1
|
Nasr Esfahani M, Sonnewald U. Unlocking dynamic root phenotypes for simultaneous enhancement of water and phosphorus uptake. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108386. [PMID: 38280257 DOI: 10.1016/j.plaphy.2024.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Phosphorus (P) and water are crucial for plant growth, but their availability is challenged by climate change, leading to reduced crop production and global food security. In many agricultural soils, crop productivity is confronted by both water and P limitations. The diminished soil moisture decreases available P due to reduced P diffusion, and inadequate P availability diminishes tissue water status through modifications in stomatal conductance and a decrease in root hydraulic conductance. P and water display contrasting distributions in the soil, with P being concentrated in the topsoil and water in the subsoil. Plants adapt to water- and P-limited environments by efficiently exploring localized resource hotspots of P and water through the adaptation of their root system. Thus, developing cultivars with improved root architecture is crucial for accessing and utilizing P and water from arid and P-deficient soils. To meet this goal, breeding towards multiple advantageous root traits can lead to better cultivars for water- and P-limited environments. This review discusses the interplay of P and water availability and highlights specific root traits that enhance the exploration and exploitation of optimal resource-rich soil strata while reducing metabolic costs. We propose root ideotype models, including 'topsoil foraging', 'subsoil foraging', and 'topsoil/subsoil foraging' for maize (monocot) and common bean (dicot). These models integrate beneficial root traits and guide the development of water- and P-efficient cultivars for challenging environments.
Collapse
Affiliation(s)
- Maryam Nasr Esfahani
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
2
|
Kaur S, Grewal SK, Singh S, Virk HK. Impact of phosphorous-deficit conditions on morpho-physiological traits and phosphorous metabolism in chickpea genotypes. PROTOPLASMA 2022; 259:775-788. [PMID: 34463826 DOI: 10.1007/s00709-021-01700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Chickpea, an important food legume, is primarily grown on marginal soils with low soil fertility. Although chickpea can fix N, soil phosphorus (P) deficiency in crop growing areas is a major limiting factor for chickpea production. This study was undertaken to evaluate twenty-five chickpea cultivars for morpho-physiological traits and yield under low and normal phosphorous conditions. Based on morpho-physiological traits such as length and area of roots and shoots, root length density, root and shoot biomass, chlorophyll content, number of nodules and root tips, tolerance indices and yield, these cultivars were characterised into susceptible (ICC67, ICC1915, ICC2593, ICC5337, ICC5879, ICC8950, ICC13441, ICC1483, ICC15606 and ICC15888), tolerant (ICC10755, IG72070, ICCV97105, ICCV2, ICCV92809, ICCV92337 and ICCV95423) and the remaining cultivars were moderately tolerant to phosphorous-deficit conditions. Higher activities of enzymes of phosphorous metabolism such as acid phosphatase and phytase in roots and nodules of tolerant chickpea cultivars (ICCV97105, ICCV92337, ICCV95423) as compared to susceptible cultivars (ICC67, ICC15606, ICC15888) at different developmental stages might be attributing to their better performance for growth parameters and productivity traits under phosphorous-deficit conditions.
Collapse
Affiliation(s)
- Suchint Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India
| | - Satvir Kaur Grewal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Harpreet Kaur Virk
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
3
|
Wang S, Zhang H, Shi L, Xu F, Ding G. Genome-Wide Dissection of the CRF Gene Family in Brassica napus Indicates that BnaCRF8s Specifically Regulate Root Architecture and Phosphate Homeostasis against Phosphate Fluctuation in Plants. Int J Mol Sci 2020; 21:E3660. [PMID: 32455955 PMCID: PMC7279159 DOI: 10.3390/ijms21103660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 02/04/2023] Open
Abstract
Phosphorus (P) is an essential macronutrient required for plant growth and development. The involvement of cytokinin response factors (CRFs) in phosphate (Pi) homeostasis and lateral root (LR) initiation in Arabidopsis has been revealed. However, little is known in oil crops. Here, we performed genome-wide dissection of the CRF family in Brassica napus to identify 44 members, which were evolutionally classified into 6 subgroups. Among them, four BnaCRF8 genes were strongly upregulated by P deprivation, and were selected to be further investigated. Time course qRT-PCR analyses showed that four BnaCRF8 genes were enhanced dramatically after 12 h of P stress. Analyses of the subcellular localization in tobacco leaves indicated that BnaA7.CRF8 and BnaC2.CRF8 were localized in the nucleus. The expression of BnaCRF8 genes had constant negative effects on primary root growth and LR initiation and growth, and it reduced Pi acquisition and plant growth in Arabidopsis. Moreover, the expression of Pi homeostasis-related genes was modulated in BnaA7.CRF8 overexpression plants. These results suggest that BnaCRF8 genes might negatively regulate root architecture and plant growth through transcriptional modification of Pi homeostasis-related components. Overall, this study suggests that upregulation of BnaCRF8 genes might be a smart adaptive strategy to cope with continuous Pi deficiency in the environment.
