1
|
Youssef WA, Feil R, Saint-Sorny M, Johnson X, Lunn JE, Grimm B, Brzezowski P. Singlet oxygen-induced signalling depends on the metabolic status of the Chlamydomonas reinhardtii cell. Commun Biol 2023; 6:529. [PMID: 37193883 DOI: 10.1038/s42003-023-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Using a mutant screen, we identified trehalose 6-phosphate phosphatase 1 (TSPP1) as a functional enzyme dephosphorylating trehalose 6-phosphate (Tre6P) to trehalose in Chlamydomonas reinhardtii. The tspp1 knock-out results in reprogramming of the cell metabolism via altered transcriptome. As a secondary effect, tspp1 also shows impairment in 1O2-induced chloroplast retrograde signalling. From transcriptomic analysis and metabolite profiling, we conclude that accumulation or deficiency of certain metabolites directly affect 1O2-signalling. 1O2-inducible GLUTATHIONE PEROXIDASE 5 (GPX5) gene expression is suppressed by increased content of fumarate and 2-oxoglutarate, intermediates in the tricarboxylic acid cycle (TCA cycle) in mitochondria and dicarboxylate metabolism in the cytosol, but also myo-inositol, involved in inositol phosphate metabolism and phosphatidylinositol signalling system. Application of another TCA cycle intermediate, aconitate, recovers 1O2-signalling and GPX5 expression in otherwise aconitate-deficient tspp1. Genes encoding known essential components of chloroplast-to-nucleus 1O2-signalling, PSBP2, MBS, and SAK1, show decreased transcript levels in tspp1, which also can be rescued by exogenous application of aconitate. We demonstrate that chloroplast retrograde signalling involving 1O2 depends on mitochondrial and cytosolic processes and that the metabolic status of the cell determines the response to 1O2.
Collapse
Affiliation(s)
- Waeil Al Youssef
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Maureen Saint-Sorny
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Xenie Johnson
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Bernhard Grimm
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Pawel Brzezowski
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
2
|
Li Y, Jian Y, Mao Y, Meng F, Shao Z, Wang T, Zheng J, Wang Q, Liu L. "Omics" insights into plastid behavior toward improved carotenoid accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1001756. [PMID: 36275568 PMCID: PMC9583013 DOI: 10.3389/fpls.2022.1001756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Plastids are a group of diverse organelles with conserved carotenoids synthesizing and sequestering functions in plants. They optimize the carotenoid composition and content in response to developmental transitions and environmental stimuli. In this review, we describe the turbulence and reforming of transcripts, proteins, and metabolic pathways for carotenoid metabolism and storage in various plastid types upon organogenesis and external influences, which have been studied using approaches including genomics, transcriptomics, proteomics, and metabonomics. Meanwhile, the coordination of plastid signaling and carotenoid metabolism including the effects of disturbed carotenoid biosynthesis on plastid morphology and function are also discussed. The "omics" insight extends our understanding of the interaction between plastids and carotenoids and provides significant implications for designing strategies for carotenoid-biofortified crops.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yue Jian
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yuanyu Mao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Fanliang Meng
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Zhiyong Shao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Tonglin Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jirong Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
GUN4 Affects the Circadian Clock and Seedlings Adaptation to Changing Light Conditions. Int J Mol Sci 2021; 23:ijms23010194. [PMID: 35008619 PMCID: PMC8745339 DOI: 10.3390/ijms23010194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/13/2023] Open
Abstract
The chloroplast is a key organelle for photosynthesis and perceiving environmental information. GENOME UNCOUPLED 4 (GUN4) has been shown to be required for the regulation of both chlorophyll synthesis, reactive oxygen species (ROS) homeostasis and plastid retrograde signaling. In this study, we found that growth of the gun4 mutant was significantly improved under medium strong light (200 μmol photons m−2s−1) compared to normal light (100 μmol photons m−2s−1), in marked contrast to wild-type (WT). Further analysis revealed that GUN4 interacts with SIGNAL RECOGNITION PARTICLE 54 KDA SUBUNIT (SRP43) and SRP54. RNA-seq analysis indicated that the expression of genes for light signaling and the circadian clock is altered in gun4 compared with (WT). qPCR analysis confirmed that the expression of the clock genes CLOCK-RELATED 1 (CCA1), LATE ELONGATION HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION 1 (TOC1) and PSEUDO RESPONSE REGULATOR 7 (PRR7) is significantly changed in the gun4 and srp54 mutants under normal and medium strong light conditions. These results suggest that GUN4 may coordinate the adaptation of plants to changing light conditions by regulating the biological clock, although it is not clear whether the effect is direct or indirect.
Collapse
|
4
|
Yang F, Xiao K, Pan H, Liu J. Chloroplast: The Emerging Battlefield in Plant-Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:637853. [PMID: 33747017 PMCID: PMC7966814 DOI: 10.3389/fpls.2021.637853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 05/08/2023]
Abstract
Higher plants and some algae convert the absorbed light into chemical energy through one of the most important organelles, chloroplast, for photosynthesis and store it in the form of organic compounds to supply their life activities. However, more and more studies have shown that the role of chloroplasts is more than a factory for photosynthesis. In the process of light conversion to chemical energy, any damage to the components of chloroplast may affect the photosynthesis efficiency and promote the production of by-products, reactive oxygen species, that are mainly produced in the chloroplasts. Substantial evidence show that chloroplasts are also involved in the battle of plants and microbes. Chloroplasts are important in integrating a variety of external environmental stimuli and regulate plant immune responses by transmitting signals to the nucleus and other cell compartments through retrograde signaling pathways. Besides, chloroplasts can also regulate the biosynthesis and signal transduction of phytohormones, including salicylic acid and jasmonic acid, to affect the interaction between the plants and microbes. Since chloroplasts play such an important role in plant immunity, correspondingly, chloroplasts have become the target of pathogens. Different microbial pathogens target the chloroplast and affect its functions to promote their colonization in the host plants.
Collapse
Affiliation(s)
| | | | | | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Hu S, Ding Y, Zhu C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:375. [PMID: 32300353 PMCID: PMC7142257 DOI: 10.3389/fpls.2020.00375] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Increased temperatures caused by global warming threaten agricultural production, as warmer conditions can inhibit plant growth and development or even destroy crops in extreme circumstances. Extensive research over the past several decades has revealed that chloroplasts, the photosynthetic organelles of plants, are highly sensitive to heat stress, which affects a variety of photosynthetic processes including chlorophyll biosynthesis, photochemical reactions, electron transport, and CO2 assimilation. Important mechanisms by which plant cells respond to heat stress to protect these photosynthetic organelles have been identified and analyzed. More recent studies have made it clear that chloroplasts play an important role in inducing the expression of nuclear heat-response genes during the heat stress response. In this review, we summarize these important advances in plant-based research and discuss how the sensitivity, responses, and signaling roles of chloroplasts contribute to plant heat sensitivity and tolerance.
Collapse
Affiliation(s)
| | | | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
6
|
Fabiańska I, Bucher M, Häusler RE. Intracellular phosphate homeostasis - A short way from metabolism to signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:57-67. [PMID: 31300142 DOI: 10.1016/j.plantsci.2019.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 05/21/2023]
Abstract
Phosphorus in plant cells occurs in inorganic form as both ortho- and pyrophosphate or bound to organic compounds, like e.g., nucleotides, phosphorylated metabolites, phospholipids, phosphorylated proteins, or phytate as P storage in the vacuoles of seeds. Individual compartments of the cell are surrounded by membranes that are selective barriers to avoid uncontrolled solute exchange. A controlled exchange of phosphate or phosphorylated metabolites is accomplished by specific phosphate transporters (PHTs) and the plastidial phosphate translocator family (PTs) of the inner envelope membrane. Plastids, in particular chloroplasts, are the site of various anabolic sequences of enzyme-catalyzed reactions. Apart from their role in metabolism PHTs and PTs are presumed to be also involved in communication between organelles and plant organs. Here we will focus on the integration of phosphate transport and homeostasis in signaling processes. Recent developments in this field will be critically assessed and potential future developments discussed. In particular, the occurrence of various plastid types in one organ (i.e. the leaf) with different functions with respect to metabolism or sensing, as has been documented recently following a tissue-specific proteomics approach (Beltran et al., 2018), will shed new light on functional aspects of phosphate homeostasis.
