1
|
Cao YW, Song M, Bi MM, Yang PP, He GR, Wang J, Yang Y, Xu LF, Ming J. Lily (Lilium spp.) LhERF4 negatively affects anthocyanin biosynthesis by suppressing LhMYBSPLATTER transcription. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112026. [PMID: 38342186 DOI: 10.1016/j.plantsci.2024.112026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Anthocyanins are among the main pigments involved in the colouration of Asiatic hybrid lily (Lilium spp.). Ethylene, a plant ripening hormone, plays an important role in promoting plant maturation and anthocyanin biosynthesis. However, whether and how ethylene regulates anthocyanin biosynthesis in lily tepals have not been characterized. Using yeast one-hybrid screening, we previously identified an APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) named LhERF4 as a potential inhibitor of LhMYBSPLATTER-mediated negative regulation of anthocyanin biosynthesis in lily. Here, transcript and protein analysis of LhERF4, a transcriptional repressor, revealed that LhERF4 directly binds to the promoter of LhMYBSPLATTER. In addition, overexpression of LhERF4 in lily tepals negatively regulates the expression of key structural genes and the total anthocyanin content by suppressing the LhMYBSPLATTER gene. Moreover, the LhERF4 gene inhibits anthocyanin biosynthesis in response to ethylene, affecting anthocyanin accumulation and pigmentation in lily tepals. Collectively, our findings will advance and elucidate a novel regulatory network of anthocyanin biosynthesis in lily, and this research provides new insight into colouration regulation.
Collapse
Affiliation(s)
- Yu-Wei Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Key Laboratory of Nanling Plant Resource Protection and Utilization, GanNan Normal University, Ganzhou 341000, China
| | - Meng Song
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meng-Meng Bi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pan-Pan Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guo-Ren He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Landscape Architecture and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Lei-Feng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jun Ming
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Zhao X, Feng Y, Ke D, Teng Y, Yuan Z. Comparative transcriptomic and metabolomic profiles reveal fruit peel color variation in two red pomegranate cultivars. PLANT MOLECULAR BIOLOGY 2024; 114:51. [PMID: 38691187 DOI: 10.1007/s11103-024-01446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/23/2024] [Indexed: 05/03/2024]
Abstract
Pomegranate (Punica granatum L.) which belongs to family Lythraceae, is one of the most important fruit crops of many tropical and subtropical regions. A high variability in fruit color is observed among different pomegranate accessions, which arises from the qualitative and quantitative differences in anthocyanins. However, the mechanism of fruit color variation is still not fully elucidated. In the present study, we investigated the red color mutation between a red-skinned pomegranate 'Hongbaoshi' and a purple-red-skinned cultivar 'Moshiliu', by using transcriptomic and metabolomic approaches. A total of 51 anthocyanins were identified from fruit peels, among which 3-glucoside and 3,5-diglucoside of cyanidin (Cy), delphinidin (Dp), and pelargonidin (Pg) were dominant. High proportion of Pg in early stages of 'Hongbaoshi' but high Dp in late stages of 'Moshiliu' were characterized. The unique high levels of Cy and Dp anthocyanins accumulating from early developmental stages accounted for the purple-red phenotype of 'Moshiliu'. Transcriptomic analysis revealed an early down-regulated and late up-regulated of anthocyanin-related structure genes in 'Moshiliu' compared with 'Hongbaoshi'. Alao, ANR was specially expressed in 'Hongbaoshi', with extremely low expression levels in 'Moshiliu'. For transcription factors R2R3-MYB, the profiles demonstrated a much higher transcription levels of three subgroup (SG) 5 MYBs and a sharp decrease in expression of SG6 MYB LOC116202527 in high-anthocyanin 'Moshiliu'. SG4 MYBs exhibited two entirely different patterns, LOC116203744 and LOC116212505 were down-regulated whereas LOC116205515 and LOC116212778 were up-regulated in 'Moshiliu' pomegranate. The results indicate that specific SG members of the MYB family might promote the peel coloration in different manners and play important roles in color mutation in pomegranate.
Collapse
Affiliation(s)
- Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yingyi Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Ding Ke
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yingfen Teng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
3
|
Tang K, Karamat U, Li G, Guo J, Jiang S, Fu M, Yang X. Integrated metabolome and transcriptome analyses reveal the role of BoGSTF12 in anthocyanin accumulation in Chinese kale (Brassica oleracea var. alboglabra). BMC PLANT BIOLOGY 2024; 24:335. [PMID: 38664614 PMCID: PMC11044404 DOI: 10.1186/s12870-024-05016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The vivid red, purple, and blue hues that are observed in a variety of plant fruits, flowers, and leaves are produced by anthocyanins, which are naturally occurring pigments produced by a series of biochemical processes occurring inside the plant cells. The purple-stalked Chinese kale, a popular vegetable that contains anthocyanins, has many health benefits but needs to be investigated further to identify the genes involved in the anthocyanin biosynthesis and translocation in this vegetable. RESULTS In this study, the purple- and green-stalked Chinese kale were examined using integrative transcriptome and metabolome analyses. The content of anthocyanins such as cyanidin-3-O-(6″-O-feruloyl) sophoroside-5-O-glucoside, cyanidin-3,5-O-diglucoside (cyanin), and cyanidin-3-O-(6″-O-p-hydroxybenzoyl) sophoroside-5-O-glucoside were considerably higher in purple-stalked Chinese kale than in its green-stalked relative. RNA-seq analysis indicated that 23 important anthocyanin biosynthesis genes, including 3 PAL, 2 C4H, 3 4CL, 3 CHS, 1 CHI, 1 F3H, 2 FLS, 2 F3'H, 1 DFR, 3 ANS, and 2 UFGT, along with the transcription factor BoMYB114, were significantly differentially expressed between the purple- and green-stalked varieties. Results of analyzing the expression levels of 11 genes involved in anthocyanin production using qRT-PCR further supported our findings. Association analysis between genes and metabolites revealed a strong correlation between BoGSTF12 and anthocyanin. We overexpressed BoGSTF12 in Arabidopsis thaliana tt19, an anthocyanin transport mutant, and this rescued the anthocyanin-loss phenotype in the stem and rosette leaves, indicating BoGSTF12 encodes an anthocyanin transporter that affects the accumulation of anthocyanins. CONCLUSION This work represents a key step forward in our understanding of the molecular processes underlying anthocyanin production in Chinese kale. Our comprehensive metabolomic and transcriptome analyses provide important insights into the regulatory system that controls anthocyanin production and transport, while providing a foundation for further research to elucidate the physiological importance of the metabolites found in this nutritionally significant vegetable.
Collapse
Affiliation(s)
- Kang Tang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Umer Karamat
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Shizheng Jiang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Mei Fu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China.
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Wu X, Yang M, Liu C, Kuang R, He H, Zhou C, Wei Y. Transcriptome, Plant Hormone, and Metabolome Analysis Reveals the Mechanism of Purple Pericarp Formation in 'Zihui' Papaya ( Carica papaya L.). Molecules 2024; 29:1485. [PMID: 38611765 PMCID: PMC11013584 DOI: 10.3390/molecules29071485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
The color of the pericarp is a crucial characteristic that influences the marketability of papaya fruit. Prior to ripening, normal papaya exhibits a green pericarp, whereas the cultivar 'Zihui' displays purple ring spots on the fruit tip, which significantly affects the fruit's visual appeal. To understand the mechanism behind the formation of purple pericarp, this study performed a thorough examination of the transcriptome, plant hormone, and metabolome. Based on the UPLC-ESI-MS/MS system, a total of 35 anthocyanins and 11 plant hormones were identified, with 27 anthocyanins and two plant hormones exhibiting higher levels of abundance in the purple pericarp. In the purple pericarp, 14 anthocyanin synthesis genes were up-regulated, including CHS, CHI, F3H, F3'5'H, F3'H, ANS, OMT, and CYP73A. Additionally, through co-expression network analysis, three MYBs were identified as potential key regulators of anthocyanin synthesis by controlling genes encoding anthocyanin biosynthesis. As a result, we have identified numerous key genes involved in anthocyanin synthesis and developed new insights into how the purple pericarp of papaya is formed.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenping Zhou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; (X.W.)
| | - Yuerong Wei
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; (X.W.)
| |
Collapse
|
5
|
Ma S, Zhou H, Ren T, Yu ER, Feng B, Wang J, Zhang C, Zhou C, Li Y. Integrated transcriptome and metabolome analysis revealed that HaMYB1 modulates anthocyanin accumulation to deepen sunflower flower color. PLANT CELL REPORTS 2024; 43:74. [PMID: 38379014 PMCID: PMC10879246 DOI: 10.1007/s00299-023-03098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/25/2023] [Indexed: 02/22/2024]
Abstract
KEY MESSAGE HanMYB1 was found to play positive roles in the modulation of anthocyanins metabolism based on the integrative analysis of different color cultivars and the related molecular genetic analyses. As a high value ornamental and edible crop with various colors, sunflowers (Helianthus annuus L.) provide an ideal system to understand the formation of flower color. Anthocyanins are major pigments in higher plants, which is associated with development of flower colors and ability of oxidation resistance. Here, we performed an integrative analysis of the transcriptome and flavonoid metabolome in five sunflower cultivars with different flower colors. According to differentially expressed genes and differentially accumulated flavonoids, these cultivars could be grouped into yellow and red. The results showed that more anthocyanins were accumulated in the red group flowers, especially the chrysanthemin. Some anthocyanins biosynthesis-related genes like UFGT (UDP-glycose flavonoid glycosyltransferase) also expressed more in the red group flowers. A MYB transcriptional factor, HanMYB1, was found to play vital positive roles in the modulation of anthocyanins metabolism by the integrative analysis. Overexpressed HanMYB1 in tobacco could deepen the flower color, increase the accumulation of anthocyanins and directly active the express of UFGT genes. Our findings indicated that the MYB transcriptional factors provide new insight into the dynamic regulation of the anthocyanin biosynthesis in facilitating sunflower color formation and anthocyanin accumulation.
Collapse
Affiliation(s)
- Siqi Ma
- Marine Agriculture Research Center/Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Hanlin Zhou
- Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement/Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China
| | - Tingting Ren
- Marine Agriculture Research Center/Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Er-Ru Yu
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Science, Guiyang, 550006, China
| | - Bin Feng
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Science, Guiyang, 550006, China
| | - Juying Wang
- Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land in Huangsanjiao Agricultural High-Tech, Dongying, 257000, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center/Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Chao Zhou
- Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement/Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China.
| | - Yiqiang Li
- Marine Agriculture Research Center/Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
6
|
Stoica R, Ganciarov M, Constantinescu-Aruxandei D, Capră L, Șuică-Bunghez IR, Senin RM, Pricope GD, Ivan GR, Călin C, Oancea F. Sustainable Recovery of Anthocyanins and Other Polyphenols from Red Cabbage Byproducts. Foods 2023; 12:4157. [PMID: 38002214 PMCID: PMC10669996 DOI: 10.3390/foods12224157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The objective of this work was to develop a sustainable process for the extraction of anthocyanins from red cabbage byproducts using, for the first time, apple vinegar in extractant composition. Our results showed that the mixture 50% (v/v) ethanol-water, acidified with apple vinegar, used in the proportion of 25 g of red cabbage by-products per 100 mL of solvent, was the best solvent for the preparation of an anthocyanin extract with good stability for food applications. The chemical characterization of this extract was performed by FTIR, UV-VIS, HPLC-DAD, and ICP-OES. The stability was evaluated by determining the dynamics of the total polyphenol content (TPC) and the total monomeric anthocyanin pigment content (TAC) during storage. On the basis of the statistical method for analysis of variance (ANOVA), the standard deviation between subsamples and the repeatability standard deviation were determined. The detection limit of the stability test of TPC was 3.68 mg GAE/100 g DW and that of TAC was 0.79 mg Cyd-3-Glu/100 g DW. The red cabbage extract has high TPC and TAC, good stability, and significant application potential. The extracted residues, depleted of anthocyanins and polyphenols with potential allelopathic risks, fulfill the requirements for a fertilizing product and could be used for soil treatment.
