1
|
Liu X, Yang C, Dong H, Wu S, Wang G, Han X, Fan B, Shang Y, Dang C, Xie C, Wang Z. TaRLK2.4, a transgressive expression receptor like kinase, improves powdery mildew resistance in wheat. Int J Biol Macromol 2024; 277:134387. [PMID: 39111505 DOI: 10.1016/j.ijbiomac.2024.134387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024]
Abstract
Plants form two immune systems, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI), to combat Blumeria graminis f. sp. tritici (Bgt) infection during the evolutionary process. In PTI, receptor-like kinases (RLKs) play important roles during pathogen infections. Based on our previous reports, there were 280 TaRLKs identified in early response to powdery mildew infection, which were divided into 34 subfamilies in this study. Differences in gene structures, cis-acting elements, and expression levels implied the function diversity of TaRLKs. TaRLK2.4, a member of LRK10L-RLKs subfamily, contained 665 amino acids, and located on the cell membrane. The main objective of this study was to investigate the role of the receptor-like kinase gene TaRLK2.4 in conferring powdery mildew resistance in wheat. Real-time quantitative PCR results indicated that TaRLK2.4 expressed during Bgt infection process, and exhibited a transgressive expression characteristic in disease resistance NILs (BJ-1). To elucidate the function of TaRLK2.4 during Bgt infection, the comprehensive analysis of virus induced gene silence and over-expression demonstrated that TaRLK2.4 promoted powdery mildew resistance positively. In summary, these results contribute to a deeper understanding of the complex and diverse biological functions of RLKs, and provide new genetic resources for wheat molecular breeding.
Collapse
Affiliation(s)
- Xiaoying Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Chenxiao Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Huixuan Dong
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Siqi Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Guangyu Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Xinyue Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Baoli Fan
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Yuntao Shang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 30087, China
| | - Chen Dang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agro-biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agro-biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhenying Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China.
| |
Collapse
|
2
|
Dai H, Huang X, Wang Y, Zhu S, Li J, Xu Z, Zheng J. Overexpression of forage millet ( Setaria italica) SiER genes enhances drought resistance of Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23238. [PMID: 39163495 DOI: 10.1071/fp23238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
ERECTA (ER) is a type of receptor-like kinase that contributes a crucial mission in various aspects of plant development, physiological metabolism, and abiotic stresses responses. This study aimed to explore the functional characteristics of the SiER family genes in millet (Setaria italica L.), focusing on the growth phenotype and drought resistance of Arabidopsis overexpressed SiER4_X1 and SiER1_X4 genes (SiERs ). The results revealed that overexpression of SiER4_X1 and SiER1_X4 genes in Arabidopsis significantly enhanced the leaf number, expanded leaf length and width, further promoted the silique number, length and diameter, and plant height and main stem thickness, ultimately leading to a substantial increase in individual plant biomass. Compared to the wild-type (WT), through simulated drought stress, the expression level of SiER genes was notably upregulated, transgenic Arabidopsis seeds exhibited stronger germination rates and root development; after experiencing drought conditions, the activities of antioxidant enzymes (superoxide dismutase and peroxidase) increased, while the levels of malondialdehyde and relative electrical conductivity decreased. These results indicate that overexpression of SiERs significantly enhanced both biomass production and drought resistance in Arabidopsis . The SiER4_X1 and SiER1_X4 genes emerge as promising candidate genes for improving biomass production and drought resistance in forage plants.
Collapse
Affiliation(s)
- Hanjing Dai
- Anhui Science and Technology University, College of Agronomy, Fengyang, Anhui 233100, P.R. China
| | - Xiaoyi Huang
- Anhui Science and Technology University, College of Agronomy, Fengyang, Anhui 233100, P.R. China
| | - Yingrun Wang
- Anhui Science and Technology University, College of Agronomy, Fengyang, Anhui 233100, P.R. China
| | - Shoujing Zhu
- Anhui Science and Technology University, College of Agronomy, Fengyang, Anhui 233100, P.R. China
| | - Jieqin Li
- Anhui Science and Technology University, College of Agronomy, Fengyang, Anhui 233100, P.R. China; and Anhui Province International Joint Research Center of Forage Bio-breeding, Chuzhou, Anhui 233100, P.R. China
| | - Zhaoshi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 10081, P.R. China
| | - Jiacheng Zheng
- Anhui Science and Technology University, College of Agronomy, Fengyang, Anhui 233100, P.R. China; and Anhui Province International Joint Research Center of Forage Bio-breeding, Chuzhou, Anhui 233100, P.R. China; and Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 10081, P.R. China
| |
Collapse
|
3
|
Yan J, Su P, Meng X, Liu P. Phylogeny of the plant receptor-like kinase (RLK) gene family and expression analysis of wheat RLK genes in response to biotic and abiotic stresses. BMC Genomics 2023; 24:224. [PMID: 37127571 PMCID: PMC10152718 DOI: 10.1186/s12864-023-09303-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The receptor-like kinase (RLK) gene families in plants contains a large number of members. They are membrane proteins with an extracellular receptor domain and participate in biotic and abiotic stress responses. RESULTS In this study, we identified RLKs in 15 representative plant genomes, including wheat, and classified them into 64 subfamilies by using four types of phylogenetic trees and HMM models. Conserved exon‒intron structures with conserved exon phases in the kinase domain were found in many RLK subfamilies from Physcomitrella patens to Triticum aestivum. Domain distributions of RLKs were also diagrammed. Collinearity events and tandem gene clusters suggested that polyploidization and tandem duplication events contributed to the member expansions of T. aestivum RLKs. Global expression pattern analysis was performed by using public transcriptome data. These analyses were involved in T. aestivum, Aegilops tauschii and Brachypodium distachyon RLKs under biotic and abiotic stresses. We also selected 9 RLKs to validate the transcriptome prediction by using qRT‒PCR under drought treatment and with Fusarium graminearum infection. The expression trends of these 9 wheat RLKs from public transcriptome data were consistent with the results of qRT‒PCR, indicating that they might be stress response genes under drought or F. graminearum treatments. CONCLUSION In this study, we identified, classified, evolved, and expressed RLKs in wheat and related plants. Thus, our results will provide insights into the evolutionary history and molecular mechanisms of wheat RLKs.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| | - Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng, 252059, People's Republic of China.
| | - Xianyong Meng
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Pingzeng Liu
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
4
|
Knockout Mutants of OsPUB7 Generated Using CRISPR/Cas9 Revealed Abiotic Stress Tolerance in Rice. Int J Mol Sci 2023; 24:ijms24065338. [PMID: 36982409 PMCID: PMC10048836 DOI: 10.3390/ijms24065338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Plants produce and accumulate stress-resistant substances when exposed to abiotic stress, which involves a protein conversion mechanism that breaks down stress-damaged proteins and supplies usable amino acids. Eukaryotic protein turnover is mostly driven by the ubiquitination pathway. Among the three enzymes required for protein degradation, E3 ubiquitin ligase plays a pivotal role in most cells, as it determines the specificity of ubiquitination and selects target proteins for degradation. In this study, to investigate the function of OsPUB7 (Plant U-box gene in Oryza sativa), we constructed a CRISPR/Cas9 vector, generated OsPUB7 gene-edited individuals, and evaluated resistance to abiotic stress using gene-edited lines. A stress-tolerant phenotype was observed as a result of drought and salinity stress treatment in the T2 OsPUB7 gene-edited null lines (PUB7-GE) lacking the T-DNA. In addition, although PUB7-GE did not show any significant change in mRNA expression analysis, it showed lower ion leakage and higher proline content than the wild type (WT). Protein–protein interaction analysis revealed that the expression of the genes (OsPUB23, OsPUB24, OsPUB66, and OsPUB67) known to be involved in stress increased in PUB7-GE and this, by forming a 1-node network with OsPUB66 and OsPUB7, acted as a negative regulator of drought and salinity stress. This result provides evidence that OsPUB7 will be a useful target for both breeding and future research on drought tolerance/abiotic stress in rice.
Collapse
|
5
|
Responses to Drought Stress in Poplar: What Do We Know and What Can We Learn? Life (Basel) 2023; 13:life13020533. [PMID: 36836891 PMCID: PMC9962866 DOI: 10.3390/life13020533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Poplar (Populus spp.) is a high-value crop for wood and biomass production and a model organism for tree physiology and genomics. The early release, in 2006, of the complete genome sequence of P. trichocarpa was followed by a wealth of studies that significantly enriched our knowledge of complex pathways inherent to woody plants, such as lignin biosynthesis and secondary cell wall deposition. Recently, in the attempt to cope with the challenges posed by ongoing climate change, fundamental studies and breeding programs with poplar have gradually shifted their focus to address the responses to abiotic stresses, particularly drought. Taking advantage from a set of modern genomic and phenotyping tools, these studies are now shedding light on important processes, including embolism formation (the entry and expansion of air bubbles in the xylem) and repair, the impact of drought stress on biomass yield and quality, and the long-term effects of drought events. In this review, we summarize the status of the research on the molecular bases of the responses to drought in poplar. We highlight how this knowledge can be exploited to select more tolerant genotypes and how it can be translated to other tree species to improve our understanding of forest dynamics under rapidly changing environmental conditions.