Collapse
Affiliation(s)
- Izabela Fabiańska
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Rainer E Häusler
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
7
|
Sineshchekov VA, Belyaeva OB. Regulation of Chlorophyll Biogenesis by Phytochrome A. BIOCHEMISTRY (MOSCOW) 2019; 84:491-508. [DOI: 10.1134/s0006297919050043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Sineshchekov VA, Belyaeva OB. Regulation of Chlorophyll Biogenesis by Phytochrome A. BIOCHEMISTRY (MOSCOW) 2019; 84:491-508. [DOI: https:/doi.org/10.1134/s0006297919050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/18/2023]
|
9
|
Zhao Y, Luo L, Xu J, Xin P, Guo H, Wu J, Bai L, Wang G, Chu J, Zuo J, Yu H, Huang X, Li J. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Res 2018. [PMID: 29540758 PMCID: PMC5939044 DOI: 10.1038/s41422-018-0024-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death (PCD) is a fundamental biological process. Deficiency in MOSAIC DEATH 1 (MOD1), a plastid-localized enoyl-ACP reductase, leads to the accumulation of reactive oxygen species (ROS) and PCD, which can be suppressed by mitochondrial complex I mutations, indicating a signal from chloroplasts to mitochondria. However, this signal remains to be elucidated. In this study, through cloning and analyzing a series of mod1 suppressors, we reveal a comprehensive organelle communication pathway that regulates the generation of mitochondrial ROS and triggers PCD. We show that mutations in PLASTIDIAL NAD-DEPENDENT MALATE DEHYDROGENASE (plNAD-MDH), chloroplastic DICARBOXYLATE TRANSPORTER 1 (DiT1) and MITOCHONDRIAL MALATE DEHYDROGENASE 1 (mMDH1) can each rescue the ROS accumulation and PCD phenotypes in mod1, demonstrating a direct communication from chloroplasts to mitochondria via the malate shuttle. Further studies demonstrate that these elements play critical roles in the redox homeostasis and plant growth under different photoperiod conditions. Moreover, we reveal that the ROS level and PCD are significantly increased in malate-treated HeLa cells, which can be dramatically attenuated by knockdown of the human gene MDH2, an ortholog of Arabidopsis mMDH1. These results uncover a conserved malate-induced PCD pathway in plant and animal systems, revolutionizing our understanding of the communication between organelles.
Collapse
Affiliation(s)
- Yannan Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiesi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peiyong Xin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongyan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Plant Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lin Bai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xun Huang
- University of Chinese Academy of Sciences, Beijing, 100049, China. .,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Bhattacharyya D, Chakraborty S. Chloroplast: the Trojan horse in plant-virus interaction. MOLECULAR PLANT PATHOLOGY 2018; 19:504-518. [PMID: 28056496 PMCID: PMC6638057 DOI: 10.1111/mpp.12533] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 05/14/2023]
Abstract
The chloroplast is one of the most dynamic organelles of a plant cell. It carries out photosynthesis, synthesizes major phytohormones, plays an active part in the defence response and is crucial for interorganelle signalling. Viruses, on the other hand, are extremely strategic in manipulating the internal environment of the host cell. The chloroplast, a prime target for viruses, undergoes enormous structural and functional damage during viral infection. Indeed, large proportions of affected gene products in a virus-infected plant are closely associated with the chloroplast and the process of photosynthesis. Although the chloroplast is deficient in gene silencing machinery, it elicits the effector-triggered immune response against viral pathogens. Virus infection induces the organelle to produce an extensive network of stromules which are involved in both viral propagation and antiviral defence. From studies over the last few decades, the involvement of the chloroplast in the regulation of plant-virus interaction has become increasingly evident. This review presents an exhaustive account of these facts, with their implications for pathogenicity. We have attempted to highlight the intricacies of chloroplast-virus interactions and to explain the existing gaps in our current knowledge, which will enable virologists to utilize chloroplast genome-based antiviral resistance in economically important crops.
Collapse
Affiliation(s)
- Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| |
Collapse
|
11
|
Niu Y, Xiang Y. An Overview of Biomembrane Functions in Plant Responses to High-Temperature Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:915. [PMID: 30018629 PMCID: PMC6037897 DOI: 10.3389/fpls.2018.00915] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/08/2018] [Indexed: 05/03/2023]
Abstract
Biological membranes are highly ordered structures consisting of mosaics of lipids and proteins. Elevated temperatures can directly and effectively change the properties of these membranes, including their fluidity and permeability, through a holistic effect that involves changes in the lipid composition and/or interactions between lipids and specific membrane proteins. Ultimately, high temperatures can alter microdomain remodeling and instantaneously relay ambient cues to downstream signaling pathways. Thus, dynamic membrane regulation not only helps cells perceive temperature changes but also participates in intracellular responses and determines a cell's fate. Moreover, due to the specific distribution of extra- and endomembrane elements, the plasma membrane (PM) and membranous organelles are individually responsible for distinct developmental events during plant adaptation to heat stress. This review describes recent studies that focused on the roles of various components that can alter the physical state of the plasma and thylakoid membranes as well as the crucial signaling pathways initiated through the membrane system, encompassing both endomembranes and membranous organelles in the context of heat stress responses.
Collapse
Affiliation(s)
- Yue Niu
- *Correspondence: Yue Niu, Yun Xiang,
| | - Yun Xiang
- *Correspondence: Yue Niu, Yun Xiang,
| |
Collapse
|
12
|
Park JH, Jung S. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling. Biochem Biophys Res Commun 2017; 482:672-677. [PMID: 27865844 DOI: 10.1016/j.bbrc.2016.11.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022]
Abstract
In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by Fv/Fm. NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes.
Collapse
Affiliation(s)
- Joon-Heum Park
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea
| | - Sunyo Jung
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
13
|
|
14
|
Acclimation Changes of Flavonoids in Needles of Conifers during Heat and Drought Stress 2015. CLIMATE 2016. [DOI: 10.3390/cli4030035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Sun AZ, Guo FQ. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:398. [PMID: 27066042 PMCID: PMC4814484 DOI: 10.3389/fpls.2016.00398] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/14/2016] [Indexed: 05/19/2023]
Abstract
It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants.
Collapse
Affiliation(s)
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, National Center of Plant Gene Research (Shanghai) and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
16
|
Sun AZ, Guo FQ. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:398. [PMID: 27066042 DOI: 10.3389/fpls.2016.00398/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/14/2016] [Indexed: 05/28/2023]
Abstract
It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants.
Collapse
Affiliation(s)
- Ai-Zhen Sun
- The National Key Laboratory of Plant Molecular Genetics, National Center of Plant Gene Research (Shanghai) and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, National Center of Plant Gene Research (Shanghai) and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|
17
|
Larkin RM. Tetrapyrrole Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1586. [PMID: 27807442 PMCID: PMC5069423 DOI: 10.3389/fpls.2016.01586] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/07/2016] [Indexed: 05/03/2023]
Abstract
Tetrapyrroles make critical contributions to a number of important processes in diverse organisms. In plants, tetrapyrroles are essential for light signaling, the detoxification of reactive oxygen species, the assimilation of nitrate and sulfate, respiration, photosynthesis, and programed cell death. The misregulation of tetrapyrrole metabolism can produce toxic reactive oxygen species. Thus, it is not surprising that tetrapyrrole metabolism is strictly regulated and that tetrapyrrole metabolism affects signaling mechanisms that regulate gene expression. In plants and algae, tetrapyrroles are synthesized in plastids and were some of the first plastid signals demonstrated to regulate nuclear gene expression. In plants, the mechanism of tetrapyrrole-dependent plastid-to-nucleus signaling remains poorly understood. Additionally, some of experiments that tested ideas for possible signaling mechanisms appeared to produce conflicting data. In some instances, these conflicts are potentially explained by different experimental conditions. Although the biological function of tetrapyrrole signaling is poorly understood, there is compelling evidence that this signaling is significant. Specifically, this signaling appears to affect the accumulation of starch and may promote abiotic stress tolerance. Tetrapyrrole-dependent plastid-to-nucleus signaling interacts with a distinct plastid-to-nucleus signaling mechanism that depends on GENOMES UNCUOPLED1 (GUN1). GUN1 contributes to a variety of processes, such as chloroplast biogenesis, the circadian rhythm, abiotic stress tolerance, and development. Thus, the contribution of tetrapyrrole signaling to plant function is potentially broader than we currently appreciate. In this review, I discuss these aspects of tetrapyrrole signaling.