Collapse
Affiliation(s)
- Rusăndica Stoica
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Mihaela Ganciarov
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Diana Constantinescu-Aruxandei
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Luiza Capră
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Ioana-Raluca Șuică-Bunghez
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Raluca-Mădălina Senin
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Georgiana Diana Pricope
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Georgeta-Ramona Ivan
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Costin Călin
- Iprint3D Design & Consulting Srl, Str. George Enescu No.5, Sector 3, 030167 Bucharest, Romania;
| | - Florin Oancea
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
7
|
Zhang S, Ren Y, Zhao Q, Wu Y, Zhuo Y, Li H. Drought-induced CsMYB6 interacts with CsbHLH111 to regulate anthocyanin biosynthesis in Chaenomeles speciosa. PHYSIOLOGIA PLANTARUM 2023; 175:e13859. [PMID: 36688571 DOI: 10.1111/ppl.13859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Chaenomeles speciosa is a plant with high ornamental value, and the color of its petals deepens obviously under drought stress. To understand the mechanism of drought-induced reddening of C. speciosa petal color, the metabolites and transcriptomics of petals from 4% PEG-8000-treated and control cuttings were analyzed. In this study, the analysis of metabolites revealed the accumulation of anthocyanins in petals of PEG-treated cuttings, indicating anthocyanins might be the reason for the deepening of petal color. By using transcriptomics, we identified CsMYB6 as an overexpressed transcription factor in PEG-treated samples. Transient overexpression and suppression of CsMYB6 revealed that it is a key transcription factor for anthocyanin synthesis. We identified genes related to anthocyanin biosynthesis and constructed a network of drought- and anthocyanin-related genes (such as CsMYB6, CsbHLH111, CsANS, CsDFR, and CsUFGT). Further experiments indicated that CsMYB6 directly interacted with CsbHLH111, and this interaction increased the binding ability of CsMYB6 to the promoter regions of three structural genes of anthocyanin biosynthesis: CsANS, CsDFR, and CsUFGT. Our findings provide a molecular basis and new insight into drought-induced anthocyanin biosynthesis in C. speciosa.
Collapse
Affiliation(s)
- Shuangyu Zhang
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yanshen Ren
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Qianyi Zhao
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yang Wu
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yue Zhuo
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Houhua Li
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Guo P, Zhang B, Hu Z, Zhou S, Wang Y, Xie Q, Chen G. Anthocyanin accumulation and transcriptional regulation in purple flowering stalk (Brassica campestris L. var. purpurea Bailey). PLANT MOLECULAR BIOLOGY 2023; 111:57-72. [PMID: 36207656 DOI: 10.1007/s11103-022-01311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
1. Purple flowering stalk (Brassica campestris L. ssp. chinensis L. var. purpurea Bailey) is a crop with the high-level anthocyanin. 2. Increased abundance of LBGs promoted the synthesis of anthocyanin. 3. TTG2 (WRKY) interacted with TTG1 (WD40), probably regulating anthocyanin accumulation by shaping a MBWW complex. Brassica crops are a class of nutrient-rich vegetables. Here, two Brassica Crops-Flowering Stalk cultivars, purple flowering stalk (Brassica campestris L. var. purpurea Bailey) and pakchoi (Brassica campestris ssp. chinensis var. communis) were investigated. HPLC-ESI-MS/MS analysis demonstrated that Cy 3-p-coumaroylsophoroside-5-malonylglucoside and Cy 3-diferuloylsophoroside-5-malonylglucoside were identified as the major anthocyanin in peel of purple flowering stalk. The transcript level of structural genes including C4H, CHS, F3H, DFR, ANS and UFGT, and regulatory genes such as TT8, TTG1, Bra004162, Bra001917 and TTG2 in peel of purple flowering stalk were significantly higher than that in peel of pakchoi. In addition, the TTG2(WRKY) interacted only with TTG1(WD40) and the interaction between TT8 (bHLH) and TTG1/Bra004162(MYB)/Bra001917(MYB) were identified. Else, the WD40-WRKY complex (TTG1-TTG2) could activate the transcript of TT12. Our study laid a foundation for the research on the anthocyanin accumulation in Brassica crops.
Collapse
Affiliation(s)
- Pengyu Guo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Bin Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
- School of Agricultural Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zongli Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Shuang Zhou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yunshu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| | - Guoping Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
9
|
Li JL, Weng Z, Li XY, Xu B, Gao YF, Rong LP. De novo transcriptome revealed genes involved in anthocyanin biosynthesis, transport, and regulation in a mutant of Acer pseudosieboldianum. BMC Genomics 2022; 23:567. [PMID: 35941547 PMCID: PMC9361605 DOI: 10.1186/s12864-022-08815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acer pseudosieboldianum is a kind of excellent color-leafed plants, and well known for its red leaves in autumn. At the same time, A. pseudosieboldianum is one of the native tree species in the northeast of China, and it plays an important role in improving the lack of color-leafed plants in the north. In previous study, we found a mutant of the A. pseudosieboldianum that leaves intersect red and green in spring and summer. However, it is unclear which genes cause the color change of mutant leaves. RESULTS In order to study the molecular mechanism of leaf color formation, we analyzed the leaves of the mutant group and the control group from A. pseudosieboldianum by RNA deep sequencing in this study. Using an Illumina sequencing platform, we obtained approximately 276,071,634 clean reads. After the sequences were filtered and assembled, the transcriptome data generated a total of 70,014 transcripts and 54,776 unigenes, of which 34,486 (62.96%) were successfully annotated in seven public databases. There were 8,609 significant DEGs identified between the control and mutant groups, including 4,897 upregulated and 3,712 downregulated genes. We identified 13 genes of DEGs for leaf color synthesis that was involved in the flavonoid pathway, 26 genes that encoded transcription factors, and eight genes associated with flavonoid transport. CONCLUSION Our results provided comprehensive gene expression information about A. pseudosieboldianum transcriptome, and directed the further study of accumulation of anthocyanin in A. pseudosieboldianum, aiming to provide insights into leaf coloring of it through transcriptome sequencing and analysis.
Collapse
Affiliation(s)
- Jia-Lin Li
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Zhuo Weng
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Xin-Yu Li
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Bo Xu
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Yu-Fu Gao
- College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Li-Ping Rong
- College of Agriculture, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
10
|
Yao X, Yao Y, An L, Li X, Bai Y, Cui Y, Wu K. Accumulation and regulation of anthocyanins in white and purple Tibetan Hulless Barley (Hordeum vulgare L. var. nudum Hook. f.) revealed by combined de novo transcriptomics and metabolomics. BMC PLANT BIOLOGY 2022; 22:391. [PMID: 35922757 PMCID: PMC9351122 DOI: 10.1186/s12870-022-03699-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Colored barley, which may have associated human health benefits, is more desirable than the standard white variety, but the metabolites and molecular mechanisms underlying seedcoat coloration remain unclear. RESULTS Here, the development of Tibetan hulless barley was monitored, and 18 biological samples at 3 seedcoat color developmental stages were analyzed by transcriptomic and metabolic assays in Nierumuzha (purple) and Kunlun10 (white). A total of 41 anthocyanin compounds and 4186 DEGs were identified. Then we constructed the proanthocyanin-anthocyanin biosynthesis pathway of Tibetan hulless barley, including 19 genes encoding structural enzymes in 12 classes (PAL, C4H, 4CL, CHS, CHI, F3H, F3'H, DFR, ANS, ANR, GT, and ACT). 11 DEGs other than ANR were significantly upregulated in Nierumuzha as compared to Kunlun10, leading to high levels of 15 anthocyanin compounds in this variety (more than 25 times greater than the contents in Kunlun10). ANR was significantly upregulated in Kunlun10 as compared to Nierumuzha, resulting in higher contents of three anthocyanins compounds (more than 5 times greater than the contents in Nierumuzha). In addition, 22 TFs, including MYBs, bHLHs, NACs, bZips, and WD40s, were significantly positively or negatively correlated with the expression patterns of the structural genes. Moreover, comparisons of homologous gene sequences between the two varieties identified 61 putative SNPs in 13 of 19 structural genes. A nonsense mutation was identified in the coding sequence of the ANS gene in Kunlun10. This mutation might encode a nonfunctional protein, further reducing anthocyanin accumulation in Kunlun10. Then we identified 3 modules were highly specific to the Nierumuzha (purple) using WGCNA. Moreover, 12 DEGs appeared both in the putative proanthocyanin-anthocyanin biosynthesis pathway and the protein co-expression network were obtained and verified. CONCLUSION Our study constructed the proanthocyanin-anthocyanin biosynthesis pathway of Tibetan hulless barley. A series of compounds, structural genes and TFs responsible for the differences between purple and white hulless barley were obtained in this pathway. Our study improves the understanding of the molecular mechanisms of anthocyanin accumulation and biosynthesis in barley seeds. It provides new targets for the genetic improvement of anthocyanin content and a framework for improving the nutritional quality of barley.
Collapse
Affiliation(s)
- Xiaohua Yao
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Youhua Yao
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Likun An
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Xin Li
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Yixiong Bai
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Yongmei Cui
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Kunlun Wu
- Qinghai University, Xining, 810016, China.
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China.
| |
Collapse
|
11
|
Zhang Z, Liu Y, Yuan Q, Xiong C, Xu H, Hu B, Suo H, Yang S, Hou X, Yuan F, Pei Z, Dai X, Zou X, Liu F. The bHLH1-DTX35/DFR module regulates pollen fertility by promoting flavonoid biosynthesis in Capsicum annuum L. HORTICULTURE RESEARCH 2022; 9:uhac172. [PMID: 36238346 PMCID: PMC9552195 DOI: 10.1093/hr/uhac172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
High pollen fertility can ensure the yield and efficiency of breeding work, but factors that affect the fertility of pepper pollen have not been studied extensively. In this work, we screened the reduced pollen fertility 1 (rpf1) mutant of Capsicum annuum with reduced pollen fertility and yellow anthers from an EMS (ethyl methanesulfonate)-mutagenized pepper population. Through construction of an F 2 population followed by BSA (bulked segregant analysis) mapping and KASP genotyping, we identified CabHLH1 as a candidate gene for control of this trait. A G → A mutation at a splice acceptor site in CabHLH1 causes a frameshift mutation in the mutant, and the translated protein is terminated prematurely. Previous studies on CabHLH1 have focused on the regulation of flavonoid synthesis. Here, we found that CabHLH1 also has an important effect on pollen fertility. Pollen vigor, anther flavonoid content, and seed number were lower in CabHLH1-silenced pepper plants, whereas anther H2O2 and MDA (malondialdehyde) contents were higher. RNA-seq analyses showed that expression of the flavonoid synthesis genes DFR, ANS, and RT was significantly reduced in anthers of CabHLH1-silenced plants and rpf1 plants, as was the expression of DTX35, a gene related to pollen fertility and flavonoid transport. Yeast one-hybrid and dual-luciferase reporter assays showed that CabHLH1 can directly bind to the promoters of DTX35 and DFR and activate their expression. These results indicate that CabHLH1 regulates reactive oxygen species homeostasis by promoting the synthesis of anther flavonoids and acts as a positive regulator of pepper pollen fertility.
Collapse
Affiliation(s)
| | | | - Qiaoling Yuan
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Cheng Xiong
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Hao Xu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Bowen Hu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Huan Suo
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Sha Yang
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Xilin Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Yuan
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Zhenming Pei
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Xiongze Dai
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Xuexiao Zou
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | | |
Collapse
|
12
|
Wu J, Xu XD, Liu L, Ma L, Pu Y, Wang W, Hua XY, Song JM, Liu K, Lu G, Fang Y, Li X, Sun W. A Chromosome Level Genome Assembly of a Winter Turnip Rape ( Brassica rapa L.) to Explore the Genetic Basis of Cold Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:936958. [PMID: 35909760 PMCID: PMC9335200 DOI: 10.3389/fpls.2022.936958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Winter rapeseed (Brassica rapa L.) is an important overwintering oilseed crop that is widely planted in northwest China and suffers chronic low temperatures in winter. So the cold stress becomes one of the major constraints that limit its production. The currently existing genomes limit the understanding of the cold-tolerant genetic basis of rapeseed. Here we assembled a high-quality long-read genome of B. rapa "Longyou-7" cultivar, which has a cold-tolerant phenotype, and constructed a graph-based pan-genome to detect the structural variations within homologs of currently reported cold-tolerant related genes in the "Longyou-7" genome, which provides an additional elucidation of the cold-tolerant genetic basis of "Longyou-7" cultivar and promotes the development of cold-tolerant breeding in B. rapa.