Collapse
|
6
|
Le Provost G, Gerardin T, Plomion C, Brendel O. Molecular plasticity to soil water deficit differs between sessile oak (Quercus Petraea (Matt.) Liebl.) high- and low-water use efficiency genotypes. TREE PHYSIOLOGY 2022; 42:2546-2562. [PMID: 35867420 DOI: 10.1093/treephys/tpac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Water use efficiency (WUE) is an important adaptive trait for soil water deficit. The molecular and physiological bases of WUE regulation in crops have been studied in detail in the context of plant breeding. Knowledge for most forest tree species lags behind, despite the need to identify populations or genotypes able to cope with the longer, more intense drought periods likely to result from climate warming. We aimed to bridge this gap in knowledge for sessile oak (Quercus petraea (Matt.) Liebl.), one of the most ecologically and economically important tree species in Europe, using a factorial design including trees with contrasted phenotypic values (low and high WUE) and two watering regimes (control and drought). By monitoring the ecophysiological response, we first qualified genotypes for their WUE (by using instantaneous and long-term measures). We then performed RNA-seq to quantify gene expression for the three most extreme genotypes exposed to the two watering regimes. By analyzing the interaction term, we were able to capture the molecular strategy of each group of plants for coping with drought. We identified putative candidate genes potentially involved in the regulation of transpiration rate in high-WUE phenotypes. Regardless of water availability, trees from the high-WUE phenotypic class overexpressed genes associated with drought responses, and in the control of stomatal density and distribution, and displayed a downregulation of genes associated with early stomatal closure and high transpiration rate. Fine physiological screening of sessile oaks with contrasting WUE, and their molecular characterization (i) highlighted subtle differences in transcription between low- and high-WUE genotypes, identifying key molecular players in the genetic control of this trait and (ii) revealed the genes underlying the molecular strategy that evolved in each group to potentially cope with water deficit, providing new insight into the within-species diversity in drought adaptation strategies.
Collapse
Affiliation(s)
| | - Theo Gerardin
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| | | | - Oliver Brendel
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| |
Collapse
|
7
|
Zheng J, Huang X, Li J, He Q, Zhao W, Zeng C, Chen H, Zhan Q, Xu Z. Enhanced biomass and thermotolerance of Arabidopsis by SiERECTA isolated from Setaria italica L. PeerJ 2022; 10:e14452. [PMID: 36518287 PMCID: PMC9744159 DOI: 10.7717/peerj.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/01/2022] [Indexed: 12/04/2022] Open
Abstract
Foxtail millet is commonly used as a food and forage grass. ERECTA (ER) is a receptor-like kinase that can improve plant biomass and stress resistance. The sorghum SbER10_X1 gene was used as a probe to identify ER family genes on the Setaria italica genomes (SiERs), and determine the characteristics of the SiERs family. Herein, the structural features, expression patterns, and thermotolerance of SiERs function were identified by bioinformatics analysis, real-time PCR and transgenesis estimation. Results showed that SiERs had four members: two members were located on chromosome 1 with a total of six copies (SiER1_X1, SiER1_X2, SiER1_X3, SiER1_X4, SiER1_X5, and SiER1_X6), and two were on chromosome 4, namely, SiER4 (SiER4_X1 and SiER4_X2) and SiERL1. Among them, SiER1_X4 and SiER4_X1 were expressed highest in above-ground organs of foxtail millet, and actively responded to treatments with abscisic acid, brassinolide, gibberellin, and indole acetic acid. After overexpression of SiER1_X4 and SiER4_X1 in Arabidopsis, the plant height and biomass of the transgenic Arabidopsis significantly increased. Following high-temperature treatment, transgenic seedlings survived better compared to wild type. Transgenic lines showed higher SOD and POD activities, and expression level of AtHSF1 and AtBl1 genes significantly increased. These results indicated that SiER1_X4 and SiER4_X1 played important regulatory roles in plant growth and thermotolerance. The two genes provide potential targets for conventional breeding or biotechnological intervention to improve the biomass of forage grass and thermotolerance of field crops.
Collapse
Affiliation(s)
- Jiacheng Zheng
- Anhui Science and Technology University, College of Agronomy, Fengyang, Anhui, China,Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Beijing, China
| | - Xiaoyi Huang
- Anhui Science and Technology University, College of Agronomy, Fengyang, Anhui, China
| | - Jieqin Li
- Anhui Science and Technology University, College of Agronomy, Fengyang, Anhui, China
| | - Qingyuan He
- Anhui Science and Technology University, College of Agronomy, Fengyang, Anhui, China
| | - Wan Zhao
- Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Beijing, China
| | - Chaowu Zeng
- Xinjiang Academy of Agricultural Sciences, Institute of Crop Sciences, Urumuqi, Xinjiang, China
| | - Haizhou Chen
- Anhui Youxin Agricultural Science and Technology Co. LTD, Hefei, Anhui, China
| | - Qiuwen Zhan
- Anhui Science and Technology University, College of Agronomy, Fengyang, Anhui, China
| | - Zhaoshi Xu
- Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Beijing, China
| |
Collapse
|
8
|
Zhao L, Guo L, Lu X, Malik WA, Zhang Y, Wang J, Chen X, Wang S, Wang J, Wang D, Ye W. Structure and character analysis of cotton response regulator genes family reveals that GhRR7 responses to draught stress. Biol Res 2022; 55:27. [PMID: 35974357 PMCID: PMC9380331 DOI: 10.1186/s40659-022-00394-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cytokinin signal transduction is mediated by a two-component system (TCS). Two-component systems are utilized in plant responses to hormones as well as to biotic and abiotic environmental stimuli. In plants, response regulatory genes (RRs) are one of the main members of the two-component system (TCS). Method From the aspects of gene structure, evolution mode, expression type, regulatory network and gene function, the evolution process and role of RR genes in the evolution of the cotton genome were analyzed. Result A total of 284 RR genes in four cotton species were identified. Including 1049 orthologous/paralogous gene pairs were identified, most of which were whole genome duplication (WGD). The RR genes promoter elements contain phytohormone responses and abiotic or biotic stress-related cis-elements. Expression analysis showed that RR genes family may be negatively regulate and involved in salt stress and drought stress in plants. Protein regulatory network analysis showed that RR family proteins are involved in regulating the DNA-binding transcription factor activity (COG5641) pathway and HP kinase pathways. VIGS analysis showed that the GhRR7 gene may be in the same regulatory pathway as GhAHP5 and GhPHYB, ultimately negatively regulating cotton drought stress by regulating POD, SOD, CAT, H2O2 and other reactive oxygen removal systems. Conclusion This study is the first to gain insight into RR gene members in cotton. Our research lays the foundation for discovering the genes related to drought and salt tolerance and creating new cotton germplasm materials for drought and salt tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00394-2.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
| |
Collapse
|
9
|
Wu Y, Shi H, Yu H, Ma Y, Hu H, Han Z, Zhang Y, Zhen Z, Yi L, Hou J. Combined GWAS and Transcriptome Analyses Provide New Insights Into the Response Mechanisms of Sunflower Against Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:847435. [PMID: 35592557 PMCID: PMC9111542 DOI: 10.3389/fpls.2022.847435] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/31/2022] [Indexed: 05/25/2023]
Abstract
Sunflower is one of the most important oil crops in the world, and drought stress can severely limit its production and quality. To understand the underlying mechanism of drought tolerance, and identify candidate genes for drought tolerance breeding, we conducted a combined genome-wide association studies (GWAS) and RNA-seq analysis. A total of 226 sunflower inbred lines were collected from different regions of China and other countries. Eight phenotypic traits were evaluated under control and drought stress conditions. Genotyping was performed using a Specific-Locus Amplified Fragment Sequencing (SLAF-seq) approach. A total of 934.08 M paired-end reads were generated, with an average Q30 of 91.97%. Based on the 243,291 polymorphic SLAF tags, a total of 94,162 high-quality SNPs were identified. Subsequent analysis of linkage disequilibrium (LD) and population structure in the 226 accessions was carried out based on the 94,162 high-quality SNPs. The average LD decay across the genome was 20 kb. Admixture analysis indicated that the entire population most likely originated from 11 ancestors. GWAS was performed using three methods (MLM, FarmCPU, and BLINK) simultaneously. A total of 80 SNPs showed significant associations with the 8 traits (p < 1.062 × 10-6). Next, a total of 118 candidate genes were found. To obtain more reliable candidate genes, RNA-seq analysis was subsequently performed. An inbred line with the highest drought tolerance was selected according to phenotypic traits. RNA was extracted from leaves at 0, 7, and 14 days of drought treatment. A total of 18,922 differentially expressed genes were obtained. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed up-regulated genes were mainly enriched in the branched-chain amino acid catabolic process, while the down-regulated genes were mainly enriched in the photosynthesis-related process. Six DEGs were randomly selected from all DEGs for validation; these genes showed similar patterns in RNA-seq and RT-qPCR analysis, with a correlation coefficient of 0.8167. Through the integration of the genome-wide association study and the RNA-sequencing, 14 candidate genes were identified. Four of them (LOC110885273, LOC110872899, LOC110891369, LOC110920644) were abscisic acid related protein kinases and transcription factors. These genes may play an important role in sunflower drought response and will be used for further study. Our findings provide new insights into the response mechanisms of sunflowers against drought stress and contribute to further genetic breeding.
Collapse
Affiliation(s)
- Yang Wu
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, China
| | - Huimin Shi
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, China
| | - Haifeng Yu
- Institute of Crop Breeding and Cultivation, Inner Mongolia Academy of Agricultural and Husbandry Sciences, Hohhot, China
| | - Yu Ma
- Institute of Crop Breeding and Cultivation, Inner Mongolia Academy of Agricultural and Husbandry Sciences, Hohhot, China
| | - Haibo Hu
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhigang Han
- Institute of Crop Breeding and Cultivation, Inner Mongolia Academy of Agricultural and Husbandry Sciences, Hohhot, China
| | - Yonghu Zhang
- Institute of Crop Breeding and Cultivation, Inner Mongolia Academy of Agricultural and Husbandry Sciences, Hohhot, China
| | - Zilong Zhen
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, China
| | - Liuxi Yi
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, China
| | - Jianhua Hou
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
10
|
Nefissi Ouertani R, Arasappan D, Ruhlman TA, Ben Chikha M, Abid G, Mejri S, Ghorbel A, Jansen RK. Effects of Salt Stress on Transcriptional and Physiological Responses in Barley Leaves with Contrasting Salt Tolerance. Int J Mol Sci 2022; 23:5006. [PMID: 35563398 PMCID: PMC9103072 DOI: 10.3390/ijms23095006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Salt stress negatively impacts crop production worldwide. Genetic diversity among barley (Hordeum vulgare) landraces adapted to adverse conditions should provide a valuable reservoir of tolerance genes for breeding programs. To identify molecular and biochemical differences between barley genotypes, transcriptomic and antioxidant enzyme profiles along with several morpho-physiological features were compared between salt-tolerant (Boulifa) and salt-sensitive (Testour) genotypes subjected to salt stress. Decreases in biomass, photosynthetic parameters, and relative water content were low in Boulifa compared to Testour. Boulifa had better antioxidant protection against salt stress than Testour, with greater antioxidant enzymes activities including catalase, superoxide dismutase, and guaiacol peroxidase. Transcriptome assembly for both genotypes revealed greater accumulation of differentially expressed transcripts in Testour compared to Boulifa, emphasizing the elevated transcriptional response in Testour following salt exposure. Various salt-responsive genes, including the antioxidant catalase 3, the osmoprotectant betaine aldehyde dehydrogenase 2, and the transcription factors MYB20 and MYB41, were induced only in Boulifa. By contrast, several genes associated with photosystems I and II, and light receptor chlorophylls A and B, were more repressed in Testour. Co-expression network analysis identified specific gene modules correlating with differences in genotypes and morpho-physiological traits. Overall, salinity-induced differential transcript accumulation underlies the differential morpho-physiological response in both genotypes and could be important for breeding salt tolerance in barley.
