1
|
Yang Y, Wang C, Liang Y, Xiao D, Fu T, Yang X, Liu J, Wang S, Wang Y. PagTPS1 and PagTPS10, the trehalose-6-phosphate synthase genes, increase trehalose content and enhance drought tolerance. Int J Biol Macromol 2024; 279:135518. [PMID: 39260634 DOI: 10.1016/j.ijbiomac.2024.135518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/25/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Trehalose-6-phosphate synthase (TPS) genes play an active role in the trehalose metabolism pathway that regulates the responses of plants to diverse stresses. However, the functional identification, comparison, and conservatism of TPS genes in the responses of woody plants, especially poplars, to drought stress remain unclear. Here, the trehalose content of 84K (Populus alba × P. glandulosa) poplars was down-regulated and PagTPS and PagTPP genes had diverse response patterns under drought stress. Physicochemical properties, expression patterns, and functions of PagTPS1 and PagTPS10, two class I members of TPS gene family, were identified and compared. Transgenic 84K poplars overexpressing PagTPS1 and PagTPS10 had significantly higher trehalose content with approximately 138% and 123%, respectively, and stronger drought tolerance compared to WT. PagTPS1 and PagTPS10 promoted the expression of TPPA genes and drought-responsive genes. Accordingly, poplars inhibiting PagTPS1 and PagTPS10 expression via RNA interference had lower trehalose content and drought tolerance. Simultaneously, overexpressing PagTPS1 and PagTPS10 improved the trehalose content and drought tolerance of Arabidopsis. Overall, we proposed a model of the effects of PagTPS1 and PagTPS10 as conservative regulators on the responses of plants to drought, which would provide new insights into the functional explorations of TPS genes in plants.
Collapse
Affiliation(s)
- Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dandan Xiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Tiantian Fu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jiahao Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shuli Wang
- Puyang Academy of Agriculture and Forestry Sciences, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Li H, Zhang X, Yang Q, Shangguan X, Ma Y. Genome-wide identification and tissue expression pattern analysis of TPS gene family in soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2024; 15:1487092. [PMID: 39391776 PMCID: PMC11465927 DOI: 10.3389/fpls.2024.1487092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
The terpene synthase (TPS) plays a pivotal roles in plant growth, development, and enhancing resilience against environmental stresses. Despite this, the bioinformatics analysis of the TPS family gene in soybean (Glycine max) is lacking. In this study, we investigated 36 GmTPS members in soybean, exhibiting a diverse range of protein lengths, spanning from 144 to 835 amino acids. A phylogenetic tree was constructed from these GmTPS genes revealed a classification into five distinct subgroups: Group1, Group2, Group3, Group4 and Group5. Notably, within each subgroup, we identified the motifs of GmTPS proteins were similar, although variations existed among different subfamilies. Gene duplication events analysis demonstrated that TPS genes expand differently in G. max, A. thaliana and O. sativa. Among, both tandem duplication and Whole genome duplication contributive to the expansion of TPS genes in G. max, and Whole genome duplication played a major role. Moreover, the cis-element analysis suggested that TPS is related to hormone signals, plant growth and development and environmental stress. Yeast two-hybrid (Y2H) assay results indicated TPS protein may form heterodimer to function, or may form complex with P450 proteins to function. RNA-seq results revealed a higher expression of most GmTPS genes in flowers, suggesting their potential contribution to flower development. Collectively, these findings offer a provide a holistic knowledge of the TPS gene family in soybean and will facilitate further characterization of TPSs effectively.
Collapse
Affiliation(s)
- Huanli Li
- Cotton Research Institute of Shanxi Agricultural University,
Yuncheng, China
| | | | | | | | | |
Collapse
|
3
|
Zou X, Wang S, Cheng Q, Yu H, Yang Z, Wang Y, Yang Y, Liang X, Yang D, Kim HS, Jia X, Li L, Kwak SS, Wang W. N-terminal truncated trehalose-6-phosphate synthase 1 gene (△NIbTPS1) enhances the tolerance of sweet potato to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108917. [PMID: 38976941 DOI: 10.1016/j.plaphy.2024.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/23/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Sweet potato [Ipomoea batatas (L.) Lam], the crop with the seventh highest annual production globally, is susceptible to various adverse environmental influences, and the study of stress-resistant genes is important for improving its tolerance to abiotic stress. The enzyme trehalose-6-phosphate synthase (TPS) is indispensable in the one pathway for synthesizing trehalose in plants. TPS is known to participate in stress response in plants, but information on TPS in sweet potato is limited. This study produced the N-terminal truncated IbTPS1 gene (△NIbTPS1) overexpression lines of Arabidopsis thaliana and sweet potato. Following salt and mannitol-induced drought treatment, the germination rate, root elongation, and fresh weight of the transgenic A. thaliana were significantly higher than that in the wild type. Overexpression of △NIbTPS1 elevated the photosynthetic efficiency (Fv/Fm) and the activity of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase in sweet potato during drought and salt treatments, while reducing malondialdehyde and O2∙- contents, although expression of the trehalose-6-phosphate phosphatase gene IbTPP and trehalose concentrations were not affected. Thus, overexpressing the △NIbTPS1 gene can improve the stress tolerance of sweet potato to drought and salt by enhancing the photosynthetic efficiency and antioxidative enzyme system. These results will contribute to understand the functions of the △NIbTPS1 gene and trehalose in the response mechanism of higher plants to abiotic stress.
Collapse
Affiliation(s)
- Xuan Zou
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Sijie Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Qirui Cheng
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Huan Yu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhe Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yuan Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yanxin Yang
- College of Basic Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Xuan Liang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Dongjing Yang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu, 221131, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Lingzhi Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea.
| | - Wenbin Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
4
|
Li Q, Zhu P, Yu X, Xu J, Liu G. Physiological and Molecular Mechanisms of Rice Tolerance to Salt and Drought Stress: Advances and Future Directions. Int J Mol Sci 2024; 25:9404. [PMID: 39273349 PMCID: PMC11394906 DOI: 10.3390/ijms25179404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Rice, a globally important food crop, faces significant challenges due to salt and drought stress. These abiotic stresses severely impact rice growth and yield, manifesting as reduced plant height, decreased tillering, reduced biomass, and poor leaf development. Recent advances in molecular biology and genomics have uncovered key physiological and molecular mechanisms that rice employs to cope with these stresses, including osmotic regulation, ion balance, antioxidant responses, signal transduction, and gene expression regulation. Transcription factors such as DREB, NAC, and bZIP, as well as plant hormones like ABA and GA, have been identified as crucial regulators. Utilizing CRISPR/Cas9 technology for gene editing holds promise for significantly enhancing rice stress tolerance. Future research should integrate multi-omics approaches and smart agriculture technologies to develop rice varieties with enhanced stress resistance, ensuring food security and sustainable agriculture in the face of global environmental changes.
Collapse
Affiliation(s)
- Qingyang Li
- College of Agriculture, Yangtze University, Jingzhou 434025, China
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Peiwen Zhu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Junying Xu
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guolan Liu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| |
Collapse
|
5
|
Cao Y, Yang W, Ma J, Cheng Z, Zhang X, Liu X, Wu X, Zhang J. An Integrated Framework for Drought Stress in Plants. Int J Mol Sci 2024; 25:9347. [PMID: 39273296 PMCID: PMC11395155 DOI: 10.3390/ijms25179347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
With global warming, drought stress is becoming increasingly severe, causing serious impacts on crop yield and quality. In order to survive under adverse conditions such as drought stress, plants have evolved a certain mechanism to cope. The tolerance to drought stress is mainly improved through the synergistic effect of regulatory pathways, such as transcription factors, phytohormone, stomatal movement, osmotic substances, sRNA, and antioxidant systems. This study summarizes the research progress on plant drought resistance, in order to provide a reference for improving plant drought resistance and cultivating drought-resistant varieties through genetic engineering technology.
Collapse
Affiliation(s)
- Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Wenbo Yang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Juan Ma
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Zeqiang Cheng
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Xuan Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueman Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
6
|
Zhang Y, Cao M, Li Q, Yu F. Genome-wide identification and expression analysis of TPP gene family under salt stress in peanut (Arachis hypogaea L.). PLoS One 2024; 19:e0305730. [PMID: 39024233 PMCID: PMC11257338 DOI: 10.1371/journal.pone.0305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Trehalose-6-phosphate phosphatase (TPP), a key enzyme for trehalose biosynthesis in plants, plays a pivotal role in the growth and development of higher plants, as well as their adaptations to various abiotic stresses. Employing bioinformatics techniques, 45 TPP genes distributed across 17 chromosomes were identified with conserved Trehalose-PPase domains in the peanut genome, aiming to screen those involved in salt tolerance. Collinearity analysis showed that 22 TPP genes from peanut formed homologous gene pairs with 9 TPP genes from Arabidopsis and 31 TPP genes from soybean, respectively. Analysis of cis-acting elements in the promoters revealed the presence of multiple hormone- and abiotic stress-responsive elements in the promoter regions of AhTPPs. Expression pattern analysis showed that members of the TPP gene family in peanut responded significantly to various abiotic stresses, including low temperature, drought, and nitrogen deficiency, and exhibited certain tissue specificity. Salt stress significantly upregulated AhTPPs, with a higher number of responsive genes observed at the seedling stage compared to the podding stage. The intuitive physiological effect was reflected in the significantly higher accumulation of trehalose content in the leaves of plants under salt stress compared to the control. These findings indicate that the TPP gene family plays a crucial role in peanut's response to abiotic stresses, laying the foundation for further functional studies and utilization of these genes.
Collapse
Affiliation(s)
- Yanfeng Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minxuan Cao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiuzhi Li
- Liaocheng Academy of Agricultural Sciences, Liaocheng, Shandong, China
| | - Fagang Yu
- Liaocheng Academy of Agricultural Sciences, Liaocheng, Shandong, China
| |
Collapse
|
7
|
Vishal B, Krishnamurthy P, Kumar PP. Arabidopsis class II TPS controls root development and confers salt stress tolerance through enhanced hydrophobic barrier deposition. PLANT CELL REPORTS 2024; 43:115. [PMID: 38613634 DOI: 10.1007/s00299-024-03215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
KEY MESSAGE The mechanism of conferring salt tolerance by AtTPS9 involves enhanced deposition of suberin lamellae in the Arabidopsis root endodermis, resulting in reduction of Na+ transported to the leaves. Members of the class I trehalose-6-phosphate synthase (TPS) enzymes are known to play an important role in plant growth and development in Arabidopsis. However, class II TPSs and their functions in salinity stress tolerance are not well studied. We characterized the function of a class II TPS gene, AtTPS9, to understand its role in salt stress response and root development in Arabidopsis. The attps9 mutant exhibited significant reduction of soluble sugar levels in the leaves and formation of suberin lamellae (SL) in the endodermis of roots compared to the wild type (WT). The reduction in SL deposition (hydrophobic barriers) leads to increased apoplastic xylem loading, resulting in enhanced Na+ content in the plants, which explains salt sensitivity of the mutant plants. Conversely, AtTPS9 overexpression lines exhibited increased SL deposition in the root endodermis along with increased salt tolerance, showing that regulation of SL deposition is one of the mechanisms of action of AtTPS9 in conferring salt tolerance to Arabidopsis plants. Our data showed that besides salt tolerance, AtTPS9 also regulates seed germination and root development. qRT-PCR analyses showed significant downregulation of selected SNF1-RELATED PROTEIN KINASE2 genes (SnRK2s) and ABA-responsive genes in the mutant, suggesting that AtTPS9 may regulate the ABA-signaling intermediates as part of the mechanism conferring salinity tolerance.