Collapse
Affiliation(s)
- Junyan Wu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Xin-Dong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Li Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Yuanyuan Pu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Xue-Yang Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guangyuan Lu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Xuecai Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
13
|
Mercedes BFA, Santos GSJ, Nydia CBO, Isabel SMD, Jaime LC, Karina BRA. Validation of a micro-assay based on the pH differential method to quantify total monomeric anthocyanins in red cabbage (Brassica oleracea var. capitata f rubra). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Transcriptome and Metabolome Profiling to Explore the Causes of Purple Leaves Formation in Non-Heading Chinese Cabbage ( Brassica rapa L. ssp. chinensis Makino var. mutliceps Hort.). Foods 2022; 11:foods11121787. [PMID: 35741985 PMCID: PMC9222747 DOI: 10.3390/foods11121787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Abstract
Purple non-heading Chinese cabbage is one of the most popular vegetables, and is rich in various health-beneficial anthocyanins. Research related to genes associated with anthocyanin biosynthesis in non-heading Chinese cabbage is important. This study performed integrative transcriptome and metabolome analysis in the purple non-heading Chinese cabbage wild type (WT) and its green mutant to elucidate the formation of purple leaves. The anthocyanin level was higher in purple than in green plants, while the contents of chlorophyll and carotenoid were higher in the green mutant than in the purple WT. Twenty-five anthocyanins were identified in purple and green cultivars; eleven anthocyanin metabolites were identified specifically in the purple plants. RNA-seq analysis indicated that 27 anthocyanin biosynthetic genes and 83 transcription factors were significantly differentially expressed between the WT and its mutant, most of them with higher expression in the purple than green non-heading Chinese cabbage. Transcriptome and metabolome analyses showed that UGT75C1 catalyzing the formation of pelargonidin-3,5-O-diglucoside and cyanidin-3,5-O-diglucoside may play a critical role in purple leaf formation in non-heading Chinese cabbage. Therefore, these results provide crucial information for elucidating the formation of purple leaves in non-heading Chinese cabbage.
Collapse
|
15
|
Chen D, Yang Y, Niu G, Shan X, Zhang X, Jiang H, Liu L, Wen Z, Ge X, Zhao Q, Yao X, Sun D. Metabolic and RNA sequencing analysis of cauliflower curds with different types of pigmentation. AOB PLANTS 2022; 14:plac001. [PMID: 35414860 PMCID: PMC8994856 DOI: 10.1093/aobpla/plac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Cauliflower (Brassica oleracea var. botrytis) is a popular vegetable worldwide due to its delicious taste, high nutritional value and anti-cancer properties. Cauliflower normally produces white curds, and natural spontaneous mutations lead to the production of orange, purple or green curds. However, some white cauliflowers show uneven purple pigmentation in their curds, which seriously affects the appearance quality and economic value of this crop. The underlying mechanism is still unclear. In this study, we performed comparative transcriptional and metabolic profiling analysis of light orange, white and purplish cauliflower curds. Metabolite analysis revealed that the pigments conferring purple colouration were delphinin and cyanin. Transcriptome analysis showed that the anthocyanin metabolism-related structural genes DFR, ANS and UGT and the transcription factor genes PAP2, TT8, GL3, EGL3 and TTG1 were upregulated in purplish versus white curds. These findings shed light on the formation of purplish curds, which could facilitate the breeding of purely white or red cauliflower.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou 341000, China
| | - Yingxia Yang
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Guobao Niu
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Xiaozheng Shan
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Xiaoli Zhang
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Hanmin Jiang
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Lili Liu
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Zhenghua Wen
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiancheng Zhao
- Tianjin Huierjia Seeds Industry Technology Co., Ltd, Tianjin 300392, China
| | - Xingwei Yao
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Deling Sun
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| |
Collapse
|
16
|
Mao W, Han Y, Chen Y, Sun M, Feng Q, Li L, Liu L, Zhang K, Wei L, Han Z, Li B. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1. THE PLANT CELL 2022; 34:1226-1249. [PMID: 35018459 PMCID: PMC8972286 DOI: 10.1093/plcell/koac006] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/05/2022] [Indexed: 05/07/2023]
Abstract
Low temperature causes poor coloration of strawberry (Fragaria sp.) fruits, thus greatly reducing their commercial value. Strawberry fruits accumulate anthocyanins during ripening, but how low temperature modulates anthocyanin accumulation in plants remains largely unknown. We identified MITOGEN-ACTIVATED PROTEIN KINASE3 (FvMAPK3) as an important negative regulator of anthocyanin accumulation that mediates the poor coloration of strawberry fruits in response to low temperature. FvMAPK3 activity was itself induced by low temperature, leading to the repression of anthocyanin accumulation via two mechanisms. Activated FvMAPK3 acted as the downstream target of MAPK KINASE4 (FvMKK4) and SUCROSE NONFERMENTING1-RELATED KINASE2.6 (FvSnRK2.6) to phosphorylate the transcription factor FvMYB10 and reduce its transcriptional activity. In parallel, FvMAPK3 phosphorylated CHALCONE SYNTHASE1 (FvCHS1) to enhance its proteasome-mediated degradation. These results not only provide an important reference to elucidate the molecular mechanisms underlying low-temperature-mediated repression of anthocyanin accumulation in plants, but also offer valuable candidate genes for generating strawberry varieties with high tolerance to low temperature and good fruit quality.
Collapse
Affiliation(s)
- Wenwen Mao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yating Chen
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Mingzhu Sun
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qianqian Feng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Li Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Liping Liu
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kaikai Zhang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lingzhi Wei
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Bingbing Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Author for correspondence:
| |
Collapse
|
17
|
Mahoney JD, Wang S, Iorio LA, Wegrzyn JL, Dorris M, Martin D, Bolling BW, Brand MH, Wang H. De novo assembly of a fruit transcriptome set identifies AmMYB10 as a key regulator of anthocyanin biosynthesis in Aronia melanocarpa. BMC PLANT BIOLOGY 2022; 22:143. [PMID: 35337270 PMCID: PMC8951710 DOI: 10.1186/s12870-022-03518-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Aronia is a group of deciduous fruiting shrubs, of the Rosaceae family, native to eastern North America. Interest in Aronia has increased because of the high levels of dietary antioxidants in Aronia fruits. Using Illumina RNA-seq transcriptome analysis, this study investigates the molecular mechanisms of polyphenol biosynthesis during Aronia fruit development. Six A. melanocarpa (diploid) accessions were collected at four fruit developmental stages. De novo assembly was performed with 341 million clean reads from 24 samples and assembled into 90,008 transcripts with an average length of 801 bp. The transcriptome had 96.1% complete according to Benchmarking Universal Single-Copy Orthologs (BUSCOs). The differentially expressed genes (DEGs) were identified in flavonoid biosynthetic and metabolic processes, pigment biosynthesis, carbohydrate metabolic processes, and polysaccharide metabolic processes based on significant Gene Ontology (GO) biological terms. The expression of ten anthocyanin biosynthetic genes showed significant up-regulation during fruit development according to the transcriptomic data, which was further confirmed using qRT-PCR expression analyses. Additionally, transcription factor genes were identified among the DEGs. Using a transient expression assay, we confirmed that AmMYB10 induces anthocyanin biosynthesis. The de novo transcriptome data provides a valuable resource for the understanding the molecular mechanisms of fruit anthocyanin biosynthesis in Aronia and species of the Rosaceae family.
Collapse
Affiliation(s)
- Jonathan D Mahoney
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Sining Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Liam A Iorio
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Matthew Dorris
- Department of Food Science, University of Wisconsin, Madison, WI, 53706, USA
| | - Derek Martin
- Department of Food Science, University of Wisconsin, Madison, WI, 53706, USA
| | - Bradley W Bolling
- Department of Food Science, University of Wisconsin, Madison, WI, 53706, USA
| | - Mark H Brand
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
18
|
Dar NA, Mir MA, Mir JI, Mansoor S, Showkat W, Parihar TJ, Haq SAU, Wani SH, Zaffar G, Masoodi KZ. MYB-6 and LDOX-1 regulated accretion of anthocyanin response to cold stress in purple black carrot (Daucus carota L.). Mol Biol Rep 2022; 49:5353-5364. [PMID: 35088377 DOI: 10.1007/s11033-021-07077-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
AIM Anthocyanin, an essential ingredient of functional foods, is present in a wide range of plants, including black carrots. The current investigation was carried out to analyse the effect of cold stress on the expression of major anthocyanins and anthocyanin biosynthetic pathway genes, MYB6 and LDOX-1. METHODS AND RESULTS Five cultivated carrot genotypes belonging to the eastern group, having anthocyanin pigment, were used in the current study. The qRT-PCR analysis revealed that relative gene expression of transcription factor MYB-6 and LDOX1gene was highly expressed upon cold stress compared to non-stress samples. High-performance liquid chromatography-based quantification of Cyanidin 3-O-glucoside (Kuromanin chloride), Ferulic acid, 3,5-Dimethoxy-4-hydroxycinnamic acid (Sinapic acid), and Rutin revealed a significant increase in these major anthocyanins in response to cold stress when compared to control plants. CONCLUSION We conclude that MYB6 and LDOX1 gene expression increases upon cold stress, which induces accumulation of major anthocyanins in purple black carrot and suggests a possible cross-link between cold stress and anthocyanin biosynthesis in purple black carrot.
Collapse
Affiliation(s)
- Niyaz A Dar
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Mudasir A Mir
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Javid I Mir
- Central Institute of Temperate Horticulture, Rangreth, Srinagar, Jammu and Kashmir, 191132, India
| | - Sheikh Mansoor
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Wasia Showkat
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Tasmeen J Parihar
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Syed Anam Ul Haq
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Shabir H Wani
- Mountain Research Centre for Field Crops, SKUAST-Kashmir, Khudwani, Jammu and Kashmir, 192101, India
| | - Gul Zaffar
- Division of Plant Breeding & Genetics, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Khalid Z Masoodi
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
19
|
Khusnutdinov E, Sukhareva A, Panfilova M, Mikhaylova E. Anthocyanin Biosynthesis Genes as Model Genes for Genome Editing in Plants. Int J Mol Sci 2021; 22:8752. [PMID: 34445458 PMCID: PMC8395717 DOI: 10.3390/ijms22168752] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas, one of the most rapidly developing technologies in the world, has been applied successfully in plant science. To test new nucleases, gRNA expression systems and other inventions in this field, several plant genes with visible phenotypic effects have been constantly used as targets. Anthocyanin pigmentation is one of the most easily identified traits, that does not require any additional treatment. It is also associated with stress resistance, therefore plants with edited anthocyanin genes might be of interest for agriculture. Phenotypic effect of CRISPR/Cas editing of PAP1 and its homologs, DFR, F3H and F3'H genes have been confirmed in several distinct plant species. DFR appears to be a key structural gene of anthocyanin biosynthesis, controlled by various transcription factors. There are still many promising potential model genes that have not been edited yet. Some of them, such as Delila, MYB60, HAT1, UGT79B2, UGT79B3 and miR156, have been shown to regulate drought tolerance in addition to anthocyanin biosynthesis. Genes, also involved in trichome development, such as TTG1, GLABRA2, MYBL2 and CPC, can provide increased visibility. In this review successful events of CRISPR/Cas editing of anthocyanin genes are summarized, and new model genes are proposed. It can be useful for molecular biologists and genetic engineers, crop scientists, plant genetics and physiologists.