Collapse
Affiliation(s)
- Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Dhivya Arasappan
- Center for Biomedical Research Support, University of Texas at Austin, Austin, TX 78712, USA;
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
| | - Mariem Ben Chikha
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia;
| | - Samiha Mejri
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Abdelwahed Ghorbel
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Li H, Yang Y, Wang H, Liu S, Jia F, Su Y, Li S, He F, Feng C, Niu M, Wang J, Liu C, Yin W, Xia X. The Receptor-Like Kinase ERECTA Confers Improved Water Use Efficiency and Drought Tolerance to Poplar via Modulating Stomatal Density. Int J Mol Sci 2021; 22:ijms22147245. [PMID: 34298865 PMCID: PMC8303786 DOI: 10.3390/ijms22147245] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Poplar is one of the most important tree species in the north temperate zone, but poplar plantations are quite water intensive. We report here that CaMV 35S promoter-driven overexpression of the PdERECTA gene, which is a member of the LRR-RLKs family from Populus nigra × (Populus deltoides × Populus nigra), improves water use efficiency and enhances drought tolerance in triploid white poplar. PdERECTA localizes to the plasma membrane. Overexpression plants showed lower stomatal density and larger stomatal size. The abaxial stomatal density was 24-34% lower and the stomatal size was 12-14% larger in overexpression lines. Reduced stomatal density led to a sharp restriction of transpiration, which was about 18-35% lower than the control line, and instantaneous water use efficiency was around 14-63% higher in overexpression lines under different conditions. These phenotypic changes led to increased drought tolerance. PdERECTA overexpression plants not only survived longer after stopping watering but also performed better when supplied with limited water, as they had better physical and photosynthesis conditions, faster growth rate, and higher biomass accumulation. Taken together, our data suggest that PdERECTA can alter the development pattern of stomata to reduce stomatal density, which then restricts water consumption, conferring enhanced drought tolerance to poplar. This makes PdERECTA trees promising candidates for establishing more water use efficient plantations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xinli Xia
- Correspondence: ; Tel.: +86-010-6233-6400
| |
Collapse
|
12
|
Lee ON, Koo H, Yu JW, Park HY. Genotyping-by-Sequencing-Based Genome-Wide Association Studies of Fusarium Wilt Resistance in Radishes ( Raphanus sativus L.). Genes (Basel) 2021; 12:genes12060858. [PMID: 34205206 PMCID: PMC8228987 DOI: 10.3390/genes12060858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Fusarium wilt (FW) is a fungal disease that causes severe yield losses in radish production. The most effective method to control the FW is the development and use of resistant varieties in cultivation. The identification of marker loci linked to FW resistance are expected to facilitate the breeding of disease-resistant radishes. In the present study, we applied an integrated framework of genome-wide association studies (GWAS) using genotyping-by-sequencing (GBS) to identify FW resistance loci among a panel of 225 radish accessions, including 58 elite breeding lines. Phenotyping was conducted by manual inoculation of seedlings with the FW pathogen, and scoring for the disease index was conducted three weeks after inoculation during two constitutive years. The GWAS analysis identified 44 single nucleotide polymorphisms (SNPs) and twenty putative candidate genes that were significantly associated with FW resistance. In addition, a total of four QTLs were identified from F2 population derived from a FW resistant line and a susceptible line, one of which was co-located with the SNPs on chromosome 7, detected in GWAS study. These markers will be valuable for molecular breeding programs and marker-assisted selection to develop FW resistant varieties of R. sativus.
Collapse
Affiliation(s)
- O New Lee
- College of Life Sciences, Sejong University, Seoul 05006, Korea;
| | - Hyunjin Koo
- Department of Agricultural Biotechnology and Research, Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | | | - Han Yong Park
- College of Life Sciences, Sejong University, Seoul 05006, Korea;
- Correspondence:
| |
Collapse
|
13
|
Juneidi S, Gao Z, Yin H, Makunga NP, Chen W, Hu S, Li X, Hu X. Breaking the Summer Dormancy of Pinellia ternata by Introducing a Heat Tolerance Receptor-Like Kinase ERECTA Gene. FRONTIERS IN PLANT SCIENCE 2020; 11:780. [PMID: 32670314 PMCID: PMC7326942 DOI: 10.3389/fpls.2020.00780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/15/2020] [Indexed: 05/15/2023]
Abstract
Pinellia ternata is a perennial traditional Chinese medicinal plant that undergoes different phenological patterns of dormancy depending on where it is growing. Plants grown in central and southern China typically display two growth cycles every year before and after hot summer days, exhibiting a summer dormancy. However, germplasms from these areas do not go into a dormancy phase in northern China where the summer monthly average temperatures range from 29-31°C. The northern China herbal growers prefer plant stocks from central China due to their longer growing quality and better tuber harvests. Here, we introduced a heat responsive receptor-like kinase ERECTA (ER) gene into P. ternata to explore changes in the growth cycle which were aimed at disrupting the summer dormancy. The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene was also co-transformed with ER to improve the commercial trait. For the thermo-tolerance evaluation, all plants were treated with high temperatures (35°C/40°C) in a growth chamber or grown in natural field temperature in an isolated field before measurement of different agricultural, biochemical and physiological traits. The transgenics showed significantly (P < 0.05) higher heat tolerance, maintaining healthy vegetative growth unlike the empty vector (EV) harboring controls that became chlorotic and necrotic. Better performance in some of the monitored physiological traits was evident for overexpression lines exposed to the heat stress. In open isolated field trials, the transgenic genotypes did not show a summer dormancy but had a survival rate of 84-95%. The tuber biomasses were also significantly (P < 0.05) higher for the transgenic lines as compared to the EV controls, except for line ER118. Metabolites analysis indicated that the HMGR overexpressing lines (HMGR orHMGR + ER) exhibited significantly higher amounts of bioactive compounds including aromadendrene-4, 10-diol and 4, 8, 13-cyclotetradecatriene-1, 3-diol, 1, 5, 9-trimethyl-12-(1-methylethyl). Our findings show that the summer dormancy of P. ternata which is a naturally evolved trait, can be removed by a single heat responsive gene. The study contributes to generating heat tolerant new Pinellia varieties with enhanced commercially valuable chemicals.
Collapse
Affiliation(s)
- Seifu Juneidi
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zengyan Gao
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Sheng Hu
- Hubei Cancer Hospital, Wuhan, China
| | - Xiaohua Li
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Xuebo Hu
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Shanmugam S, Zhao S, Nandy S, Srivastava V, Khodakovskaya M. Modification of soybean growth and abiotic stress tolerance by expression of truncated ERECTA protein from Arabidopsis thaliana. PLoS One 2020; 15:e0233383. [PMID: 32428035 PMCID: PMC7236981 DOI: 10.1371/journal.pone.0233383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/03/2020] [Indexed: 11/25/2022] Open
Abstract
ERECTA gene family encodes leucine-rich repeat receptor-like kinases that control major aspects of plant development such as elongation of aboveground organs, leaf initiation, development of flowers, and epidermis differentiation. To clarify the importance of ERECTA signaling for the development of soybean (Glycine max), we expressed the dominant-negative ERECTA gene from Arabidopsis thaliana that is truncated in the kinase domain (AtΔKinase). Expression of AtΔKinase in soybean resulted in the short stature, reduced number of leaves, reduced leaf surface area and enhanced branching in the transgenic plants. The transgenic AtΔKinase soybean plants exhibited increased tolerance to water deficit stress due to the reduction of total leaf area and reduced transpiration compared to the wild-type plants. Production of seeds in AtΔKinase lines was higher compared to wild type at regular conditions of cultivation and after exposure to drought stress. Transgenic seedlings expressing AtΔKinase were also able to withstand salt stress better than the wild-type. Established results demonstrated the significance of native soybean genes (GmER and GmERL) in development and stress response of soybean, and suggested that the truncated ERECTA gene of Arabidopsis thaliana can be used to manipulate the growth and stress response of different crop species.