Collapse
Affiliation(s)
- Bhushan Vishal
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Queenstown, 117543, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Science Drive 2, Queenstown, 117456, Singapore
| | - Pannaga Krishnamurthy
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Queenstown, 117543, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Queenstown, 117543, Singapore.
| |
Collapse
|
8
|
Lin S, Zhang W, Wang G, Hu Y, Zhong X, Tang G. Physiological Regulation of Photosynthetic-Related Indices, Antioxidant Defense, and Proline Anabolism on Drought Tolerance of Wild Soybean ( Glycine soja L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:880. [PMID: 38592877 PMCID: PMC10975085 DOI: 10.3390/plants13060880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Wild soybean (Glycine soja L.), drought-tolerant cultivar Tiefeng 31 (Glycine max L.), and drought-sensitive cultivar Fendou 93 (Glycine max L.) were used as materials to investigate the drought tolerance mechanism after 72 h 2.5 M PEG 8000 (osmotic potential -0.54 MPa)-simulated drought stress at the seedling stage. The results indicated that the leaves of the G. soja did not wilt under drought stress. However, both the drought-tolerant and drought-sensitive cultivated soybean cultivars experienced varying degrees of leaf wilt. Notably, the drought-sensitive cultivated soybean cultivars exhibited severe leaf wilt after the drought stress. Drought stress was determined to have a significant impact on the dry matter of the above-ground part of the drought-sensitive cultivar Fendou 93, followed by the drought-tolerant cultivar Tiefeng 31, with the lowest reduction observed in G. soja. Furthermore, the presence of drought stress resulted in the closure of leaf stomata. G. soja exhibited the highest proportion of stomatal opening per unit area, followed by the drought-tolerant cultivar Tiefeng 31, while the drought-sensitive cultivar Fendou 93 displayed the lowest percentage. Photosynthesis-related indexes, including photosynthetic rate, intercellular CO2, transpiration rate, and stomatal conductance, decreased in Fendou 93 and Tiefeng 31 after drought stress, but increased in G. soja. In terms of the antioxidant scavenging system, lower accumulation of malondialdehyde (MDA) was observed in G. soja and Tiefeng 31, along with higher activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) to counteract excess reactive oxygen species and maintain cell membrane integrity. In contrast, the drought-sensitive cultivar Fendou 93 had higher MDA content and higher activities of ascorbate peroxidase (APX, EC 1.11.1.11) and peroxidase (POD, 1.11.1.7). G. soja and Tiefeng 31 also exhibited less accumulation of osmolytes, including soluble sugar, soluble protein, and free proline content. The activities of δ-OAT, ProDH, and P5CS, key enzymes in proline anabolism, showed an initial increase under drought stress, followed by a decrease, and then an increase again at the end of drought stress in G. soja. Before drought stress, Tiefeng 31 had higher activities of ProDH and P5CS, which decreased with prolonged drought stress. Fendou 93 experienced an increase in the activities of δ-OAT, ProDH, and P5CS under drought stress. The δ-OAT gene expression levels were up-regulated in all three germplasms. The expression levels of the P5CS gene in Fendou 93 and Tiefeng 31 were down-regulated, while G. soja showed no significant change. The expression of the P5CR gene and ProDH gene was down-regulated in Fendou 93 and Tiefeng 31, but up-regulated in G. soja. This indicates that proline content is regulated at both the transcription and translation levels.
Collapse
Affiliation(s)
- Song Lin
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (S.L.); (Y.H.); (X.Z.)
| | - Weimei Zhang
- Lishui Institute of Agriculture and Forest Science, Lishui 323000, China;
| | - Guifeng Wang
- Bureau of Agriculture and Rural Affairs of Lianyungang City, Lianyungang 222001, China;
| | - Yunxiang Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (S.L.); (Y.H.); (X.Z.)
| | - Xuanbo Zhong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (S.L.); (Y.H.); (X.Z.)
| | - Guixiang Tang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (S.L.); (Y.H.); (X.Z.)
| |
Collapse
|
9
|
Satasiya P, Patel S, Patel R, Raigar OP, Modha K, Parekh V, Joshi H, Patel V, Chaudhary A, Sharma D, Prajapati M. Meta-analysis of identified genomic regions and candidate genes underlying salinity tolerance in rice (Oryza sativa L.). Sci Rep 2024; 14:5730. [PMID: 38459066 PMCID: PMC10923909 DOI: 10.1038/s41598-024-54764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
Rice output has grown globally, yet abiotic factors are still a key cause for worry. Salinity stress seems to have the more impact on crop production out of all abiotic stresses. Currently one of the most significant challenges in paddy breeding for salinity tolerance with the help of QTLs, is to determine the QTLs having the best chance of improving salinity tolerance with the least amount of background noise from the tolerant parent. Minimizing the size of the QTL confidence interval (CI) is essential in order to primarily include the genes responsible for salinity stress tolerance. By considering that, a genome-wide meta-QTL analysis on 768 QTLs from 35 rice populations published from 2001 to 2022 was conducted to identify consensus regions and the candidate genes underlying those regions responsible for the salinity tolerance, as it reduces the confidence interval (CI) to many folds from the initial QTL studies. In the present investigation, a total of 65 MQTLs were extracted with an average CI reduced from 17.35 to 1.66 cM including the smallest of 0.01 cM. Identification of the MQTLs for individual traits and then classifying the target traits into correlated morphological, physiological and biochemical aspects, resulted in more efficient interpretation of the salinity tolerance, identifying the candidate genes and to understand the salinity tolerance mechanism as a whole. The results of this study have a huge potential to improve the rice genotypes for salinity tolerance with the help of MAS and MABC.
Collapse
Affiliation(s)
- Pratik Satasiya
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Sanyam Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ritesh Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Om Prakash Raigar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kaushal Modha
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Parekh
- Department of Biotechnology, College of Forestry, Navsari Agricultural University, Navsari, Gujarat, India
| | - Haimil Joshi
- Coastal Soil Salinity Research Station Danti-Umbharat, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Patel
- Regional Rice Research Station, Vyara, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ankit Chaudhary
- Kishorbhai Institute of Agriculture Sciences and Research Centre, Uka Tarsadia University, Bardoli, Gujarat, India.
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Maulik Prajapati
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
10
|
Hualpa-Ramirez E, Carrasco-Lozano EC, Madrid-Espinoza J, Tejos R, Ruiz-Lara S, Stange C, Norambuena L. Stress salinity in plants: New strategies to cope with in the foreseeable scenario. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108507. [PMID: 38467083 DOI: 10.1016/j.plaphy.2024.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The excess of salts in soils causes stress in most plants, except for some halophytes that can tolerate higher levels of salinity. The excess of Na+ generates an ionic imbalance, reducing the K+ content and altering cellular metabolism, thus impacting in plant growth and development. Additionally, salinity in soil induces water stress due to osmotic effects and increments the production of reactive oxygen species (ROS) that affect the cellular structure, damaging membranes and proteins, and altering the electrochemical potential of H+, which directly affects nutrient absorption by membrane transporters. However, plants possess mechanisms to overcome the toxicity of the sodium ions, such as internalization into the vacuole or exclusion from the cell, synthesis of enzymes or protective compounds against ROS, and the synthesis of metabolites that help to regulate the osmotic potential of plants. Physiologic and molecular mechanisms of salinity tolerance in plants will be addressed in this review. Furthermore, a revision of strategies taken by researchers to confer salt stress tolerance on agriculturally important species are discussed. These strategies include conventional breeding and genetic engineering as transgenesis and genome editing by CRISPR/Cas9.
Collapse
Affiliation(s)
- Efrain Hualpa-Ramirez
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | | | - Ricardo Tejos
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas. Universidad de Talca, Talca, Chile
| | - Claudia Stange
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Wang H, Jia Y, Bai X, Gong W, Liu G, Wang H, Xin J, Wu Y, Zheng H, Liu H, Wang J, Zou D, Zhao H. Whole-Transcriptome Profiling and Functional Prediction of Long Non-Coding RNAs Associated with Cold Tolerance in Japonica Rice Varieties. Int J Mol Sci 2024; 25:2310. [PMID: 38396991 PMCID: PMC10889138 DOI: 10.3390/ijms25042310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Low-temperature chilling is a major abiotic stress leading to reduced rice yield and is a significant environmental threat to food security. Low-temperature chilling studies have focused on physiological changes or coding genes. However, the competitive endogenous RNA mechanism in rice at low temperatures has not been reported. Therefore, in this study, antioxidant physiological indices were combined with whole-transcriptome data through weighted correlation network analysis, which found that the gene modules had the highest correlation with the key antioxidant enzymes superoxide dismutase and peroxidase. The hub genes of the superoxide dismutase-related module included the UDP-glucosyltransferase family protein, sesquiterpene synthase and indole-3-glycerophosphatase gene. The hub genes of the peroxidase-related module included the WRKY transcription factor, abscisic acid signal transduction pathway-related gene plasma membrane hydrogen-ATPase and receptor-like kinase. Therefore, we selected the modular hub genes and significantly enriched the metabolic pathway genes to construct the key competitive endogenous RNA networks, resulting in three competitive endogenous RNA networks of seven long non-coding RNAs regulating three co-expressed messenger RNAs via four microRNAs. Finally, the negative regulatory function of the WRKY transcription factor OsWRKY61 was determined via subcellular localization and validation of the physiological indices in the mutant.