Collapse
|
18
|
Ajambang W, Ardie SW, Volkaert H, Ngando-Ebongue GF, Sudarsono S. Comparative expression profiling of three early inflorescence stages of oil palm indicates that vegetative to reproductive phase transition of meristem is regulated by sugar balance. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:589-598. [PMID: 32480703 DOI: 10.1071/fp14343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/28/2015] [Indexed: 06/11/2023]
Abstract
Breeding and seed production activities in oil palm have been hampered because of the inability of the male parent Pisifera to produce male inflorescence as source of pollen under normal conditions. Researchers are using complete defoliation to induce male inflorescences, but the biological and molecular processes responsible for this morphological change are yet to be revealed. To understand the underlying network of genes that initiate and control this phenotypically documented activity, we initiated a study aimed at identifying differentially expressed genes (DEGs) in three stages of an oil palm inflorescence under complete defoliation stress using RNA-seq. Sequencing on an Illumina platform produced 82631476 reads consisting of 8345779076 bases. A total of 60700 genes were obtained after transcript filtering and normalisation and 54% of them were downregulated. Differences in gene expression levels were significant between tissues under stress. The farther the distance between tissues, the more DEGs recorded. Comparison between stage 2 and stage 1 induced 3893 DEGs whereas 10136 DEGs were induced between stage 3 and stage 1. Stress response genes and flower development genes were among the highly expressed genes. This study suggests a link between complete defoliation and meristem differentiation from vegetative to reproductive phase in oil palm.
Collapse
Affiliation(s)
- Walter Ajambang
- PMB Lab, Department of Agronomy and Horticulture, Bogor Agricultural University, Jl. Meranti 16680 Bogor, Indonesia
| | - Sintho W Ardie
- PMB Lab, Department of Agronomy and Horticulture, Bogor Agricultural University, Jl. Meranti 16680 Bogor, Indonesia
| | - Hugo Volkaert
- NSTDA-BIOTEC, Plant Research Laboratory, Thailand Science Park, Pathumthanee 12120, Thailand and Center for Agricultural Biotechnology, Kasetsart University Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand
| | - Georges F Ngando-Ebongue
- Institute of Agricultural Research for Development, Oil Palm Research Centre. BP 243 Douala Cameroon
| | - Sudarsono Sudarsono
- PMB Lab, Department of Agronomy and Horticulture, Bogor Agricultural University, Jl. Meranti 16680 Bogor, Indonesia
| |
Collapse
|
19
|
Trösch R, Mühlhaus T, Schroda M, Willmund F. ATP-dependent molecular chaperones in plastids--More complex than expected. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:872-88. [PMID: 25596449 DOI: 10.1016/j.bbabio.2015.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/03/2015] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Raphael Trösch
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany; HU Berlin, Institute of Biology, Chausseestraße 117, 10115 Berlin, Germany; TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Timo Mühlhaus
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Michael Schroda
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Felix Willmund
- TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| |
Collapse
|
20
|
Gu W, Li H, Zhao P, Yu R, Pan G, Gao S, Xie X, Huang A, He L, Wang G. Quantitative proteomic analysis of thylakoid from two microalgae (Haematococcus pluvialis and Dunaliella salina) reveals two different high light-responsive strategies. Sci Rep 2014; 4:6661. [PMID: 25335577 PMCID: PMC4205843 DOI: 10.1038/srep06661] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/29/2014] [Indexed: 12/22/2022] Open
Abstract
Under high light (HL) stress, astaxanthin-accumulating Haematococcus pluvialis and β-carotene-accumulating Dunaliella salina showed different responsive patterns. To elucidate cellular-regulating strategies photosynthetically and metabolically, thylakoid membrane proteins in H. pluvialis and D. salina were extracted and relatively quantified after 0 h, 24 h and 48 h of HL stress. Proteomic analysis showed that three subunits of the cytochrome b6/f complex were greatly reduced under HL stress in H. pluvialis, while they were increased in D. salina. Additionally, the major subunits of both photosystem (PS) II and PSI reaction center proteins were first reduced and subsequently recovered in H. pluvialis, while they were gradually reduced in D. salina. D. salina also showed a greater ability to function using the xanthophyll-cycle and the cyclic photosynthetic electron transfer pathway compared to H. pluvialis. We propose a reoriented and effective HL-responsive strategy in H. pluvialis, enabling it to acclimate under HL. The promising metabolic pathway described here contains a reorganized pentose phosphate pathway, Calvin cycle and glycolysis pathway participating in carbon sink formation under HL in H. pluvialis. Additionally, the efficient carbon reorientation strategy in H. pluvialis was verified by elevated extracellular carbon assimilation and rapid conversion into astaxanthin.
Collapse
Affiliation(s)
- Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Huan Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Peipei Zhao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ruixue Yu
- College of Marine Science and Engineering, Tianjin University of Science and Technology, 300457 Tianjin, China
| | - Guanghua Pan
- College of Marine Science and Engineering, Tianjin University of Science and Technology, 300457 Tianjin, China
| | - Shan Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Xiujun Xie
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Aiyou Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Linwen He
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| |
Collapse
|
21
|
Zhan GM, Li RJ, Hu ZY, Liu J, Deng LB, Lu SY, Hua W. Cosuppression of RBCS3B in Arabidopsis leads to severe photoinhibition caused by ROS accumulation. PLANT CELL REPORTS 2014; 33:1091-108. [PMID: 24682522 DOI: 10.1007/s00299-014-1597-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/13/2014] [Accepted: 03/02/2014] [Indexed: 05/08/2023]
Abstract
Cosuppression of an Arabidopsis Rubisco small subunit gene RBCS3B at Arabidopsis resulted in albino or pale green phenotypes which were caused by ROS accumulation As the most abundant protein on Earth, Rubisco has received much attention in the past decades. Even so, its function is still not understood thoroughly. In this paper, four Arabidopsis transgenic lines (RBCS3B-7, 18, 33, and 35) with albino or pale green phenotypes were obtained by transformation with a construct driving expression of sense RBCS3B, a Rubisco small subunit gene. The phenotypes produced in these transgenic lines were found to be caused by cosuppression. Among these lines, RBCS3B-7 displayed the most severe phenotypes including reduced height, developmental arrest and plant mortality before flowering when grown under normal light on soil. Chloroplast numbers in mesophyll cells were decreased compared to WT, and stacked thylakoids of chloroplasts were broken down gradually in RBCS3B-7 throughout development. In addition, the RBCS3B-7 line was light sensitive, and PSII activity measurement revealed that RBCS3B-7 suffered severe photoinhibition, even under normal light. We found that photoinhibition was due to accumulation of ROS, which accelerated photodamage of PSII and inhibited the repair of PSII in RBCS3B-7.
Collapse
Affiliation(s)
- Gao-Miao Zhan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Häusler RE, Heinrichs L, Schmitz J, Flügge UI. How sugars might coordinate chloroplast and nuclear gene expression during acclimation to high light intensities. MOLECULAR PLANT 2014; 7:1121-37. [PMID: 25006007 DOI: 10.1093/mp/ssu064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The concept of retrograde control of nuclear gene expression assumes the generation of signals inside the chloroplasts, which are either released from or sensed inside of the organelle. In both cases, downstream signaling pathways lead eventually to a differential regulation of nuclear gene expression and the production of proteins required in the chloroplast. This concept appears reasonable as the majority of the over 3000 predicted plastidial proteins are encoded by nuclear genes. Hence, the nucleus needs information on the status of the chloroplasts, such as during acclimation responses, which trigger massive changes in the protein composition of the thylakoid membrane and in the stroma. Here, we propose an additional control mechanism of nuclear- and plastome-encoded photosynthesis genes, taking advantage of pathways involved in sugar- or hormonal signaling. Sugars are major end products of photosynthesis and their contents respond very sensitively to changes in light intensities. Based on recent findings, we ask the question as to whether the carbohydrate status outside the chloroplast can be directly sensed within the chloroplast stroma. Sugars might synchronize the responsiveness of both genomes and thereby help to coordinate the expression of plastome- and nuclear-encoded photosynthesis genes in concert with other, more specific retrograde signals.
