation of enucleated human reticulocytes lacking GLUT1. The GLUT1-deficient reticulocytes possess no tangible alterations to membrane composition or deformability in reticulocytes. Metabolomic analyses of GLUT1-deficient reticulocytes reveal hallmarks of reduced glucose import, downregulated metabolic processes and upregulated AMPK-signalling, alongside alterations in antioxidant metabolism, resulting in increased osmotic fragility and metabolic shifts indicative of higher oxidant stress. Despite detectable metabolic changes in GLUT1 deficient reticulocytes, the absence of developmental phenotype, detectable proteomic compensation or impaired deformability comprehensively alters our understanding of the role of GLUT1 in red blood cell structure, function and metabolism. It also provides cell biological evidence supporting clinical consensus that reduced GLUT1 expression does not cause anaemia in GLUT1 deficiency syndrome.
Collapse
Affiliation(s)
- C M Freire
- School of Biochemistry, University of Bristol, Bristol, UK
| | - N R King
- School of Biochemistry, University of Bristol, Bristol, UK
| | - M Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - D Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - P L Moura
- Center for Haematology and Regenerative Medicine, Department of Medicine (MedH), Karolinska Institutet, Huddinge, Sweden
| | - J G G Dobbe
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - G J Streekstra
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - A D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - A M Toye
- School of Biochemistry, University of Bristol, Bristol, UK
| | - T J Satchwell
- School of Biochemistry, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Thomas N, Schröder NH, Nowak MK, Wollnitzke P, Ghaderi S, von Wnuck Lipinski K, Wille A, Deister-Jonas J, Vogt J, Gräler MH, Dannenberg L, Buschmann T, Westhoff P, Polzin A, Kelm M, Keul P, Weske S, Levkau B. Sphingosine-1-phosphate suppresses GLUT activity through PP2A and counteracts hyperglycemia in diabetic red blood cells. Nat Commun 2023; 14:8329. [PMID: 38097610 PMCID: PMC10721873 DOI: 10.1038/s41467-023-44109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Red blood cells (RBC) are the major carriers of sphingosine-1-phosphate (S1P) in blood. Here we show that variations in RBC S1P content achieved by altering S1P synthesis and transport by genetic and pharmacological means regulate glucose uptake and metabolic flux. This is due to S1P-mediated activation of the catalytic protein phosphatase 2 (PP2A) subunit leading to reduction of cell-surface glucose transporters (GLUTs). The mechanism dynamically responds to metabolic cues from the environment by increasing S1P synthesis, enhancing PP2A activity, reducing GLUT phosphorylation and localization, and diminishing glucose uptake in RBC from diabetic mice and humans. Functionally, it protects RBC against lipid peroxidation in hyperglycemia and diabetes by activating the pentose phosphate pathway. Proof of concept is provided by the resistance of mice lacking the S1P exporter MFSD2B to diabetes-induced HbA1c elevation and thiobarbituric acid reactive substances (TBARS) generation in diabetic RBC. This mechanism responds to pharmacological S1P analogues such as fingolimod and may be functional in other insulin-independent tissues making it a promising therapeutic target.
Collapse
Affiliation(s)
- Nadine Thomas
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Nathalie H Schröder
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Melissa K Nowak
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Shahrooz Ghaderi
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | | | - Annalena Wille
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | | | - Jens Vogt
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Lisa Dannenberg
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tobias Buschmann
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Amin Polzin
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Petra Keul
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Sarah Weske
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany.