Collapse
Affiliation(s)
- Sudha Shanmugam
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Shan Zhao
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Soumen Nandy
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Vibha Srivastava
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Mariya Khodakovskaya
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| |
Collapse
|
15
|
Harb A, Simpson C, Guo W, Govindan G, Kakani VG, Sunkar R. The Effect of Drought on Transcriptome and Hormonal Profiles in Barley Genotypes With Contrasting Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:618491. [PMID: 33424910 PMCID: PMC7786106 DOI: 10.3389/fpls.2020.618491] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/27/2020] [Indexed: 05/21/2023]
Abstract
Like many cereal crops, barley is also negatively affected by drought stress. However, due to its simple genome as well as enhanced stress resilient nature compared to rice and wheat, barley has been considered as a model to decipher drought tolerance in cereals. In the present study, transcriptomic and hormonal profiles along with several biochemical features were compared between drought-tolerant (Otis) and drought-sensitive (Baronesse) barley genotypes subjected to drought to identify molecular and biochemical differences between the genotypes. The drought-induced decrease in the leaf relative water content, net photosynthesis, and biomass accumulation was relatively low in Otis compared to Baronesse. The hormonal profiles did not reveal significant differences for majority of the compounds other than the GA20 and the cis-zeatin-o-glucoside (c-ZOG), whose levels were greatly increased in Otis compared to Baronesse under drought. The major differences that emerged from the transcriptome analysis are; (1), the overall number of differentially expressed genes was relatively low in drought-tolerant Otis compared to drought-sensitive Baronesse; (2), a wax biosynthesis gene (CER1), and NAC transcription factors were specifically induced in Otis but not in Baronesse; (3), the degree of upregulation of betaine aldehyde dehydrogenase and a homeobox transcription factor (genes with proven roles in imparting drought tolerance), was greater in Otis compared to Baronesse; (4) the extent of downregulation of gene expression profiles for proteins of the reaction center photosystem II (PSII) (D1 and D2) was low in Otis compared to Baronesse; and, (5), alternative splicing (AS) was also found to differ between the genotypes under drought. Taken together, the overall transcriptional responses were low in drought-tolerant Otis but the genes that could confer drought tolerance were either specifically induced or greatly upregulated in the tolerant genotype and these differences could be important for drought tolerance in barley.
Collapse
Affiliation(s)
- Amal Harb
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
- *Correspondence: Amal Harb ;
| | - Craig Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Wenbin Guo
- Informatics and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Ganesan Govindan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Vijaya Gopal Kakani
- Department of Plant and Soil Science, Oklahoma State University, Stillwater, OK, United States
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Ramanjulu Sunkar
| |
Collapse
|
16
|
Nanda AK, El Habti A, Hocart CH, Masle J. ERECTA receptor-kinases play a key role in the appropriate timing of seed germination under changing salinity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6417-6435. [PMID: 31504732 PMCID: PMC6859730 DOI: 10.1093/jxb/erz385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Appropriate timing of seed germination is crucial for the survival and propagation of plants, and for crop yield, especially in environments prone to salinity or drought. However, the exact mechanisms by which seeds perceive changes in soil conditions and integrate them to trigger germination remain elusive, especially once the seeds are non-dormant. In this study, we determined that the Arabidopsis ERECTA (ER), ERECTA-LIKE1 (ERL1), and ERECTA-LIKE2 (ERL2) leucine-rich-repeat receptor-like kinases regulate seed germination and its sensitivity to changes in salt and osmotic stress levels. Loss of ER alone, or in combination with ERL1 and/or ERL2, slows down the initiation of germination and its progression to completion, or arrests it altogether under saline conditions, until better conditions return. This function is maternally controlled via the tissues surrounding the embryo, with a primary role being played by the properties of the seed coat and its mucilage. These relate to both seed-coat expansion and subsequent differentiation and to salinity-dependent interactions between the mucilage, subtending seed coat layers and seed interior in the germinating seed. Salt-hypersensitive er105, er105 erl1.2, er105 erl2.1 and triple-mutant seeds also exhibit increased sensitivity to exogenous ABA during germination, and under salinity show an enhanced up-regulation of the germination repressors and inducers of dormancy ABA-insensitive-3, ABA-insensitive-5, DELLA-encoding RGL2, and Delay-Of-Germination-1. These findings reveal a novel role of the ERECTA receptor-kinases in the sensing of conditions at the seed surface and the integration of developmental, dormancy and stress signalling pathways in seeds. They also open novel avenues for the genetic improvement of plant adaptation to changing drought and salinity patterns.
Collapse
Affiliation(s)
- Amrit K Nanda
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | - Abdeljalil El Habti
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | - Charles H Hocart
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | | |
Collapse
|
17
|
Papacek M, Christmann A, Grill E. Increased water use efficiency and water productivity of arabidopsis by abscisic acid receptors from Populus canescens. ANNALS OF BOTANY 2019; 124:581-590. [PMID: 30629104 PMCID: PMC6821255 DOI: 10.1093/aob/mcy225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/06/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Water deficit is the single most important factor limiting plant productivity in the field. Poplar is a crop used for second-generation bioenergy production that can be cultivated on marginal land without competing for land use in food production. Poplar has a high demand for water, which makes improving its water use efficiency (WUE) an attractive goal. Recently, we showed that enhanced expression of specific receptors of arabidopsis for the phytohormone abscisic acid (ABA) can improve WUE in arabidopsis and water productivity, i.e. more biomass is formed per unit of water over time. In this study, we examined whether ABA receptors from poplar can enhance WUE and water productivity in arabidopsis. METHODS ABA receptors from poplar were stably introduced into arabidopsis for analysis of their effect on water use efficiency. Physiological analysis included growth assessment and gas exchange measurements. KEY RESULTS The data presented here are in agreement with the functionality of poplar ABA receptors in arabidopsis, which led to ABA-hypersensitive seed germination and root growth. In addition, arabidopsis lines expressing poplar RCAR10, but not RCAR9, showed increased WUE by up to 26 % compared with the wild type with few trade-offs in growth that also resulted in higher water productivity during drought. The improved WUE was mediated by reduced stomatal conductance, a steeper CO2 gradient at the leaf boundary and sustained photosynthesis resulting in an increased intrinsic WUE (iWUE). CONCLUSIONS The analysis is a case study supporting the use of poplar ABA receptors for improving WUE and showing the feasibility of using a heterologous expression strategy for generating plants with improved water productivity.
Collapse
Affiliation(s)
- Michael Papacek
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße, Freising, Germany
| | - Alexander Christmann
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße, Freising, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße, Freising, Germany
- For correspondence. E-mail
| |
Collapse
|
18
|
Li H, Han X, Liu X, Zhou M, Ren W, Zhao B, Ju C, Liu Y, Zhao J. A leucine-rich repeat-receptor-like kinase gene SbER2-1 from sorghum (Sorghum bicolor L.) confers drought tolerance in maize. BMC Genomics 2019; 20:737. [PMID: 31615416 PMCID: PMC6794760 DOI: 10.1186/s12864-019-6143-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ERECTA (ER) is a leucine-rich repeat-receptor-like kinase gene (LRR-RLK) encoding a protein isolated from Arabidopsis. Although the regulatory functions of ER genes have been widely explored in plant development and disease resistance, their roles in drought stress responses remain to be clarified. RESULTS In this study, we cloned and characterized two ER genes, SbER1-1 and SbER2-1, from the drought-tolerant model plant sorghum (Sorghum bicolor L.). Under drought stress, the two genes were expressed in the leaves and stems but not in the roots, and SbER2-1 transcript accumulation in the stem was increased. SbER2-1 was localized both on the plasma membrane and in the chloroplast. Moreover, SbER2-1 expression in Arabidopsis and maize conferred increased drought tolerance, especially in regard to water-use efficiency, increasing the net photosynthetic rate in maize under drought stress. Based on RNA-Seq analysis together with the physiological data, we conclude that the transgenic maize plants have upregulated phenylpropanoid metabolism and increased lignin accumulation under drought stress. CONCLUSIONS Our results demonstrate that SbER2-1 plays an important role in response to drought stress. Furthermore, photosynthetic systems and phenylpropanoid metabolism are implicated in SbER2-1-mediated drought stress tolerance mechanisms. The use of genetic engineering to regulate SbER2-1 expression in plants and to breed new varieties tolerant to drought is a research field full of potential.
Collapse
Affiliation(s)
- Hanshuai Li
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Xiaodong Han
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Xinxiang Liu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Miaoyi Zhou
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Wen Ren
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Bingbing Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Chuanli Ju
- College of Life Sciences, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Ya Liu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|
19
|
Identification and expression analysis of ERECTA family genes in grape (Vitis vinifera L.). Genes Genomics 2019; 41:723-735. [PMID: 31004330 DOI: 10.1007/s13258-019-00810-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/07/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND ERECTA family (ERf) genes are found in many dicots and monocots, and play important roles in plant developmental processes and stress responses. However, there is little known on ERf genes in grape (Vitis vinifera L.). OBJECTIVES The primary objective of this study was to identify the ERf genes in grape, and to analyze their expression profiles in different organs, during development, and in response to hormone treatments and abiotic/biotic stresses. METHODS ERf protein sequences of dicots were aligned in the grape genome (V. vinifera cv. Pinot Noir, PN40024, 12X) with Blast server. The locus tags obtained were inputted in NCBI to retrieve corresponding nucleotide and protein accession numbers. The subcellular localization experiment was performed by the transient expression of VvERECTA-GFP and VvERL2-GFP in mesophyll protoplasts of Arabidopsis. The expression levels of ERf genes in grape leaves were detected by qRT-PCR after hormone treatments and abiotic/biotic stresses. RESULTS We first identified the ERf genes in the grape genome, including VvERECTA and VvERL2. Their cDNA full-length sequences were obtained with the accession numbers MG601756 and MG601757. The result of subcellular localization indicated that the fusion proteins of VvERECTA and VvERL2 were localized in the plasma membrane. There were four conserved domains identified in VvERECTA and VvERL2, including a LRRNT-2, a LRR, a transmembrane and a protein kinase domain. The grape ERf genes expressed highly in young aboveground organs. As grape leaves or berries becoming mature, VvERECTA expressed in a declining trend. The transcript abundance of VvERL2 decreased during leaves development, but showed no significant differences during berries development. The hormone treatments of ABA, SA, MeJA and BR could induce the expression of VvERECTA and VvERL2. The treatments of heat, drought, downy and powdery mildew significantly increased the expression levels of the grape ERf genes. CONCLUSION The grape ERECTA gene family might play crucial roles in response to abiotic and biotic stresses. We provide the first description of the grape ERf genes and the most comprehensive analysis of their expressions in different biological processes.