Collapse
Affiliation(s)
- Rainer E Häusler
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany Present address: Plant Molecular Physiology and Biotechnology, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| |
Collapse
|
23
|
Schmitz J, Heinrichs L, Scossa F, Fernie AR, Oelze ML, Dietz KJ, Rothbart M, Grimm B, Flügge UI, Häusler RE. The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1619-36. [PMID: 24523502 PMCID: PMC3967092 DOI: 10.1093/jxb/eru027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Retrograde signals from chloroplasts are thought to control the expression of nuclear genes associated with plastidial processes such as acclimation to varying light conditions. Arabidopsis mutants altered in the day and night path of photoassimilate export from the chloroplasts served as tools to study the involvement of carbohydrates in high light (HL) acclimation. A double mutant impaired in the triose phosphate/phosphate translocator (TPT) and ADP-glucose pyrophosphorylase (AGPase) (adg1-1/tpt-2) exhibits a HL-dependent depletion in endogenous carbohydrates combined with a severe growth and photosynthesis phenotype. The acclimation response of mutant and wild-type plants has been assessed in time series after transfer from low light (LL) to HL by analysing photosynthetic performance, carbohydrates, MgProtoIX (a chlorophyll precursor), and the ascorbate/glutathione redox system, combined with microarray-based transcriptomic and GC-MS-based metabolomic approaches. The data indicate that the accumulation of soluble carbohydrates (predominantly glucose) acts as a short-term response to HL exposure in both mutant and wild-type plants. Only if carbohydrates are depleted in the long term (e.g. after 2 d) is the acclimation response impaired, as observed in the adg1-1/tpt-2 double mutant. Furthermore, meta-analyses conducted with in-house and publicly available microarray data suggest that, in the long term, reactive oxygen species such as H₂O₂ can replace carbohydrates as signals. Moreover, a cross-talk exists between genes associated with the regulation of starch and lipid metabolism. The involvement of genes responding to phytohormones in HL acclimation appears to be less likely. Various candidate genes involved in retrograde control of nuclear gene expression emerged from the analyses of global gene expression.
Collapse
Affiliation(s)
- Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
- * Present address: Plant Molecular Physiology and Biotechnology, Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Federico Scossa
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam OT Golm, Germany
- Agriculture Research Council, Research Center for Vegetable Crops, Via Cavalleggeri 25, 84098 Pontecagnano (Salerno), Italy
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam OT Golm, Germany
| | - Marie-Luise Oelze
- Biochemistry and Physiology of Plants, University of Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, University of Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Maxi Rothbart
- Institute of Biology, Plant Physiology, Humboldt-University Berlin, Philippstraße 13, D-10115 Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology, Plant Physiology, Humboldt-University Berlin, Philippstraße 13, D-10115 Berlin, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Rainer E. Häusler
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Kim JS, Park HM, Chae S, Lee TH, Hwang DJ, Oh SD, Park JS, Song DG, Pan CH, Choi D, Kim YH, Nahm BH, Kim YK. A pepper MSRB2 gene confers drought tolerance in rice through the protection of chloroplast-targeted genes. PLoS One 2014; 9:e90588. [PMID: 24614245 PMCID: PMC3948683 DOI: 10.1371/journal.pone.0090588] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/02/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The perturbation of the steady state of reactive oxygen species (ROS) due to biotic and abiotic stresses in a plant could lead to protein denaturation through the modification of amino acid residues, including the oxidation of methionine residues. Methionine sulfoxide reductases (MSRs) catalyze the reduction of methionine sulfoxide back to the methionine residue. To assess the role of this enzyme, we generated transgenic rice using a pepper CaMSRB2 gene under the control of the rice Rab21 (responsive to ABA protein 21) promoter with/without a selection marker, the bar gene. RESULTS A drought resistance test on transgenic plants showed that CaMSRB2 confers drought tolerance to rice, as evidenced by less oxidative stress symptoms and a strengthened PSII quantum yield under stress conditions, and increased survival rate and chlorophyll index after the re-watering. The results from immunoblotting using a methionine sulfoxide antibody and nano-LC-MS/MS spectrometry suggest that porphobilinogen deaminase (PBGD), which is involved in chlorophyll synthesis, is a putative target of CaMSRB2. The oxidized methionine content of PBGD expressed in E. coli increased in the presence of H2O2, and the Met-95 and Met-227 residues of PBGD were reduced by CaMSRB2 in the presence of dithiothreitol (DTT). An expression profiling analysis of the overexpression lines also suggested that photosystems are less severely affected by drought stress. CONCLUSIONS Our results indicate that CaMSRB2 might play an important functional role in chloroplasts for conferring drought stress tolerance in rice.
Collapse
Affiliation(s)
- Joung Sug Kim
- Division of Bioscience and Bioinformatics, Myong Ji University, Yongin, Kyonggido, Korea
| | - Hyang-Mi Park
- Rice research division, National Institute of Crop Science, Suwon, Korea
| | - Songhwa Chae
- Genomics Genetics Institute, GreenGene BioTech Inc., Yongin, Kyonggido, Korea
| | - Tae-Ho Lee
- Genomics Genetics Institute, GreenGene BioTech Inc., Yongin, Kyonggido, Korea
| | - Duk-Ju Hwang
- National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Sung-Dug Oh
- National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Jong-Sug Park
- National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Dae-Geun Song
- Functional Food Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Korea
| | - Cheol-Ho Pan
- Functional Food Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Korea
| | - Doil Choi
- College of Agriculture and Life Sciences and Plant Genomics & Breeding Institute, Seoul National University, Seoul, Korea
| | - Yul-Ho Kim
- Rice research division, National Institute of Crop Science, Suwon, Korea
| | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myong Ji University, Yongin, Kyonggido, Korea
- Genomics Genetics Institute, GreenGene BioTech Inc., Yongin, Kyonggido, Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene BioTech Inc., Yongin, Kyonggido, Korea
| |
Collapse
|
25
|
Grovenstein PB, Wilson DA, Lankford KD, Gaston KA, Perera S, Mitra M. Identification and molecular characterization of the second Chlamydomonas gun4 mutant, gun4-II. F1000Res 2013; 2:142. [PMID: 24627785 PMCID: PMC3931455 DOI: 10.12688/f1000research.2-142.v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2013] [Indexed: 11/20/2022] Open
Abstract
The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in photosynthesis and respiration. These tetrapyrroles are synthesized via a common branched pathway that involves mainly enzymes, encoded by nuclear genes. One of the enzymes in the pathway is Mg chelatase (MgChel). MgChel catalyzes insertion of Mg (2+) into protoporphyrin IX (PPIX, proto) to form Magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. The GUN4 (genomes uncoupled 4) protein is not essential for the MgChel activity but has been shown to significantly stimulate its activity. We have isolated a light sensitive mutant, 6F14, by random DNA insertional mutagenesis. 6F14 cannot tolerate light intensities higher than 90-100 μmol photons m (-2) s (-1). It shows a light intensity dependent progressive photo-bleaching. 6F14 is incapable of photo-autotrophic growth under light intensity higher than 100 μmol photons m (-2) s (-1). PCR based analyses show that in 6F14 the insertion of the plasmid outside the GUN4 locus has resulted in a genetic rearrangement of the GUN4 gene and possible deletions in the genomic region flanking the GUN4 gene. Our gun4 mutant has a Chl content very similar to that in the wild type in the dark and is very sensitive to fluctuations in the light intensity in the environment unlike the earlier identified Chlamydomonas gun4 mutant. Complementation with a functional copy of the GUN4 gene restored light tolerance, Chl biosynthesis and photo-autotrophic growth under high light intensities in 6F14. 6F14 is the second gun4 mutant to be identified in C. reinhardtii. Additionally, we show that our two gun4 complements over-express the GUN4 protein and show a higher Chl content per cell compared to that in the wild type strain.
Collapse
Affiliation(s)
| | - Darryel A Wilson
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Kathryn D Lankford
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Kelsey A Gaston
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA ; Current address: Pediatric Infectious Diseases, Emory-Children's Center, Atlanta GA, 30322, USA
| | - Surangi Perera
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA ; Current address: Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee WI, 53204, USA
| | - Mautusi Mitra
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| |
Collapse
|
26
|
Bindoli A, Rigobello MP. Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal 2013; 18:1557-93. [PMID: 23244515 DOI: 10.1089/ars.2012.4655] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.
Collapse
Affiliation(s)
- Alberto Bindoli
- Institute of Neuroscience (CNR), Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|
27
|
Li B, Kronzucker HJ, Shi W. Molecular components of stress-responsive plastid retrograde signaling networks and their involvement in ammonium stress. PLANT SIGNALING & BEHAVIOR 2013; 8:e23107. [PMID: 23299427 PMCID: PMC3657007 DOI: 10.4161/psb.23107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plastid retrograde signaling (chloroplast to nucleus) has been proposed to play an important role in the acclimation of plant function to environmental stress. Although several pathways and molecular components, as well as some signals, have been identified in recent years, our understanding of the communication between plastid and nucleus under stress remains fragmentary. This mini-review summarizes the properties of currently proposed candidate signals, chief molecular components, and their roles in the plastid retrograde signaling network in a variety of stress responses. We provide special emphasis on the recently characterized AMOS1/EGY1-dependent plastid retrograde signaling pathways engaged during ammonium stress.