| |
Collapse
|
6
|
Nagy Z, Poór VS, Fülöp N, Chauhan D, Miseta A, Nagy T. Michaelis-Menten kinetic modeling of hemoglobin A 1c status facilitates personalized glycemic control. Clin Chim Acta 2023; 548:117526. [PMID: 37633320 DOI: 10.1016/j.cca.2023.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
INTRODUCTION Discrepancy between measured HbA1c and HbA1c calculated from plasma glucose is associated with higher risk for diabetic complications. However, quantification of this difference is inaccurate due to the imperfect linear conversion models. We propose to introduce a mathematical formula that correlates with the observational data and supports individualized glycemic control. METHODS We analysed 175,437 simultaneous plasma glucose and HbA1c records stored in our laboratory database. Employing the Michaelis-Menten (MM) equation, we compared the calculated HbA1c levels to the measured HbA1c levels. Data from patients with multiple records were used to establish the patients' glycemic status and to assess the predictive power of our MM model. RESULTS HbA1c levels calculated with the MM equation closely matched the population's average HbA1c levels. The Michaelis constant (Km) had a negative correlation with HbA1c (r2 = 0.403). Using personalized Km values in the MM equation, 85.1% of HbA1c predictions were within 20% error (ADAG calculation: 78.4%). MM prediction also performed better in predicting pathologic HbA1c levels (0.904 AUC vs. 0.849 AUC for ADAG). CONCLUSION MM equation is an improvement over linear models and could be readily employed in routine diabetes management. Km is a reliable and quantifiable marker to characterize variations in glucose tolerance.
Collapse
Affiliation(s)
- Zsófia Nagy
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Viktor S Poór
- Department of Forensic Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Deepanjali Chauhan
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamas Nagy
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
7
|
Ghodsi M, Cloos AS, Mozaheb N, Van Der Smissen P, Henriet P, Pierreux CE, Cellier N, Mingeot-Leclercq MP, Najdovski T, Tyteca D. Variability of extracellular vesicle release during storage of red blood cell concentrates is associated with differential membrane alterations, including loss of cholesterol-enriched domains. Front Physiol 2023; 14:1205493. [PMID: 37408586 PMCID: PMC10318158 DOI: 10.3389/fphys.2023.1205493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Transfusion of red blood cell concentrates is the most common medical procedure to treat anaemia. However, their storage is associated with development of storage lesions, including the release of extracellular vesicles. These vesicles affect in vivo viability and functionality of transfused red blood cells and appear responsible for adverse post-transfusional complications. However, the biogenesis and release mechanisms are not fully understood. We here addressed this issue by comparing the kinetics and extents of extracellular vesicle release as well as red blood cell metabolic, oxidative and membrane alterations upon storage in 38 concentrates. We showed that extracellular vesicle abundance increased exponentially during storage. The 38 concentrates contained on average 7 × 1012 extracellular vesicles at 6 weeks (w) but displayed a ∼40-fold variability. These concentrates were subsequently classified into 3 cohorts based on their vesiculation rate. The variability in extracellular vesicle release was not associated with a differential red blood cell ATP content or with increased oxidative stress (in the form of reactive oxygen species, methaemoglobin and band3 integrity) but rather with red blood cell membrane modifications, i.e., cytoskeleton membrane occupancy, lateral heterogeneity in lipid domains and transversal asymmetry. Indeed, no changes were noticed in the low vesiculation group until 6w while the medium and the high vesiculation groups exhibited a decrease in spectrin membrane occupancy between 3 and 6w and an increase of sphingomyelin-enriched domain abundance from 5w and of phosphatidylserine surface exposure from 8w. Moreover, each vesiculation group showed a decrease of cholesterol-enriched domains associated with a cholesterol content increase in extracellular vesicles but at different storage time points. This observation suggested that cholesterol-enriched domains could represent a starting point for vesiculation. Altogether, our data reveal for the first time that the differential extent of extracellular vesicle release in red blood cell concentrates did not simply result from preparation method, storage conditions or technical issues but was linked to membrane alterations.