Collapse
Affiliation(s)
| | | | | | | | - Guangda Ding
- Microelement Research Centre, National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural affairs, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (H.Z.); (L.S.); (F.X.)
| |
Collapse
|
4
|
Jyoti A, Kaushik S, Srivastava VK, Datta M, Kumar S, Yugandhar P, Kothari SL, Rai V, Jain A. The potential application of genome editing by using CRISPR/Cas9, and its engineered and ortholog variants for studying the transcription factors involved in the maintenance of phosphate homeostasis in model plants. Semin Cell Dev Biol 2019; 96:77-90. [PMID: 30951893 DOI: 10.1016/j.semcdb.2019.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/26/2022]
Abstract
Phosphorus (P), an essential macronutrient, is pivotal for growth and development of plants. Availability of phosphate (Pi), the only assimilable P, is often suboptimal in rhizospheres. Pi deficiency triggers an array of spatiotemporal adaptive responses including the differential regulation of several transcription factors (TFs). Studies on MYB TF PHR1 in Arabidopsis thaliana (Arabidopsis) and its orthologs OsPHRs in Oryza sativa (rice) have provided empirical evidence of their significant roles in the maintenance of Pi homeostasis. Since the functional characterization of PHR1 in 2001, several other TFs have now been identified in these model plants. This raised a pertinent question whether there are any likely interactions across these TFs. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has provided an attractive paradigm for editing genome in plants. Here, we review the applications and challenges of this technique for genome editing of the TFs for deciphering the function and plausible interactions across them. This technology could thus provide a much-needed fillip towards engineering TFs for generating Pi use efficient plants for sustainable agriculture. Furthermore, we contemplate whether this technology could be a viable alternative to the controversial genetically modified (GM) rice or it may also eventually embroil into a limbo.
Collapse
Affiliation(s)
- Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Shailesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Shanker L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
5
|
Wang F, Deng M, Xu J, Zhu X, Mao C. Molecular mechanisms of phosphate transport and signaling in higher plants. Semin Cell Dev Biol 2017. [PMID: 28648582 DOI: 10.1016/j.semcdb.2017.06.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. To adapt to low inorganic-phosphate (Pi) environments, plants have evolved complex mechanisms and pathways that regulate the acquisition and remobilization of Pi and maintain P homeostasis. These mechanisms are regulated by complex gene regulatory networks through the functions of Pi transporters (PTs) and Pi starvation-induced (PSI) genes. This review summarizes recent progress in determining the molecular regulatory mechanisms of phosphate transporters and the Pi signaling network in the dicot Arabidopsis (Arabidopsis thaliana) and the monocot rice (Oryza sativa L.). Recent advances in this field provide a reference for understanding plant Pi signaling and specific mechanisms that mediate plant adaptation to environments with limited Pi availability. We propose potential biotechnological applications of known genes to develop plant cultivars with improved Pi uptake and use efficiency.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Meiju Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinlu Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Gu M, Zhang J, Li H, Meng D, Li R, Dai X, Wang S, Liu W, Qu H, xu G. Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3603-3615. [PMID: 28549191 PMCID: PMC5853628 DOI: 10.1093/jxb/erx174] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/02/2017] [Indexed: 05/19/2023]
Abstract
The adaptive responses of plants to phosphate (Pi) starvation stress are fine-tuned by an elaborate regulatory network. In this study, we identified and characterized a novel Pi starvation-responsive gene, MYB1, encoding an R2R3-type transcription factor in rice. MYB1 was transcriptionally induced in leaf sheaths and old leaf blades. It was localized to the nucleus and expressed mainly in vascular tissues. Mutation of MYB1 led to an increase in Pi uptake and accumulation, accompanied by altered expression of a subset of Pi transporters and several genes involved in Pi starvation signaling. Furthermore, MYB1 affected the elongation of the primary root in a Pi-dependent manner and lateral roots in a Pi-independent manner. Moreover, gibberellic acid (GA)-triggered lateral root elongation was largely suppressed in wild-type plants under Pi starvation conditions, whereas this suppression was partially rescued in myb1 mutant lines, correlating with the up-regulation of a GA biosynthetic gene upon MYB1 mutation. Taken together, the findings of this study highlight the role of MYB1 as a regulator involved in both Pi starvation signaling and GA biosynthesis. Such a co-regulator might have broad implications for the study of cross-talk between nutrient stress and other signaling pathways.