Collapse
Affiliation(s)
| | - Yan Jia
- Correspondence: (Y.J.); (H.Z.)
| | | | | | | | | | | | | | | | | | | | | | - Hongwei Zhao
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (H.W.); (X.B.); (W.G.); (G.L.); (H.W.); (J.X.); (Y.W.); (H.Z.); (H.L.); (J.W.); (D.Z.)
| |
Collapse
|
12
|
Li L, Li Y, Ding G. Response mechanism of carbon metabolism of Pinus massoniana to gradient high temperature and drought stress. BMC Genomics 2024; 25:166. [PMID: 38347506 PMCID: PMC10860282 DOI: 10.1186/s12864-024-10054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The carbon metabolism pathway is of paramount importance for the growth and development of plants, exerting a pivotal regulatory role in stress responses. The exacerbation of drought impacts on the plant carbon cycle due to global warming necessitates comprehensive investigation into the response mechanisms of Masson Pine (Pinus massoniana Lamb.), an exemplary pioneer drought-tolerant tree, thereby establishing a foundation for predicting future forest ecosystem responses to climate change. RESULTS The seedlings of Masson Pine were utilized as experimental materials in this study, and the transcriptome, metabolome, and photosynthesis were assessed under varying temperatures and drought intensities. The findings demonstrated that the impact of high temperature and drought on the photosynthetic rate and transpiration rate of Masson Pine seedlings was more pronounced compared to individual stressors. The analysis of transcriptome data revealed that the carbon metabolic pathways of Masson Pine seedlings were significantly influenced by high temperature and drought co-stress, with a particular impact on genes involved in starch and sucrose metabolism. The metabolome analysis revealed that only trehalose and Galactose 1-phosphate were specifically associated with the starch and sucrose metabolic pathways. Furthermore, the trehalose metabolic heat map was constructed by integrating metabolome and transcriptome data, revealing a significant increase in trehalose levels across all three comparison groups. Additionally, the PmTPS1, PmTPS5, and PmTPPD genes were identified as key regulatory genes governing trehalose accumulation. CONCLUSIONS The combined effects of high temperature and drought on photosynthetic rate, transpiration rate, transcriptome, and metabolome were more pronounced than those induced by either high temperature or drought alone. Starch and sucrose metabolism emerged as the pivotal carbon metabolic pathways in response to high temperature and drought stress in Masson pine. Trehalose along with PmTPS1, PmTPS5, and PmTPPD genes played crucial roles as metabolites and key regulators within the starch and sucrose metabolism.
Collapse
Affiliation(s)
- Liangliang Li
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550001, Guiyang, China
- Institute of Mountain Resources of Guizhou Province, Guiyang, China, 550001
| | - Yan Li
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550001, Guiyang, China
| | - Guijie Ding
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550001, Guiyang, China.
| |
Collapse
|
13
|
Zhong C, He Z, Liu Y, Li Z, Wang X, Jiang C, Kang S, Liu X, Zhao S, Wang J, Zhang H, Zhao X, Yu H. Genome-wide identification of TPS and TPP genes in cultivated peanut ( Arachis hypogaea) and functional characterization of AhTPS9 in response to cold stress. FRONTIERS IN PLANT SCIENCE 2024; 14:1343402. [PMID: 38312353 PMCID: PMC10834750 DOI: 10.3389/fpls.2023.1343402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
Introduction Trehalose is vital for plant metabolism, growth, and stress resilience, relying on Trehalose-6-phosphate synthase (TPS) and Trehalose-6-phosphate phosphatase (TPP) genes. Research on these genes in cultivated peanuts (Arachis hypogaea) is limited. Methods This study employed bioinformatics to identify and analyze AhTPS and AhTPP genes in cultivated peanuts, with subsequent experimental validation of AhTPS9's role in cold tolerance. Results In the cultivated peanut genome, a total of 16 AhTPS and 17 AhTPP genes were identified. AhTPS and AhTPP genes were observed in phylogenetic analysis, closely related to wild diploid peanuts, respectively. The evolutionary patterns of AhTPS and AhTPP genes were predominantly characterized by gene segmental duplication events and robust purifying selection. A variety of hormone-responsive and stress-related cis-elements were unveiled in our analysis of cis-regulatory elements. Distinct expression patterns of AhTPS and AhTPP genes across different peanut tissues, developmental stages, and treatments were revealed, suggesting potential roles in growth, development, and stress responses. Under low-temperature stress, qPCR results showcased upregulation in AhTPS genes (AhTPS2-5, AhTPS9-12, AhTPS14, AhTPS15) and AhTPP genes (AhTPP1, AhTPP6, AhTPP11, AhTPP13). Furthermore, AhTPS9, exhibiting the most significant expression difference under cold stress, was obviously induced by cold stress in cultivated peanut, and AhTPS9-overexpression improved the cold tolerance of Arabidopsis by protect the photosynthetic system of plants, and regulates sugar-related metabolites and genes. Discussion This comprehensive study lays the groundwork for understanding the roles of AhTPS and AhTPP gene families in trehalose regulation within cultivated peanuts and provides valuable insights into the mechanisms related to cold stress tolerance.
Collapse
Affiliation(s)
- Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zehua He
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yu Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zhao Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiaoguang Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chunji Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Shuli Kang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xibo Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Shuli Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jing Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - He Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Agricultural Vocational and Technical College, Yingkou, China
| |
Collapse
|
14
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
15
|
Chauhan PK, Upadhyay SK, Rajput VD, Dwivedi P, Minkina T, Wong MH. Fostering plant growth performance under drought stress using rhizospheric microbes, their gene editing, and biochar. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:41. [PMID: 38227068 DOI: 10.1007/s10653-023-01823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Stress due to drought lowers crop yield and frequently leads to a rise in food scarcity. Plants' intricate metabolic systems enable them to tolerate drought stress, but they are unable to handle it well. Adding some external, environmentally friendly supplements can boost plant growth and productivity when it comes to drought-stressed plants. In order to prevent the detrimental effects of drought in agricultural regions, environmentally friendly practices must be upheld. Plant growth-promoting rhizobacteria (PGPR) can exhibit beneficial phytostimulation, mineralization, and biocontrol activities under drought stress. The significant impact of the PGPR previously reported has not been accepted as an effective treatment to lessen drought stress. Recent studies have successfully shown that manipulating microbes can be a better option to reduce the severity of drought in plants. In this review, we demonstrate how modifying agents such as biochar, PGPR consortia, PGPR, and mycorrhizal fungi can help overcome drought stress responses in crop plants. This article also discusses CRISPR/Cas9-modifiable genes, increase plant's effectiveness in drought conditions, and increase plant resistance to drought stress. With an eco-friendly approach in mind, there is a need for practical management techniques having potential prospects based on an integrated strategy mediated by CRISPR-Cas9 editing, PGPR, which may alleviate the effects of drought stress in crops and aid in achieving the United Nation Sustainable Development Goals (UN-SDGs-2030).
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, 999077, China
| |
Collapse
|
16
|
Kumari A, Sharma P, Rani M, Laxmi V, Sahil, Sahi C, Satturu V, Katiyar-Agarwal S, Agarwal M. Meta-QTL and ortho analysis unravels the genetic architecture and key candidate genes for cold tolerance at seedling stage in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:93-108. [PMID: 38435852 PMCID: PMC10902255 DOI: 10.1007/s12298-024-01412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
Rice, a critical cereal crop, grapples with productivity challenges due to its inherent sensitivity to low temperatures, primarily during the seedling and booting stages. Recognizing the polygenic complexity of cold stress signaling in rice, a meta-analysis was undertaken, focusing on 20 physiological traits integral to cold tolerance. This initiative allowed the consolidation of genetic data from 242 QTLs into 58 meta-QTLs, thereby significantly constricting the genetic and physical intervals, with 84% of meta-QTLs (MQTLs) being reduced to less than 2 Mb. The list of 10,505 genes within these MQTLs, was further refined utilizing expression datasets to pinpoint 46 pivotal genes exhibiting noteworthy differential regulation during cold stress. The study underscored the presence of several TFs such as WRKY, NAC, CBF/DREB, MYB, and bHLH, known for their roles in cold stress response. Further, ortho-analysis involving maize, barley, and Arabidopsis identified OsWRKY71, among others, as a prospective candidate for enhancing cold tolerance in diverse crop plants. In conclusion, our study delineates the intricate genetic architecture underpinning cold tolerance in rice and propounds significant candidate genes, offering crucial insights for further research and breeding strategies focused on fortifying crops against cold stress, thereby bolstering global food resilience. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01412-1.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Botany, University of Delhi, Delhi, India
| | - Priya Sharma
- Department of Botany, University of Delhi, Delhi, India
| | - Mamta Rani
- Department of Botany, University of Delhi, Delhi, India
| | - Vijay Laxmi
- Department of Botany, University of Delhi, Delhi, India
| | - Sahil
- Department of Botany, University of Delhi, Delhi, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066 India
| | - Vanisree Satturu
- Professor Jayashankar, Telangana State Agricultural University, Hyderabad, India
| | | | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
17
|
Pandey V, Singh S. Plant Adaptation and Tolerance to Heat Stress: Advance Approaches and Future Aspects. Comb Chem High Throughput Screen 2024; 27:1701-1715. [PMID: 38441014 DOI: 10.2174/0113862073300371240229100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Heat stress impacts plant growth at all phases of development, although the particular threshold for heat tolerance varies significantly across different developmental stages. During seed germination, elevated temperatures can either impede or completely halt the process, contingent upon the plant type and the severity of the stress. During advanced stages, high temperatures can have a negative impact on photosynthesis, respiration, water balance, and membrane integrity. Additionally, they can also influence the levels of hormones and primary and secondary metabolites. In addition, during the growth and development of plants, there is an increased expression of various heat shock proteins, as well as other proteins related to stress, and the generation of reactive oxygen species (ROS). These are significant plant responses to heat stress. Plants employ several strategies to deal with heat stress, such as maintaining the stability of their cell membranes, removing harmful reactive oxygen species (ROS), producing antioxidants, accumulating and adjusting compatible solutes, activating mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK) cascades, and, crucially, signaling through chaperones and activating transcription. These molecular-level systems boost the ability of plants to flourish in heat stress. Potential genetic methods to enhance plant heat stress resistance encompass old and modern molecular breeding techniques and transgenic approaches, all of which rely on a comprehensive comprehension of these systems. Although several plants exhibit enhanced heat tolerance through traditional breeding methods, the effectiveness of genetic transformation techniques has been somewhat restricted. The latter results from the current constraints in our understanding and access to genes that have known impacts on plant heat stress tolerance. However, these challenges may be overcome in the future. Besides genetic methods, crops' heat tolerance can be improved through the pre-treatment of plants with various environmental challenges or the external application of osmoprotectants such as glycine betaine and proline. Thermotolerance is achieved through an active process in which plants allocate significant energy to maintain their structure and function to avoid damage induced by heat stress. The practice of nanoparticles has been shown to upgrade both the standard and the quantity of produce when crops are under heat stress. This review provides information on the effects of heat stress on plants and explores the importance of nanoparticles, transgenics, and genomic techniques in reducing the negative consequences of heat stress. Furthermore, it explores how plants might adapt to heat stress by modifying their biochemical, physiological, and molecular reactions.