Collapse
Affiliation(s)
- Marine Ghodsi
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Anne-Sophie Cloos
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Negar Mozaheb
- Cellular and Molecular Pharmacology Unit, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Patrick Van Der Smissen
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Patrick Henriet
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Christophe E. Pierreux
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | | | - Tomé Najdovski
- Service du Sang, Croix-Rouge de Belgique, Suarlée, Belgium
| | - Donatienne Tyteca
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
8
|
Elucidation of the Role of FAM210B in Mitochondrial Metabolism and Erythropoiesis. Mol Cell Biol 2022; 42:e0014322. [PMID: 36374104 PMCID: PMC9753634 DOI: 10.1128/mcb.00143-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mitochondria play essential and specific roles during erythroid differentiation. Recently, FAM210B, encoding a mitochondrial inner membrane protein, has been identified as a novel target of GATA-1, as well as an erythropoietin-inducible gene. While FAM210B protein is involved in regulate mitochondrial metabolism and heme biosynthesis, its detailed function remains unknown. Here, we generated both knockout and knockdown of endogenous FAM210B in human induced pluripotent stem-derived erythroid progenitor (HiDEP) cells using CRISPR/Cas9 methodology. Intriguingly, erythroid differentiation was more pronounced in the FAM210B-depleted cells, and this resulted in increased frequency of orthochromatic erythroblasts and decreased frequencies of basophilic/polychromatic erythroblasts. Comprehensive metabolite analysis and functional analysis indicated that oxygen consumption rates and the NAD (NAD+)/NADH ratio were significantly decreased, while lactate production was significantly increased in FAM210B deletion HiDEP cells, indicating involvement of FAM210B in mitochondrial energy metabolism in erythroblasts. Finally, we purified FAM210B-interacting protein from K562 cells that stably expressed His/biotin-tagged FAM210B. Mass spectrometry analysis of the His/biotin-purified material indicated interactions with multiple subunits of mitochondrial ATP synthases, such as subunit alpha (ATP5A) and beta (ATP5B). Our results suggested that FAM210B contributes prominently to erythroid differentiation by regulating mitochondrial energy metabolism. Our results provide insights into the pathophysiology of dysregulated hematopoiesis.
Collapse
|
9
|
Galindo C, Latypova L, Barshtein G, Livshits L, Arbell D, Einav S, Feldman Y. The inhibition of glucose uptake to erythrocytes: microwave dielectric response. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:353-363. [PMID: 35532810 DOI: 10.1007/s00249-022-01602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Dielectric spectroscopy has been used in the study and development of non-invasive glucose monitoring (NIGM) sensors, including the range of microwave frequencies. Dielectric relaxation of red blood cell (RBC) cytosolic water in the microwave frequency band has been shown to be sensitive to variations in the glucose concentration of RBC suspensions. It has been hypothesized that this sensitivity stems from the utilization of D-glucose by RBCs. To verify this proposition, RBCs were pretreated with inhibitors of D-glucose uptake (cytochalasin B and forskolin). Then their suspensions were exposed to different D-glucose concentrations as measured by microwave dielectric spectroscopy (MDS) in the 500 MHz-40 GHz frequency band. After incubation of RBCs with either inhibitor, the dielectric response of water in the cytoplasm, and specifically its relaxation time, demonstrated minimal sensitivity to the change of D-glucose concentration in the medium. This result allows us to conclude that the sensitivity of MDS to glucose uptake is associated with variations in the balance of bulk and bound RBC cytosolic water due to intracellular D-glucose metabolism, verifying the correctness of the initial hypothesis. These findings represent a further argument to establish the dielectric response of water as a marker of glucose variation in RBCs.