Collapse
Affiliation(s)
- Baohai Li
- State Key Laboratory of Soil and Sustainable Agriculture; Institute of Soil Science; Chinese Academy of Sciences; Nanjing, P.R. China
| | | | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture; Institute of Soil Science; Chinese Academy of Sciences; Nanjing, P.R. China
- Correspondence to: Weiming Shi,
| |
Collapse
|
28
|
Demmig-Adams B, Cohu CM, Amiard V, Zadelhoff G, Veldink GA, Muller O, Adams WW. Emerging trade-offs - impact of photoprotectants (PsbS, xanthophylls, and vitamin E) on oxylipins as regulators of development and defense. THE NEW PHYTOLOGIST 2013; 197:720-9. [PMID: 23418633 DOI: 10.1111/nph.12100] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This review summarizes evidence for a mechanistic link between plant photoprotection and the synthesis of oxylipin hormones as regulators of development and defense. Knockout mutants of Arabidopsis, deficient in various key components of the chloroplast photoprotection system, consistently produced greater concentrations of the hormone jasmonic acid or its precursor 12- oxo-phytodienoic acid (OPDA), both members of the oxylipin messenger family. Characterized plants include several mutants deficient in PsbS (an intrinsic chlorophyll-binding protein of photosystem II) or pigments (zeaxanthin and/or lutein) required for photoprotective thermal dissipation of excess excitation energy in the chloroplast and a mutant deficient in reactive oxygen detoxification via the antioxidant vitamin E (tocopherol). Evidence is also presented that certain plant defenses against herbivores or pathogens are elevated for these mutants. This evidence furthermore indicates that wild-type Arabidopsis plants possess less than maximal defenses against herbivores or pathogens, and suggest that plant lines with superior defenses against abiotic stress may have lower biotic defenses. The implications of this apparent trade-off between abiotic and biotic plant defenses for plant ecology as well as for plant breeding/engineering are explored, and the need for research further addressing this important issue is highlighted.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Plastid Signaling During the Plant Life Cycle. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
30
|
Abstract
Intracellular signaling from plastids to the nucleus, called retrograde signaling, coordinates the expression of nuclear and plastid genes and is essential for plastid biogenesis and for maintaining plastid function at optimal levels. Recent identification of several components involved in plastid retrograde generation, transmission, and control of nuclear gene expression has provided significant insight into the regulatory network of plastid retrograde signaling. Here, we review the current knowledge of multiple plastid retrograde signaling pathways, which are derived from distinct sources, and of possible plastid signaling molecules. We describe the retrograde signaling-dependent regulation of nuclear gene expression, which involves multilayered transcriptional control, as well as the transcription factors involved. We also summarize recent advances in the identification of key components mediating signal transduction from plastids to the nucleus.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | |
Collapse
|
31
|
Brzezowski P, Wilson KE, Gray GR. The PSBP2 protein of Chlamydomonas reinhardtii is required for singlet oxygen-dependent signaling. PLANTA 2012; 236:1289-1303. [PMID: 22718311 DOI: 10.1007/s00425-012-1683-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/30/2012] [Indexed: 06/01/2023]
Abstract
In the green alga Chlamydomonas reinhardtii, the cytosolic Glutathione Peroxidase 5 gene (GPX5) is known to be transcriptionally up-regulated in response to singlet oxygen ((1)O(2)). As demonstrated by previous studies, fusion of the promoter region of GPX5 to the Arylsulfatase 2 gene (ARS2) creates an effective reporter system that can be used to monitor (1)O(2)-driven GPX5 expression. This system was also used in this study to generate a stably transformed C. reinhardtii strain which expresses ARS2 in a (1)O(2)-dependent manner, resulting in the synthesis of a functional protein with detectable activity. Using the strain of C. reinhardtii harboring a (1)O(2)-sensitive reporter construct, a secondary mutagenic screen was performed. This allowed identification of mutant cell lines that were unable to up-regulate expression of the GPX5-ARS2 fusion in response to (1)O(2). In one of these lines, the mutation was subsequently localized to the first exon of the PSBP-like gene (PSBP2). The PSBP2 gene is part of a small protein family in C. reinhardtii, also present in all angiosperms studied thus far. While each member of the PSBP protein family contains a similar domain to the PSBP1 protein, which is a member of the oxygen evolving complex of photosystem II (PSII), the PSBP2 protein does not appear to be involved in PSII function, but may function as a sensor and/or signal mediating molecule of the (1)O(2) generated in the chloroplast.
Collapse
Affiliation(s)
- Pawel Brzezowski
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | | | | |
Collapse
|
32
|
Combinatorial signal integration by APETALA2/Ethylene Response Factor (ERF)-transcription factors and the involvement of AP2-2 in starvation response. Int J Mol Sci 2012; 13:5933-5951. [PMID: 22754341 PMCID: PMC3382747 DOI: 10.3390/ijms13055933] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/21/2012] [Accepted: 05/08/2012] [Indexed: 12/24/2022] Open
Abstract
Transcription factors of the APETALA 2/Ethylene Response Factor (AP2/ERF)- family have been implicated in diverse processes during development, stress acclimation and retrograde signaling. Fifty-three leaf-expressed AP2/ERFs were screened for their transcriptional response to abscisic acid (ABA), 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), methylviologen (MV), sucrose and high or low light, respectively, and revealed high reactivity to these effectors. Six of them (AP2-2, ARF14, CEJ1, ERF8, ERF11, RAP2.5) were selected for combinatorial response analysis to ABA, DCMU and high light. Additive, synergistic and antagonistic effects demonstrated that these transcription factors are components of multiple signaling pathways. AP2-2 (At1g79700) was subjected to an in depth study. AP2-2 transcripts were high under conditions linked to limited carbohydrate availability and stress and down-regulated in extended light phase, high light or in the presence of sugar. ap2-2 knock out plants had unchanged metabolite profiles and transcript levels of co-expressed genes in extended darkness. However, ap2-2 revealed more efficient germination and faster early growth under high sugar, osmotic or salinity stress, but the difference was abolished in the absence of sugar or during subsequent growth. It is suggested that AP2-2 is involved in mediating starvation-related and hormonal signals.
Collapse
|
33
|
Yu HD, Yang XF, Chen ST, Wang YT, Li JK, Shen Q, Liu XL, Guo FQ. Downregulation of chloroplast RPS1 negatively modulates nuclear heat-responsive expression of HsfA2 and its target genes in Arabidopsis. PLoS Genet 2012; 8:e1002669. [PMID: 22570631 PMCID: PMC3342936 DOI: 10.1371/journal.pgen.1002669] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/08/2012] [Indexed: 12/11/2022] Open
Abstract
Heat stress commonly leads to inhibition of photosynthesis in higher plants. The transcriptional induction of heat stress-responsive genes represents the first line of inducible defense against imbalances in cellular homeostasis. Although heat stress transcription factor HsfA2 and its downstream target genes are well studied, the regulatory mechanisms by which HsfA2 is activated in response to heat stress remain elusive. Here, we show that chloroplast ribosomal protein S1 (RPS1) is a heat-responsive protein and functions in protein biosynthesis in chloroplast. Knockdown of RPS1 expression in the rps1 mutant nearly eliminates the heat stress-activated expression of HsfA2 and its target genes, leading to a considerable loss of heat tolerance. We further confirm the relationship existed between the downregulation of RPS1 expression and the loss of heat tolerance by generating RNA interference-transgenic lines of RPS1. Consistent with the notion that the inhibited activation of HsfA2 in response to heat stress in the rps1 mutant causes heat-susceptibility, we further demonstrate that overexpression of HsfA2 with a viral promoter leads to constitutive expressions of its target genes in the rps1 mutant, which is sufficient to reestablish lost heat tolerance and recovers heat-susceptible thylakoid stability to wild-type levels. Our findings reveal a heat-responsive retrograde pathway in which chloroplast translation capacity is a critical factor in heat-responsive activation of HsfA2 and its target genes required for cellular homeostasis under heat stress. Thus, RPS1 is an essential yet previously unknown determinant involved in retrograde activation of heat stress responses in higher plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Dorrell RG, Howe CJ. What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci 2012; 125:1865-75. [PMID: 22547565 DOI: 10.1242/jcs.102285] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Earth is populated by an extraordinary diversity of photosynthetic eukaryotes. Many eukaryotic lineages contain chloroplasts, obtained through the endosymbiosis of a wide range of photosynthetic prokaryotes or eukaryotes, and a wide variety of otherwise non-photosynthetic species form transient associations with photosynthetic symbionts. Chloroplast lineages are likely to be derived from pre-existing transient symbioses, but it is as yet poorly understood what steps are required for the establishment of permanent chloroplasts from photosynthetic symbionts. In the past decade, several species that contain relatively recently acquired chloroplasts, such as the rhizarian Paulinella chromatophora, and non-photosynthetic taxa that maintain photosynthetic symbionts, such as the sacoglossan sea slug Elysia, the ciliate Myrionecta rubra and the dinoflagellate Dinophysis, have emerged as potential model organisms in the study of chloroplast establishment. In this Commentary, we compare recent molecular insights into the maintenance of chloroplasts and photosynthetic symbionts from these lineages, and others that might represent the early stages of chloroplast establishment. We emphasise the importance in the establishment of chloroplasts of gene transfer events that minimise oxidative stress acting on the symbiont. We conclude by assessing whether chloroplast establishment is facilitated in some lineages by a mosaic of genes, derived from multiple symbiotic associations, encoded in the host nucleus.