Collapse
Affiliation(s)
- Vineeta Pandey
- Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, 17 km Stone, NH-2, Mathura, Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| | - Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| |
Collapse
|
18
|
Fan Y, Gao P, Zhou T, Pang S, Zhang J, Yang T, Zhang W, Dong J, Che D. Genome-Wide Identification and Expression Analysis of the Trehalose-6-phosphate Synthase and Trehalose-6-phosphate Phosphatase Gene Families in Rose ( Rosa hybrida cv 'Carola') under Different Light Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 13:114. [PMID: 38202423 PMCID: PMC10780518 DOI: 10.3390/plants13010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Trehalose, trehalose-6-phosphate synthase (TPS),and trehalose-6-phosphatase (TPP) have been reported to play important roles in plant abiotic stress and growth development. However, their functions in the flowering process of Rosa hybrida have not been characterized. In this study we found that, under a short photoperiod or weak light intensity, the content of trehalose in the shoot apical meristem of Rosa hybrida cv 'Carola' significantly decreased, leading to delayed flowering time. A total of nine RhTPSs and seven RhTPPs genes were identified in the genome. Cis-element analysis suggested that RhTPS and RhTPP genes were involved in plant hormones and environmental stress responses. Transcriptome data analysis reveals significant differences in the expression levels of RhTPSs and RhTPPs family genes in different tissues and indicates that RhTPPF and RhTPPJ are potential key genes involved in rose flower bud development under different light environments. The results of quantitative real-time reverse transcription (qRT-PCR) further indicate that under short photoperiod and weak light intensity all RhTPP members were significantly down-regulated. Additionally, RhTPS1a, RhTPS10, and RhTPS11 were up-regulated under a short photoperiod and showed a negative correlation with flowering time and trehalose content decrease. Under weak light intensity, RhTPS11 was up-regulated and negatively regulated flowering, while RhTPS5, RhTPS6, RhTPS7b, RhTPS9, and RhTPS10 were down-regulated and positively regulated flowering. This work lays the foundation for revealing the functions of RhTPS and RhTPP gene families in the regulation of rose trehalose.
Collapse
Affiliation(s)
- Yingdong Fan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.F.); (P.G.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.F.); (P.G.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Tong Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.F.); (P.G.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Siyu Pang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.F.); (P.G.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.F.); (P.G.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Tao Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.F.); (P.G.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Wuhua Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.F.); (P.G.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Jie Dong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.F.); (P.G.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Daidi Che
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.F.); (P.G.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| |
Collapse
|
19
|
Fan S, Wang Z, Xiao Y, Liang J, Zhao S, Liu Y, Peng F, Guo J. Genome-Wide Identification of Trehalose-6-phosphate Synthase (TPS) Gene Family Reveals the Potential Role in Carbohydrate Metabolism in Peach. Genes (Basel) 2023; 15:39. [PMID: 38254929 PMCID: PMC10815152 DOI: 10.3390/genes15010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Trehalose-6-phosphate synthase (TPS) is essential for plant growth and development, linking trehalose-6-phosphate (T6P) to carbon metabolism. However, little is known about the TPS gene family in peaches and their potential roles in regulating carbohydrates in peach fruit. In this study, nine TPS genes were identified in the peach genome and named according to the homologous genes in Arabidopsis. Phylogenetic analysis showed that three subfamilies were identified, including TPSI, TPSII-1, and TPSII-2, which were also consistent with gene structure analysis. Considerable cis-elements were enriched in the promoters, including plant hormone-related elements. Tissue-specific analysis showed that these TPS genes were mainly expressed in leaves, stems, and fruit, showing different expression patterns for each gene. In addition, during fruit development, the content of trehalose-6-phosphate (T6P) was positively correlated with the expression of PpTPS7a and negatively with sucrose non-fermenting-1-related kinase 1 (SnRK1) activity. Transient overexpression and silencing of PpTPS7a in peach fruit validated its function in regulating T6P content and SnRK1 activity.
Collapse
Affiliation(s)
- Shihao Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| | - Zhe Wang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; (Z.W.); (Y.X.); (J.L.); (S.Z.); (Y.L.)
| | - Yuansong Xiao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; (Z.W.); (Y.X.); (J.L.); (S.Z.); (Y.L.)
| | - Jiahui Liang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; (Z.W.); (Y.X.); (J.L.); (S.Z.); (Y.L.)
| | - Shilong Zhao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; (Z.W.); (Y.X.); (J.L.); (S.Z.); (Y.L.)
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; (Z.W.); (Y.X.); (J.L.); (S.Z.); (Y.L.)
| | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| | - Jian Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| |
Collapse
|
20
|
Dou N, Li L, Fang Y, Fan S, Wu C. Comparative Physiological and Transcriptome Analyses of Tolerant and Susceptible Cultivars Reveal the Molecular Mechanism of Cold Tolerance in Anthurium andraeanum. Int J Mol Sci 2023; 25:250. [PMID: 38203421 PMCID: PMC10779044 DOI: 10.3390/ijms25010250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Anthurium andraeanum is a tropical ornamental flower. The cost of Anthurium production is higher under low temperature (non-freezing) conditions; therefore, it is important to increase its cold tolerance. However, the molecular mechanisms underlying the response of Anthurium to cold stress remain elusive. In this study, comparative physiological and transcriptome sequencing analyses of two cultivars with contrasting cold tolerances were conducted to evaluate the cold stress response at the flowering stage. The activities of superoxide dismutase and peroxidase and the contents of proline, soluble sugar, and malondialdehyde increased under cold stress in the leaves of the cold tolerant cultivar Elegang (E) and cold susceptible cultivar Menghuang (MH), while the soluble protein content decreased in MH and increased in E. Using RNA sequencing, 24,695 differentially expressed genes (DEGs) were identified from comparisons between cultivars under the same conditions or between the treatment and control groups of a single cultivar, 9132 of which were common cold-responsive DEGs. Heat-shock proteins and pectinesterases were upregulated in E and downregulated in MH, indicating that these proteins are essential for Anthurium cold tolerance. Furthermore, four modules related to cold treatment were obtained by weighted gene co-expression network analysis. The expression of the top 20 hub genes in these modules was induced by cold stress in E or MH, suggesting they might be crucial contributors to cold tolerance. DEGs were significantly enriched in plant hormone signal transduction pathways, trehalose metabolism, and ribosomal proteins, suggesting these processes play important roles in Anthurium's cold stress response. This study provides a basis for elucidating the mechanism of cold tolerance in A. andraeanum and potential targets for molecular breeding.
Collapse
Affiliation(s)
- Na Dou
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China (S.F.)
| | - Li Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China (S.F.)
| | - Yifu Fang
- Institute of Ornamental Plants, Shandong Provincial Academy of Forestry, Wenhua East Road 42, Jinan 250010, China;
| | - Shoujin Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China (S.F.)
| | - Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China (S.F.)
| |
Collapse
|
21
|
Chen W, Cui Y, He Y, Zhao L, Cui R, Liu X, Huang H, Zhang Y, Fan Y, Feng X, Ni K, Jiang T, Han M, Lei Y, Liu M, Meng Y, Chen X, Lu X, Wang D, Wang J, Wang S, Guo L, Chen Q, Ye W. Raffinose degradation-related gene GhAGAL3 was screened out responding to salinity stress through expression patterns of GhAGALs family genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1246677. [PMID: 38192697 PMCID: PMC10773686 DOI: 10.3389/fpls.2023.1246677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
A-galactosidases (AGALs), the oligosaccharide (RFO) catabolic genes of the raffinose family, play crucial roles in plant growth and development and in adversity stress. They can break down the non-reducing terminal galactose residues of glycolipids and sugar chains. In this study, the whole genome of AGALs was analyzed. Bioinformatics analysis was conducted to analyze members of the AGAL family in Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, and Gossypium raimondii. Meanwhile, RT-qPCR was carried out to analyze the expression patterns of AGAL family members in different tissues of terrestrial cotton. It was found that a series of environmental factors stimulated the expression of the GhAGAL3 gene. The function of GhAGAL3 was verified through virus-induced gene silencing (VIGS). As a result, GhAGAL3 gene silencing resulted in milder wilting of seedlings than the controls, and a significant increase in the raffinose content in cotton, indicating that GhAGAL3 responded to NaCl stress. The increase in raffinose content improved the tolerance of cotton. Findings in this study lay an important foundation for further research on the role of the GhAGAL3 gene family in the molecular mechanism of abiotic stress resistance in cotton.
Collapse
Affiliation(s)
- Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde, Hunan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Xiaoyu Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Xixian Feng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Tiantian Jiang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yuqian Lei
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
22
|
Mohanan A, Kodigudla A, Raman DR, Bakka K, Challabathula D. Trehalose accumulation enhances drought tolerance by modulating photosynthesis and ROS-antioxidant balance in drought sensitive and tolerant rice cultivars. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:2035-2049. [PMID: 38222274 PMCID: PMC10784439 DOI: 10.1007/s12298-023-01404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Trehalose being an integral part for plant growth, development and abiotic stress tolerance is accumulated in minute amounts in angiosperms with few exceptions from resurrection plants. In the current study, two rice cultivars differing in drought tolerance were used to analyse the role of trehalose in modulating photosynthesis and ROS-antioxidant balance leading to improvement in drought tolerance. Accumulation of trehalose in leaves of Vaisakh (drought-tolerant) and Aiswarya (drought-sensitive) rice cultivars was observed by spraying 50 mM trehalose and 100 µM validamycin A (trehalase inhibitor) followed by vacuum infiltration. Compared to stress sensitive Aiswarya cultivar, higher trehalose levels were observed in leaves of Vaisakh not only under control conditions but also under drought conditions corresponding with increased root length. The increase in leaf trehalose by treatment with trehalose or validamycin A corresponded well with a decrease in electrolyte leakage in sensitive and tolerant plants. Decreased ROS levels were reflected as increase in antioxidant enzyme activity and their gene expression in leaves of both the cultivars treated with trehalose or Validamycin A under control and drought conditions signifying the importance of trehalose in modulating the ROS-antioxidant balance for cellular protection. Further, higher chlorophyll, higher photosynthetic activity and modulation in other gas exchange parameters upon treatment with trehalose or validamycin A strongly suggested the beneficial role of trehalose for stress tolerance. Trehalose accumulation helped the tolerant cultivar adjust towards drought by maintaining higher water status and alleviating the ROS toxicity by effective activation and increment in antioxidant enzyme activity along with enhanced photosynthesis. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01404-7.