Collapse
Affiliation(s)
| | | | | | - Elena Mikhaylova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center RAS, Prospekt Oktyabrya 71, 450054 Ufa, Russia; (E.K.); (A.S.); (M.P.)
| |
Collapse
|
20
|
Identification of Major Loci and Candidate Genes for Anthocyanin Biosynthesis in Broccoli Using QTL-Seq. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7080246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Anthcyanins determine the colors of flowers, fruits, and purple vegetables and act as important health-promoting antioxidants. BT 126 represents a broccoli variety with a high content of anthocyanins (5.72 mg/g FW). Through QTL-seq bulk segregant analysis, the present study aimed to determine the quantitative trait loci (QTLs) involved in anthocyanin biosynthesis in the F2 population (n = 302), which was obtained by crossing BT 126 with a non-anthocyanin-containing SN 60. The whole-genome resequencing of purple (n = 30) and green (n = 30) bulk segregates detected ~1,117,709 single nucleotide polymorphisms (SNPs) in the B. oleracea genome. Two QTLs, tightly correlated with anthocyanin biosynthesis (p < 0.05), were detected on chromosomes 7 (BoPur7.1) and 9 (BoPur9.1). The subsequent high-resolution mapping of BoPur9.1 in the F2 population (n = 280) and F3 population (n = 580), with high-throughput genotyping of SNPs technology, narrowed the major anthocyanin biosynthesis QTL region to a physical distance of 73 kb, containing 14 genes. Among these genes, Bo9g174880, Bo9g174890, and Bo9g174900 showed high homology with AT5G07990 (gene encoding flavonoid 3′ hydroxylase), which was identified as a candidate gene for BoPur9.1. The expression of BoF3’H in BT 126 was significantly higher than that in SN60. Multiple biomarkers, related to these QTLs, represented potential targets of marker-assisted selection (MAS) foranthocyanin biosynthesis in broccoli. The present study provided genetic insights into the development of novel crop varieties with augmented health-promoting features and improved appearance.
Collapse
|
21
|
Pucker B, Singh HB, Kumari M, Khan MI, Brockington SF. The report of anthocyanins in the betalain-pigmented genus Hylocereus is not well evidenced and is not a strong basis to refute the mutual exclusion paradigm. BMC PLANT BIOLOGY 2021; 21:297. [PMID: 34187352 PMCID: PMC8240293 DOI: 10.1186/s12870-021-03080-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Here we respond to the paper entitled "Contribution of anthocyanin pathways to fruit flesh coloration in pitayas" (Fan et al., BMC Plant Biol 20:361, 2020). In this paper Fan et al. 2020 propose that the anthocyanins can be detected in the betalain-pigmented genus Hylocereus, and suggest they are responsible for the colouration of the fruit flesh. We are open to the idea that, given the evolutionary maintenance of fully functional anthocyanin synthesis genes in betalain-pigmented species, anthocyanin pigmentation might co-occur with betalain pigments, as yet undetected, in some species. However, in absence of the LC-MS/MS spectra and co-elution/fragmentation of the authentic standard comparison, the findings of Fan et al. 2020 are not credible. Furthermore, our close examination of the paper, and re-analysis of datasets that have been made available, indicate numerous additional problems. Namely, the failure to detect betalains in an untargeted metabolite analysis, accumulation of reported anthocyanins that does not correlate with the colour of the fruit, absence of key anthocyanin synthesis genes from qPCR data, likely mis-identification of key anthocyanin genes, unreproducible patterns of correlated RNAseq data, lack of gene expression correlation with pigmentation accumulation, and putative transcription factors that are weak candidates for transcriptional up-regulation of the anthocyanin pathway.
Collapse
Affiliation(s)
- Boas Pucker
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Hidam Bishworjit Singh
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, 781014, Guwahati, Assam, India
| | - Monika Kumari
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, 781014, Guwahati, Assam, India
| | - Mohammad Imtiyaj Khan
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, 781014, Guwahati, Assam, India.
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK.
| |
Collapse
|
22
|
Ahn JY, Jung YH, Song H, Yi H, Hur Y. Alleles disrupting LBD37-like gene by an 136 bp insertion show different distributions between green and purple cabbages (Brassica oleracea var. capitata). Genes Genomics 2021; 43:679-688. [PMID: 33837934 DOI: 10.1007/s13258-021-01087-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/18/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND In Arabidopsis thaliana (Arabidopsis), clade IIb lateral organ boundary domain (LBD) 37, 38, and 39 proteins negatively regulate anthocyanin biosynthesis and affect nitrogen responses. OBJECTIVE To investigate the possible role of LBD genes in anthocyanin accumulations among green and purple cabbages (Brassica oleracea var. capitata), we determined sequence variations and expression levels of cabbage homologs of Arabidopsis LBD37, 38, and 39. METHODS DNA and mRNA sequences of BoLBD37, BoLBD37L (BoLBD37-like), BoLBD38, BoLBD38L (BoLBD38-like), and BoLBD39 gene in cabbage were determined. Allelic variations of BoLBD37L alleles in cabbages, resulting from insertions, were validated by genomic DNA PCR. Gene expressions were examined by semi-quantitative reverse transcription (RT-PCR) or quantitative RT-PCR. RESULTS Based on the expression analyses, BoLBD37L with two alleles, BoLBD37L-G and BoLBD37L-P, was selected as a candidate gene important for differential anthocyanin accumulation. BoLBD37L-P contains an 136 base pair insertion in the 2nd exon, producing two splicing variants encoding truncated proteins. Most purple cabbage lines were found to have BoLBD37L-P allele as homozygotes or heterozygotes, and only two out of sixty-four purple cabbages were identified as BoLBD37L-G homozygotes. Expression analyses of anthocyanin biosynthesis genes and their upstream regulators, including BoLBD37L, suggest that truncated proteins encoded by splicing variants of BoLBD37L-P may disrupt the BoLBD37L function as repressor. CONCLUSION Difference in the C-terminal region of BoLBD37L-G and BolBD37L-P may affect the expression of downstream genes, BoMYB114L and BoTT8, resulting in differential anthocyanin accumulation.
Collapse
Affiliation(s)
- Ju Young Ahn
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yi Hyun Jung
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hayoung Song
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hankuil Yi
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Yoonkang Hur
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
23
|
Moradpour M, Abdullah SNA, Namasivayam P. The Impact of Heat Stress on Morpho-Physiological Response and Expression of Specific Genes in the Heat Stress-Responsive Transcriptional Regulatory Network in Brassica oleracea. PLANTS (BASEL, SWITZERLAND) 2021; 10:1064. [PMID: 34073267 PMCID: PMC8230129 DOI: 10.3390/plants10061064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Knowledge of heat-tolerant/sensitive cultivars based on morpho-physiological indicators and an understanding of the action and interaction of different genes in the molecular network are critical for genetic improvement. To screen these indicators, the physiological performance of two different varieties of white and red cabbages (B. oleracea var. capitate f. alba and f. rubra, respectively) under heat stress (HS) and non-stress (NS) was evaluated. Cultivars that showed considerable cell membrane thermostability and less reduction in chlorophyll content with better head formation were categorized as the heat-tolerant cultivars (HTC), while those with reduction in stomatal conductance, higher reduction incurred in chlorophyll and damage to thylakoid membranes are categorized as the heat-sensitive cultivars (HSC). Expression profiling of key genes in the HS response network, including BoHSP70 (HEAT SHOCK PROTEIN 70), BoSCL13 (SCARECROW-LIKE 13) and BoDPB3-1 (transcriptional regulator DNA POLYMERASE II SUBUNIT B3-1 (DPB3-1))/NUCLEAR FACTOR Y SUBUNIT C10 (NF-YC10), were evaluated in all cultivars under HS compared to NS plants, which showed their potential as molecular indicators to differentiate HTC from HSC. Based on the results, the morphophysiological and molecular indicators are applicable to cabbage cultivars for differentiating HTC from HSC, and potential target genes for genome editing were identified for enhancing food security in the warmer regions of the world.
Collapse
Affiliation(s)
- Mahdi Moradpour
- Laboratory of Agronomy and Sustainable Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Siti Nor Akmar Abdullah
- Laboratory of Agronomy and Sustainable Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Parameswari Namasivayam
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, University Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| |
Collapse
|
24
|
Tong Y, Lyu Y, Xu S, Zhang L, Zhou J. Optimum chalcone synthase for flavonoid biosynthesis in microorganisms. Crit Rev Biotechnol 2021; 41:1194-1208. [PMID: 33980085 DOI: 10.1080/07388551.2021.1922350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chalcones and the subsequently generated flavonoids, as well as flavonoid derivatives, have been proven to have a variety of physiological activities and are widely used in: the pharmaceutical, food, feed, and cosmetic industries. As the content of chalcones and downstream products in native plants is low, the production of these compounds by microorganisms has gained the attention of many researchers and has a history of more than 20 years. The mining and engineering of chalcone synthase (CHS) could be one of the most important ways to achieve more efficient production of chalcones and downstream products in microorganisms. CHS has a broad spectrum of substrates, and its enzyme activity and expression level can significantly affect the efficiency of the biosynthesis of flavonoids. This review summarizes the recent advances in the: structure, mechanism, evolution, substrate spectrum, transformation, and expression regulation in the flavonoid biosynthesis of this vital enzyme. Future development directions were also suggested. The findings may further promote the research and development of flavonoids and health products, making them vital in the fields of human diet and health.
Collapse
Affiliation(s)
- Yingjia Tong
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Liang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
25
|
Tomas M, Zhang L, Zengin G, Rocchetti G, Capanoglu E, Lucini L. Metabolomic insight into the profile, in vitro bioaccessibility and bioactive properties of polyphenols and glucosinolates from four Brassicaceae microgreens. Food Res Int 2021; 140:110039. [PMID: 33648265 DOI: 10.1016/j.foodres.2020.110039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
In this study, four Brassicaceae microgreens species, namely kale, red cabbage, kohlrabi, and radish, were evaluated for their phytochemical compositions using spectrophotometric assays and untargeted metabolomics before and after in vitro gastrointestinal digestion. According to the in vitro spectrophotometric results, significant amounts of phenolics could be detected in each studied species, thus supporting the total antioxidant capacities recorded. Overall, metabolomics allowed annotating a total of 470 phytochemicals across the four Brassicaceae microgreens, either fresh or digested. Among polyphenols, flavonoids were the most represented class (180 compounds, including anthocyanins, flavones, flavonols, and other flavonoids), followed by phenolic acids (68 compounds, mainly hydroxycinnamic and hydroxybenzoic acids), non-flavonoid or phenolic acid-based structures (i.e., alkyl- and alkylmethoxy-phenols and tyrosol derivatives), and lignans. Also, 22 glucosinolates were annotated, including gluconapin glucoraphanin, glucobrassicin, and 4-hydroxyglucobrassicin. Noteworthy, significant differences could be observed in terms of bioaccessibility as a function of the phenolic class and the species considered. Overall, lignans exhibited the highest bioaccessibility values (14%), followed by tyrosol derivatives and flavonoids (on average, 9% and 8%, respectively). However, differences could be evidenced as a function of the species, with red cabbage having comparatively lower bioaccessibility values irrespective of the chemical class of bioactive considered. Similarly, bioaccessibility of glucosinolates significantly differed across species, ranging from 2% in kale to 43% in kohlrabi microgreens.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303 Halkali, Istanbul, Turkey
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus Konya, Turkey
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
26
|
Maritim TK, Masand M, Seth R, Sharma RK. Transcriptional analysis reveals key insights into seasonal induced anthocyanin degradation and leaf color transition in purple tea (Camellia sinensis (L.) O. Kuntze). Sci Rep 2021; 11:1244. [PMID: 33441891 PMCID: PMC7806957 DOI: 10.1038/s41598-020-80437-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Purple-tea, an anthocyanin rich cultivar has recently gained popularity due to its health benefits and captivating leaf appearance. However, the sustainability of purple pigmentation and anthocyanin content during production period is hampered by seasonal variation. To understand seasonal dependent anthocyanin pigmentation in purple tea, global transcriptional and anthocyanin profiling was carried out in tea shoots with two leaves and a bud harvested during in early (reddish purple: S1_RP), main (dark gray purple: S2_GP) and backend flush (moderately olive green: S3_G) seasons. Of the three seasons, maximum accumulation of total anthocyanin content was recorded in S2_GP, while least amount was recorded during S3_G. Reference based transcriptome assembly of 412 million quality reads resulted into 71,349 non-redundant transcripts with 6081 significant differentially expressed genes. Interestingly, key DEGs involved in anthocyanin biosynthesis [PAL, 4CL, F3H, DFR and UGT/UFGT], vacuolar trafficking [ABC, MATE and GST] transcriptional regulation [MYB, NAC, bHLH, WRKY and HMG] and Abscisic acid signaling pathway [PYL and PP2C] were significantly upregulated in S2_GP. Conversely, DEGs associated with anthocyanin degradation [Prx and lac], repressor TFs and key components of auxin and ethylene signaling pathways [ARF, AUX/IAA/SAUR, ETR, ERF, EBF1/2] exhibited significant upregulation in S3_G, correlating positively with reduced anthocyanin content and purple coloration. The present study for the first-time elucidated genome-wide transcriptional insights and hypothesized the involvement of anthocyanin biosynthesis activators/repressor and anthocyanin degrading genes via peroxidases and laccases during seasonal induced leaf color transition in purple tea. Futuristically, key candidate gene(s) identified here can be used for genetic engineering and molecular breeding of seasonal independent anthocyanin-rich tea cultivars.