Collapse
Affiliation(s)
- Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Huanhuan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Daqian Meng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Ran Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaoli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Shichao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Wei Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Guohua xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
- Correspondence:
| |
Collapse
|
7
|
Bouain N, Doumas P, Rouached H. Recent Advances in Understanding the Molecular Mechanisms Regulating the Root System Response to Phosphate Deficiency in Arabidopsis. Curr Genomics 2016; 17:308-4. [PMID: 27499680 PMCID: PMC4955032 DOI: 10.2174/1389202917666160331201812] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/21/2015] [Accepted: 06/26/2015] [Indexed: 11/22/2022] Open
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. Inorganic phosphate (Pi) is the major form of P taken up from the soil by plant roots. It is well established that under Pi deficiency condition, plant roots undergo striking morphological changes; mainly a reduction in primary root length while increase in lateral root length as well as root hair length and density. This typical phenotypic change reflects complex interactions with other nutrients such as iron, and involves the activity of a large spectrum of plant hormones. Although, several key proteins involved in the regulation of root growth under Pi-deficiency have been identified in Arabidopsis, how plants adapt roots system architecture in response to Pi availability remains an open question. In the current post-genomic era, state of the art technologies like high-throughput phenotyping and sequencing platforms,"omics" methods, together with the widespread use of system biology and genome-wide association studies will help to elucidate the genetic architectures of root growth on different Pi regimes. It is clear that the large-scale characterization of molecular systems will improve our understanding of nutrient stress phenotype and biology. Herein, we summarize the recent advances and future directions towards a better understanding of Arabidopsis root developmental programs functional under Pi deficiency. Such a progress is necessary to devise strategies to improve the Pi use efficiency in plants that is an important issue for agriculture.
Collapse
Affiliation(s)
- Nadia Bouain
- INRA, UMR Biochimie et Physiologie Moléculaire des Plantes, Campus INRA/SupAgro, 2 place Viala, 34060 Montpellier cedex 2,France
| | - Patrick Doumas
- INRA, UMR Biochimie et Physiologie Moléculaire des Plantes, Campus INRA/SupAgro, 2 place Viala, 34060 Montpellier cedex 2,France
| | - Hatem Rouached
- INRA, UMR Biochimie et Physiologie Moléculaire des Plantes, Campus INRA/SupAgro, 2 place Viala, 34060 Montpellier cedex 2,France
| |
Collapse
|
8
|
Nagarajan VK, Satheesh V, Poling MD, Raghothama KG, Jain A. Arabidopsis MYB-Related HHO2 Exerts a Regulatory Influence on a Subset of Root Traits and Genes Governing Phosphate Homeostasis. PLANT & CELL PHYSIOLOGY 2016; 57:1142-52. [PMID: 27016098 DOI: 10.1093/pcp/pcw063] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/21/2016] [Indexed: 05/13/2023]
Abstract
Phosphate (Pi), an essential macronutrient required for growth and development of plants, is often limiting in soils. Pi deficiency modulates the expression of Pi starvation-responsive (PSR) genes including transcription factors (TFs). Here, we elucidated the role of the MYB-related TF HYPERSENSITIVITY TO LOW PHOSPHATE-ELICITED PRIMARY ROOT SHORTENING1 HOMOLOG2 (HHO2, At1g68670) in regulating Pi acquisition and signaling in Arabidopsis thaliana HHO2 was specifically and significantly induced in different tissues in response to Pi deprivation. Transgenic seedlings expressing 35S::GFP::HHO2 confirmed the localization of HHO2 to the nucleus. Knockout mutants of HHO2 showed significant reduction in number and length of first- and higher-order lateral roots and Pi content of different tissues compared with the wild-type irrespective of the Pi regime. In contrast, HHO2-overexpressing lines exhibited augmented lateral root development, enhanced Pi uptake rate and higher Pi content in leaf compared with the wild-type. Expression levels of PSR genes involved in Pi sensing and signaling in mutants and overexpressors were differentially regulated as compared with the wild-type. Attenuation in the expression of HHO2 in the phr1 mutant suggested a likely influence of PHR1 in HHO2-mediated regulation of a subset of traits governing Pi homeostasis.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-2010, USA, Fax: +1 765-494-9613
| | - Viswanathan Satheesh
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi-110012, India, Fax: +91 11 25843984
| | - Michael D Poling
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-2010, USA, Fax: +1 765-494-9613
| | - Kashchandra G Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-2010, USA, Fax: +1 765-494-9613
| | - Ajay Jain
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi-110012, India, Fax: +91 11 25843984
| |
Collapse
|
9
|
Hoehenwarter W, Mönchgesang S, Neumann S, Majovsky P, Abel S, Müller J. Comparative expression profiling reveals a role of the root apoplast in local phosphate response. BMC PLANT BIOLOGY 2016; 16:106. [PMID: 27121119 PMCID: PMC4849097 DOI: 10.1186/s12870-016-0790-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/18/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plant adaptation to limited phosphate availability comprises a wide range of responses to conserve and remobilize internal phosphate sources and to enhance phosphate acquisition. Vigorous restructuring of root system architecture provides a developmental strategy for topsoil exploration and phosphate scavenging. Changes in external phosphate availability are locally sensed at root tips and adjust root growth by modulating cell expansion and cell division. The functionally interacting Arabidopsis genes, LOW PHOSPHATE RESPONSE 1 and 2 (LPR1/LPR2) and PHOSPHATE DEFICIENCY RESPONSE 2 (PDR2), are key components of root phosphate sensing. We recently demonstrated that the LOW PHOSPHATE RESPONSE 1 - PHOSPHATE DEFICIENCY RESPONSE 2 (LPR1-PDR2) module mediates apoplastic deposition of ferric iron (Fe(3+)) in the growing root tip during phosphate limitation. Iron deposition coincides with sites of reactive oxygen species generation and triggers cell wall thickening and callose accumulation, which interfere with