Collapse
Affiliation(s)
- Akhil Mohanan
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610 005 India
| | - Anjali Kodigudla
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610 005 India
| | - Dhana Ramya Raman
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610 005 India
| | - Kavya Bakka
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610005 India
| | - Dinakar Challabathula
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610 005 India
| |
Collapse
|
23
|
Liu T, Wang J, Chen L, Liu S, Liu T, Yu L, Guo J, Chen Y, Zhang Y, Song B. ScAREB4 promotes potato constitutive and acclimated freezing tolerance associated with enhancing trehalose synthesis and oxidative stress tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:3839-3857. [PMID: 37651608 DOI: 10.1111/pce.14707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Cold is a major environmental factor that restrains potato production. Abscisic acid (ABA) can enhance freezing tolerance in many plant species, but powerful evidence of the ABA-mediated signalling pathway related to freezing tolerance is still in deficiency. In the present study, cold acclimation capacity of the potato genotypes was enhanced alongside with improved endogenous content of ABA. Further exogenous application of ABA and its inhibitor (NDGA) could enhance and reduce potato freezing tolerance, respectively. Moreover, expression pattern of downstream genes in ABA signalling pathway was analysed and only ScAREB4 was identified with specifically upregulate in S. commersonii (CMM5) after cold and ABA treatments. Transgenic assay with overexpression of ScAREB4 showed that ScAREB4 promoted freezing tolerance. Global transcriptome profiling indicated that overexpression of ScAREB4 induced expression of TPS9 (trehalose-6-phosphate synthase) and GSTU8 (glutathione transferase), in accordance with improved TPS activity, trehalose content, higher GST activity and accumulated dramatically less H2 O2 in the ScAREB4 overexpressed transgenic lines. Taken together, the current results indicate that increased endogenous content of ABA is related to freezing tolerance in potato. Moreover, ScAREB4 functions as a downstream transcription factor of ABA signalling to promote cold tolerance, which is associated with increased trehalose content and antioxidant capacity.
Collapse
Affiliation(s)
- Tiantian Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jin Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lin Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), MARA, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shengxuan Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Tengfei Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ye Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yiling Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Kerbler SML, Armijos-Jaramillo V, Lunn JE, Vicente R. The trehalose 6-phosphate phosphatase family in plants. PHYSIOLOGIA PLANTARUM 2023; 175:e14096. [PMID: 38148193 DOI: 10.1111/ppl.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023]
Abstract
Trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is an essential signalling metabolite linking plant growth and development to carbon metabolism. While recent work has focused predominantly on the enzymes that produce Tre6P, little is known about the proteins that catalyse its degradation, the trehalose 6-phosphate phosphatases (TPPs). Often occurring in large protein families, TPPs exhibit cell-, tissue- and developmental stage-specific expression patterns, suggesting important regulatory functions in controlling local levels of Tre6P and trehalose as well as Tre6P signalling. Furthermore, growing evidence through gene expression studies and transgenic approaches shows that TPPs play an important role in integrating environmental signals with plant metabolism. This review highlights the large diversity of TPP isoforms in model and crop plants and identifies how modulating Tre6P metabolism in certain cell types, tissues, and at different developmental stages may promote stress tolerance, resilience and increased crop yield.
Collapse
Affiliation(s)
- Sandra Mae-Lin Kerbler
- Leibniz-Institute für Gemüse- und Zierpflanzenbau, Groβbeeren, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Vinicio Armijos-Jaramillo
- Grupo de Bio-Quimioinformática, Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rubén Vicente
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
25
|
Li M, Li W, Zhao M, Li Z, Wang GL, Liu W, Liang C. Transcriptome analysis reveals a lncRNA-miRNA-mRNA regulatory network in OsRpp30-mediated disease resistance in rice. BMC Genomics 2023; 24:643. [PMID: 37884868 PMCID: PMC10604448 DOI: 10.1186/s12864-023-09748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play critical roles in various biological processes in plants. Extensive studies utilizing high-throughput RNA sequencing have revealed that many lncRNAs are involved in plant disease resistance. Oryza sativa RNase P protein 30 (OsRpp30) has been identified as a positive regulator of rice immunity against fungal and bacterial pathogens. Nevertheless, the specific functions of lncRNAs in relation to OsRpp30-mediated disease resistance in rice remain elusive. RESULTS We conducted a comprehensive analysis of lncRNAs, miRNAs, and mRNAs expression patterns in wild type (WT), OsRpp30 overexpression (OsRpp30-OE), and OsRpp30 knockout (OsRpp30-KO) rice plants. In total, we identified 91 differentially expressed lncRNAs (DElncRNAs), 1671 differentially expressed mRNAs (DEmRNAs), and 41 differentially expressed miRNAs (DEmiRNAs) across the different rice lines. To gain further insights, we investigated the interaction between DElncRNAs and DEmRNAs, leading to the discovery of 10 trans- and 27 cis-targeting pairs specific to the OsRpp30-OE and OsRpp30-KO samples. In addition, we constructed a competing endogenous RNA (ceRNA) network comprising differentially expressed lncRNAs, miRNAs, and mRNAs to elucidate their intricate interplay in rice disease resistance. The ceRNA network analysis uncovered a set of gene targets regulated by lncRNAs and miRNAs, which were found to be involved in pathogen recognition, hormone pathways, transcription factor activation, and other biological processes related to plant immunity. CONCLUSIONS Our study provides a comprehensive expression profiling of lncRNAs, miRNAs, and mRNAs in a collection of defense mutants in rice. To decipher the putative functional significance of lncRNAs, we constructed trans- and cis-targeting networks involving differentially expressed lncRNAs and mRNAs, as well as a ceRNA network incorporating differentially expressed lncRNAs, miRNAs, and mRNAs. Together, the findings from this study provide compelling evidence supporting the pivotal roles of lncRNAs in OsRpp30-mediated disease resistance in rice.
Collapse
Affiliation(s)
- Minghua Li
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Wei Li
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA.
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
26
|
Yao Y, Yang Y, Pan Y, Liu Z, Hou X, Li Y, Zhang H, Wang C, Liao W. Crucial roles of trehalose and 5-azacytidine in alleviating salt stress in tomato: Both synergistically and independently. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108075. [PMID: 37801738 DOI: 10.1016/j.plaphy.2023.108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Trehalose may improve plant stress tolerance by regulating gene expression under different abiotic stresses. DNA methylation is involved in plant growth and development, but also in response to abiotic stresses. 5-azacytidine is a widely used inhibitor of DNA methylation. In this study, tomato (Solanum lycopersicum L. 'Ailsa Craig') was used as experimental material to explore the effects of trehalose and DNA methylation on the growth and development in tomato seedlings under salt stress. 10 mM trehalose, 50 μM 5-azacytidine, and their combined treatments could significantly increase growth parameters in tomato under salt stress, indicating trehalose and 5-azacytidine might play crucial roles in alleviating salt stress both synergistically and independently. Additionally, trehalose significantly down-regulated the expression of DNA methylase genes (SlDRM5, SlDRM1L1, SlCMT3 and SlCMT2) and up-regulated the expression of DNA demethylases genes under salt stress, suggesting that trehalose might regulate DNA methylation under salt stress condition. Under salt stress, trehalose and 5-azacytidine treatments enhanced antioxidant enzyme activity and induced antioxidant enzyme gene expression in tomato seedlings. Meanwhile, trehalose and 5-azacytidine increased ABA content by regulating the expression of ABA metabolism-related genes, thereby enhancing salt tolerance in tomato. Altogether, these results suggest that trehalose conferred salt tolerance in tomato seedlings probably by DNA demethylation and enhancing antioxidant capability and ABA accumulation.
Collapse
Affiliation(s)
- Yandong Yao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yan Yang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Ying Pan
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zesheng Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Hongsheng Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
27
|
Zhou Z, Liu J, Meng W, Sun Z, Tan Y, Liu Y, Tan M, Wang B, Yang J. Integrated Analysis of Transcriptome and Metabolome Reveals Molecular Mechanisms of Rice with Different Salinity Tolerances. PLANTS (BASEL, SWITZERLAND) 2023; 12:3359. [PMID: 37836098 PMCID: PMC10574619 DOI: 10.3390/plants12193359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Rice is a crucial global food crop, but it lacks a natural tolerance to high salt levels, resulting in significant yield reductions. To gain a comprehensive understanding of the molecular mechanisms underlying rice's salt tolerance, further research is required. In this study, the transcriptomic and metabolomic differences between the salt-tolerant rice variety Lianjian5 (TLJIAN) and the salt-sensitive rice variety Huajing5 (HJING) were examined. Transcriptome analysis revealed 1518 differentially expressed genes (DEGs), including 46 previously reported salt-tolerance-related genes. Notably, most of the differentially expressed transcription factors, such as NAC, WRKY, MYB, and EREBP, were upregulated in the salt-tolerant rice. Metabolome analysis identified 42 differentially accumulated metabolites (DAMs) that were upregulated in TLJIAN, including flavonoids, pyrocatechol, lignans, lipids, and trehalose-6-phosphate, whereas the majority of organic acids were downregulated in TLJIAN. The interaction network of 29 differentially expressed transporter genes and 19 upregulated metabolites showed a positive correlation between the upregulated calcium/cation exchange protein genes (OsCCX2 and CCX5_Ath) and ABC transporter gene AB2E_Ath with multiple upregulated DAMs in the salt-tolerant rice variety. Similarly, in the interaction network of differentially expressed transcription factors and 19 upregulated metabolites in TLJIAN, 6 NACs, 13 AP2/ERFs, and the upregulated WRKY transcription factors were positively correlated with 3 flavonoids, 3 lignans, and the lipid oleamide. These results suggested that the combined effects of differentially expressed transcription factors, transporter genes, and DAMs contribute to the enhancement of salt tolerance in TLJIAN. Moreover, this study provides a valuable gene-metabolite network reference for understanding the salt tolerance mechanism in rice.
Collapse
Affiliation(s)
- Zhenling Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China;
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Juan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (W.M.); (M.T.)
| | - Wenna Meng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (W.M.); (M.T.)
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Yiluo Tan
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Yan Liu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (W.M.); (M.T.)
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
28
|
Dwivedi AK, Singh V, Anwar K, Pareek A, Jain M. Integrated transcriptome, proteome and metabolome analyses revealed secondary metabolites and auxiliary carbohydrate metabolism augmenting drought tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107849. [PMID: 37393858 DOI: 10.1016/j.plaphy.2023.107849] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Abstract
Drought is one of the major consequences of climate change and a serious threat to rice production. Drought stress activates interactions among genes, proteins and metabolites at the molecular level. A comparative multi-omics analysis of drought-tolerant and drought-sensitive rice cultivars can decipher the molecular mechanisms involved in drought tolerance/response. Here, we characterized the global-level transcriptome, proteome, and metabolome profiles, and performed integrated analyses thereof in a drought-sensitive (IR64) and a drought-tolerant (Nagina 22) rice cultivar under control and drought-stress conditions. The transcriptional dynamics and its integration with proteome analysis revealed the role of transporters in regulation of drought stress. The proteome response illustrated the contribution of translational machinery to drought tolerance in N22. The metabolite profiling revealed that aromatic amino acids and soluble sugars contribute majorly to drought tolerance in rice. The integrated transcriptome, proteome and metabolome analysis performed using statistical and knowledge-based methods revealed the preference for auxiliary carbohydrate metabolism through glycolysis and pentose phosphate pathway contributed to drought tolerance in N22. In addition, L-phenylalanine and the genes/proteins responsible for its biosynthesis were also found to contribute to drought tolerance in N22. In conclusion, our study provided mechanistic insights into the drought response/adaptation mechanism and is expected to facilitate engineering of drought tolerance in rice.