Collapse
|
20
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 DOI: 10.3389/fpls.2018.0187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/27/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
21
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 PMCID: PMC6331418 DOI: 10.3389/fpls.2018.01875] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/03/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
22
|
Bielsa B, Hewitt S, Reyes-Chin-Wo S, Dhingra A, Rubio-Cabetas MJ. Identification of water use efficiency related genes in 'Garnem' almond-peach rootstock using time-course transcriptome analysis. PLoS One 2018; 13:e0205493. [PMID: 30308016 PMCID: PMC6181374 DOI: 10.1371/journal.pone.0205493] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022] Open
Abstract
Drought is one of the main abiotic stresses with far-reaching ecological and socioeconomic impacts, especially in perennial food crops such as Prunus. There is an urgent need to identify drought resilient rootstocks that can adapt to changes in water availability. In this study, we tested the hypothesis that PEG-induced water limitation stress will simulate drought conditions and drought-related genes, including transcription factors (TFs), will be differentially expressed in response to this stress. 'Garnem' genotype, an almond × peach hybrid [P. amygdalus Batsch, syn P. dulcis (Mill.) x P. persica (L.) Batsch] was exposed to PEG-6000 solution, and a time-course transcriptome analysis of drought-stressed roots was performed at 0, 2 and 24 h time points post-stress. Transcriptome analysis resulted in the identification of 12,693 unique differentially expressed contigs (DECs) at the 2 h time point, and 7,705 unique DECs at the 24 h time point after initiation of the drought treatment. Interestingly, three drought-induced genes, directly related to water use efficiency (WUE) namely, ERF023 TF; LRR receptor-like serine/threonine-kinase ERECTA; and NF-YB3 TF, were found induced under stress. The RNAseq results were validated with quantitative RT-PCR analysis of eighteen randomly selected differentially expressed contigs (DECs). Pathway analysis in the present study provides valuable information regarding metabolic events that occur during stress-induced signalling in 'Garnem' roots. This information is expected to be useful in understanding the potential mechanisms underlying drought stress responses and drought adaptation strategies in Prunus species.
Collapse
Affiliation(s)
- Beatriz Bielsa
- Hortofruticulture Department. Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
| | - Seanna Hewitt
- Molecular Plant Sciences, Washington State University, Pullman, Washington, United States of America
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | | | - Amit Dhingra
- Molecular Plant Sciences, Washington State University, Pullman, Washington, United States of America
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | - María José Rubio-Cabetas
- Hortofruticulture Department. Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
| |
Collapse
|
23
|
Yan J, Li G, Guo X, Li Y, Cao X. Genome-wide classification, evolutionary analysis and gene expression patterns of the kinome in Gossypium. PLoS One 2018; 13:e0197392. [PMID: 29768506 PMCID: PMC5955557 DOI: 10.1371/journal.pone.0197392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
The protein kinase (PK, kinome) family is one of the largest families in plants and regulates almost all aspects of plant processes, including plant development and stress responses. Despite their important functions, comprehensive functional classification, evolutionary analysis and expression patterns of the cotton PK gene family has yet to be performed on PK genes. In this study, we identified the cotton kinomes in the Gossypium raimondii, Gossypium arboretum, Gossypium hirsutum and Gossypium barbadense genomes and classified them into 7 groups and 122-24 subfamilies using software HMMER v3.0 scanning and neighbor-joining (NJ) phylogenetic analysis. Some conserved exon-intron structures were identified not only in cotton species but also in primitive plants, ferns and moss, suggesting the significant function and ancient origination of these PK genes. Collinearity analysis revealed that 16.6 million years ago (Mya) cotton-specific whole genome duplication (WGD) events may have played a partial role in the expansion of the cotton kinomes, whereas tandem duplication (TD) events mainly contributed to the expansion of the cotton RLK group. Synteny analysis revealed that tetraploidization of G. hirsutum and G. barbadense contributed to the expansion of G. hirsutum and G. barbadense PKs. Global expression analysis of cotton PKs revealed stress-specific and fiber development-related expression patterns, suggesting that many cotton PKs might be involved in the regulation of the stress response and fiber development processes. This study provides foundational information for further studies on the evolution and molecular function of cotton PKs.
Collapse
Affiliation(s)
- Jun Yan
- College of Information Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, PR China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Guilin Li
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Xingqi Guo
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Yang Li
- College of Information Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Xuecheng Cao
- College of Information Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, PR China
- * E-mail:
| |
Collapse
|
24
|
Yan J, Su P, Wei Z, Nevo E, Kong L. Genome-wide identification, classification, evolutionary analysis and gene expression patterns of the protein kinase gene family in wheat and Aegilops tauschii. PLANT MOLECULAR BIOLOGY 2017; 95:227-242. [PMID: 28918554 DOI: 10.1007/s11103-017-0637-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/16/2017] [Indexed: 05/19/2023]
Abstract
In this study we systematically identified and classified PKs in Triticum aestivum, Triticum urartu and Aegilops tauschii. Domain distribution and exon-intron structure analyses of PKs were performed, and we found conserved exon-intron structures within the exon phases in the kinase domain. Collinearity events were determined, and we identified various T. aestivum PKs from polyploidizations and tandem duplication events. Global expression pattern analysis of T. aestivum PKs revealed that some PKs might participate in the signaling pathways of stress response and developmental processes. QRT-PCR of 15 selected PKs were performed under drought treatment and with infection of Fusarium graminearum to validate the prediction of microarray. The protein kinase (PK) gene superfamily is one of the largest families in plants and participates in various plant processes, including growth, development, and stress response. To better understand wheat PKs, we conducted genome-wide identification, classification, evolutionary analysis and expression profiles of wheat and Ae. tauschii PKs. We identified 3269, 1213 and 1448 typical PK genes in T. aestivum, T. urartu and Ae. tauschii, respectively, and classified them into major groups and subfamilies. Domain distributions and gene structures were analyzed and visualized. Some conserved intron-exon structures within the conserved kinase domain were found in T. aestivum, T. urartu and Ae. tauschii, as well as the primitive land plants Selaginella moellendorffii and Physcomitrella patens, revealing the important roles and conserved evolutionary history of these PKs. We analyzed the collinearity events of T. aestivum PKs and identified PKs from polyploidizations and tandem duplication events. Global expression pattern analysis of T. aestivum PKs revealed tissue-specific and stress-specific expression profiles, hinting that some wheat PKs may regulate abiotic and biotic stress response signaling pathways. QRT-PCR of 15 selected PKs were performed under drought treatment and with infection of F. graminearum to validate the prediction of microarray. Our results will provide the foundational information for further studies on the molecular functions of wheat PKs.
Collapse
Affiliation(s)
- Jun Yan
- College of Information Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhaoran Wei
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, 3498838, Haifa, Israel.
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
25
|
Fracasso A, Magnanini E, Marocco A, Amaducci S. Real-Time Determination of Photosynthesis, Transpiration, Water-Use Efficiency and Gene Expression of Two Sorghum bicolor (Moench) Genotypes Subjected to Dry-Down. FRONTIERS IN PLANT SCIENCE 2017; 8:932. [PMID: 28620409 PMCID: PMC5450411 DOI: 10.3389/fpls.2017.00932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/19/2017] [Indexed: 05/24/2023]
Abstract
Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE). This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum.
Collapse
Affiliation(s)
- Alessandra Fracasso
- Department of Sustainable Crop Production, Università Cattolica del Sacro CuorePiacenza, Italy
| | | | | | | |
Collapse
|
26
|
Chaves MM, Costa JM, Zarrouk O, Pinheiro C, Lopes CM, Pereira JS. Controlling stomatal aperture in semi-arid regions-The dilemma of saving water or being cool? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:54-64. [PMID: 27593463 DOI: 10.1016/j.plantsci.2016.06.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/14/2016] [Accepted: 06/22/2016] [Indexed: 05/24/2023]
Abstract
Stomatal regulation of leaf gas exchange with the atmosphere is a key process in plant adaptation to the environment, particularly in semi-arid regions with high atmospheric evaporative demand. Development of stomata, integrating internal signaling and environmental cues sets the limit for maximum diffusive capacity of stomata, through size and density and is under a complex genetic control, thus providing multiple levels of regulation. Operational stomatal conductance to water vapor and CO2 results from feed-back and/or feed-forward mechanisms and is the end-result of a plethora of signals originated in leaves and/or in roots at each moment. CO2 assimilation versus water vapor loss, proposed to be the subject of optimal regulation, is species dependent and defines the water use efficiency (WUE). WUE has been a topic of intense research involving areas from genetics to physiology. In crop plants, especially in semi-arid regions, the question that arises is how the compromise of reducing transpiration to save water will impact on plant performance through leaf temperature. Indeed, plant transpiration by providing evaporative cooling, is a major component of the leaf energy balance. In this paper we discuss the dilemma of 'saving water or being cool' bringing about recent findings from molecular genetics, to development and physiology of stomata. The question of 'how relevant is screening for high/low WUE in crops for semi-arid regions, where drought and heat co-occur' is discussed.
Collapse
Affiliation(s)
- M M Chaves
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - J M Costa
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - O Zarrouk
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - C Pinheiro
- Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - C M Lopes
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - J S Pereira
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| |
Collapse
|
27
|
Kaiser E, Morales A, Harbinson J, Heuvelink E, Prinzenberg AE, Marcelis LFM. Metabolic and diffusional limitations of photosynthesis in fluctuating irradiance in Arabidopsis thaliana. Sci Rep 2016; 6:31252. [PMID: 27502328 PMCID: PMC4977489 DOI: 10.1038/srep31252] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022] Open
Abstract
A better understanding of the metabolic and diffusional limitations of photosynthesis in fluctuating irradiance can help identify targets for improving crop yields. We used different genotypes of Arabidopsis thaliana to characterise the importance of Rubisco activase (Rca), stomatal conductance (gs), non-photochemical quenching of chlorophyll fluorescence (NPQ) and sucrose phosphate synthase (SPS) on photosynthesis in fluctuating irradiance. Leaf gas exchange and chlorophyll fluorescence were measured in leaves exposed to stepwise increases and decreases in irradiance. rwt43, which has a constitutively active Rubisco enzyme in different irradiance intensities (except in darkness), showed faster increases than the wildtype, Colombia-0, in photosynthesis rates after step increases in irradiance. rca-2, having decreased Rca concentration, showed lower rates of increase. In aba2-1, high gs increased the rate of change after stepwise irradiance increases, while in C24, low gs tended to decrease it. Differences in rates of change between Colombia-0 and plants with low levels of NPQ (npq1-2, npq4-1) or SPS (spsa1) were negligible. In Colombia-0, the regulation of Rubisco activation and of gs were therefore limiting for photosynthesis in fluctuating irradiance, while levels of NPQ or SPS were not. This suggests Rca and gs as targets for improvement of photosynthesis of plants in fluctuating irradiance.