cell-to-cell communication and inhibit root growth. RESULTS We took advantage of the opposite phosphate-conditional root phenotype of the phosphate deficiency response 2 mutant (hypersensitive) and low phosphate response 1 and 2 double mutant (insensitive) to investigate the phosphate dependent regulation of gene and protein expression in roots using genome-wide transcriptome and proteome analysis. We observed an overrepresentation of genes and proteins that are involved in the regulation of iron homeostasis, cell wall remodeling and reactive oxygen species formation, and we highlight a number of candidate genes with a potential function in root adaptation to limited phosphate availability. Our experiments reveal that FERRIC REDUCTASE DEFECTIVE 3 mediated, apoplastic iron redistribution, but not intracellular iron uptake and iron storage, triggers phosphate-dependent root growth modulation. We further highlight expressional changes of several cell wall-modifying enzymes and provide evidence for adjustment of the pectin network at sites of iron accumulation in the root. CONCLUSION Our study reveals new aspects of the elaborate interplay between phosphate starvation responses and changes in iron homeostasis. The results emphasize the importance of apoplastic iron redistribution to mediate phosphate-dependent root growth adjustment and suggest an important role for citrate in phosphate-dependent apoplastic iron transport. We further demonstrate that root growth modulation correlates with an altered expression of cell wall modifying enzymes and changes in the pectin network of the phosphate-deprived root tip, supporting the hypothesis that pectins are involved in iron binding and/or phosphate mobilization.
Collapse
Affiliation(s)
- Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Susann Mönchgesang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Steffen Neumann
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Petra Majovsky
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
- Department of Plant Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - Jens Müller
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany.
| |
Collapse
|
10
|
Zheng H, Pan X, Deng Y, Wu H, Liu P, Li X. AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency. Sci Rep 2016; 6:24778. [PMID: 27101793 PMCID: PMC4840450 DOI: 10.1038/srep24778] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/04/2016] [Indexed: 11/30/2022] Open
Abstract
The primary root plays essential roles in root development, nutrient absorption, and root architectural establishment. Primary root growth is generally suppressed by phosphate (P) deficiency in A. thaliana; however, the underlying molecular mechanisms are largely elusive to date. We found that AtOPR3 specifically inhibited primary root growth under P deficiency via suppressing root tip growth at the transcriptional level, revealing an important novel function of AtOPR3 in regulating primary root response to the nutrient stress. Importantly, AtOPR3 functioned to down-regulate primary root growth under P limitation mostly by its own, rather than depending on the Jasmonic acid signaling pathway. Further, AtOPR3 interacted with ethylene and gibberellin signaling pathways to regulate primary root growth upon P deficiency. In addition, the AtOPR3's function in inhibiting primary root growth upon P limitation was also partially dependent on auxin polar transport. Together, our studies provide new insights into how AtOPR3, together with hormone signaling interactions, modulates primary root growth in coping with the environmental stress in Arabidopsis.
Collapse
Affiliation(s)
- Hongyan Zheng
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Xiaoying Pan
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yuxia Deng
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Huamao Wu
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Pei Liu
- Department of Ecology, China Agricultural University, Beijing, 100193, China
| | - Xuexian Li
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Li X, Zeng R, Liao H. Improving crop nutrient efficiency through root architecture modifications. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:193-202. [PMID: 26460087 DOI: 10.1111/jipb.12434] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/10/2015] [Indexed: 05/20/2023]
Abstract
Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition.
Collapse
Affiliation(s)
- Xinxin Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Haixia Institute of Science and Technology, Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Haixia Institute of Science and Technology, Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
12
|
Kuijken RCP, van Eeuwijk FA, Marcelis LFM, Bouwmeester HJ. Root phenotyping: from component trait in the lab to breeding. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5389-401. [PMID: 26071534 DOI: 10.1093/jxb/erv239] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the last decade cheaper and faster sequencing methods have resulted in an enormous increase in genomic data. High throughput genotyping, genotyping by sequencing and genomic breeding are becoming a standard in plant breeding. As a result, the collection of phenotypic data is increasingly becoming a limiting factor in plant breeding. Genetic studies on root traits are being hampered by the complexity of these traits and the inaccessibility of the rhizosphere. With an increasing interest in phenotyping, breeders and scientists try to overcome these limitations, resulting in impressive developments in automated phenotyping platforms. Recently, many such platforms have been thoroughly described, yet their efficiency to increase genetic gain often remains undiscussed. This efficiency depends on the heritability of the phenotyped traits as well as the correlation of these traits with agronomically relevant breeding targets. This review provides an overview of the latest developments in root phenotyping and describes the environmental and genetic factors influencing root phenotype and heritability. It also intends to give direction to future phenotyping and breeding strategies for optimizing root system functioning. A quantitative framework to determine the efficiency of phenotyping platforms for genetic gain is described. By increasing heritability, managing effects caused by interactions between genotype and environment and by quantifying the genetic relation between traits phenotyped in platforms and ultimate breeding targets, phenotyping platforms can be utilized to their maximum potential.