Collapse
Affiliation(s)
- Tony Kipkoech Maritim
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India.,Tea Breeding and Genetic Improvement Division, KALRO-Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Mamta Masand
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Romit Seth
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India
| | - Ram Kumar Sharma
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
27
|
Drozdowska M, Leszczyńska T, Koronowicz A, Piasna-Słupecka E, Dziadek K. Comparative study of young shoots and the mature red headed cabbage as antioxidant food resources with antiproliferative effect on prostate cancer cells. RSC Adv 2020; 10:43021-43034. [PMID: 35514921 PMCID: PMC9058263 DOI: 10.1039/d0ra07861a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The increasing knowledge on health benefit properties of plant origin food ingredients supports recommendations for the use of edible plants in the prevention of diet related diseases, including cancer. The beneficial effects of young shoots of red cabbage can be attributed to their mixture of phytochemicals possessing antioxidant and potential anticancer activity. The objective of this study was to compare the content of bioactive compounds, including HPLC analysis of polyphenols and antioxidant activity of young shoots of red cabbage and the vegetable at full maturity. The content of vitamin C and polyphenols in juices obtained from young shoots and the mature vegetable were also determined. The other aim of this study was to confirm the hypothesis that juice of young shoots more effectively, compared to juice of the mature vegetable, reduces the proliferation of prostate cancer cell lines DU145 and LNCaP in vitro. A significantly higher content of vitamin C and carotenoids, as well as a higher antioxidant activity were found in edible young shoots in comparison to the mature vegetable. In addition, studies have shown higher amount of vitamin C in the juice of young shoots than in the juice of the mature vegetable and similar content of polyphenolic compounds. The level of total polyphenol content in the studied plant samples did not differ significantly. Flavonoids were the main polyphenols in young shoots and juice obtained from them, while phenolic acids were dominant in the mature vegetable and in juice obtained from it. The juice of young shoots has shown stronger in vitro anti-proliferation effect against prostate cancer cells than juice of the mature vegetable. Young shoots of red cabbage could be a good source of phytochemicals with potential anticancer activity.![]()
Collapse
Affiliation(s)
- Mariola Drozdowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| | - Teresa Leszczyńska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| | - Ewelina Piasna-Słupecka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| | - Kinga Dziadek
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| |
Collapse
|
28
|
Yan C, Peng L, Zhang L, Qiu Z. Fine mapping of a candidate gene for cool-temperature-induced albinism in ornamental kale. BMC PLANT BIOLOGY 2020; 20:460. [PMID: 33028227 PMCID: PMC7541286 DOI: 10.1186/s12870-020-02657-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The symptoms of cool-temperature-induced chlorosis (CTIC) are widely existed in higher plants. Although many studies have shown that the genetic mechanism of CTIC is generally controlled by recessive genes in model plants, the dominant inheritance of albinism has not been reported thus far. Here, two CTIC mutants, Red Kamome and White Kamome, were utilized to analyse the inheritance of the albino trait in ornamental kale. The objective of this investigation is to fine-map the target locus and identify the most likely candidate genes for albinism. RESULTS Genetic analysis revealed that the albinism in the inner leaves of ornamental kale followed semi-dominant inheritance and was controlled by a single locus in two segregating populations. BSR-seq in combination with linkage analysis was employed to fine-map the causal gene, named AK (Albino Kale), to an approximate 60 kb interval on chromosome C03. Transcriptome data from two extreme pools indicated that the differentially expressed gene of Bol015404, which encodes a cytochrome P450 protein, was the candidate gene. The Bol015404 gene was demonstrated to be upregulated in the albino leaves of ornamental kale by qPCR. Additionally, the critical temperature for the albinism was determined between 10 °C and 16 °C by gradient test. CONCLUSIONS Using two independent segregating populations, the albino mutants were shown to be controlled by one semi-dominant gene, AK, in ornamental kale. The Bol015404 gene was co-segregated with albinism phenotypes, suggesting this unknown function P450 gene as the most likely candidate gene. The albino trait appeared caused by the low temperatures rather than photoperiod. Our results lay a solid foundation on the genetic control of albinism in ornamental kale.
Collapse
Affiliation(s)
- Chenghuan Yan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China
| | - Liying Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhengming Qiu
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China.
| |
Collapse
|
29
|
Horiuchi R, Nishizaki Y, Okawa N, Ogino A, Sasaki N. Identification of the Biosynthetic Pathway for Anthocyanin Triglucoside, the Precursor of Polyacylated Anthocyanin, in Red Cabbage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9750-9758. [PMID: 32786819 DOI: 10.1021/acs.jafc.0c03480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Red cabbage anthocyanin is utilized as a natural food colorant because of its stable and brilliant coloration. The major anthocyanin of red cabbage is cyanidin (Cy) mono- and di-acyltriglucoside; however, the biosynthetic pathway to generate this anthocyanin remains unclear. We isolated and identified four uridine diphosphate-glucose-dependent glucosyltransferase (UGT) cDNAs from red cabbage using RNA-seq. UGTs are involved in Cy triglucoside (CytriG) synthesis, the precursor of Cy acyltriglucoside. Enzymatic assays using recombinant proteins suggested that UGT78D5 encodes Cy 3GT, UGT79B45 encodes Cy 3-glucoside GT, UGT75C2 encodes Cy 3-sophoroside (Cy3Sp) 5GT, and UGT79B44 encodes flavonol 3-glucoside GT. Anthocyanin GT assays using crude proteins prepared from red cabbage suggested that CytriG is produced from intermediate products in the following order: Cy, Cy3G, Cy3Sp, and CytriG.
Collapse
Affiliation(s)
- Riko Horiuchi
- Department of Food and Nutritional Sciences, Faculty of Food and Nutritional Sciences, Toyo University 1-1-1, Izumino, Itaklura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Yuzo Nishizaki
- Division of Food Additives, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Natsumi Okawa
- Department of Food and Nutritional Sciences, Faculty of Food and Nutritional Sciences, Toyo University 1-1-1, Izumino, Itaklura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Ayaka Ogino
- Department of Food and Nutritional Sciences, Faculty of Food and Nutritional Sciences, Toyo University 1-1-1, Izumino, Itaklura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Nobuhiro Sasaki
- Department of Food and Nutritional Sciences, Faculty of Food and Nutritional Sciences, Toyo University 1-1-1, Izumino, Itaklura-machi, Ora-gun, Gunma 374-0193, Japan
| |
Collapse
|
30
|
Feng C, Ding D, Feng C, Kang M. The identification of an R2R3-MYB transcription factor involved in regulating anthocyanin biosynthesis in Primulina swinglei flowers. Gene 2020; 752:144788. [PMID: 32439375 DOI: 10.1016/j.gene.2020.144788] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022]
Abstract
Primulina genus is an ideal wild ornamental flower and emerging model for studying biosynthesis, diversity, and evolution of flower pigment. However, the molecular mechanism underlying anthocyanin biosynthesis and regulation in Primulina remains unknown. Here, changes in anthocyanin content and the expression profiles of anthocyanin biosynthetic structural genes were examined in developing Primulina swinglei flowers and three other organs. Seventy-three R2R3-MYB transcription factor genes were identified from transcriptome of P. swinglei flowers, two of which, PsMYB1 and PsMYB2, are candidate regulators of anthocyanin biosynthesis according to clustering analysis. Furthermore, transient over-expression studies using tobacco leaves showed distinct pigment accumulation following co-infection with PsMYB1 and MrbHLH1 (a previously confirmed anthocyanin regulator from Morella rubra). Additionally, dual luciferase assays showed that PsMYB1 trans-activated the PsANS promoter, with the addition of MrbHLH1 resulting in a 5-fold increase in the intensity of this interaction. PsMYB1 did not, however, have any effect on the PsF3H promoter. The expression profile and dual luciferase assays showed that PsMYB2 plays no roles in anthocyanin regulation. Therefore, PsMYB1 is proposed to be the transcription factor gene regulating anthocyanin biosynthesis in P. swinglei.
Collapse
Affiliation(s)
- Chen Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Dehui Ding
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
31
|
Chen D, Liu Y, Yin S, Qiu J, Jin Q, King GJ, Wang J, Ge X, Li Z. Alternatively Spliced BnaPAP2.A7 Isoforms Play Opposing Roles in Anthocyanin Biosynthesis of Brassica napus L. FRONTIERS IN PLANT SCIENCE 2020; 11:983. [PMID: 32973819 PMCID: PMC7466728 DOI: 10.3389/fpls.2020.00983] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Brassica napus L. (rapeseed, oilseed rape, and canola) and varieties of its two diploid parents, B. oleracea and B. rapa, display a large amount of variation in anthocyanin pigmentation of the leaf, stem, and fruit. Here, we demonstrate that BnaPAP2.A7, an ortholog of the B. oleracea anthocyanin activator BoMYB2 that confers purple traits, positively regulates anthocyanin biosynthesis in leaves of B. napus. Sequencing of BnaPAP2.A7 and transgenic analysis suggests that activation of this gene in purple rapeseed may result from a single nucleotide and/or 2bp insertion in its promoter region. BnaPAP2.A7 gives rise to three splice variants, designated BnaPAP2.A7-744, BnaPAP2.A7-910, and BnaPAP2.A7-395 according to the length of the transcripts. While BnaPAP2.A7-744 encodes a full-length R2R3-MYB, both BnaPAP2.A7-910 and BnaPAP2.A7-395 encode truncated proteins that lack both a partial R3 repeat and the complete C terminal domain, and so in vitro are unable to interact with the Arabidopsis bHLH protein AtTT8. Although expression of either BnaPAP2.A7-910 or BnaPAP2.A7-395 in green rapeseed does not result in purple leaves, both genes do modify genome-wide gene expression, with a strong repression of anthocyanin-related genes. We have demonstrated that BnaPAP.A7 regulates anthocyanin accumulation in leaves of B. napus and propose a potential mechanism for modulation of anthocyanin biosynthesis by alternative splicing.
Collapse
Affiliation(s)
- Daozong Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuai Yin
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Qiu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingdong Jin
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
He Q, Wu J, Xue Y, Zhao W, Li R, Zhang L. The novel gene BrMYB2, located on chromosome A07, with a short intron 1 controls the purple-head trait of Chinese cabbage ( Brassica rapa L.). HORTICULTURE RESEARCH 2020; 7:97. [PMID: 32637125 PMCID: PMC7326913 DOI: 10.1038/s41438-020-0319-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 05/06/2023]
Abstract
Anthocyanins are important secondary metabolites in plants, but information on anthocyanin biosynthesis mechanisms in Chinese cabbage is limited. The new purple head Chinese cabbage cultivar 11S91 was analyzed, and an R2R3-MYB regulatory gene BrMYB2, located on chromosome A07, controlling the dominant purple-head trait was isolated. High expression of BrMYB2 generated a large accumulation of anthocyanins in 11S91, accompanied by highly upregulated BrTT8, BrF3'H, BrDFR1, BrANS1, BrUGTs, BrATs, and BrGSTs. 11S91 inherited the purple locus from purple trait donor 95T2-5, and they shared consensus CDSs and gDNAs with those of BrMYB2 (cBrMYB2 and gBrMYB2). Two SNPs in cBrMYB2 in 11S91 did not cause loss of function; in addition to several SNPs at both ends of intron 1, a large deletion had occurred in intron 1 of gBrMYB2 in 11S91. Genetic transformation of Arabidopsis showed that gBrMYB2 overexpression lines presented deeper purple color and higher expression than did the cBrMYB2 and cBrmyb2 lines, whereas gBrmyb2 with a long intron 1 did not cause the purple phenotype. We first show that BrMYB2 promotes anthocyanin biosynthesis under the control of the short intron 1 of gBrMYB2 in purple head Chinese cabbage, and gBrmyb2 with a long intron 1 represses anthocyanin production in white head Chinese cabbage. This evidence provides a new understanding of anthocyanin biosynthesis and purple germplasm generation in Brassica vegetables.