Collapse
Affiliation(s)
- Elias Kaiser
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Alejandro Morales
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Jeremy Harbinson
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Aina E Prinzenberg
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands.,Laboratory of Genetics, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
28
|
Wang C, Liu S, Dong Y, Zhao Y, Geng A, Xia X, Yin W. PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:849-60. [PMID: 26228739 DOI: 10.1111/pbi.12434] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 05/18/2023]
Abstract
Water deficiency is a critical environmental condition that is seriously reducing global plant production. Improved water-use efficiency (WUE) and drought tolerance are effective strategies to address this problem. In this study, PdEPF1, a member of the EPIDERMAL PATTERNING FACTOR (EPF) family, was isolated from the fast-growing poplar clone NE-19 [Populus nigra × (Populus deltoides × Populus nigra)]. Significantly, higher PdEPF1 levels were detected after induction by dehydration and abscisic acid. To explore the biological functions of PdEPF1, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B385') overexpressing PdEPF1 were constructed. PdEPF1 overexpression resulted in increased water deficit tolerance and greater WUE. We confirmed that the transgenic lines with greater instantaneous WUE had approximately 30% lower transpiration but equivalent CO2 assimilation. Lower transpiration was associated with a 28% reduction in abaxial stomatal density. PdEPF1 overexpression not only strongly enhanced WUE, but also greatly improved drought tolerance, as measured by the leaf relative water content and water potential, under limited water conditions. In addition, the growth of these oxPdEPF1 plants was less adversely affected by reduced water availability than plants with a higher stomatal density, indicating that plants with a low stomatal density may be well suited to grow in water-scarce environments. Taken together, our data suggest that PdEPF1 improves WUE and confers drought tolerance in poplar; thus, it could be used to breed drought-tolerant plants with increased production under conditions of water deficiency.
Collapse
Affiliation(s)
- Congpeng Wang
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Sha Liu
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yan Dong
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Liaoning Forestry Vocational- Technical College, Shenyang, China
| | - Ying Zhao
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Anke Geng
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
29
|
Shen H, Zhong X, Zhao F, Wang Y, Yan B, Li Q, Chen G, Mao B, Wang J, Li Y, Xiao G, He Y, Xiao H, Li J, He Z. Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nat Biotechnol 2015; 33:996-1003. [PMID: 26280413 DOI: 10.1038/nbt.3321] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/21/2015] [Indexed: 11/09/2022]
Abstract
The detrimental effects of global warming on crop productivity threaten to reduce the world's food supply. Although plant responses to changes in temperature have been studied, genetic modification of crops to improve thermotolerance has had little success to date. Here we demonstrate that overexpression of the Arabidopsis thaliana receptor-like kinase ERECTA (ER) in Arabidopsis, rice and tomato confers thermotolerance independent of water loss and that Arabidopsis er mutants are hypersensitive to heat. A loss-of-function mutation of a rice ER homolog and reduced expression of a tomato ER allele decreased thermotolerance of both species. Transgenic tomato and rice lines overexpressing Arabidopsis ER showed improved heat tolerance in the greenhouse and in field tests at multiple locations in China during several seasons. Moreover, ER-overexpressing transgenic Arabidopsis, tomato and rice plants had increased biomass. Our findings could contribute to engineering or breeding thermotolerant crops with no growth penalty.
Collapse
Affiliation(s)
- Hui Shen
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology &Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xiangbin Zhong
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology &Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fangfang Zhao
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology &Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanmei Wang
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology &Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bingxiao Yan
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology &Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology &Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Genyun Chen
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology &Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bizeng Mao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianjun Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yangsheng Li
- College of Life Science, Wuhan University, Hubei, China
| | - Guoying Xiao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology &Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Xiao
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology &Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianming Li
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology &Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Collaborative Innovation Center of Genetics and Development, Institute of Plant Physiology &Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
de Marcos A, Triviño M, Pérez-Bueno ML, Ballesteros I, Barón M, Mena M, Fenoll C. Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata. FRONTIERS IN PLANT SCIENCE 2015; 6:456. [PMID: 26157447 PMCID: PMC4477074 DOI: 10.3389/fpls.2015.00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/08/2015] [Indexed: 05/03/2023]
Abstract
Loss of function of the positive stomata development regulators SPCH or MUTE in Arabidopsis thaliana renders stomataless plants; spch-3 and mute-3 mutants are extreme dwarfs, but produce cotyledons and tiny leaves, providing a system to interrogate plant life in the absence of stomata. To this end, we compared their cotyledon transcriptomes with that of wild-type plants. K-means clustering of differentially expressed genes generated four clusters: clusters 1 and 2 grouped genes commonly regulated in the mutants, while clusters 3 and 4 contained genes distinctively regulated in mute-3. Classification in functional categories and metabolic pathways of genes in clusters 1 and 2 suggested that both mutants had depressed secondary, nitrogen and sulfur metabolisms, while only a few photosynthesis-related genes were down-regulated. In situ quenching analysis of chlorophyll fluorescence revealed limited inhibition of photosynthesis. This and other fluorescence measurements matched the mutant transcriptomic features. Differential transcriptomes of both mutants were enriched in growth-related genes, including known stomata development regulators, which paralleled their epidermal phenotypes. Analysis of cluster 3 was not informative for developmental aspects of mute-3. Cluster 4 comprised genes differentially up-regulated in mute-3, 35% of which were direct targets for SPCH and may relate to the unique cell types of mute-3. A screen of T-DNA insertion lines in genes differentially expressed in the mutants identified a gene putatively involved in stomata development. A collection of lines for conditional overexpression of transcription factors differentially expressed in the mutants rendered distinct epidermal phenotypes, suggesting that these proteins may be novel stomatal development regulators. Thus, our transcriptome analysis represents a useful source of new genes for the study of stomata development and for characterizing physiology and growth in the absence of stomata.
Collapse
Affiliation(s)
- Alberto de Marcos
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-la ManchaToledo, Spain
| | - Magdalena Triviño
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-la ManchaToledo, Spain
| | - María Luisa Pérez-Bueno
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del ZaidínGranada, Spain
| | - Isabel Ballesteros
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-la ManchaToledo, Spain
| | - Matilde Barón
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del ZaidínGranada, Spain
| | - Montaña Mena
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-la ManchaToledo, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-la ManchaToledo, Spain
| |
Collapse
|
31
|
Zheng J, Yang Z, Madgwick PJ, Carmo-Silva E, Parry MAJ, Hu YG. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat. PLoS One 2015; 10:e0128415. [PMID: 26047019 PMCID: PMC4457575 DOI: 10.1371/journal.pone.0128415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/27/2015] [Indexed: 11/24/2022] Open
Abstract
ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (P<0.01), transpiration rate (P<0.05) and CID (P<0.01), while significantly and positively correlated with flag leaf area (FLA, P<0.01), A (P<0.05), WUEi (P<0.05), BYPP (P<0.01) and GYPP (P<0.01), with stronger correlations for TaER1 than TaER2 and at grain-filling stage than at heading stage. These combined results suggested that TaER involved in development of transpiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate that TaER could be exploitable for manipulating important agronomical traits in wheat improvement.
Collapse
Affiliation(s)
- Jiacheng Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiyuan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Pippa J. Madgwick
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Elizabete Carmo-Silva
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Martin A. J. Parry
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
- * E-mail: (MP); (YGH)
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Yangling, Shaanxi, China
- * E-mail: (MP); (YGH)
| |
Collapse
|
32
|
Wu F, Sheng P, Tan J, Chen X, Lu G, Ma W, Heng Y, Lin Q, Zhu S, Wang J, Wang J, Guo X, Zhang X, Lei C, Wan J. Plasma membrane receptor-like kinase leaf panicle 2 acts downstream of the DROUGHT AND SALT TOLERANCE transcription factor to regulate drought sensitivity in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:271-81. [PMID: 25385766 PMCID: PMC4265162 DOI: 10.1093/jxb/eru417] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drought is a recurring climatic hazard that reduces the crop yields. To avoid the negative effects of drought on crop production, extensive efforts have been devoted to investigating the complex mechanisms of gene expression and signal transduction during drought stress. Receptor-like kinases (RLKs) play important roles in perceiving extracellular stimuli and activating downstream signalling responses. The rice genome contains >1100 RLK genes, of which only two are reported to function in drought stress. A leucine-rich repeat (LRR)-RLK gene named Leaf Panicle 2 (LP2) was previously found to be strongly expressed in leaves and other photosynthetic tissues, but its function remains unclear. In the present study, it was shown that the expression of LP2 was down-regulated by drought and abscisic acid (ABA). Transgenic plants overexpressing LP2 accumulated less H₂O₂, had more open stomata in leaves, and showed hypersensitivity to drought stress. Further investigation revealed that transcription of LP2 was directly regulated by the zinc finger transcription factor DROUGHT AND SALT TOLERANCE (DST). In addition, LP2 was identified as a functional kinase localized to the plasma membrane and interacted with the drought-responsive aquaporin proteins OsPIP1; 1, OsPIP1; 3, and OsPIP2; 3. Thus, the findings provided evidence that the LRR-RLK LP2, transcriptionally regulated by the drought-related transcription factor DST, served as a negative regulator in drought response.