Collapse
Affiliation(s)
- René C P Kuijken
- Wageningen UR, Greenhouse Horticulture, Wageningen, 6708 PB, The Netherlands Wageningen UR, Laboratory of Plant Physiology, Wageningen, 6708 PB, The Netherlands
| | | | - Leo F M Marcelis
- Wageningen UR, Horticulture and Product Physiology, Wageningen, 6708 PB, The Netherlands
| | - Harro J Bouwmeester
- Wageningen UR, Laboratory of Plant Physiology, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
13
|
Rai V, Sanagala R, Sinilal B, Yadav S, Sarkar AK, Dantu PK, Jain A. Iron Availability Affects Phosphate Deficiency-Mediated Responses, and Evidence of Cross-Talk with Auxin and Zinc in Arabidopsis. ACTA ACUST UNITED AC 2015; 56:1107-23. [DOI: 10.1093/pcp/pcv035] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/21/2015] [Indexed: 11/14/2022]
|
14
|
AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nat Commun 2015; 6:6274. [PMID: 25723764 PMCID: PMC4373655 DOI: 10.1038/ncomms7274] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/12/2015] [Indexed: 12/19/2022] Open
Abstract
Nitrogen and phosphorus are among the most widely used fertilizers worldwide. Nitrate (NO3−) and phosphate (PO43−) are also signaling molecules whose respective transduction pathways are being intensively studied. However, plants are continuously challenged with combined nutritional deficiencies, yet very little is known about how these signaling pathways are integrated. Here we report the identification of a highly NO3−-inducible NRT1.1-controlled GARP transcription factor, HRS1, document its genome-wide transcriptional targets, and validate its cis-regulatory-elements. We demonstrate that this transcription factor and a close homolog repress primary root growth in response to P deficiency conditions, but only when NO3− is present. This system defines a molecular logic gate integrating P and N signals. We propose that NO3− and P signaling converge via double transcriptional and post-transcriptional control of the same protein, HRS1
Collapse
|
15
|
Karthikeyan AS, Jain A, Nagarajan VK, Sinilal B, Sahi SV, Raghothama KG. Arabidopsis thaliana mutant lpsi reveals impairment in the root responses to local phosphate availability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 77:60-72. [PMID: 24561248 DOI: 10.1016/j.plaphy.2013.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 12/16/2013] [Indexed: 05/08/2023]
Abstract
Phosphate (Pi) deficiency triggers local Pi sensing-mediated inhibition of primary root growth and development of root hairs in Arabidopsis (Arabidopsis thaliana). Generation of activation-tagged T-DNA insertion pools of Arabidopsis expressing the luciferase gene (LUC) under high-affinity Pi transporter (Pht1;4) promoter, is an efficient approach for inducing genetic variations that are amenable for visual screening of aberrations in Pi deficiency responses. Putative mutants showing altered LUC expression during Pi deficiency were identified and screened for impairment in local Pi deficiency-mediated inhibition of primary root growth. An isolated mutant was analyzed for growth response, effects of Pi deprivation on Pi content, primary root growth, root hair development, and relative expression levels of Pi starvation-responsive (PSR) genes, and those implicated in starch metabolism and Fe and Zn homeostasis. Pi deprived local phosphate sensing impaired (lpsi) mutant showed impaired primary root growth and attenuated root hair development. Although relative expression levels of PSR genes were comparable, there were significant increases in relative expression levels of IRT1, BAM3 and BAM5 in Pi deprived roots of lpsi compared to those of the wild-type. Better understanding of molecular responses of plants to Pi deficiency or excess will help to develop suitable remediation strategies for soils with excess Pi, which has become an environmental concern. Hence, lpsi mutant will serve as a valuable tool in identifying molecular mechanisms governing adaptation of plants to Pi deficiency.
Collapse
Affiliation(s)
| | - Ajay Jain
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vinay K Nagarajan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-1165, USA
| | - Bhaskaran Sinilal
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101-1080, USA
| | - Shivendra V Sahi
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101-1080, USA
| | - Kashchandra G Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-1165, USA.