Collapse
Affiliation(s)
- Cindy Galindo
- Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Larisa Latypova
- Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Physics, Kazan Federal University, 18 Kremlevskaya St., 420008, Kazan, Russia
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Leonid Livshits
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Dan Arbell
- Department of Pediatric Surgery, Hadassah University Hospital, Jerusalem, Israel
| | - Sharon Einav
- General Intensive Care Unit, Shaare Zedek Medical Center, Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Yuri Feldman
- Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
10
|
Kaumeyer BA, Fidai SS, Thakral B, Wang SA, Arber DA, Cheng JX, Gurbuxani S, Venkataraman G. GLUT1 Immunohistochemistry Is a Highly Sensitive and Relatively Specific Marker for Erythroid Lineage in Benign and Malignant Hematopoietic Tissues. Am J Clin Pathol 2022; 158:228-234. [PMID: 35311938 DOI: 10.1093/ajcp/aqac034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Glucose transporter 1 (GLUT1), a glucose transporter, is an abundant protein in erythrocytes with expression beginning early in erythropoiesis. We sought to evaluate the utility of GLUT1 immunohistochemistry (IHC) as a diagnostic marker for identifying erythroid differentiation in hematopoietic tissues, including neoplastic erythroid proliferations. METHODS A variety of benign and neoplastic bone marrow biopsy specimens containing variable proportions of erythroid precursors were selected (n = 46, including 36 cases of leukemia). GLUT1 IHC was performed using a commercially available polyclonal antibody. Each case was evaluated for staining of erythroid precursors, nonerythroid hematopoietic cells, and blasts. A GATA1/GLUT1 double stain was performed on one case to confirm coexpression of GLUT1 on early erythroid precursors. Staining was compared with other erythroid markers, including glycophorin C. RESULTS GLUT1 demonstrated strong membranous staining in erythroid precursors of all cases, which was restricted largely to the erythroid lineage. Of the 36 leukemia cases, all 6 cases of pure erythroid leukemia and both cases of therapy-related acute myeloid leukemia with erythroid differentiation showed positive GLUT1 staining in blasts. Otherwise, only lymphoblasts in B-lymphoblastic leukemia showed weak to moderate granular cytoplasmic staining (four of five cases). CONCLUSIONS GLUT1 IHC is a highly sensitive and relatively specific marker for erythroid lineage in benign and neoplastic bone marrow biopsy specimens.
Collapse
Affiliation(s)
| | - Shiraz S Fidai
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Department of Pathology and Laboratory Medicine, John H. Stroger Hospital of Cook County, Chicago, IL, USA
| | - Beenu Thakral
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Jason X Cheng
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
11
|
Song Y, Jensen MD. Red blood cell triglycerides - a unique pool that incorporates plasma free fatty acids and relates to metabolic health. J Lipid Res 2021; 62:100131. [PMID: 34619142 PMCID: PMC8566996 DOI: 10.1016/j.jlr.2021.100131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023] Open
Abstract
Most research into red blood cell (RBC) lipids focuses on membrane phospholipids and their relationships to metabolic conditions and diet. Triglycerides (TGs) exist in most cells; the TG-fatty acids serve as readily available fuel for oxidative phosphorylation. Because RBCs lack mitochondria, they would not be expected to store fatty acids in TG. We followed up on a previous in vitro study that found FFA can be incorporated into RBC-TG by testing whether intravenously infused [U-13C]palmitate could be detected in RBC-TG. We also quantified RBC-TG fatty acid concentrations and profiles as they relate to plasma FFA and lipid concentrations. We found that 1) RBC-TG concentrations measured by glycerol and LC/MS were correlated (r = 0.77; P < 0.001) and averaged <50 nmol/ml RBC; 2) RBC-TG concentrations were stable over 18 h; 3) [U-13C]palmitate was detectable in RBC-TG from half the participants; 4) RBC-TGs were enriched in saturated fatty acids and depleted in unsaturated fatty acid compared with plasma FFA and previously reported RBC membrane phospholipids; 5) RBC-TG fatty acid profiles differed significantly between obese and nonobese adults; 6) weight loss altered the RBC-TG fatty acid profile in the obese group; and 7) the RBC-TG fatty acid composition correlated with plasma lipid concentrations. This is the first report showing that plasma FFA contributes to RBC-TG in vivo, in humans, and that the RBC-TG fatty acid profile is related to metabolic health. The storage of saturated fatty acids in RBC-TG stands in stark contrast to the highly unsaturated profile reported in RBC membrane phospholipids.