Collapse
Affiliation(s)
- Qiong He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
- College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
| | - Junqing Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
| | - Yihua Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
| | - Wenbin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
| | - Ru Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
| | - Lugang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi People’s Republic of China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, People’s Republic of China
| |
Collapse
|
33
|
Liu C, Yao X, Li G, Huang L, Xie Z. Transcriptomic profiling of purple broccoli reveals light-induced anthocyanin biosynthetic signaling and structural genes. PeerJ 2020; 8:e8870. [PMID: 32411510 PMCID: PMC7207213 DOI: 10.7717/peerj.8870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Purple Broccoli (Brassica oleracea L. var italica) attracts growing attention as a functional food. Its purple coloration is due to high anthocyanin amounts. Light represents a critical parameter affecting anthocyanins biosynthesis. In this study, 'Purple Broccoli', a light-responding pigmentation cultivar, was assessed for exploring the mechanism underlying light-induced anthocyanin biosynthesis by RNA-Seq. Cyanidin, delphinidin and malvidin derivatives were detected in broccoli head samples. Shading assays and RNA-seq analysis identified the flower head as more critical organ compared with leaves. Anthocyanin levels were assessed at 0, 7 and 11 days, respectively, with further valuation by RNA-seq under head-shading and light conditions. RNA sequences were de novo assembled into 50,329 unigenes, of which 38,701 were annotated against four public protein databases. Cluster analysis demonstrated that anthocyanin/phenylpropanoid biosynthesis, photosynthesis, and flavonoid biosynthesis in cluster 8 were the main metabolic pathways regulated by light and had showed associations with flower head growth. A total of 2,400 unigenes showed differential expression between the light and head-shading groups in cluster 8, including 650 co-expressed, 373 specifically expressed under shading conditions and 1,377 specifically expressed under normal light. Digital gene expression (DGE) analysis demonstrated that light perception and the signal transducers CRY3 and HY5 may control anthocyanin accumulation. Following shading, 15 structural genes involved in anthocyanin biosynthesis were downregulated, including PAL, C4H, 4CL, CHS, CHI, F3H and DFR. Moreover, six BoMYB genes (BoMYB6-1, BoMYB6-2, BoMYB6-3, BoMYB6-4, BoMYBL2-1 and BoMYBL2-2) and three BobHLH genes (BoTT8_5-1, BoTT8_5-2 and BoEGL5-3) were critical transcription factors controlling anthocyanin accumulation under light conditions. Based on these data, a light-associated anthocyanin biosynthesis pathway in Broccoli was proposed. This information could help improve broccoli properties, providing novel insights into the molecular mechanisms underpinning light-associated anthocyanin production in purple vegetables.
Collapse
Affiliation(s)
- Chunqing Liu
- Shanghai Academy of Agricultural Sciences, Institute of Horticulture, Shanghai, China
| | - Xueqin Yao
- Shanghai Academy of Agricultural Sciences, Institute of Horticulture, Shanghai, China
| | - Guangqing Li
- Shanghai Academy of Agricultural Sciences, Institute of Horticulture, Shanghai, China
| | - Lei Huang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Zhujie Xie
- Shanghai Academy of Agricultural Sciences, Institute of Horticulture, Shanghai, China
| |
Collapse
|
34
|
Heng S, Wang L, Yang X, Huang H, Chen G, Cui M, Liu M, Lv Q, Wan Z, Shen J, Fu T. Genetic and Comparative Transcriptome Analysis Revealed DEGs Involved in the Purple Leaf Formation in Brassica juncea. Front Genet 2020; 11:322. [PMID: 32391051 PMCID: PMC7193680 DOI: 10.3389/fgene.2020.00322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
Brassica juncea is an important dietary vegetable cultivated and consumed in China for its edible stalks and leaves. The purple leaf mustard, which is rich in anthocyanins, is eye-catching and delivers valuable nutrition. However, the molecular mechanism involved in anthocyanin biosynthesis has not been well studied in B. juncea. Here, histological and transcriptome analyses were used to characterize the purple leaf color and gene expression profiles. Free-hand section analysis showed that the anthocyanin was mainly accumulated in the adaxial epidermal leaf cells. The anthocyanin content in the purple leaves was significantly higher than that in the green leaves. To investigate the critical genes and pathways involved in anthocyanin biosynthesis and accumulation, the transcriptome analysis was used to identify the differentially expressed genes (DEGs) between the purple and green leaves from the backcrossed BC3 segregation population in B. juncea. A total of 2,286 different expressed genes were identified between the purple and green leaves. Among them, 1,593 DEGs were up-regulated and 693 DEGs were down-regulated. There were 213 differently expressed transcription factors among them. The MYB and bHLH transcription factors, which may regulate anthocyanin biosynthesis, were up-regulated in the purple leaves. Interestingly, most of the genes involved in plant-pathogen interaction pathway were also up-regulated in the purple leaves. The late biosynthetic genes involved in anthocyanin biosynthesis were highly up-regulated in the purple leaves of B. juncea. The up regulation of BjTT8 and BjMYC2 and anthocyanin biosynthetic genes (BjC4H, BjDFR, and BjANS) may activate the purple leaf formation in B. juncea. This study may help to understand the transcriptional regulation of anthocyanin biosynthesis in B. juncea.
Collapse
Affiliation(s)
- Shuangping Heng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lei Wang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Xi Yang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Hao Huang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Guo Chen
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Mengdi Cui
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Mingfang Liu
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Qing Lv
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Zhengjie Wan
- College of Horticulture and Forestry, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Jinxiong Shen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingdong Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Red Chinese Cabbage Transcriptome Analysis Reveals Structural Genes and Multiple Transcription Factors Regulating Reddish Purple Color. Int J Mol Sci 2020; 21:ijms21082901. [PMID: 32326209 PMCID: PMC7215907 DOI: 10.3390/ijms21082901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
Reddish purple Chinese cabbage (RPCC) is a popular variety of Brassica rapa (AA = 20). It is rich in anthocyanins, which have many health benefits. We detected novel anthocyanins including cyanidin 3-(feruloyl) diglucoside-5-(malonoyl) glucoside and pelargonidin 3-(caffeoyl) diglucoside-5-(malonoyl) glucoside in RPCC. Analyses of transcriptome data revealed 32,395 genes including 3345 differentially expressed genes (DEGs) between 3-week-old RPCC and green Chinese cabbage (GCC). The DEGs included 218 transcription factor (TF) genes and some functionally uncharacterized genes. Sixty DEGs identified from the transcriptome data were analyzed in 3-, 6- and 9-week old seedlings by RT-qPCR, and 35 of them had higher transcript levels in RPCC than in GCC. We detected cis-regulatory motifs of MYB, bHLH, WRKY, bZIP and AP2/ERF TFs in anthocyanin biosynthetic gene promoters. A network analysis revealed that MYB75, MYB90, and MYBL2 strongly interact with anthocyanin biosynthetic genes. Our results show that the late biosynthesis genes BrDFR, BrLDOX, BrUF3GT, BrUGT75c1-1, Br5MAT, BrAT-1,BrAT-2, BrTT19-1, and BrTT19-2 and the regulatory MYB genes BrMYB90, BrMYB75, and BrMYBL2-1 are highly expressed in RPCC, indicative of their important roles in anthocyanin biosynthesis, modification, and accumulation. Finally, we propose a model anthocyanin biosynthesis pathway that includes the unique anthocyanin pigments and genes specific to RPCC.
Collapse
|
36
|
Abstract
Lettuce harvested at the baby leaf stage is a popular component of mixed salads in ready-to-use packages. Little is known, however, about response of baby leaf lettuce to nitrogen (N), phosphorus (P), and potassium (K) fertilization. Eight lettuce accessions were subjected to five fertilization treatments to investigate genetic differences in reaction to N, P, and K fertilization. The control treatment provided optimal levels of macronutrients for plant growth, while other treatments deprived plants of either N, P, or K. Potassium deprivation had no obvious effect on plant weight or composition, apart from substantially decreased potassium content. Nitrogen and phosphorus deprivations, however, extensively decreased fresh weight and affected plant composition. Phosphorus and nitrogen deprivation considerably increased anthocyanin content in red-colored accessions, but anthocyanin was decreased in dark green-colored accessions, indicating differences in regulation of anthocyanin biosynthesis. Correlations between fresh weight, chlorophyll, anthocyanin, nitrogen, phosphorus, and potassium content were substantially affected by selection of datasets used for analyses; some relationships were revealed when analyzed separately by individual treatments, while others were more likely to be detected when analyzed by individual accessions. Absolute (ΔABS) and relative (2ΔREL) parameters described in this study were suitable for detecting over- and underperforming accessions. The ΔABS identified the absolute Lb-fold (logarithm to the base of 2, binary logarithm) change in performance of an accession in a treatment as compared to its performance in control conditions. The 2ΔREL parameter showed relative Lb-fold change for an accession as compared to the overall mean of ΔABS values of all accessions tested in control and treatment conditions.
Collapse
|
37
|
Nuraini L, Ando Y, Kawai K, Tatsuzawa F, Tanaka K, Ochiai M, Suzuki K, Aragonés V, Daròs JA, Nakatsuka T. Anthocyanin regulatory and structural genes associated with violet flower color of Matthiola incana. PLANTA 2020; 251:61. [PMID: 32036464 DOI: 10.1007/s00425-020-03351-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION MiMYB1 and MibHLH2 play key roles in anthocyanin biosynthesis in Matthiola incana flowers. We established a transient expression system using Turnip mosaic virus vector in M. incana. Garden stock (Matthiola incana (L.) R. Br.) is a popular flowering plant observed from winter to spring in Japan. Here we observed that anthocyanin accumulation in 'Vintage Lavender' increased with flower development, whereas flavonol accumulation remained constant throughout flower development. We obtained five transcription factor genes, MiMYB1, MibHLH1, MibHLH2, MiWDR1, and MiWDR2, from M. incana floral cDNA contigs. Yeast two-hybrid analyses revealed that MiMYB1 interacted with MibHLH1, MibHLH2, and MiWDR1, but MiWDR2 did not interact with any transcription factor. Expression levels of MiMYB1 and MibHLH2 increased in petals during floral bud development. Their expression profiles correlated well with the temporal profiles of MiF3'H, MiDFR, MiANS, and Mi3GT transcripts and anthocyanin accumulation profile. On the other hand, MibHLH1 was expressed weakly in all organs of 'Vintage Lavender'. However, high expression levels of MibHLH1 were detected in petals of other cultivars with higher levels of anthocyanin accumulation than 'Vintage Lavender'. MiWDR1 and MiWDR2 maintained constant expression levels in petals during flower development and vegetative organs. Transient MiMYB1 expression in 1-month-old M. incana seedlings using a Turnip mosaic virus vector activated transcription of the endogenous anthocyanin biosynthetic genes MiF3'H, MiDFR, and MiANS and induced ectopic anthocyanin accumulation in leaves. Therefore, MiMYB1 possibly interacts with MibHLH2 and MiWDR1, and this trimeric protein complex activates the transcription of anthocyanin biosynthetic genes in M. incana flowers. Moreover, MibHLH1 acts as an enhancer of anthocyanin biosynthesis with the MiMYB1-MibHLH2-MiWDR1 complex. This study revealed the molecular mechanism involved in the regulation of anthocyanin accumulation levels in M. incana flowers.
Collapse
Affiliation(s)
- Latifa Nuraini
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Yukiko Ando
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Kentaro Kawai
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Fumi Tatsuzawa
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Kotomi Tanaka
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Masaki Ochiai
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Katsumi Suzuki
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| | - Takashi Nakatsuka
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan.