Collapse
Affiliation(s)
- Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| | | |
Collapse
|
35
|
Owens RA, Tech KB, Shao JY, Sano T, Baker CJ. Global analysis of tomato gene expression during Potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:582-98. [PMID: 22217247 DOI: 10.1094/mpmi-09-11-0258] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Viroids like Potato spindle tuber viroid (PSTVd) are the smallest known agents of infectious disease-small, highly structured, circular RNA molecules that lack detectable messenger RNA activity, yet are able to replicate autonomously in susceptible plant species. To better understand the possible role of RNA silencing in disease induction, a combination of microarray analysis and large-scale RNA sequence analysis was used to compare changes in tomato gene expression and microRNA levels associated with PSTVd infection in two tomato cultivars plus a third transformed line expressing small PSTVd small interfering RNAs in the absence of viroid replication. Changes in messenger (m)RNA levels for the sensitive cultivar 'Rutgers' were extensive, involving more than half of the approximately 10,000 genes present on the array. Chloroplast biogenesis was down-regulated in both sensitive and tolerant cultivars, and effects on mRNAs encoding enzymes involved in the biosynthesis of gibberellin and other hormones were accompanied by numerous changes affecting their respective signaling pathways. In the dwarf cultivar 'MicroTom', a marked upregulation of genes involved in response to stress and other stimuli was observed only when exogenous brassinosteroid was applied to infected plants, thereby providing the first evidence for the involvement of brassinosteroid-mediated signaling in viroid disease induction.
Collapse
Affiliation(s)
- Robert A Owens
- Molecular Plant Pathology Laboratory (USDA/ARS), 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|
36
|
Heinrichs L, Schmitz J, Flügge UI, Häusler RE. The Mysterious Rescue of adg1-1/tpt-2 - an Arabidopsis thaliana Double Mutant Impaired in Acclimation to High Light - by Exogenously Supplied Sugars. FRONTIERS IN PLANT SCIENCE 2012; 3:265. [PMID: 23233856 PMCID: PMC3516064 DOI: 10.3389/fpls.2012.00265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/12/2012] [Indexed: 05/05/2023]
Abstract
An Arabidopsis thaliana double mutant (adg1-1/tpt-2) defective in the day- and night-path of photoassimilate export from the chloroplast due to a knockout in the triose phosphate/phosphate translocator (TPT; tpt-2) and a lack of starch [mutation in ADP glucose pyrophosphorylase (AGPase); adg1-1] exhibits severe growth retardation, a decrease in the photosynthetic capacity, and a high chlorophyll fluorescence (HCF) phenotype under high light conditions. These phenotypes could be rescued when the plants were grown on sucrose (Suc) or glucose (Glc). Here we address the question whether Glc-sensing hexokinase1 (HXK1) defective in the Glc insensitive 2 (gin2-1) mutant is involved in the sugar-dependent rescue of adg1-1/tpt-2. Triple mutants defective in the TPT, AGPase, and HXK1 (adg1-1/tpt-2/gin2-1) were established as homozygous lines and grown together with Col-0 and Landsberg erecta (Ler) wild-type plants, gin2-1, the adg1-1/tpt-2 double mutant, and the adg1-1/tpt-2/gpt2-1 triple mutant [additionally defective in the glucose 6-phosphate/phosphate translocator 2 (GPT2)] on agar in the presence or absence of 50 mM of each Glc, Suc, or fructose (Fru). The growth phenotype of the double mutant and both triple mutants could be rescued to a similar extent only by Glc and Suc, but not by Fru. All three sugars were capable of rescuing the HCF and photosynthesis phenotype, irrespectively of the presence or absence of HXK1. Quantitative RT-PCR analyses of sugar-responsive genes revealed that plastidial HXK (pHXK) was up-regulated in adg1-1/tpt-2 plants grown on sugars, but showed no response in adg1-1/tpt-2/gin2-1. It appears likely that soluble sugars are directly taken up by the chloroplasts and enter further metabolism, which consumes ATP and NADPH from the photosynthetic light reaction and thereby rescues the photosynthesis phenotype of the double mutant. The implication of sugar turnover and probably signaling inside the chloroplasts for the concept of retrograde signaling is discussed.
Collapse
Affiliation(s)
- Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Rainer E. Häusler
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- *Correspondence: Rainer E. Häusler, Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany. e-mail:
| |
Collapse
|
37
|
Kakizaki T, Yazu F, Nakayama K, Ito-Inaba Y, Inaba T. Plastid signalling under multiple conditions is accompanied by a common defect in RNA editing in plastids. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:251-60. [PMID: 21926093 PMCID: PMC3245456 DOI: 10.1093/jxb/err257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/02/2011] [Indexed: 05/02/2023]
Abstract
Retrograde signalling from the plastid to the nucleus, also known as plastid signalling, plays a key role in coordinating nuclear gene expression with the functional state of plastids. Inhibitors that cause plastid dysfunction have been suggested to generate specific plastid signals related to their modes of action. However, the molecules involved in plastid signalling remain to be identified. Genetic studies indicate that the plastid-localized pentatricopeptide repeat protein GUN1 mediates signalling under several plastid signalling-related conditions. To elucidate further the nature of plastid signals, investigations were carried out to determine whether different plastid signal-inducing treatments had similar effects on plastids and on nuclear gene expression. It is demonstrated that norflurazon and lincomycin treatments and the plastid protein import2-2 (ppi2-2) mutation, which causes a defect in plastid protein import, all resulted in similar changes at the gene expression level. Furthermore, it was observed that these three treatments resulted in defective RNA editing in plastids. This defect in RNA editing was not a secondary effect of down-regulation of pentatricopeptide repeat protein gene expression in the nucleus. The results indicate that these three treatments, which are known to induce plastid signals, affect RNA editing in plastids, suggesting an unprecedented link between plastid signalling and RNA editing.
Collapse
Affiliation(s)
- Tomohiro Kakizaki
- National Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Fumiko Yazu
- Interdisciplinary Research Organization, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Katsuhiro Nakayama
- Interdisciplinary Research Organization, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Yasuko Ito-Inaba
- Interdisciplinary Research Organization, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Takehito Inaba
- Interdisciplinary Research Organization, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
38
|
Isemer R, Krause K, Grabe N, Kitahata N, Asami T, Krupinska K. Plastid Located WHIRLY1 Enhances the Responsiveness of Arabidopsis Seedlings Toward Abscisic Acid. FRONTIERS IN PLANT SCIENCE 2012; 3:283. [PMID: 23269926 PMCID: PMC3529394 DOI: 10.3389/fpls.2012.00283] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/30/2012] [Indexed: 05/20/2023]
Abstract
WHIRLY1 is a protein that can be translocated from the plastids to the nucleus, making it an ideal candidate for communicating information between these two compartments. Mutants of Arabidopsis thaliana lacking WHIRLY1 (why1) were shown to have a reduced sensitivity toward salicylic acid (SA) and abscisic acid (ABA) during germination. Germination assays in the presence of abamine, an inhibitor of ABA biosynthesis, revealed that the effect of SA on germination was in fact caused by a concomitant stimulation of ABA biosynthesis. In order to distinguish whether the plastid or the nuclear isoform of WHIRLY1 is adjusting the responsiveness toward ABA, sequences encoding either the complete WHIRLY1 protein or a truncated form lacking the plastid transit peptide were overexpressed in the why1 mutant background. In plants overexpressing the full-length sequence, WHIRLY1 accumulated in both plastids and the nucleus, whereas in plants overexpressing the truncated sequence, WHIRLY1 accumulated exclusively in the nucleus. Seedlings containing recombinant WHIRLY1 in both compartments were hypersensitive toward ABA. In contrast, seedlings possessing only the nuclear form of WHIRLY1 were as insensitive toward ABA as the why1 mutants. ABA was furthermore shown to lower the rate of germination of wildtype seeds even in the presence of abamine which is known to inhibit the formation of xanthoxin, the plastid located precursor of ABA. From this we conclude that plastid located WHIRLY1 enhances the responsiveness of seeds toward ABA even when ABA is supplied exogenously.