Collapse
Affiliation(s)
- Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Junjie Tan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiuling Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Guangwen Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yueqin Heng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
33
|
Ruiz-Nieto JE, Aguirre-Mancilla CL, Acosta-Gallegos JA, Raya-Pérez JC, Piedra-Ibarra E, Vázquez-Medrano J, Montero-Tavera V. Photosynthesis and chloroplast genes are involved in water-use efficiency in common bean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:166-173. [PMID: 25500453 DOI: 10.1016/j.plaphy.2014.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/29/2014] [Indexed: 06/04/2023]
Abstract
A recent proposal to mitigate the effects of climatic change and reduce water consumption in agriculture is to develop cultivars with high water-use efficiency. The aims of this study were to characterize this trait as a differential response mechanism to water-limitation in two bean cultivars contrasting in their water stress tolerance, to isolate and identify gene fragments related to this response in a model cultivar, as well as to evaluate transcription levels of genes previously identified. Keeping CO2 assimilation through a high photosynthesis rate under limited conditions was the physiological response which allowed the cultivar model to maintain its growth and seed production with less water. Chloroplast genes stood out among identified genetic elements, which confirmed the importance of photosynthesis in such response. ndhK, rpoC2, rps19, rrn16, ycf1 and ycf2 genes were expressed only in response to limited water availability.
Collapse
Affiliation(s)
- Jorge E Ruiz-Nieto
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Roque, Celaya C.P. 38110, Guanajuato, Mexico
| | - César L Aguirre-Mancilla
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Roque, Celaya C.P. 38110, Guanajuato, Mexico
| | - Jorge A Acosta-Gallegos
- Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Celaya C.P. 38110, Guanajuato, Mexico
| | - Juan C Raya-Pérez
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Roque, Celaya C.P. 38110, Guanajuato, Mexico
| | - Elías Piedra-Ibarra
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Iztacala C.P. 54090, Estado de México, Mexico
| | - Josefina Vázquez-Medrano
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Iztacala C.P. 54090, Estado de México, Mexico
| | - Victor Montero-Tavera
- Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Celaya C.P. 38110, Guanajuato, Mexico.
| |
Collapse
|
34
|
Harfouche A, Meilan R, Altman A. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. TREE PHYSIOLOGY 2014; 34:1181-98. [PMID: 24695726 DOI: 10.1093/treephys/tpu012] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed.
Collapse
Affiliation(s)
- Antoine Harfouche
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| | - Richard Meilan
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USA
| | - Arie Altman
- Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| |
Collapse
|
35
|
Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NVPR, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK. Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 2014; 9:e96758. [PMID: 24801366 PMCID: PMC4011848 DOI: 10.1371/journal.pone.0096758] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022] Open
Abstract
To understand the genetic basis of tolerance to drought and heat stresses in chickpea, a comprehensive association mapping approach has been undertaken. Phenotypic data were generated on the reference set (300 accessions, including 211 mini-core collection accessions) for drought tolerance related root traits, heat tolerance, yield and yield component traits from 1-7 seasons and 1-3 locations in India (Patancheru, Kanpur, Bangalore) and three locations in Africa (Nairobi, Egerton in Kenya and Debre Zeit in Ethiopia). Diversity Array Technology (DArT) markers equally distributed across chickpea genome were used to determine population structure and three sub-populations were identified using admixture model in STRUCTURE. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency correlations (r2; when r2<0.20) was found to decay rapidly with the genetic distance of 5 cM. For establishing marker-trait associations (MTAs), both genome-wide and candidate gene-sequencing based association mapping approaches were conducted using 1,872 markers (1,072 DArTs, 651 single nucleotide polymorphisms [SNPs], 113 gene-based SNPs and 36 simple sequence repeats [SSRs]) and phenotyping data mentioned above employing mixed linear model (MLM) analysis with optimum compression with P3D method and kinship matrix. As a result, 312 significant MTAs were identified and a maximum number of MTAs (70) was identified for 100-seed weight. A total of 18 SNPs from 5 genes (ERECTA, 11 SNPs; ASR, 4 SNPs; DREB, 1 SNP; CAP2 promoter, 1 SNP and AMDH, 1SNP) were significantly associated with different traits. This study provides significant MTAs for drought and heat tolerance in chickpea that can be used, after validation, in molecular breeding for developing superior varieties with enhanced drought and heat tolerance.
Collapse
Affiliation(s)
- Mahendar Thudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | - Pooran Mal Gaur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | - Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | - Manish Roorkiwal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
- Guru Gobind Singh Indraprastha University, Delhi, India
| | - Spurthi N. Nayak
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | | | | | - N. V. P. R. Gangarao
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - Asnake Fikre
- Ethiopian Institute of Agricultural Research (EIAR), Debre Zeit, Ethiopia
| | | | | | - M. S. Sheshashayee
- University of Agricultural Sciences- Bangalore, Bangalore, Karnataka, India
| | - Satoshi Tobita
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | | | - Osamu Ito
- United Nations University, Yokohama, Japan
| | | | - Rajeev Kumar Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| |
Collapse
|
36
|
Hichri I, Muhovski Y, Žižková E, Dobrev PI, Franco-Zorrilla JM, Solano R, Lopez-Vidriero I, Motyka V, Lutts S. The Solanum lycopersicum Zinc Finger2 cysteine-2/histidine-2 repressor-like transcription factor regulates development and tolerance to salinity in tomato and Arabidopsis. PLANT PHYSIOLOGY 2014; 164:1967-90. [PMID: 24567191 PMCID: PMC3982756 DOI: 10.1104/pp.113.225920] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 02/19/2014] [Indexed: 05/07/2023]
Abstract
The zinc finger superfamily includes transcription factors that regulate multiple aspects of plant development and were recently shown to regulate abiotic stress tolerance. Cultivated tomato (Solanum lycopersicum Zinc Finger2 [SIZF2]) is a cysteine-2/histidine-2-type zinc finger transcription factor bearing an ERF-associated amphiphilic repression domain and binding to the ACGTCAGTG sequence containing two AGT core motifs. SlZF2 is ubiquitously expressed during plant development, and is rapidly induced by sodium chloride, drought, and potassium chloride treatments. Its ectopic expression in Arabidopsis (Arabidopsis thaliana) and tomato impaired development and influenced leaf and flower shape, while causing a general stress visible by anthocyanin and malonyldialdehyde accumulation. SlZF2 enhanced salt sensitivity in Arabidopsis, whereas SlZF2 delayed senescence and improved tomato salt tolerance, particularly by maintaining photosynthesis and increasing polyamine biosynthesis, in salt-treated hydroponic cultures (125 mm sodium chloride, 20 d). SlZF2 may be involved in abscisic acid (ABA) biosynthesis/signaling, because SlZF2 is rapidly induced by ABA treatment and 35S::SlZF2 tomatoes accumulate more ABA than wild-type plants. Transcriptome analysis of 35S::SlZF2 revealed that SlZF2 both increased and reduced expression of a comparable number of genes involved in various physiological processes such as photosynthesis, polyamine biosynthesis, and hormone (notably ABA) biosynthesis/signaling. Involvement of these different metabolic pathways in salt stress tolerance is discussed.
Collapse
Affiliation(s)
- Imène Hichri
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Yordan Muhovski
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Eva Žižková
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Petre I. Dobrev
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Jose Manuel Franco-Zorrilla
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Irene Lopez-Vidriero
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Vaclav Motyka
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (I.H., S.L.)
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, B–5030 Gembloux, Belgium (Y.M.)
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic (E.Z., P.I.D., V.M.)
- and Genomics Unit (J.M.F-Z., I.L.-V.) and Departamento de Genética Molecular de Plantas (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | |
Collapse
|
37
|
Varshney RK, Mir RR, Bhatia S, Thudi M, Hu Y, Azam S, Zhang Y, Jaganathan D, You FM, Gao J, Riera-Lizarazu O, Luo MC. Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.). Funct Integr Genomics 2014; 14:59-73. [PMID: 24610029 PMCID: PMC4273598 DOI: 10.1007/s10142-014-0363-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance "QTL-hotspot" region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement.
Collapse
Affiliation(s)
- Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Reyazul Rouf Mir
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Yuqin Hu
- University of California, Davis, USA
| | - Sarwar Azam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | | | - Deepa Jaganathan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Frank M. You
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Canada
| | | | - Oscar Riera-Lizarazu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Dow AgroSciences, Pullman, USA
| | | |
Collapse
|
38
|
Shi CC, Feng CC, Yang MM, Li JL, Li XX, Zhao BC, Huang ZJ, Ge RC. Overexpression of the receptor-like protein kinase genes AtRPK1 and OsRPK1 reduces the salt tolerance of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:63-70. [PMID: 24467897 DOI: 10.1016/j.plantsci.2013.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/14/2013] [Accepted: 12/02/2013] [Indexed: 05/22/2023]
Abstract
AtRPK1 (AT1G69270) is a leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene in Arabidopsis thaliana. The rice gene Os07g0602700 (OsRPK1) is the homolog of AtRPK1. AtRPK1 and OsRPK1 were overexpressed and the expression of AtRPK1 was inhibited by RNAi in A. thaliana. The functional results showed that the degrees of salt tolerance of the 35S:RPK1 A. thaliana plants were significantly lower than that of the control plants. The AtRPK1-RNAi A. thaliana plants exhibited higher salt tolerance than the wild-type plants (Col). The subcellular localisation results showed that the RPK1 proteins were mainly distributed on the cell membrane and that the overexpressed AtRPK1 proteins exhibited a significantly clustered distribution. The physiological analyses revealed that the overexpression of the RPK1 genes increased the membrane permeability in the transgenic A. thaliana plants. In response to salt stress, these plants exhibited an increased Na(+) flux into the cell, which caused greater damage to the cell. The real-time quantitative PCR analysis showed that the expression of the P5CS1 gene was inhibited and the SOS signalling pathway was blocked in the 35S:AtRPK1 A. thaliana plants. These effects at least partially contribute to the salt-sensitive phenotype of the 35S:RPK1 plants.