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
38
|
Singh S, Kalia P, Meena RK, Mangal M, Islam S, Saha S, Tomar BS. Genetics and Expression Analysis of Anthocyanin Accumulation in Curd Portion of Sicilian Purple to Facilitate Biofortification of Indian Cauliflower. FRONTIERS IN PLANT SCIENCE 2020; 10:1766. [PMID: 32117339 PMCID: PMC7003135 DOI: 10.3389/fpls.2019.01766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
The present study was undertaken to know the genetics of purple color of cauliflower curds using a Sicilian purple 'PC-1' and a white curding mid-late group genotype of Indian cauliflower. For this, a cross was attempted between 'DC-466' (white curd) and 'PC-1' (purple curd) and observed intermediate level of purple pigmentation on curds in F1 plants. Segregation of F2 population (173) revealed that the purple color of the curd was governed by a single gene dominant over white, but the expression of trait was incomplete. It was substantiated by segregation of plants of BC1 and F2:3(intermediate) generations into 1(white):1(intermediate) and 1(white):2(intermediate):1(intense), respectively. The F2, B1, and B2 generations segregated into purple(intermediate to intense): white curding plants in the ratio of 126: 47, 26:24, and 40:0, respectively fitting well with the Mendelian ratio of single gene for purple curds. However, purple pigmentation on curds ranged from very light to intense, which corroborated with the wide range of anthocyanin content in F2 (3.81-48.21 mg/100 g fw). Out of three molecular markers from high resolution map of Pr gene in purple color cauliflower 'Graffiti', only BoMYB3 marker could distinguish purple and white curding parents but did not show co-segregation while investigated in F2 population. Expression of BoMYB1 gene was up regulated in both the purple curd genotypes 'PC-1' and 'Graffiti' in comparison to white curded 'DC-466', while BoMYB2 gene was slightly upregulated in 'PC-1' but down regulated in 'Graffiti'. Occurrence of 'broccoli type' F2 individuals and their genetic stability in F2:3 support the intermediate position of 'Sicilian purple' between broccoli (Calabrese) and cauliflower. There was not any correlation between curd coloration and pigmentation on apical leaf and stem portion, indicating difference of expression in 'PC-1' than 'Graffiti'. The information obtained is useful for breeding anthocyanin rich attractive purple curding 'specialty cauliflower' for better consumer health and growers' earnings.
Collapse
Affiliation(s)
- Shrawan Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pritam Kalia
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rahul Kumar Meena
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manisha Mangal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sabina Islam
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Supradip Saha
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bhoopal S. Tomar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
39
|
Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants (Basel) 2020; 9:antiox9020097. [PMID: 31979214 PMCID: PMC7070715 DOI: 10.3390/antiox9020097] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023] Open
Abstract
The current trend for substituting synthetic compounds with natural ones in the design and production of functional and healthy foods has increased the research interest about natural colorants. Although coloring agents from plant origin are already used in the food and beverage industry, the market and consumer demands for novel and diverse food products are increasing and new plant sources are explored. Fresh vegetables are considered a good source of such compounds, especially when considering the great color diversity that exists among the various species or even the cultivars within the same species. In the present review we aim to present the most common species of colored vegetables, focusing on leafy and fruit vegetables, as well as on vegetables where other plant parts are commercially used, with special attention to blue color. The compounds that are responsible for the uncommon colors will be also presented and their beneficial health effects and antioxidant properties will be unraveled.
Collapse
|
40
|
Luo X, Xu L, Wang Y, Dong J, Chen Y, Tang M, Fan L, Zhu Y, Liu L. An ultra-high-density genetic map provides insights into genome synteny, recombination landscape and taproot skin colour in radish (Raphanus sativus L.). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:274-286. [PMID: 31218798 PMCID: PMC6920339 DOI: 10.1111/pbi.13195] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 05/19/2023]
Abstract
High-density genetic map is a valuable tool for exploring novel genomic information, quantitative trait locus (QTL) mapping and gene discovery of economically agronomic traits in plant species. However, high-resolution genetic map applied to tag QTLs associated with important traits and to investigate genomic features underlying recombination landscape in radish (Raphanus sativus) remains largely unexplored. In this study, an ultra-high-density genetic map with 378 738 SNPs covering 1306.8 cM in nine radish linkage groups (LGs) was developed by a whole-genome sequencing-based approach. A total of 18 QTLs for 11 horticulture traits were detected. The map-based cloning data indicated that the R2R3-MYB transcription factor RsMYB90 was a crucial candidate gene determining the taproot skin colour. Comparative genomics analysis among radish, Brassica rapa and B. oleracea genome revealed several genomic rearrangements existed in the radish genome. The highly uneven distribution of recombination was observed across the nine radish chromosomes. Totally, 504 recombination hot regions (RHRs) were enriched near gene promoters and terminators. The recombination rate in RHRs was positively correlated with the density of SNPs and gene, and GC content, respectively. Functional annotation indicated that genes within RHRs were mainly involved in metabolic process and binding. Three QTLs for three traits were found in the RHRs. The results provide novel insights into the radish genome evolution and recombination landscape, and facilitate the development of effective strategies for molecular breeding by targeting and dissecting important traits in radish.
Collapse
Affiliation(s)
- Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Guizhou Institute of BiotechnologyGuizhou Academy of Agricultural SciencesGuiyangChina
| | | | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and EnvironmentThe University of Western AustraliaPerthWAAustralia
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
41
|
Zhao Y, Yue Z, Zhong X, Lei J, Tao P, Li B. Distribution of primary and secondary metabolites among the leaf layers of headed cabbage (Brassica oleracea var. capitata). Food Chem 2019; 312:126028. [PMID: 31896454 DOI: 10.1016/j.foodchem.2019.126028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
The present study investigated the distribution of several primary metabolites (soluble sugar, protein, and mineral) and secondary metabolites (carotenoids, vitamin C, anthocyanin, flavonoids, and total phenolic compounds) among the leaf layers of headed cabbage. The leaf layers of two cultivars were separated and numbered sequentially from the outer to the inner leaves. The fructose and glucose content of the inner leaf layers was significantly greater than that of the outer layers. Similarly, the level of glucosinolates increased gradually from the outer leaves to the umbilicus of the leaf head. However, the content of antioxidants decreased from the outer leaves to the core of the leaf head, in line with the antioxidant capacity. The levels of soluble protein and mineral shared the similar decreasing trend. These results provide a reference for consumers to choose optimal fractions of whole cabbage heads in order to cater to their particular dietary needs.
Collapse
Affiliation(s)
- Yanting Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zhichen Yue
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xinming Zhong
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Juanli Lei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Peng Tao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Biyuan Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
42
|
Jin SW, Rahim MA, Jung HJ, Afrin KS, Kim HT, Park JI, Kang JG, Nou IS. Abscisic acid and ethylene biosynthesis-related genes are associated with anthocyanin accumulation in purple ornamental cabbage ( Brassica oleracea var. acephala). Genome 2019; 62:513-526. [PMID: 31132326 DOI: 10.1139/gen-2019-0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purple ornamental cabbage (Brassica oleracea var. acephala) is a popular decorative plant, cultivated for its colorful leaf rosettes that persist in cool weather. It is characterized by green outer leaves and purple inner leaves, whose purple pigmentation is due to the accumulation of anthocyanin pigments. Phytohormones play important roles in anthocyanin biosynthesis in other species. Here, we identified 14 and 19 candidate genes putatively involved in abscisic acid (ABA) and ethylene (ET) biosynthesis, respectively, in B. oleracea. We determined the expression patterns of these candidate genes by reverse-transcription quantitative PCR (RT-qPCR). Among candidate ABA biosynthesis-related genes, the expressions of BoNCED2.1, BoNCED2.2, BoNCED6, BoNCED9.1, and BoAAO3.2 were significantly higher in purple compared to green leaves. Likewise, most of the ET biosynthetic genes (BoACS6, BoACS9.1, BoACS11, BoACO1.1, BoACO1.2, BoACO3.1, BoACO4, and BoACO5) had significantly higher expression in purple compared to green leaves. Among these genes, BoNCED2.1, BoNCED2.2, BoACS11, and BoACO4 showed particularly strong associations with total anthocyanin content of the purple inner leaves. Our results suggest that ABA and ET might promote the intense purple pigmentation of the inner leaves of purple ornamental cabbage.
Collapse
Affiliation(s)
- Si-Won Jin
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Md Abdur Rahim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Khandker Shazia Afrin
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong-Goo Kang
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
43
|
Rahim MA, Afrin KS, Jung HJ, Kim HT, Park JI, Hur Y, Nou IS. Molecular analysis of anthocyanin biosynthesis-related genes reveal BoTT8 associated with purple hypocotyl of broccoli ( Brassica oleracea var. italica L.). Genome 2019; 62:253-266. [PMID: 30807237 DOI: 10.1139/gen-2018-0173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Broccoli (Brassica oleracea var. italica L.) is a highly nutritious vegetable that typically forms pure green or purple florets. However, green broccoli florets sometimes accumulate slight purplish pigmentation in response environmental factors, decreasing their market value. In the present study, we aimed to develop molecular markers to distinguish broccoli genotypes as pure green or purplish floret color at the early seedling stage. Anthocyanins are known to be involved in the purple pigmentation in plants. The purplish broccoli lines were shown to accumulate purple pigmentation in the hypocotyls of very young seedlings; therefore, the expression profiles of the structural and regulatory genes of anthocyanin biosynthesis were analyzed in the hypocotyls using qRT-PCR. BoPAL, BoDFR, BoMYB114, BoTT8, BoMYC1.1, BoMYC1.2, and BoTTG1 were identified as putative candidate genes responsible for the purple hypocotyl color. BoTT8 was much more highly expressed in the purple than green hypocotyls; therefore, it was cloned and sequenced from various broccoli lines, revealing SNP and InDel variations between these genotypes. We tested four SNPs (G > A; A > T; G > C; T > G) in the first three exons and a 14-bp InDel (ATATTTATATATAT) in the BoTT8 promoter in 51 broccoli genotypes, and we found these genetic variations could distinguish the green lines, purple lines, and F1 hybrids. These novel molecular markers could be useful in broccoli breeding programs to develop a true green or purple broccoli cultivar.
Collapse
Affiliation(s)
- Md Abdur Rahim
- a Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea.,b Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Khandker Shazia Afrin
- a Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hee-Jeong Jung
- a Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hoy-Taek Kim
- a Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong-In Park
- a Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yoonkang Hur
- c Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Ill-Sup Nou
- a Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
44
|
Xie Q, Yan F, Hu Z, Wei S, Lai J, Chen G. Accumulation of Anthocyanin and Its Associated Gene Expression in Purple Tumorous Stem Mustard ( Brassica juncea var. tumida Tsen et Lee) Sprouts When Exposed to Light, Dark, Sugar, and Methyl Jasmonate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:856-866. [PMID: 30577694 DOI: 10.1021/acs.jafc.8b04706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tumorous stem mustard is a characteristic vegetable in Southeast Asia, as are its sprouts. The purple color of the purple variety 'Zi Ying' leaves is because of anthocyanin accumulation. The ways in which this anthocyanin accumulation is affected by the environment and hormones has remained unclear. Here, the impacts of sucrose, methyl jasmonate (MeJA), light, and dark on the growth and anthocyanin production of 'Zi Ying' sprouts were explored. The results showed that anthocyanins can be enhanced by sucrose in sprouts under light condition, and MeJA can promote anthocyanins production under light and dark conditions in sprouts. The anthocyanin biosynthetic regulatory genes BjTT8, BjMYB1, BjMYB2 and BjMYB4, and the EBGs and LBGs were upregulated under light conditions, while BjTT8, BjMYB1, and BjMYB2 and anthocyanin biosynthetic genes BjF3H and BjF3'H were upregulated under DM condition. These results indicate that sucrose and methyl jasmonate can stimulate the expression of genes encoding components of the MBW complex (MYB, bHLH, and WD40) and that they transcriptional activated the expression of LBGs and EBGs to promote the accumulation of anthocyanins in 'Zi Ying' sprouts. Our findings enhance our understanding of anthocyanin accumulation regulated by sucrose and MeJA in 'Zi Ying', which will help growers to produce anthocyanin-rich foods with benefits to human health.