| |
Collapse
|
16
|
Ramaiah M, Jain A, Raghothama KG. Ethylene Response Factor070 regulates root development and phosphate starvation-mediated responses. PLANT PHYSIOLOGY 2014; 164:1484-98. [PMID: 24394776 PMCID: PMC3938635 DOI: 10.1104/pp.113.231183] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/23/2013] [Indexed: 05/07/2023]
Abstract
Inorganic phosphate (Pi) availability is a major factor determining growth and consequently the productivity of crops. However, it is one of the least available macronutrients due to its high fixation in the rhizospheres. To overcome this constraint, plants have developed adaptive responses to better acquire, utilize, and recycle Pi. Molecular determinants of these adaptive mechanisms include transcription factors (TFs) that play a major role in transcriptional control, thereby regulating genome-scale networks. In this study, we have characterized the biological role of Arabidopsis thaliana Ethylene Response Factor070 (AtERF070), a Pi starvation-induced TF belonging to the Apetala2/Ethylene Response Factor family of TFs in Arabidopsis (Arabidopsis thaliana). It is localized to the nucleus and induced specifically in Pi-deprived roots and shoots. RNA interference-mediated suppression of AtERF070 led to augmented lateral root development resulting in higher Pi accumulation, whereas there were reductions in both primary root length and lateral root number in 12-d-old transgenic seedlings overexpressing AtERF070. When the overexpressing lines were grown to maturity under greenhouse conditions, they revealed a stunted bushy appearance that could be rescued by gibberellic acid application. Furthermore, a number of Pi starvation-responsive genes were modulated in AtERF070-overexpressing and RNA interference lines, thereby suggesting a potential role for this TF in maintaining Pi homeostasis.
Collapse
Affiliation(s)
- Madhuvanthi Ramaiah
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907–1165 (M.R., K.G.R.); and
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi 110012, India (A.J.)
| | - Ajay Jain
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907–1165 (M.R., K.G.R.); and
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi 110012, India (A.J.)
| | | |
Collapse
|
17
|
Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J, Xu F, Hammond JP. High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. ANNALS OF BOTANY 2013; 112:381-9. [PMID: 23172414 PMCID: PMC3698377 DOI: 10.1093/aob/mcs245] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/25/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus. METHODS Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus ['Tapidor' × 'Ningyou 7' (TNDH)] using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP. KEY RESULTS In general, root and biomass traits were highly correlated under LP and HP conditions. 'Ningyou 7' had greater LRL, LRN and LRD than 'Tapidor', at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06. CONCLUSIONS High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection.
Collapse
Affiliation(s)
- Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Taoxiong Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Martin R. Broadley
- Plant and Crop Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | | | - Yan Long
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - John P. Hammond
- School of Plant Biology and Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
18
|
Jain A, Nagarajan VK, Raghothama KG. Transcriptional regulation of phosphate acquisition by higher plants. Cell Mol Life Sci 2012; 69:3207-24. [PMID: 22899310 PMCID: PMC11114959 DOI: 10.1007/s00018-012-1090-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 01/27/2023]
Abstract
Phosphorus (P), an essential macronutrient required for plant growth and development, is often limiting in natural and agro-climatic environments. To cope with heterogeneous or low phosphate (Pi) availability, plants have evolved an array of adaptive responses facilitating optimal acquisition and distribution of Pi. The root system plays a pivotal role in Pi-deficiency-mediated adaptive responses that are regulated by a complex interplay of systemic and local Pi sensing. Cross-talk with sugar, phytohormones, and other nutrient signaling pathways further highlight the intricacies involved in maintaining Pi homeostasis. Transcriptional regulation of Pi-starvation responses is particularly intriguing and involves a host of transcription factors (TFs). Although PHR1 of Arabidopsis is an extensively studied MYB TF regulating subset of Pi-starvation responses, it is not induced during Pi deprivation. Genome-wide analyses of Arabidopsis have shown that low Pi stress triggers spatiotemporal expression of several genes encoding different TFs. Functional characterization of some of these TFs reveals their diverse roles in regulating root system architecture, and acquisition and utilization of Pi. Some of the TFs are also involved in phytohormone-mediated root responses to Pi starvation. The biological roles of these TFs in transcriptional regulation of Pi homeostasis in model plants Arabidopsis thaliana and Oryza sativa are presented in this review.
Collapse
Affiliation(s)
- Ajay Jain
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, India.
| | | | | |
Collapse
|
19
|
Chevalier F, Rossignol M. Proteomic analysis of Arabidopsis thaliana ecotypes with contrasted root architecture in response to phosphate deficiency. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1885-90. [PMID: 21835495 DOI: 10.1016/j.jplph.2011.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/16/2011] [Accepted: 05/21/2011] [Indexed: 05/03/2023]
Abstract
Owing to a weak availability in soil, plants have developed numerous morphological, physiological and biochemical adaptations to acquire phosphate (Pi). Identification and characterisation of key genes involved in the initial steps of Pi-signalling might provide clues about the regulation of the complex Pi deficiency adaptation mechanism. A two-dimensional gel electrophoresis approach was performed to investigate proteome responses to Pi starvation in Arabidopsis. Two ecotypes were selected according to contrasting responses of their root system architecture to low availability of Pi. Thirty protein spots were shown to be affected by Pi deficiency. Fourteen proteins appeared to be up-regulated and ten down-regulated with ecotype Be-0, wheras only thirteen proteins were observed as down-regulated for ecotype Ll-0. Furthermore, systematic and opposite responses to Pi deficiency were observed between the two ecotypes. The sequences of these 30 differentially expressed protein spots were identified using mass spectrometry, and most of the proteins were involved in oxidative stress, carbohydrate and proteins metabolism. The results suggested that the modulation of alcohol dehydrogenase, malic enzyme and aconitate hydratase may contribute to the contrasted adaptation strategy to Pi deficiency of Be-0 and Ll-0 ecotypes. A focus on aconitate hydratase highlighted a complex reverse response of the pattern of corresponding spots between the two ecotypes. This protein, also potentially involved in iron homeostasis, was speculated to contribute, at least indirectly, to the root architecture response of these ecotypes.