Collapse
Affiliation(s)
- Anuj Kumar Dwivedi
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Vikram Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Khalid Anwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
29
|
Zan X, Zhou Z, Wan J, Chen H, Zhu J, Xu H, Zhang J, Li X, Gao X, Chen R, Huang Z, Xu Z, Li L. Overexpression of OsHAD3, a Member of HAD Superfamily, Decreases Drought Tolerance of Rice. RICE (NEW YORK, N.Y.) 2023; 16:31. [PMID: 37468664 DOI: 10.1186/s12284-023-00647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Haloacid dehalogenase-like hydrolase (HAD) superfamily have been shown to get involved in plant growth and abiotic stress response. Although the various functions and regulatory mechanism of HAD superfamily have been well demonstrated, we know little about the function of this family in conferring abiotic stress tolerance to rice. Here, we report OsHAD3, a HAD superfamily member, could affect drought tolerance of rice. Under drought stress, overexpression of OsHAD3 increases the accumulation of reactive oxygen species and malondialdehyde than wild type. OsHAD3-overexpression lines decreased but antisense-expression lines increased the roots length under drought stress and the transcription levels of many well-known stress-related genes were also changed in plants with different genotypes. Furthermore, overexpression of OsHAD3 also decreases the oxidative tolerance. Our results suggest that overexpression of OsHAD3 could decrease the drought tolerance of rice and provide a new strategy for improving drought tolerance in rice.
Collapse
Affiliation(s)
- Xiaofei Zan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Zhanmei Zhou
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Jiale Wan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Hao Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Jiali Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Haoran Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Jia Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xiaohong Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xiaoling Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Rongjun Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Zhengjian Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Zhengjun Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, 611130, People's Republic of China.
| | - Lihua Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
30
|
Lu Y. Gene Genealogy-Based Mutation Analysis Reveals Emergence of Aus, Tropical japonica, and Aromatic of Oryza sativa during the Later Stage of Rice Domestication. Genes (Basel) 2023; 14:1412. [PMID: 37510316 PMCID: PMC10379336 DOI: 10.3390/genes14071412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Asian rice (Oryza sativa L.) has become a model for understanding gene functions and domestication in recent decades; however, its own diversification is still controversial. Although the division of indica and japonica and five subgroups (aus, indica (sensu stricto), japonica (sensu stricto), tropical japonica, and aromatic) are broadly accepted, how they are phylogenetically related is not transparent. To clarify their relationships, a sample of 121 diverse genes was chosen here from 12 Oryza genomes (two parental and ten O. sativa (Os)) in parallel to allow gene genealogy-based mutation (GGM) analysis. From the sample, 361 Os mutations were shared by two or more subgroups (referred to here as trans mutations) from 549 mutations identified at 51 Os loci. The GGM analysis and related tests indicates that aus diverged from indica at a time significantly earlier than when tropical japonica split from japonica. The results also indicate that aromatic was selected from hybrid progeny of aus and tropical japonica and that all five subgroups share a significant number of the early mutations identified previously. The results suggest that aus, tropical japonica, and aromatic emerged sequentially within the most recent 4-5 millennia of rice domestication after the split of indica and japonica.
Collapse
Affiliation(s)
- Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Shu Y, Zhang W, Tang L, Li Z, Liu X, Liu X, Liu W, Li G, Ying J, Huang J, Tong X, Hu H, Zhang J, Wang Y. ABF1 Positively Regulates Rice Chilling Tolerance via Inducing Trehalose Biosynthesis. Int J Mol Sci 2023; 24:11082. [PMID: 37446259 DOI: 10.3390/ijms241311082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Chilling stress seriously limits grain yield and quality worldwide. However, the genes and the underlying mechanisms that respond to chilling stress remain elusive. This study identified ABF1, a cold-induced transcription factor of the bZIP family. Disruption of ABF1 impaired chilling tolerance with increased ion leakage and reduced proline contents, while ABF1 over-expression lines exhibited the opposite tendency, suggesting that ABF1 positively regulated chilling tolerance in rice. Moreover, SnRK2 protein kinase SAPK10 could phosphorylate ABF1, and strengthen the DNA-binding ability of ABF1 to the G-box cis-element of the promoter of TPS2, a positive regulator of trehalose biosynthesis, consequently elevating the TPS2 transcription and the endogenous trehalose contents. Meanwhile, applying exogenous trehalose enhanced the chilling tolerance of abf1 mutant lines. In summary, this study provides a novel pathway 'SAPK10-ABF1-TPS2' involved in rice chilling tolerance through regulating trehalose homeostasis.
Collapse
Affiliation(s)
- Yazhou Shu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wensheng Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xinyong Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wanning Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jie Huang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Honghong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| |
Collapse
|
32
|
Khan HA, Sharma N, Siddique KH, Colmer TD, Sutton T, Baumann U. Comparative transcriptome analysis reveals molecular regulation of salt tolerance in two contrasting chickpea genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1191457. [PMID: 37360702 PMCID: PMC10289292 DOI: 10.3389/fpls.2023.1191457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 06/28/2023]
Abstract
Salinity is a major abiotic stress that causes substantial agricultural losses worldwide. Chickpea (Cicer arietinum L.) is an important legume crop but is salt-sensitive. Previous physiological and genetic studies revealed the contrasting response of two desi chickpea varieties, salt-sensitive Rupali and salt-tolerant Genesis836, to salt stress. To understand the complex molecular regulation of salt tolerance mechanisms in these two chickpea genotypes, we examined the leaf transcriptome repertoire of Rupali and Genesis836 in control and salt-stressed conditions. Using linear models, we identified categories of differentially expressed genes (DEGs) describing the genotypic differences: salt-responsive DEGs in Rupali (1,604) and Genesis836 (1,751) with 907 and 1,054 DEGs unique to Rupali and Genesis836, respectively, salt responsive DEGs (3,376), genotype-dependent DEGs (4,170), and genotype-dependent salt-responsive DEGs (122). Functional DEG annotation revealed that the salt treatment affected genes involved in ion transport, osmotic adjustment, photosynthesis, energy generation, stress and hormone signalling, and regulatory pathways. Our results showed that while Genesis836 and Rupali have similar primary salt response mechanisms (common salt-responsive DEGs), their contrasting salt response is attributed to the differential expression of genes primarily involved in ion transport and photosynthesis. Interestingly, variant calling between the two genotypes identified SNPs/InDels in 768 Genesis836 and 701 Rupali salt-responsive DEGs with 1,741 variants identified in Genesis836 and 1,449 variants identified in Rupali. In addition, the presence of premature stop codons was detected in 35 genes in Rupali. This study provides valuable insights into the molecular regulation underpinning the physiological basis of salt tolerance in two chickpea genotypes and offers potential candidate genes for the improvement of salt tolerance in chickpeas.
Collapse
Affiliation(s)
- Hammad Aziz Khan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Niharika Sharma
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, Australia
| | - Kadambot H.M. Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Timothy David Colmer
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Tim Sutton
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
- Department of Primary Industries and Regions, South Australian Research and Development Institute (SARDI), Adelaide, SA, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
33
|
Singer SD, Lehmann M, Zhang Z, Subedi U, Burton Hughes K, Lim NZL, Ortega Polo R, Chen G, Acharya S, Hannoufa A, Huan T. Elucidation of Physiological, Transcriptomic and Metabolomic Salinity Response Mechanisms in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2023; 12:2059. [PMID: 37653976 PMCID: PMC10221938 DOI: 10.3390/plants12102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 09/02/2023]
Abstract
Alfalfa (Medicago sativa L.) is a widely grown perennial leguminous forage crop with a number of positive attributes. However, despite its moderate ability to tolerate saline soils, which are increasing in prevalence worldwide, it suffers considerable yield declines under these growth conditions. While a general framework of the cascade of events involved in plant salinity response has been unraveled in recent years, many gaps remain in our understanding of the precise molecular mechanisms involved in this process, particularly in non-model yet economically important species such as alfalfa. Therefore, as a means of further elucidating salinity response mechanisms in this species, we carried out in-depth physiological assessments of M. sativa cv. Beaver, as well as transcriptomic and untargeted metabolomic evaluations of leaf tissues, following extended exposure to salinity (grown for 3-4 weeks under saline treatment) and control conditions. In addition to the substantial growth and photosynthetic reductions observed under salinity treatment, we identified 1233 significant differentially expressed genes between growth conditions, as well as 60 annotated differentially accumulated metabolites. Taken together, our results suggest that changes to cell membranes and walls, cuticular and/or epicuticular waxes, osmoprotectant levels, antioxidant-related metabolic pathways, and the expression of genes encoding ion transporters, protective proteins, and transcription factors are likely involved in alfalfa's salinity response process. Although some of these alterations may contribute to alfalfa's modest salinity resilience, it is feasible that several may be disadvantageous in this context and could therefore provide valuable targets for the further improvement of tolerance to this stress in the future.
Collapse
Affiliation(s)
- Stacy D. Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Madeline Lehmann
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Zixuan Zhang
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Udaya Subedi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Kimberley Burton Hughes
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Nathaniel Z.-L. Lim
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Rodrigo Ortega Polo
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Surya Acharya
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Abdelali Hannoufa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
34
|
Usman B, Derakhshani B, Jung KH. Recent Molecular Aspects and Integrated Omics Strategies for Understanding the Abiotic Stress Tolerance of Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2019. [PMID: 37653936 PMCID: PMC10221523 DOI: 10.3390/plants12102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
Rice is an important staple food crop for over half of the world's population. However, abiotic stresses seriously threaten rice yield improvement and sustainable production. Breeding and planting rice varieties with high environmental stress tolerance are the most cost-effective, safe, healthy, and environmentally friendly strategies. In-depth research on the molecular mechanism of rice plants in response to different stresses can provide an important theoretical basis for breeding rice varieties with higher stress resistance. This review presents the molecular mechanisms and the effects of various abiotic stresses on rice growth and development and explains the signal perception mode and transduction pathways. Meanwhile, the regulatory mechanisms of critical transcription factors in regulating gene expression and important downstream factors in coordinating stress tolerance are outlined. Finally, the utilization of omics approaches to retrieve hub genes and an outlook on future research are prospected, focusing on the regulatory mechanisms of multi-signaling network modules and sustainable rice production.