Collapse
Affiliation(s)
- Rena Isemer
- Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, University of TromsøTromsø, Norway
| | - Nils Grabe
- Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
| | - Nobutaka Kitahata
- Department of Applied Biological Chemistry, The University of TokyoTokyo, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of TokyoTokyo, Japan
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
- *Correspondence: Karin Krupinska, Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany. e-mail:
| |
Collapse
|
39
|
Enami K, Tanaka K, Hanaoka M. Retrograde signals arise from reciprocal crosstalk within plastids. PLANT SIGNALING & BEHAVIOR 2012; 7:142-4. [PMID: 22301982 PMCID: PMC3357356 DOI: 10.4161/psb.7.1.18451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In addition to the cell nucleus, plant cells also possess genomic DNA and gene expression machineries within mitochondria and plastids. In higher plants, retrograde transcriptional regulation of several nuclear genes encoding plastid-located proteins has been observed in response to changes in a wide variety of physiological properties in plastids, including organelle gene expression (OGE) and tetrapyrrole metabolism. This regulation is postulated to be accomplished by plastid-to-nucleus signaling, (1,2) although the overall signal transduction pathway(s) are not well characterized. By applying a specific differentiation system in tobacco Bright Yellow-2 (BY-2) cultured cells, (3,4) we recently reported that the regulatory system of nuclear gene expressions modulated by a plastid signal was also observed during differentiation of plastids into amyloplasts. (5) While retrograde signaling from plastids was previously speculated to consist of several independent pathways, we found inhibition of OGE and perturbation in the cellular content of one tetrapyrrole intermediate, heme, seemed to interact to regulate amyloplast differentiation. Our results thus highlight the possibility that several sources of retrograde signaling in plastids could be integrated in an intraorganellar manner.
Collapse
|
40
|
Leister D, Wang X, Haberer G, Mayer KF, Kleine T. Intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions. PLANT PHYSIOLOGY 2011; 157:386-404. [PMID: 21775496 PMCID: PMC3165886 DOI: 10.1104/pp.111.177691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Genes for mitochondrial and chloroplast proteins are distributed between the nuclear and organellar genomes. Organelle biogenesis and metabolism, therefore, require appropriate coordination of gene expression in the different compartments to ensure efficient synthesis of essential multiprotein complexes of mixed genetic origin. Whereas organelle-to-nucleus signaling influences nuclear gene expression at the transcriptional level, organellar gene expression (OGE) is thought to be primarily regulated posttranscriptionally. Here, we show that intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions. Nearly 1,300 ATH1 microarray-based transcriptional profiles of nuclear and organellar genes for mitochondrial and chloroplast proteins in the model plant Arabidopsis (Arabidopsis thaliana) were analyzed. The activity of genes involved in organellar energy production (OEP) or OGE in each of the organelles and in the nucleus is highly coordinated. Intracompartmental networks that link the OEP and OGE gene sets serve to synchronize the expression of nucleus- and organelle-encoded proteins. At a higher regulatory level, coexpression of organellar and nuclear OEP/OGE genes typically modulates chloroplast functions but affects mitochondria only when chloroplast functions are perturbed. Under conditions that induce energy shortage, the intercompartmental coregulation of photosynthesis genes can even override intracompartmental networks. We conclude that dynamic intracompartmental and intercompartmental transcriptional networks for OEP and OGE genes adjust the activity of organelles in response to the cellular energy state and environmental stresses, and we identify candidate cis-elements involved in the transcriptional coregulation of nuclear genes. Regarding the transcriptional regulation of chloroplast genes, novel tentative target genes of σ factors are identified.
Collapse
|
41
|
|
42
|
Cortleven A, Noben JP, Valcke R. Analysis of the photosynthetic apparatus in transgenic tobacco plants with altered endogenous cytokinin content: a proteomic study. Proteome Sci 2011; 9:33. [PMID: 21703031 PMCID: PMC3151202 DOI: 10.1186/1477-5956-9-33] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 06/26/2011] [Indexed: 01/18/2023] Open
Abstract
Background Cytokinin is a plant hormone that plays a crucial role in several processes of plant growth and development. In recent years, major breakthroughs have been achieved in the elucidation of the metabolism, the signal perception and transduction, as well as the biological functions of cytokinin. An important activity of cytokinin is the involvement in chloroplast development and function. Although this biological function has already been known for 50 years, the exact mechanisms remain elusive. Results To elucidate the effects of altered endogenous cytokinin content on the structure and function of the chloroplasts, chloroplast subfractions (stroma and thylakoids) from transgenic Pssu-ipt and 35S:CKX1 tobacco (Nicotiana tabacum) plants with, respectively, elevated and reduced endogenous cytokinin content were analysed using two different 2-DE approaches. Firstly, thykaloids were analysed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (BN/SDS-PAGE). Image analysis of the gel spot pattern thus obtained from thylakoids showed no substantial differences between wild-type and transgenic tobacco plants. Secondly, a quantitative DIGE analysis of CHAPS soluble proteins derived from chloroplast subfractions indicated significant gel spot abundance differences in the stroma fraction. Upon identification by MALDI-TOF/TOF mass spectrometry, these proteins could be assigned to the Calvin-Benson cycle and photoprotective mechanisms. Conclusion Taken together, presented proteomic data reveal that the constitutively altered cytokinin status of transgenic plants does not result in any qualitative changes in either stroma proteins or protein complexes of thylakoid membranes of fully developed chloroplasts, while few but significant quantitative differences are observed in stroma proteins.
Collapse
Affiliation(s)
- Anne Cortleven
- Laboratory of Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Diepenbeek, Belgium.
| | | | | |
Collapse
|
43
|
Zhang ZW, Yuan S, Feng H, Xu F, Cheng J, Shang J, Zhang DW, Lin HH. Transient accumulation of Mg-protoporphyrin IX regulates expression of PhANGs - New evidence for the signaling role of tetrapyrroles in mature Arabidopsis plants. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:714-21. [PMID: 21216024 DOI: 10.1016/j.jplph.2010.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 05/08/2023]
Abstract
Genetic and physiological studies have revealed evidence for multiple signaling pathways by which the plastid exerts retrograde control over photosynthesis associated nuclear genes (PhANGs). It has been proposed that the tetrapyrrole pathway intermediate Mg-protoporphyrin IX (Mg-proto IX) acts as the signaling molecule in the pathways and accumulates in the chloroplasts and cytosol of the cell after treatment with the herbicide Norflurazon (NF). However, the role of Mg-Proto IX in plastid signaling has been challenged by two recent reports. In this paper, new evidence is presented supporting Mg-Proto IX as a plastid-signaling molecule in mature Arabidopsis seedlings. Fluorescence HPLC and confocal microscope observation verified that a short-term (<96h) NF treatment resulted in a large accumulation of Mg-Proto IX accompanying with Lhcb repression, whereas the long-term NF treatments caused marked changes of tetrapyrrole pools, while Lhcb expression was continuously repressed. These results may explain the discrepancies among different reports. Reactive oxygen species (ROS) eliminator treatments only partly reversed the NF-induced repression of Lhcb. Therefore, the NF generates both ROS signals and Mg-Proto IX signals. Furthermore, our data suggested that plastid signal transduction through plastid GUN1 protein is independent of tetrapyrrole export from the plastid.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Voß B, Meinecke L, Kurz T, Al-Babili S, Beck CF, Hess WR. Hemin and magnesium-protoporphyrin IX induce global changes in gene expression in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2011; 155:892-905. [PMID: 21148414 PMCID: PMC3032474 DOI: 10.1104/pp.110.158683] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/29/2010] [Indexed: 05/19/2023]
Abstract
Retrograde signaling is a pathway of communication from mitochondria and plastids to the nucleus in the context of cell differentiation, development, and stress response. In Chlamydomonas reinhardtii, the tetrapyrroles magnesium-protoporphyrin IX and heme are only synthesized within the chloroplast, and they have been implicated in the retrograde control of nuclear gene expression in this unicellular green alga. Feeding the two tetrapyrroles to Chlamydomonas cultures was previously shown to transiently induce five nuclear genes, three of which encode the heat shock proteins HSP70A, HSP70B, and HSP70E. In contrast, controversial results exist on the possible role of magnesium-protoporphyrin IX in the repression of genes for light-harvesting proteins in higher plants, raising the question of how important this mode of regulation is. Here, we used genome-wide transcriptional profiling to measure the global impact of these tetrapyrroles on gene regulation and the scope of the response. We identified almost 1,000 genes whose expression level changed transiently but significantly. Among them were only a few genes for photosynthetic proteins but several encoding enzymes of the tricarboxylic acid cycle, heme-binding proteins, stress-response proteins, as well as proteins involved in protein folding and degradation. More than 50% of the latter class of genes was also regulated by heat shock. The observed drastic fold changes at the RNA level did not correlate with similar changes in protein concentrations under the tested experimental conditions. Phylogenetic profiling revealed that genes of putative endosymbiontic origin are not overrepresented among the responding genes. This and the transient nature of changes in gene expression suggest a signaling role of both tetrapyrroles as secondary messengers for adaptive responses affecting the entire cell and not only organellar proteins.