Collapse
Affiliation(s)
- François Chevalier
- INRA UR 1199, Protéomique Fonctionnelle, Place Viala, 34060 Montpellier, Cedex 2, France.
| | | |
Collapse
|
20
|
Sato A, Miura K. Root architecture remodeling induced by phosphate starvation. PLANT SIGNALING & BEHAVIOR 2011; 6:1122-6. [PMID: 21778826 PMCID: PMC3260708 DOI: 10.4161/psb.6.8.15752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 05/17/2023]
Abstract
Plants have evolved efficient strategies for utilizing nutrients in the soil in order to survive, grow, and reproduce. Inorganic phosphate (Pi) is a major macroelement source for plant growth; however, the availability and distribution of Pi are varying widely across locations. Thus, plants in many areas experience Pi deficiency. To maintain cellular Pi homeostasis, plants have developed a series of adaptive responses to facilitate external Pi acquisition, limit Pi consumption, and adjust Pi recycling internally under Pi starvation conditions. This review focuses on the molecular regulators that modulate Pi starvation-induced root architectural changes.
Collapse
Affiliation(s)
- Aiko Sato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
21
|
Péret B, Clément M, Nussaume L, Desnos T. Root developmental adaptation to phosphate starvation: better safe than sorry. TRENDS IN PLANT SCIENCE 2011; 16:442-50. [PMID: 21684794 DOI: 10.1016/j.tplants.2011.05.006] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 05/18/2023]
Abstract
Phosphorus is a crucial component of major organic molecules such as nucleic acids, ATP and membrane phospholipids. It is present in soils in the form of inorganic phosphate (Pi), which has low availability and poor mobility. To cope with Pi limitations, plants have evolved complex adaptive responses that include morphological and physiological modifications. This review describes how the model plant Arabidopsis thaliana adapts its root system architecture to phosphate deficiency through inhibition of primary root growth, increase in lateral root formation and growth and production of root hairs, which all promote topsoil foraging. A better understanding of plant adaptation to low phosphate will open the way to increased phosphorus use efficiency by crops. Such an improvement is needed in order to adjust how we manage limited phosphorus stocks and to reduce the disastrous environmental effects of phosphate fertilizers overuse.
Collapse
Affiliation(s)
- Benjamin Péret
- UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France.
| | | | | | | |
Collapse
|
22
|
Martín-Rejano EM, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Rexach J, Navarro-Gochicoa MT, González-Fontes A. Auxin and ethylene are involved in the responses of root system architecture to low boron supply in Arabidopsis seedlings. PHYSIOLOGIA PLANTARUM 2011; 142:170-8. [PMID: 21338369 DOI: 10.1111/j.1399-3054.2011.01459.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Changes in root architecture are one of the adaptive strategies used by plants to compensate for nutrient deficiencies in soils. In this work, the temporal responses of Arabidopsis (Arabidopsis thaliana) root system architecture to low boron (B) supply were investigated. Arabidopsis Col-0 seedlings were grown in 10 µM B for 5 days and then transferred to a low B medium (0.4 µM) or control medium (10 µM) for a 4-day period. Low B supply caused an inhibition of primary root (PR) growth without altering either the growth or number of lateral roots (LRs). In addition, low B supply induced root hair formation and elongation in positions close to the PR meristem not observed under control conditions. The possible role of auxin and ethylene in the alteration of root system architecture elicited by low B supply was also studied by using two Arabidopsis reporter lines (DR5:GUS and EBS:GUS) and two Arabidopsis mutants with impaired auxin and ethylene signaling (aux1-22 and ein2-1). Low B supply increased auxin reporter DR5:GUS activity in PR tip, suggesting that low B alters the pattern of auxin distribution in PR tip. Moreover, PR elongation in aux1-22 mutant was less sensitive to low B treatment than in wild-type plants, which suggests that auxin resistant 1 (AUX1) participates in the inhibition of PR elongation under low B supply. From all these results, a hypothetical model to explain the effect of low B treatment on PR growth is proposed. We also show that ethylene, via ethylene-insensitive 2 (EIN2) protein, is involved in the induction of root hair formation and elongation under low B treatment.