Collapse
Affiliation(s)
- Babar Usman
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Behnam Derakhshani
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Ki-Hong Jung
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
- Research Center for Plant Plasticity, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
35
|
Mandal S, Jana D, Dolai J, Sarkar AK, Ghorai BK, Jana NR. Biodegradable Poly(trehalose) Nanoparticle for Preventing Amyloid Beta Aggregation and Related Neurotoxicity. ACS APPLIED BIO MATERIALS 2023. [PMID: 37167565 DOI: 10.1021/acsabm.2c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Trehalose is a disaccharide that is capable of inhibiting protein aggregation and activating cellular autophagy. It has been shown that a polymer or nanoparticle form, terminated with multiple trehalose units, can significantly enhance the anti-amyloidogenic performance and is suitable for the treatment of neurodegenerative diseases. Here, we report a trehalose-conjugated polycarbonate-co-lactide polymer and formulation of its nanoparticles having multiple numbers of trehalose exposed on the surface. The resultant poly(trehalose) nanoparticle inhibits the aggregation of amyloid beta peptides and disintegrates matured amyloid fibrils into smaller fragments. Moreover, the poly(trehalose) nanoparticle lowers extracellular amyloid β oligomer-driven cellular stress and enhances cell viability. The presence of biodegradable polycarbonate components in the poly(trehalose) nanoparticle would enhance their application potential as an anti-amyloidogenic material.
Collapse
Affiliation(s)
- Suman Mandal
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Debabrata Jana
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, West Bengal 700118, India
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Jayanta Dolai
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Binay K Ghorai
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
36
|
Jin X, Ackah M, Acheampong A, Zhang Q, Wang L, Lin Q, Qiu C, Zhao W. Genome-Wide Identification of Candidate Genes Associated with Heat Stress in Mulberry ( Morus alba L.). Curr Issues Mol Biol 2023; 45:4151-4167. [PMID: 37232733 DOI: 10.3390/cimb45050264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Mulberry (Morus alba L.) is an economically important plant for the silk industry and has the possibility of contributing immensely to Chinese pharmacopeia because of its health benefits. Domesticated silkworms feed only on mulberry leaves, meaning that the worms' survival depends on the mulberry tree. Mulberry production is threatened by climate change and global warming. However, the regulatory mechanisms of mulberry responses to heat are poorly understood. We performed transcriptome analysis of high-temperature-stressed (42 °C) M. alba seedlings using RNA-Seq technologies. A total of 703 differentially expressed genes (DEGs) were discovered from 18,989 unigenes. Among these, 356 were up-regulated, and 347 were down-regulated. KEGG analysis revealed that most DEGs were enriched in valine, leucine and isoleucine degradation, and in starch and sucrose metabolism, alpha-linolenic acid metabolism, carotenoid biosynthesis and galactose metabolism, among others. In addition, TFs such as the NAC, HSF, IAA1, MYB, AP2, GATA, WRKY, HLH and TCP families were actively involved in response to high temperatures. Moreover, we used RT-qPCR to confirm the expression changes of eight genes under heat stress observed in the RNA-Seq analysis. This study provides M. alba transcriptome profiles under heat stress and provides theoretical bases to researchers for better understanding mulberry heat response mechanisms and breeding heat-tolerant mulberry plants.
Collapse
Affiliation(s)
- Xin Jin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Adolf Acheampong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qiaonan Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lei Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qiang Lin
- Guangxi Sericultural Research Institute, Guangxi Zhuang Autonomous Regin, Nanning 530007, China
| | - Changyu Qiu
- Guangxi Sericultural Research Institute, Guangxi Zhuang Autonomous Regin, Nanning 530007, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
37
|
Zhang L, Xiang Z, Li J, Wang S, Chen Y, Liu Y, Mao D, Luan S, Chen L. bHLH57 confers chilling tolerance and grain yield improvement in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1402-1418. [PMID: 36510797 DOI: 10.1111/pce.14513] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Chilling stress has become a major limiting factor that reduces crop productivity worldwide. In this study, we identified a new gene bHLH57, whose product enhances chilling tolerance in rice at diverse developmental stages. bHLH57 was mainly expressed in leaves and anthers, and its protein was targeted to the nucleus. Overexpression of bHLH57 enhanced chilling tolerance by increasing trehalose synthesis, whereas its mutants by CRISPR/Cas9-mediated mutagenesis were more sensitive to chilling and had reduced trehalose. Meanwhile, bHLH57 may regulate ROS metabolism and CBFs/DREBs- dependent pathways in response to chilling stress. In addition, the overexpression of bHLH57 resulted in increased grain yield under normal and chilling conditions, however, the disruption of bHLH57 displayed decreased grain size and seed setting rate, thus reduced grain yield. Phylogenetic and nucleotide diversity analyses suggested that bHLH57 is relatively conserved in monocotyledons, and may be selected during indica populations adaptation. Taken together, we have identified a new bHLH regulator involved rice chilling tolerance and grain yield, and provide a potential target gene for improving chilling tolerance and grain yield of rice.
Collapse
Affiliation(s)
- Lin Zhang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhipan Xiang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Junfeng Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Siyao Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yan Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Dandan Mao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
38
|
Improvement of Salinity Tolerance in Water-Saving and Drought-Resistance Rice (WDR). Int J Mol Sci 2023; 24:ijms24065444. [PMID: 36982522 PMCID: PMC10049413 DOI: 10.3390/ijms24065444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Rice is one of the most economically important staple food crops in the world. Soil salinization and drought seriously restrict sustainable rice production. Drought aggravates the degree of soil salinization, and, at the same time, increased soil salinity also inhibits water absorption, resulting in physiological drought stress. Salt tolerance in rice is a complex quantitative trait controlled by multiple genes. This review presents and discusses the recent research developments on salt stress impact on rice growth, rice salt tolerance mechanisms, the identification and selection of salt-tolerant rice resources, and strategies to improve rice salt tolerance. In recent years, the increased cultivation of water-saving and drought-resistance rice (WDR) has shown great application potential in alleviating the water resource crisis and ensuring food and ecological security. Here, we present an innovative germplasm selection strategy of salt-tolerant WDR, using a population that is developed by recurrent selection based on dominant genic male sterility. We aim to provide a reference for efficient genetic improvement and germplasm innovation of complex traits (drought and salt tolerance) that can be translated into breeding all economically important cereal crops.
Collapse
|
39
|
Ban Y, Tan J, Xiong Y, Mo X, Jiang Y, Xu Z. Transcriptome analysis reveals the molecular mechanisms of Phragmites australis tolerance to CuO-nanoparticles and/or flood stress induced by arbuscular mycorrhizal fungi. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130118. [PMID: 36303351 DOI: 10.1016/j.jhazmat.2022.130118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/24/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The molecular mechanism of arbuscular mycorrhizal fungi (AMF) in vertical flow constructed wetlands (VFCWs) for the purification of copper oxide nanoparticles (CuO-NPs) contaminated wastewater remains unclear. In this study, transcriptome analysis was used to explore the effect of AMF inoculation on the gene expression profile of Phragmites australis roots under different concentrations of CuO-NPs and/or flood stress. 551, 429 and 2281 differentially expressed genes (DEGs) were specially regulated by AMF under combined stresses of CuO-NPs and flood, single CuO-NPs stress and single flood stress, respectively. Based on the results of DEG function annotation and enrichment analyses, AMF inoculation under CuO-NPs and/or flood stress up-regulated the expression of a number of genes involved in antioxidant defense systems, cell wall biosynthesis and transporter protein, which may contribute to plant tolerance. The expression of 30 transcription factors (TFs) was up-regulated by AMF inoculation under combined stresses of CuO-NPs and flood, and 44 and 44 TFs were up-regulated under single CuO-NPs or flood condition, respectively, which may contribute to the alleviating effect of symbiosis on CuO-NPs and/or flood stress. These results provided a theoretical basis for enhancing the ecological restoration function of wetland plants for metallic nanoparticles (MNPs) by mycorrhizal technology in the future.
Collapse
Affiliation(s)
- Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jiayuan Tan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yang Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xiantong Mo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yinghe Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
40
|
Hu M, Xie M, Cui X, Huang J, Cheng X, Liu L, Liu S, Tong C. Genome-Wide Characterization of Trehalose-6-Phosphate Synthase Gene Family of Brassica napus and Potential Links with Agronomic Traits. Int J Mol Sci 2022; 23:ijms232415714. [PMID: 36555357 PMCID: PMC9779256 DOI: 10.3390/ijms232415714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Trehalose and trehalose-6 phosphate played important roles in floral organ development, embryonic development, cell morphogenesis, and signal transduction under abiotic stress. However, little is known about the trehalose-6-phosphate synthase (TPS) gene family in Brassica napus. In this study, in total, 26 TPS genes in B. napus (BnTPS genes) were identified and classified into two groups. In each group, the BnTPS genes showed relatively conserved gene structures. The protein-protein interaction (PPI) network and enrichment analysis indicated that BnTPS genes were involved in the glycolysis/gluconeogenesis, fructose and mannose metabolism, galactose metabolism, pentose phosphate pathway, carbohydrate transmembrane transport, trehalose-phosphatase activity, etc. The expression of BnTPS genes varied greatly across different tissues, while most of the BnTPS genes showed a considerable improvement in expression under different abiotic stresses, indicating that BnTPS genes were significantly responsive to the abiotic treatments. In addition, the association mapping analysis revealed that eight BnTPS genes were potential regulators of particular agronomic traits. Among them, the gene BnTPS23 was significantly associated with the primary flowering time (PFT), full flowering time (FFT1), and final flowering time (FFT2), suggesting that BnTPS genes may play an important role in regulating key agronomic traits in B. napus. In summary, our research provides a better understanding of BnTPS genes, facilitates the breeding of superior B. napus varieties, and paves the way for future functional studies.