Collapse
Affiliation(s)
- Cui-Cui Shi
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Cui-Cui Feng
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Mei-Mei Yang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Jing-Lan Li
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Xiao-Xu Li
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Bao-Cun Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Zhan-Jing Huang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Rong-Chao Ge
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| |
Collapse
|
39
|
Hu J, Wang L, Yan D, Lu MZ. Research and Application of Transgenic Poplar in China. CHALLENGES AND OPPORTUNITIES FOR THE WORLD'S FORESTS IN THE 21ST CENTURY 2014. [DOI: 10.1007/978-94-007-7076-8_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Han X, Tang S, An Y, Zheng DC, Xia XL, Yin WL. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4589-601. [PMID: 24006421 PMCID: PMC3808328 DOI: 10.1093/jxb/ert262] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Water deficit is a serious environmental factor limiting the growth and productivity of plants worldwide. Improvement of drought tolerance and efficient water use are significant strategies to overcome this dilemma. In this study, a drought-responsive transcription factor, nuclear factor Y subunit B 7 (PdNF-YB7), induced by osmotic stress (PEG6000) and abscisic acid, was isolated from fast-growing poplar clone NE-19 [Populus nigra × (Populus deltoides × Populus nigra)]. Ectopic overexpression of PdNF-YB7 (oxPdB7) in Arabidopsis enhanced drought tolerance and whole-plant and instantaneous leaf water-use efficiency (WUE, the ratio of biomass produced to water consumed). Overexpressing lines had an increase in germination rate and root length and decrease in water loss and displayed higher photosynthetic rate, instantaneous leaf WUE, and leaf water potential to exhibit enhanced drought tolerance under water scarcity. Additionally, overexpression of PdNF-YB7 in Arabidopsis improved whole-plant WUE by increasing carbon assimilation and reducing transpiration with water abundance. These drought-tolerant, higher WUE transgenic Arabidopsis had earlier seedling establishment and higher biomass than controls under normal and drought conditions. In contrast, Arabidopsis mutant nf-yb3 was more sensitive to drought stress with lower WUE. However, complementation analysis indicated that complementary lines (nf-yb3/PdB7) had almost the same drought response and WUE as wild-type Col-0. Taken together, these results suggest that PdNF-YB7 positively confers drought tolerance and improves WUE in Arabidopsis; thus it could potentially be used in breeding drought-tolerant plants with increased production even under water deficiency.
Collapse
Affiliation(s)
- Xiao Han
- * These authors contributed equally to this manuscript
| | - Sha Tang
- * These authors contributed equally to this manuscript
| | | | | | - Xin-Li Xia
- To whom correspondence should be addressed. E-mail: and
| | - Wei-Lun Yin
- To whom correspondence should be addressed. E-mail: and
| |
Collapse
|
41
|
Dubouzet JG, Strabala TJ, Wagner A. Potential transgenic routes to increase tree biomass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 212:72-101. [PMID: 24094056 DOI: 10.1016/j.plantsci.2013.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 05/05/2023]
Abstract
Biomass is a prime target for genetic engineering in forestry because increased biomass yield will benefit most downstream applications such as timber, fiber, pulp, paper, and bioenergy production. Transgenesis can increase biomass by improving resource acquisition and product utilization and by enhancing competitive ability for solar energy, water, and mineral nutrients. Transgenes that affect juvenility, winter dormancy, and flowering have been shown to influence biomass as well. Transgenic approaches have increased yield potential by mitigating the adverse effects of prevailing stress factors in the environment. Simultaneous introduction of multiple genes for resistance to various stress factors into trees may help forest trees cope with multiple or changing environments. We propose multi-trait engineering for tree crops, simultaneously deploying multiple independent genes to address a set of genetically uncorrelated traits that are important for crop improvement. This strategy increases the probability of unpredictable (synergistic or detrimental) interactions that may substantially affect the overall phenotype and its long-term performance. The very limited ability to predict the physiological processes that may be impacted by such a strategy requires vigilance and care during implementation. Hence, we recommend close monitoring of the resultant transgenic genotypes in multi-year, multi-location field trials.
Collapse
|
42
|
Gao W, Bai S, Li Q, Gao C, Liu G, Li G, Tan F. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra). PLoS One 2013; 8:e67462. [PMID: 23840708 PMCID: PMC3696074 DOI: 10.1371/journal.pone.0067462] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/17/2013] [Indexed: 11/23/2022] Open
Abstract
Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA) was transformed into Xiaohei poplar (Populussimonii × P. nigra) via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.
Collapse
Affiliation(s)
- Weidong Gao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shuang Bai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Engineering & Garden Department of Beijing Ba Da Chu Park, Beijing, China
| | - Qingmei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- * E-mail:
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guangde Li
- School of Agroforestry & Medicine, the Open University of China, Beijing, China
| | - Feili Tan
- School of Life Science & Technology, Zhanjiang Normal University, Zhanjiang, China
| |
Collapse
|
43
|
Sun X, Sun M, Luo X, Ding X, Ji W, Cai H, Bai X, Liu X, Zhu Y. A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. PLANTA 2013; 237:1527-45. [PMID: 23494614 DOI: 10.1007/s00425-013-1864-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 02/25/2013] [Indexed: 05/27/2023]
Abstract
Receptor such as protein kinases are proposed to work as sensors to initiate signaling cascades in higher plants. However, little is known about the precise functions of receptor such as protein kinases in abiotic stress response in plants, especially in wild soybean. Here, we focused on characterization of the biological functions of a receptor-like cytoplasmic serine/threonine protein kinase gene, GsRLCK, which was previously identified as a putative salt-alkali stress-related gene from the transcriptome profiles of Glycine soja. Bioinformatic analysis showed that GsRLCK protein contained a conserved kinase catalytic domain and two transmembrane domains at the N-terminus, but no typical extracellular domain. Consistently, GsRLCK-eGFP fusion protein was observed on the plasma membrane, but eGFP alone was distributing throughout the cytoplasm in onion epidermal cells. Quantitative real-time PCR analysis revealed the induced expression of GsRLCK by ABA, salt, alkali, and drought stresses. However, the expression levels of GsRLCK seemed to be similar in different tissues, except soybean pod. Phenotypic assays demonstrated that GsRLCK overexpression decreased ABA sensitivity and altered expression levels of ABA-responsive genes. Furthermore, we also found that GsRLCK conferred increased tolerance to salt and drought stresses and increased expression levels of a handful of stress-responsive genes, when overexpressing in Arabidopsis. In a word, we gave exact evidence that GsRLCK was a novel receptor-like cytoplasmic protein kinase and played a crucial role in plant responses to ABA, salt, and drought stresses.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Amino Acid Sequence
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Droughts
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- Germination/drug effects
- Germination/genetics
- Molecular Sequence Data
- Phylogeny
- Plant Epidermis/cytology
- Plant Epidermis/drug effects
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Protein Transport/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Salinity
- Sequence Alignment
- Sequence Analysis, DNA
- Sodium Chloride/pharmacology
- Glycine max/drug effects
- Glycine max/enzymology
- Glycine max/genetics
- Glycine max/physiology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
Collapse
Affiliation(s)
- XiaoLi Sun
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tackling drought stress: receptor-like kinases present new approaches. THE PLANT CELL 2012; 24:2262-78. [PMID: 22693282 DOI: 10.1105/tpc.112.096677] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops.
Collapse
|
45
|
Weng H, Yoo CY, Gosney MJ, Hasegawa PM, Mickelbart MV. Poplar GTL1 is a Ca2+/calmodulin-binding transcription factor that functions in plant water use efficiency and drought tolerance. PLoS One 2012; 7:e32925. [PMID: 22396800 PMCID: PMC3292583 DOI: 10.1371/journal.pone.0032925] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/02/2012] [Indexed: 01/10/2023] Open
Abstract
Diminishing global fresh water availability has focused research to elucidate mechanisms of water use in poplar, an economically important species. A GT-2 family trihelix transcription factor that is a determinant of water use efficiency (WUE), PtaGTL1 (GT-2 like 1), was identified in Populus tremula × P. alba (clone 717-IB4). Like other GT-2 family members, PtaGTL1 contains both N- and C-terminal trihelix DNA binding domains. PtaGTL1 expression, driven by the Arabidopsis thaliana AtGTL1 promoter, suppressed the higher WUE and drought tolerance phenotypes of an Arabidopsis GTL1 loss-of-function mutation (gtl1-4). Genetic suppression of gtl1-4 was associated with increased stomatal density due to repression of Arabidopsis STOMATAL DENSITY AND DISTRIBUTION1 (AtSDD1), a negative regulator of stomatal development. Electrophoretic mobility shift assays (EMSA) indicated that a PtaGTL1 C-terminal DNA trihelix binding fragment (PtaGTL1-C) interacted with an AtSDD1 promoter fragment containing the GT3 box (GGTAAA), and this GT3 box was necessary for binding. PtaGTL1-C also interacted with a PtaSDD1 promoter fragment via the GT2 box (GGTAAT). PtaSDD1 encodes a protein with 60% primary sequence identity with AtSDD1. In vitro molecular interaction assays were used to determine that Ca(2+)-loaded calmodulin (CaM) binds to PtaGTL1-C, which was predicted to have a CaM-interaction domain in the first helix of the C-terminal trihelix DNA binding domain. These results indicate that, in Arabidopsis and poplar, GTL1 and SDD1 are fundamental components of stomatal lineage. In addition, PtaGTL1 is a Ca(2+)-CaM binding protein, which infers a mechanism by which environmental stimuli can induce Ca(2+) signatures that would modulate stomatal development and regulate plant water use.
Collapse
Affiliation(s)
| | | | | | | | - Michael V. Mickelbart
- Department of Horticulture and Landscape Architecture, Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|