Collapse
Affiliation(s)
- Qiaoli Xie
- Key Laboratory of the Education Ministry for Environment and Genes Related to Diseases, Health Science Center , Xi'an Jiaotong University , Xi'an , Shaanxi 710061 China
| | - Fei Yan
- School of Energy and Power Engineering , Chongqing University , 174 Shapingba Main Street , Chongqing 400030 , China
| | - Zongli Hu
- Bioengineering College, Campus B , Chongqing University , 174 Shapingba Main Street , Chongqing 400030 , China
| | - Shuguang Wei
- Key Laboratory of the Education Ministry for Environment and Genes Related to Diseases, Health Science Center , Xi'an Jiaotong University , Xi'an , Shaanxi 710061 China
| | - Jianghua Lai
- Key Laboratory of the Education Ministry for Environment and Genes Related to Diseases, Health Science Center , Xi'an Jiaotong University , Xi'an , Shaanxi 710061 China
| | - Guoping Chen
- Bioengineering College, Campus B , Chongqing University , 174 Shapingba Main Street , Chongqing 400030 , China
| |
Collapse
|
45
|
Goswami G, Nath UK, Park JI, Hossain MR, Biswas MK, Kim HT, Kim HR, Nou IS. Transcriptional regulation of anthocyanin biosynthesis in a high-anthocyanin resynthesized Brassica napus cultivar. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2018; 25:19. [PMID: 30505808 PMCID: PMC6258291 DOI: 10.1186/s40709-018-0090-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Anthocyanins are plant secondary metabolites with key roles in attracting insect pollinators and protecting against biotic and abiotic stresses. They have potential health-promoting effects as part of the human diet. Anthocyanin biosynthesis has been elucidated in many species, enabling the development of anthocyanin-enriched fruits, vegetables, and grains; however, few studies have investigated Brassica napus anthocyanin biosynthesis. RESULTS We developed a high-anthocyanin resynthesized B. napus line, Rs035, by crossing anthocyanin-rich B. rapa (A genome) and B. oleracea (C genome) lines, followed by chromosome doubling. We identified and characterized 73 and 58 anthocyanin biosynthesis genes in silico in the A and C genomes, respectively; these genes showed syntenic relationships with 41 genes in Arabidopsis thaliana and B. napus. Among the syntenic genes, twelve biosynthetic and six regulatory genes showed transgressively higher expression in Rs035, and eight structural genes and one regulatory gene showed additive expression. We identified three early-, four late-biosynthesis pathways, three transcriptional regulator genes, and one transporter as putative candidates enhancing anthocyanin accumulation in Rs035. Principal component analysis and Pearson's correlation coefficients corroborated the contribution of these genes to anthocyanin accumulation. CONCLUSIONS Our study lays the foundation for producing high-anthocyanin B. napus cultivars. The resynthesized lines and the differentially expressed genes we have identified could be used to transfer the anthocyanin traits to other commercial rapeseed lines using molecular and conventional breeding.
Collapse
Affiliation(s)
- Gayatri Goswami
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Ujjal Kumar Nath
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Mohammad Rashed Hossain
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Manosh Kumar Biswas
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
- University-Industry Cooperation Foundation, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Hye Ran Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| |
Collapse
|
46
|
Jin SW, Rahim MA, Afrin KS, Park JI, Kang JG, Nou IS. Transcriptome profiling of two contrasting ornamental cabbage (Brassica oleracea var. acephala) lines provides insights into purple and white inner leaf pigmentation. BMC Genomics 2018; 19:797. [PMID: 30400854 PMCID: PMC6219265 DOI: 10.1186/s12864-018-5199-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/23/2018] [Indexed: 12/04/2022] Open
Abstract
Background Ornamental cabbage (Brassica oleracea var. acephala) is an attractive landscape plant that remains colorful at low temperatures during winter. Its key feature is its inner leaf coloration, which can include red, pink, lavender, blue, violet and white. Some ornamental cabbages exhibit variation in leaf color pattern linked to leaf developmental stage. However, little is known about the molecular mechanism underlying changes in leaf pigmentation pattern between developmental stages. Results The transcriptomes of six ornamental cabbage leaf samples were obtained using Illumina sequencing technology. A total of 339.75 million high-quality clean reads were assembled into 46,744 transcripts and 46,744 unigenes. Furthermore, 12,771 genes differentially expressed across the different lines and stages were identified by pairwise comparison. We identified 74 and 13 unigenes as differentially expressed genes related to the anthocyanin biosynthetic pathway and chlorophyll metabolism, respectively. Among them, three unigenes (BoC4H2, BoUGT9, and BoGST21) and six unigenes (BoHEMA1, BoCRD1, BoPORC1, BoPORC2, BoCAO, and BoCLH1) were found as candidates for the genes encoding enzymes in the anthocyanin biosynthetic pathway and chlorophyll metabolism, respectively. In addition, two unigenes (BoRAX3 and BoTRB1) as MYB candidates, two unigenes (BoMUTE1, and BHLH168-like) as bHLH candidates were identified for purple pigmentation in ornamental cabbage. Conclusion Our results indicate that the purple inner leaves of purple ornamental cabbage result from a high level of anthocyanin biosynthesis, a high level of chlorophyll degradation and an extremely low level of chlorophyll biosynthesis, whereas the bicolor (purple/green) outer leaves are due to a moderate level of anthocyanin biosynthesis, a high level of chlorophyll degradation and a very low level of chlorophyll biosynthesis. In white ornamental cabbage, the white inner leaves are due to an extremely low level or absence of anthocyanin biosynthesis, a high level of chlorophyll degradation and a very low level of chlorophyll biosynthesis, whereas the bicolor (white/green) leaves are due to a high level of chlorophyll degradation and a low level of chlorophyll biosynthesis and absence of anthocyanin biosynthesis. These results provide insight into the molecular mechanisms underlying inner and bicolor leaf pigmentation in ornamental cabbage and offer a platform for assessing related ornamental species. Electronic supplementary material The online version of this article (10.1186/s12864-018-5199-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Si-Won Jin
- Department of Horticulture, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Md Abdur Rahim
- Department of Horticulture, Sunchon National University, Suncheon, 57922, Republic of Korea.,Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Khandker Shazia Afrin
- Department of Horticulture, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jong-Goo Kang
- Department of Horticulture, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
47
|
Chaves-Silva S, Santos ALD, Chalfun-Júnior A, Zhao J, Peres LEP, Benedito VA. Understanding the genetic regulation of anthocyanin biosynthesis in plants - Tools for breeding purple varieties of fruits and vegetables. PHYTOCHEMISTRY 2018; 153:11-27. [PMID: 29803860 DOI: 10.1016/j.phytochem.2018.05.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 05/21/2023]
Abstract
Anthocyanins are naturally occurring flavonoids derived from the phenylpropanoid pathway. There is increasing evidence of the preventative and protective roles of anthocyanins against a broad range of pathologies, including different cancer types and metabolic diseases. However, most of the fresh produce available to consumers typically contains only small amounts of anthocyanins, mostly limited to the epidermis of plant organs. Therefore, transgenic and non-transgenic approaches have been proposed to enhance the levels of this phytonutrient in vegetables, fruits, and cereals. Here, were review the current literature on the anthocyanin biosynthesis pathway in model and crop species, including the structural and regulatory genes involved in the differential pigmentation patterns of plant structures. Furthermore, we explore the genetic regulation of anthocyanin biosynthesis and the reasons why it is strongly repressed in specific cell types, in order to create more efficient breeding strategies to boost the biosynthesis and accumulation of anthocyanins in fresh fruits and vegetables.
Collapse
Affiliation(s)
- Samuel Chaves-Silva
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, 6108, Morgantown, WV 26506-6108, USA; Biology Department, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | - Adolfo Luís Dos Santos
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, 6108, Morgantown, WV 26506-6108, USA; Biology Department, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | - Antonio Chalfun-Júnior
- Biology Department, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lázaro E P Peres
- Department of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Vagner Augusto Benedito
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, 6108, Morgantown, WV 26506-6108, USA.
| |
Collapse
|
48
|
Naing AH, Kim CK. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants. PLANT MOLECULAR BIOLOGY 2018; 98:1-18. [PMID: 30167900 DOI: 10.1007/s11103-018-0771-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/23/2018] [Indexed: 05/20/2023]
Abstract
This review contains functional roles of MYB transcription factors in the transcriptional regulation of anthocyanin biosynthesis in horticultural plants. This review describes potential uses of MYB TFs as tools for metabolic engineering for anthocyanin production. Anthocyanins (ranging from red to blue) are controlled by specific branches of the anthocyanin biosynthetic pathway and are mostly visible in ornamentals, fruits, and vegetables. In the present review, we describe which R2R3-MYB transcription factors (TFs) control the transcriptional regulation of anthocyanin structural genes involved in the specific branches of the anthocyanin biosynthetic pathway in various horticultural plants (e.g., ornamentals, fruits, and vegetables). In addition, some MYBs responsible for anthocyanin accumulation in specific tissues are described. Moreover, we highlight the phylogenetic relationships of the MYBs that suppress or promote anthocyanin synthesis in horticultural crops. Enhancement of anthocyanin synthesis via metabolic genetic engineering of anthocyanin MYBs, which is described in the review, is indicative of the potential use of the mentioned anthocyanin-related MYBs as tools for anthocyanin production. Therefore, the MYBs would be suitable for metabolic genetic engineering for improvement of flower colors, fruit quality, and vegetable nutrients.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
49
|
Imtiaz M, Mushtaq MA, Nawaz MA, Ashraf M, Rizwan MS, Mehmood S, Aziz O, Rizwan M, Virk MS, Shakeel Q, Ijaz R, Androutsopoulos VP, Tsatsakis AM, Coleman MD. Physiological and anthocyanin biosynthesis genes response induced by vanadium stress in mustard genotypes with distinct photosynthetic activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:20-29. [PMID: 29935434 DOI: 10.1016/j.etap.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to elucidate the photosynthetic performance, antioxidant enzyme activities, anthocyanin contents, anthocyanin biosynthetic gene expression, and vanadium uptake in mustard genotypes (purple and green) that differ in photosynthetic capacity under vanadium stress. The results indicated that vanadium significantly reduced photosynthetic activity in both genotypes. The activities of the antioxidant enzymes were increased significantly in response to vanadium in both genotypes, although the purple exhibited higher. The anthocyanin contents were also reduced under vanadium stress. The anthocyanin biosynthetic genes were highly expressed in the purple genotype, notably the genes TT8, F3H, and MYBL2 under vanadium stress. The results indicate that induction of TT8, F3H, and MYBL2 genes was associated with upregulation of the biosynthetic genes required for higher anthocyanin biosynthesis in purple compared with the green mustard. The roots accumulated higher vanadium than shoots in both mustard genotypes. The results indicate that the purple mustard had higher vanadium tolerance.
Collapse
Affiliation(s)
- Muhammad Imtiaz
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Soil and Environmental Sciences Division, Nuclear Institute for Food and Agriculture, Peshawar, Pakistan.
| | - Muhammad Adnan Mushtaq
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea.
| | - Muhammad Ashraf
- Department of Soil and Environmental Sciences, University College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan.
| | - Muhammad Shahid Rizwan
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Sajid Mehmood
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Omar Aziz
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Muhammad Rizwan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Muhammad Safiullah Virk
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qaiser Shakeel
- Discipline of Plant Pathology, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Raina Ijaz
- Department of Horticulture, The University of Poonch Rawalakot, Azad Kashmir, Pakistan.
| | - Vasilis P Androutsopoulos
- Department of Toxicology and Foresnsics, School of Medicine, University of Crete, Herakion, 71003, Greece.
| | - Aristides M Tsatsakis
- Department of Toxicology and Foresnsics, School of Medicine, University of Crete, Herakion, 71003, Greece.
| | - Michael D Coleman
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom.
| |
Collapse
|
50
|
Allan AC, Espley RV. MYBs Drive Novel Consumer Traits in Fruits and Vegetables. TRENDS IN PLANT SCIENCE 2018; 23:693-705. [PMID: 30033210 DOI: 10.1016/j.tplants.2018.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 05/27/2023]
Abstract
Eating plant-derived compounds can lead to a longer and healthier life and also benefits the environment. Innovation in the fresh food sector, as well as new cultivars, can improve consumption of fruit and vegetables, with MYB transcription factors being a target to drive this novelty. Plant MYB transcription factors are implicated in diverse roles including development, hormone signalling, and metabolite biosynthesis. The reds and blues of fruit and vegetables provided by anthocyanins, phlobaphenes, and betalains are controlled by specific R2R3 MYBs. New studies are now revealing that MYBs also control carotenoid biosynthesis and other quality traits, such as flavour and texture. Future breeding techniques may manipulate or create alleles of key MYB transcription factors.
Collapse
Affiliation(s)
- Andrew C Allan
- New Zealand Institute for Plant and Food Research, Mt Albert, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard V Espley
- New Zealand Institute for Plant and Food Research, Mt Albert, Auckland, New Zealand
| |
Collapse
|