Collapse
Affiliation(s)
- Yilin Song
- Division of Endocrinology, Diabetes and Metabolism, Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905, US
| | - Michael D Jensen
- Division of Endocrinology, Diabetes and Metabolism, Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905, US.
| |
Collapse
|
12
|
Westman EC. Type 2 Diabetes Mellitus: A Pathophysiologic Perspective. Front Nutr 2021; 8:707371. [PMID: 34447776 PMCID: PMC8384107 DOI: 10.3389/fnut.2021.707371] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is characterized by chronically elevated blood glucose (hyperglycemia) and elevated blood insulin (hyperinsulinemia). When the blood glucose concentration is 100 milligrams/deciliter the bloodstream of an average adult contains about 5–10 grams of glucose. Carbohydrate-restricted diets have been used effectively to treat obesity and T2DM for over 100 years, and their effectiveness may simply be due to lowering the dietary contribution to glucose and insulin levels, which then leads to improvements in hyperglycemia and hyperinsulinemia. Treatments for T2DM that lead to improvements in glycemic control and reductions in blood insulin levels are sensible based on this pathophysiologic perspective. In this article, a pathophysiological argument for using carbohydrate restriction to treat T2DM will be made.
Collapse
Affiliation(s)
- Eric C Westman
- Department of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Livshits L, Barshtein G, Arbell D, Gural A, Levin C, Guizouarn H. Do We Store Packed Red Blood Cells under "Quasi-Diabetic" Conditions? Biomolecules 2021; 11:biom11070992. [PMID: 34356616 PMCID: PMC8301930 DOI: 10.3390/biom11070992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common therapeutic procedures in modern medicine. Although frequently lifesaving, it often has deleterious side effects. RBC quality is one of the critical factors for transfusion efficacy and safety. The role of various factors in the cells’ ability to maintain their functionality during storage is widely discussed in professional literature. Thus, the extra- and intracellular factors inducing an accelerated RBC aging need to be identified and therapeutically modified. Despite the extensively studied in vivo effect of chronic hyperglycemia on RBC hemodynamic and metabolic properties, as well as on their lifespan, only limited attention has been directed at the high sugar concentration in RBCs storage media, a possible cause of damage to red blood cells. This mini-review aims to compare the biophysical and biochemical changes observed in the red blood cells during cold storage and in patients with non-insulin-dependent diabetes mellitus (NIDDM). Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as “quasi-diabetic”. Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis, suitable preventive care for the transfused patients should be considered. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high sugar concentration in a storage medium and a deterioration in cells’ functional properties during storage.
Collapse
Affiliation(s)
- Leonid Livshits
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, CH-8057 Zurich, Switzerland;
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
- Correspondence: ; Tel.: +972-2-6758309
| | - Dan Arbell
- Pediatric Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel;
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hélène Guizouarn
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, Inserm, 28 Av. Valrose, 06100 Nice, France;
| |
Collapse
|
14
|
Karayel Ö, Xu P, Bludau I, Velan Bhoopalan S, Yao Y, Ana Rita FC, Santos A, Schulman BA, Alpi AF, Weiss MJ, Mann M. Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis. Mol Syst Biol 2020; 16:e9813. [PMID: 33259127 PMCID: PMC7706838 DOI: 10.15252/msb.20209813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Human erythropoiesis is an exquisitely controlled multistep developmental process, and its dysregulation leads to numerous human diseases. Transcriptome and epigenome studies provided insights into system-wide regulation, but we currently lack a global mechanistic view on the dynamics of proteome and post-translational regulation coordinating erythroid maturation. We established a mass spectrometry (MS)-based proteomics workflow to quantify and dynamically track 7,400 proteins and 27,000 phosphorylation sites of five distinct maturation stages of in vitro reconstituted erythropoiesis of CD34+ HSPCs. Our data reveal developmental regulation through drastic proteome remodeling across stages of erythroid maturation encompassing most protein classes. This includes various orchestrated changes in solute carriers indicating adjustments to altered metabolic requirements. To define the distinct proteome of each maturation stage, we developed a computational deconvolution approach which revealed stage-specific marker proteins. The dynamic phosphoproteomes combined with a kinome-targeted CRISPR/Cas9 screen uncovered coordinated networks of erythropoietic kinases and pinpointed downregulation of c-Kit/MAPK signaling axis as key driver of maturation. Our system-wide view establishes the functional dynamic of complex phosphosignaling networks and regulation through proteome remodeling in erythropoiesis.