Collapse
|
45
|
Chan KX, Crisp PA, Estavillo GM, Pogson BJ. Chloroplast-to-nucleus communication: current knowledge, experimental strategies and relationship to drought stress signaling. PLANT SIGNALING & BEHAVIOR 2010; 5:1575-82. [PMID: 21512326 PMCID: PMC3115107 DOI: 10.4161/psb.5.12.13758] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/23/2010] [Accepted: 09/25/2010] [Indexed: 05/13/2023]
Abstract
In order for plant cells to function efficiently under different environmental conditions, chloroplastic processes have to be tightly regulated by the nucleus. It is widely believed that there is inter-organelle communication from the chloroplast to the nucleus, called retrograde signaling. Although some pathways of communication have been identified, the actual signals that move between the two cellular compartments are largely unknown. This review provides an overview of retrograde signaling including its importance to the cell, candidate signals, recent advances, and current experimental systems. In addition, we highlight the potential of using drought stress as a model for studying retrograde signaling.
Collapse
Affiliation(s)
| | | | | | - Barry James Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology; Research School of Biology; Plant Sciences Division; Australian National University; Canberra, ACT, Australia
| |
Collapse
|
46
|
Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. PHOTOSYNTHESIS RESEARCH 2010; 106:155-77. [PMID: 20706789 DOI: 10.1007/s11120-010-9583-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 07/05/2010] [Indexed: 05/03/2023]
Abstract
Under stressful environments, many green algae such as Haematococcus pluvialis accumulate secondary ketocarotenoids such as canthaxanthin and astaxanthin. The carotenogenesis, responsible for natural phenomena such as red snows, generally accompanies larger metabolic changes as well as morphological modifications, i.e., the conversion of the green flagellated macrozoids into large red cysts. Astaxanthin accumulation constitutes a convenient way to store energy and carbon, which will be used for further synthesis under less stressful conditions. Besides this, the presence of high amount of astaxanthin enhances the cell resistance to oxidative stress generated by unfavorable environmental conditions including excess light, UV-B irradiation, and nutrition stress and, therefore, confers a higher survival capacity to the cells. This better resistance results from the quenching of oxygen atoms for the synthesis itself as well as from the antioxidant properties of the astaxanthin molecules. Therefore, astaxanthin synthesis corresponds to a multifunctional response to stress. In this contribution, the various biochemical, genetic, and molecular data related to the biosynthesis of ketocarotenoids by Haematococcus pluvialis and other taxa are reviewed and compared. A tentative regulatory model of the biochemical network driving astaxanthin production is proposed.
Collapse
Affiliation(s)
- Yves Lemoine
- University Lille Nord de France, UMR 8187 LOG CNRS/University Lille 1, Bât SN2, 59655 Villeneuve d'Ascq Cedex, France
| | | |
Collapse
|
47
|
Solymosi K, Schoefs B. Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. PHOTOSYNTHESIS RESEARCH 2010; 105:143-66. [PMID: 20582474 DOI: 10.1007/s11120-010-9568-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 05/30/2010] [Indexed: 05/03/2023]
Abstract
Chloroplast development is usually regarded as proceeding from proplastids. However, direct or indirect conversion pathways have been described in the literature, the latter involving the etioplast or the etio-chloroplast stages. Etioplasts are characterized by the absence of chlorophylls (Chl-s) and the presence of a unique inner membrane network, the prolamellar body (PLB), whereas etio-chloroplasts contain Chl-s and small PLBs interconnected with chloroplast thylakoids. As etioplast development requires growth in darkness for several days, this stage is generally regarded as a nonnatural pathway of chloroplast development occurring only under laboratory conditions. In this article, we have reviewed the data in favor of the involvement of etioplasts and etio-chloroplasts as intermediary stage(s) in chloroplast formation under natural conditions, the molecular aspects of PLB formation and we propose a dynamic model for its regulation.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Eötvös University, Pázmány P. s. 1/C, 1117 Budapest, Hungary.
| | | |
Collapse
|
48
|
Pfannschmidt T. Plastidial retrograde signalling--a true "plastid factor" or just metabolite signatures? TRENDS IN PLANT SCIENCE 2010; 15:427-35. [PMID: 20580596 DOI: 10.1016/j.tplants.2010.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 05/03/2023]
Abstract
The genetic compartments of plant cells, nuclei, plastids and mitochondria exchange information by anterograde (nucleus-to-organelle) and retrograde (organelle-to-nucleus) signalling. These avenues of communication coordinate activities during the organelles' development and function. Despite extensive research retrograde signalling remains poorly understood. The proposed cytosolic signalling pathways and the putative organellar signalling molecules remain elusive, and a clear functional distinction from the signalling cascades of other cellular perception systems (i.e. photoreceptors or phytohormones) is difficult to obtain. Notwithstanding the stagnant progress, some basic assumptions about the process have remained virtually unchanged for many years, potentially obstructing the view on alternative routes for retrograde communication. Here, I critically assess the current models of retrograde signalling and discuss novel ideas and potential connections.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Institute of General Botany and Plant Physiology, Department of Plant Physiology, University of Jena, Dornburger Str. 159, 07743 Jena, Germany.
| |
Collapse
|
49
|
Zhang ZW, Yuan S, Xu F, Yang H, Zhang NH, Cheng J, Lin HH. The plastid hexokinase pHXK: a node of convergence for sugar and plastid signals in Arabidopsis. FEBS Lett 2010; 584:3573-9. [PMID: 20650273 DOI: 10.1016/j.febslet.2010.07.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 01/05/2023]
Abstract
The inhibitors to plastid gene expression (PGE) were effective in preventing nuclear photosynthetic gene expression only if applied within the first 2-3 days of Arabidopsis seedling development. However, the signal transduction processes are still unknown. In this investigation, we found 3% glucose with 1mM chloramphenicol co-treatment repressed LHCB transcript significantly in mature Arabidopsis seedlings, while effective solo glucose treatment needed a concentration of 7%. The repressive effects of glucose and chloramphenicol on LHCB expression were inhibited in phxk (plastid hexokinase) mutant. pHXK enzyme activities, location, function in signal transduction, and cross talk to plastid GUN1 protein (a key signaling factor) were also investigated. The data suggest that pHXK may be a node of convergence for sugar-mediated and PGE-derived signals in Arabidopsis.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Peter E, Rothbart M, Oelze ML, Shalygo N, Dietz KJ, Grimm B. Mg protoporphyrin monomethylester cyclase deficiency and effects on tetrapyrrole metabolism in different light conditions. PLANT & CELL PHYSIOLOGY 2010; 51:1229-41. [PMID: 20460500 DOI: 10.1093/pcp/pcq071] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mg protoporphyrin monomethylester (MgProtoME) cyclase catalyzes isocyclic ring formation to form divinyl protochlorophyllide. The CHL27 protein is part of the cyclase complex. Deficiency of CHL27 has been previously reported to compromise photosynthesis and nuclear gene expression. In a comprehensive analysis of different CHL27 antisense tobacco lines grown under different light conditions, the physiological consequences of gradually reduced CHL27 expression on the tetrapyrrole biosynthetic pathway were explored. Excessive amounts of MgProtoME, the substrate of the cyclase reaction, accumulated in response to the reduced CHL27 content. Moreover, 5-aminolevulinic acid (ALA) synthesis, Mg chelatase and Mg protoporphyrin methyltransferase activities were reduced in transgenic plants. Compared with growth under continuous light exposure, the CHL27-deficient plants showed a stronger reduction in Chl content, cell death and leaf necrosis during diurnal light/dark cycles. This photooxidative phenotype correlated with a rapidly increasing MgProtoME steady-state level at the beginning of each light period. In contrast, the same transformants grown under continuous light exposure possessed a permanently elevated amount of MgProtoME. Its lower phototoxicity correlated with increased activities of ascorbate peroxidase and catalase, and a higher amount of reduced ascorbate. It is proposed that improved stress acclimation during continuous light in comparison with light-dark growth increases the capacity to prevent photooxidation by excess tetrapyrrole precursors and lowers the susceptibility to secondary photodynamic damage.
Collapse
Affiliation(s)
- Enrico Peter
- Institute of Biology/Plant Physiology, Humboldt University, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|