Collapse
Affiliation(s)
- Esperanza M Martín-Rejano
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Nilsson L, Müller R, Nielsen TH. Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. PHYSIOLOGIA PLANTARUM 2010; 139:129-43. [PMID: 20113436 DOI: 10.1111/j.1399-3054.2010.01356.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inorganic phosphate (Pi) is an essential nutrient for plants, and the low bioavailability of Pi in soils is often a limitation to growth and development. Consequently, plants have evolved a range of regulatory mechanisms to adapt to phosphorus-starvation in order to optimise uptake and assimilation of Pi. Recently, significant progress has been made in elucidating these mechanisms. The coordinated expression of a large number of genes is important for many of these adaptations. Several global expression studies using microarray analysis have been conducted in Arabidopsis thaliana. These studies provide a valuable basis for the identification of new regulatory genes and promoter elements to further the understanding of Pi-dependent gene regulation. With focus on the Arabidopsis transcriptome, we extract common findings that point to new groups of putative regulators, including the NAC, MYB, ethylene response factor/APETALA2, zinc-finger, WRKY and CCAAT-binding families. With a number of new discoveries of regulatory elements, a complex regulatory network is emerging. Some regulatory elements, e.g. the transcription factor PHR1 and the microRNA (miRNA) miR399 and associated factors are well documented, yet not fully understood, whereas other suggested components need further characterisation. Here, we evaluate the contribution of the regulatory elements to the P-responses and present a model comprising factors directly or indirectly involved in transcriptional regulation and the role of miRNAs as regulators and long-distance signals. A striking feature is a series of feedback loops and parallel mechanisms that can modify and attenuate responses. We suggest that these mechanisms are instrumental in providing an accurate response and in keeping P-homeostasis.
Collapse
Affiliation(s)
- Lena Nilsson
- Department of Plant Biology and Biotechnology, VKR Research Centre Pro-Active Plants, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | |
Collapse
|
24
|
Abstract
Two essential functions are associated with the root tip: first of all, it ensures a sustained growth of the root system thanks to its role in protecting the stem cell zone responsible for cell division and differentiation. In addition, it is capable of detecting environmental changes at the root cap level, and this property provides a crucial advantage considering that this tissue is located at the forefront of soil exploration. Using results obtained mainly with the plant model Arabidopsis, we summarize the description of the structure of root cap and the known molecular mechanisms regulating its functioning. We briefly review the various responses of the root cap related to the interaction between the plant and its environment, such as phototropism, gravitropism, hydrotropism, mineral composition of the soil and protection against pathogens.
Collapse
Affiliation(s)
- Carole Arnaud
- UMR 6191 CEA, Centre National de la Recherche Scientifique, laboratoire de biologie du développement des plantes, université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France
| | | | | | | |
Collapse
|
25
|
Gojon A, Nacry P, Davidian JC. Root uptake regulation: a central process for NPS homeostasis in plants. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:328-38. [PMID: 19501015 DOI: 10.1016/j.pbi.2009.04.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/29/2009] [Accepted: 04/29/2009] [Indexed: 05/18/2023]
Abstract
Homeostasis of nitrogen, phosphorus and sulfur in growing plants requires a sustained intake of these elements into root cells. Under most situations, the adjustment of root N, P or S acquisition to the nutrient demand of the plant is hampered by the limiting and fluctuating availability of these elements in the soil. To cope with this constraint, higher plants modulate their root uptake capacity to compensate for the changes in external concentrations of the N, P or S sources. This adaptive response relies on both physiological and morphological changes in the root system, triggered by nutrient-specific sensing and signalling pathways. The underlying molecular mechanisms now begin to be elucidated. Key root membrane transport proteins have been identified, as well as molecular regulators that control root uptake systems or root system architecture in response to N, P or S availability. Significant but yet poorly understood interactions with carbon or hormone signalling have been unravelled, opening new routes for integrating the mechanisms of nutrient homeostasis into the whole plant.
Collapse
Affiliation(s)
- Alain Gojon
- UMR CNRS/INRA/Montpellier SupAgro/UM2, Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Montpellier, France.
| | | | | |
Collapse
|
26
|
Liu H, Yang H, Wu C, Feng J, Liu X, Qin H, Wang D. Overexpressing HRS1 confers hypersensitivity to low phosphate-elicited inhibition of primary root growth in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:382-92. [PMID: 19341407 DOI: 10.1111/j.1744-7909.2009.00819.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phosphate (Pi) deficiency causes dramatic root system architecture (RSA) changes in higher plants. Here we report that overexpression of HRS1 leads to enhanced sensitivity to low Pi-elicited inhibition of primary root growth in Arabidopsis thaliana seedlings. Bioinformatic investigations uncovered that HRS1 and its six homologs encode putative G2-like transcription factors in Arabidopsis. Analysis of promoter::GUS reporter lines revealed that HRS1 transcripts were present mainly in the root hair region and root hair cells under Pi-sufficient conditions. Pi deprivation increased HRS1 expression level and expanded its expression domain. Although HRS1 knockout mutant did not differ from wild type (WT) control irrespective of Pi status, its overexpression lines were significantly more susceptible to low Pi-elicited primary root shortening. In both WT and HRS1 overexpression seedlings, low Pi-induced primary root shortening was accompanied by enhanced root hair cell differentiation, but this enhancement occurred to a greater extent in the latter genotype. Collectively, our data suggest that HRS1 may be involved in the modulation of primary root and root hair growth in Pi-deprived Arabidopsis seedlings, and provide useful clues for further research into the function of HRS1 and its homologs and the mechanisms behind RSA changes under Pi-deficient conditions.
Collapse
Affiliation(s)
- Hong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|