Collapse
Affiliation(s)
- Özge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Peng Xu
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Isabell Bludau
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Yu Yao
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Freitas Colaco Ana Rita
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Brenda A Schulman
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Arno F Alpi
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mitchell J Weiss
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
15
|
A special issue on glucose transporters in health and disease. Pflugers Arch 2020; 472:1107-1109. [PMID: 32780191 DOI: 10.1007/s00424-020-02442-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 01/08/2023]
|
16
|
Kaur G, Javed W, Ponomarenko O, Shekh K, Swanlund DP, Zhou JR, Summers KL, Casini A, Wenzel MN, Casey JR, Cordat E, Pickering IJ, George GN, Leslie EM. Human red blood cell uptake and sequestration of arsenite and selenite: Evidence of seleno-bis(S-glutathionyl) arsinium ion formation in human cells. Biochem Pharmacol 2020; 180:114141. [PMID: 32652143 DOI: 10.1016/j.bcp.2020.114141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023]
Abstract
Over 200 million people worldwide are exposed to the human carcinogen, arsenic, in contaminated drinking water. In laboratory animals, arsenic and the essential trace element, selenium, can undergo mutual detoxification through the formation of the seleno-bis(S-glutathionyl) arsinium ion [(GS)2AsSe]-, which undergoes biliary and fecal elimination. [(GS)2AsSe]-, formed in animal red blood cells (RBCs), sequesters arsenic and selenium, and slows the distribution of both compounds to peripheral tissues susceptible to toxic effects. In human RBCs, the influence of arsenic on selenium accumulation, and vice versa, is largely unknown. The study aims were to characterize arsenite (AsIII) and selenite (SeIV) uptake by human RBCs, to determine if SeIV and AsIII increase the respective accumulation of the other in human RBCs, and ultimately to determine if this occurs through the formation and sequestration of [(GS)2AsSe]-. 75SeIV accumulation was temperature and Cl--dependent, inhibited by 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid (H2DIDS) (IC50 1 ± 0.2 µM), and approached saturation at 30 µM, suggesting uptake is mediated by the erythrocyte anion-exchanger 1 (AE1 or Band 3, gene SLC4A1). HEK293 cells overexpressing AE1 showed concentration-dependent 75SeIV uptake. 73AsIII uptake by human RBCs was temperature-dependent, partly reduced by aquaglyceroporin 3 inhibitors, and not saturated. AsIII increased 75SeIV accumulation (in the presence of albumin) and SeIV increased 73AsIII accumulation in human RBCs. Near-edge X-ray absorption spectroscopy revealed the formation of [(GS)2AsSe]- in human RBCs exposed to both AsIII and SeIV. The sequestration of [(GS)2AsSe]- in human RBCs potentially slows arsenic distribution to susceptible tissues and could reduce arsenic-induced disease.
Collapse
Affiliation(s)
- Gurnit Kaur
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada
| | - Warda Javed
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Olena Ponomarenko
- Department of Geological Sciences, University of Saskatchewan, Canada
| | - Kamran Shekh
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Diane P Swanlund
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Janet R Zhou
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada
| | - Kelly L Summers
- Department of Geological Sciences, University of Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Canada
| | - Angela Casini
- School of Chemistry, Cardiff University, UK; Department of Chemistry, Technical University of Munich, Germany
| | | | - Joseph R Casey
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada; Department of Biochemistry, University of Alberta, Canada
| | - Emmanuelle Cordat
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Ingrid J Pickering
- Department of Geological Sciences, University of Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Canada
| | - Graham N George
- Department of Geological Sciences, University of Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Canada
| | - Elaine M Leslie
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada.
| |
Collapse
|