Collapse
|
41
|
Zhou B, Fang Y, Xiao X, Yang J, Qi J, Qi Q, Fan Y, Tang C. Trehalose 6-Phosphate/SnRK1 Signaling Participates in Harvesting-Stimulated Rubber Production in the Hevea Tree. PLANTS (BASEL, SWITZERLAND) 2022; 11:2879. [PMID: 36365332 PMCID: PMC9655858 DOI: 10.3390/plants11212879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Trehalose 6-phosphate (T6P), the intermediate of trehalose biosynthesis and a signaling molecule, affects crop yield via targeting sucrose allocation and utilization. As there have been no reports of T6P signaling affecting secondary metabolism in a crop plant, the rubber tree Hevea brasiliensis serves as an ideal model in this regard. Sucrose metabolism critically influences the productivity of natural rubber, a secondary metabolite of industrial importance. Here, we report on the characterization of the T6P synthase (TPS) gene family and the T6P/SNF1-related protein kinase1 (T6P/SnRK1) signaling components in Hevea laticifers under tapping (rubber harvesting), an agronomic manipulation that itself stimulates rubber production. A total of fourteen TPS genes were identified, among which a class II TPS gene, HbTPS5, seemed to have evolved with a function specialized in laticifers. T6P and trehalose increased when the trees were tapped, this being consistent with the observed enhanced activities of TPS and T6P phosphatase (TPP) and expression of an active TPS-encoding gene, HbTPS1. On the other hand, SnRK1 activities decreased, suggesting the inhibition of elevated T6P on SnRK1. Expression profiles of the SnRK1 marker genes coincided with elevated T6P and depressed SnRK1. Interestingly, HbTPS5 expression decreased significantly with the onset of tapping, suggesting a regulatory function in the T6P pathway associated with latex production in laticifers. In brief, transcriptional, enzymatic, and metabolic evidence supports the participation of T6P/SnRK1 signaling in rubber formation, thus providing a possible avenue to increasing the yield of a valuable secondary metabolite by targeting T6P in specific cells.
Collapse
Affiliation(s)
- Binhui Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongjun Fang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaohu Xiao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianghua Yang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiyan Qi
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Haikou 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qi Qi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yujie Fan
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chaorong Tang
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Haikou 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
42
|
Liu G, Liu F, Wang Y, Liu X. A novel long noncoding RNA CIL1 enhances cold stress tolerance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111370. [PMID: 35788028 DOI: 10.1016/j.plantsci.2022.111370] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
With the intensification of global warming, extreme weather events have occurred more frequently, among which cold stress has become one of the major environmental factors that restrict global crop yield and production. Multiple long noncoding RNAs (lncRNAs) have been predicted or recognized in the plant response to cold stress, however, the molecular biological functions of most of these RNAs are still poorly understood. Here, we identified a novel lncRNA, COLD INDUCED lncRNA 1 (CIL1), as a positive regulator of the plant response to cold stress in Arabidopsis. CIL1 was significantly induced when the plant was exposed to cold stress. Moreover, knockdown mutants showed more sensitivity to cold stress than the wild type did, accompanied by an increased content of endogenous ROS (reactive oxygen species) and reduced osmoregulatory substances. Genome-wide transcriptome analysis indicated that 256 genes were downregulated and 34 genes were upregulated in cil1 mutants under cold stress, which were mainly involved in hormone signal transduction, ROS homeostasis and glucose metabolism. Our study implies that CIL1 has a positive effect on the plant response to cold stress by regulating the expression of multiple stress-related genes during the seedling stage.
Collapse
Affiliation(s)
- Guangchao Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Fuxia Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Yue Wang
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xin Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
43
|
Jiao P, Ma R, Wang C, Chen N, Liu S, Qu J, Guan S, Ma Y. Integration of mRNA and microRNA analysis reveals the molecular mechanisms underlying drought stress tolerance in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:932667. [PMID: 36247625 PMCID: PMC9557922 DOI: 10.3389/fpls.2022.932667] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/02/2022] [Indexed: 05/24/2023]
Abstract
Drought is among the most serious environmental issue globally, and seriously affects the development, growth, and yield of crops. Maize (Zea mays L.), an important crop and industrial raw material, is planted on a large scale worldwide and drought can lead to large-scale reductions in maize corn production; however, few studies have focused on the maize root system mechanisms underlying drought resistance. In this study, miRNA-mRNA analysis was performed to deeply analyze the molecular mechanisms involved in drought response in the maize root system under drought stress. Furthermore, preliminary investigation of the biological function of miR408a in the maize root system was also conducted. The morphological, physiological, and transcriptomic changes in the maize variety "M8186" at the seedling stage under 12% PEG 6000 drought treatment (0, 7, and 24 h) were analyzed. With prolonged drought stress, seedlings gradually withered, the root system grew significantly, and abscisic acid, brassinolide, lignin, glutathione, and trehalose content in the root system gradually increased. Furthermore, peroxidase activity increased, while gibberellic acid and jasmonic acid gradually decreased. Moreover, 32 differentially expressed miRNAs (DEMIRs), namely, 25 known miRNAs and 7 new miRNAs, and 3,765 differentially expressed mRNAs (DEMRs), were identified in maize root under drought stress by miRNA-seq and mRNA-seq analysis, respectively. Through combined miRNA-mRNA analysis, 16 miRNA-target gene pairs, comprising 9 DEMIRs and 15 DEMRs, were obtained. In addition, four metabolic pathways, namely, "plant hormone signal transduction", "phenylpropane biosynthesis", "glutathione metabolism", and "starch and sucrose metabolism", were predicted to have important roles in the response of the maize root system to drought. MiRNA and mRNA expression results were verified by real-time quantitative PCR. Finally, miR408a was selected for functional analysis and demonstrated to be a negative regulator of drought response, mainly through regulation of reactive oxygen species accumulation in the maize root system. This study helps to elaborate the regulatory response mechanisms of the maize root system under drought stress and predicts the biological functions of candidate miRNAs and mRNAs, providing strategies for subsequent mining for, and biological breeding to select for, drought-responsive genes in the maize root system.
Collapse
Affiliation(s)
- Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ruiqi Ma
- College of Plant Science, Jilin University, Changchun, China
| | - Chunlai Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nannan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jing Qu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
44
|
Kumar T, Tiwari N, Bharadwaj C, Roorkiwal M, Reddy SPP, Patil BS, Kumar S, Hamwieh A, Vinutha T, Bindra S, Singh I, Alam A, Chaturvedi SK, Kumar Y, Nimmy MS, Siddique KHM, Varshney RK. A comprehensive analysis of Trehalose-6-phosphate synthase (TPS) gene for salinity tolerance in chickpea (Cicer arietinum L.). Sci Rep 2022; 12:16315. [PMID: 36175531 PMCID: PMC9523030 DOI: 10.1038/s41598-022-20771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Soil salinity affects various crop cultivation but legumes are the most sensitive to salinity. Osmotic stress is the first stage of salinity stress caused by excess salts in the soil on plants which adversely affects the growth instantly. The Trehalose-6-phosphate synthase (TPS) genes play a key role in the regulation of abiotic stresses resistance from the high expression of different isoform. Selected genotypes were evaluated to estimate for salt tolerance as well as genetic variability at morphological and molecular level. Allelic variations were identified in some of the selected genotypes for the TPS gene. A comprehensive analysis of the TPS gene from selected genotypes was conducted. Presence of significant genetic variability among the genotypes was found for salinity tolerance. This is the first report of allelic variation of TPS gene from chickpea and results indicates that the SNPs present in these conserved regions may contribute largely to functional distinction. The nucleotide sequence analysis suggests that the TPS gene sequences were found to be conserved among the genotypes. Some selected genotypes were evaluated to estimate for salt tolerance as well as for comparative analysis of physiological, molecular and allelic variability for salt responsive gene Trehalose-6-Phosphate Synthase through sequence similarity. Allelic variations were identified in some selected genotypes for the TPS gene. It is found that Pusa362, Pusa1103, and IG5856 are the most salt-tolerant lines and the results indicates that the identified genotypes can be used as a reliable donor for the chickpea improvement programs for salinity tolerance.
Collapse
Affiliation(s)
- Tapan Kumar
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India.,International Centre for Agricultural Research in the Dry Areas, Amlaha, Madhya Pradesh, 466113, India
| | - Neha Tiwari
- International Centre for Agricultural Research in the Dry Areas, Amlaha, Madhya Pradesh, 466113, India
| | - C Bharadwaj
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India.
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sneha Priya Pappula Reddy
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India.,The UWA Institute of Agriculture, UWA, Perth, WA, Australia
| | - B S Patil
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Sudhir Kumar
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Aladdin Hamwieh
- International Centre for Agricultural Research in the Dry Areas, 2 Port Said, Victoria Square, Maadi, Cairo, Egypt
| | - T Vinutha
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | | | | | - Afroz Alam
- Banathali Vidyapith, Banasthali, Rajasthan, India
| | | | | | | | - K H M Siddique
- The UWA Institute of Agriculture, UWA, Perth, WA, Australia
| | - Rajeev K Varshney
- International Chair in Agriculture & Food Security, State Agricultural Biotechnology Center, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Perth, Australia
| |
Collapse
|
45
|
Esmaeili N, Shen G, Zhang H. Genetic manipulation for abiotic stress resistance traits in crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1011985. [PMID: 36212298 PMCID: PMC9533083 DOI: 10.3389/fpls.2022.1011985] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Abiotic stresses are major limiting factors that pose severe threats to agricultural production. Conventional breeding has significantly improved crop productivity in the last century, but traditional breeding has reached its maximum capacity due to the multigenic nature of abiotic stresses. Alternatively, biotechnological approaches could provide new opportunities for producing crops that can adapt to the fast-changing environment and still produce high yields under severe environmental stress conditions. Many stress-related genes have been identified and manipulated to generate stress-tolerant plants in the past decades, which could lead to further increase in food production in most countries of the world. This review focuses on the recent progress in using transgenic technology and gene editing technology to improve abiotic stress tolerance in plants, and highlights the potential of using genetic engineering to secure food and fiber supply in a world with an increasing population yet decreasing land and water availability for food production and fast-changing climate that will be largely hostile to agriculture.
Collapse
Affiliation(s)
- Nardana Esmaeili
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Sericultural Research Institute, Hangzhou, China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
46
|
Zhu A, Li J, Fu W, Wang W, Tao L, Fu G, Chen T, Feng B. Abscisic Acid Improves Rice Thermo-Tolerance by Affecting Trehalose Metabolism. Int J Mol Sci 2022; 23:ijms231810615. [PMID: 36142525 PMCID: PMC9506140 DOI: 10.3390/ijms231810615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Heat stress that occurs during the flowering stage severely decreases the rice (Oryza sativa L.) seed-setting rate. This damage can be reversed by abscisic acid (ABA), through effects on reactive oxygen species, carbohydrate metabolism, and heat shock proteins, but the exact role of trehalose and ATP in this process remains unclear. Two rice genotypes, namely, Zhefu802 (heat-resistant plant, a recurrent parent) and its near-isogenic line (faded green leaf, Fgl, heat-sensitive plant), were subjected to 38 °C heat stress after being sprayed with ABA or its biosynthetic inhibitor, fluridone (Flu), at the flowering stage. The results showed that exogenous ABA significantly increased the seed-setting rate of rice under heat stress, by 14.31 and 22.40% in Zhefu802 and Fgl, respectively, when compared with the H2O treatment. Similarly, exogenous ABA increased trehalose content, key enzyme activities of trehalose metabolism, ATP content, and F1Fo-ATPase activity. Importantly, the opposite results were observed in plants treated with Flu. Therefore, ABA may improve rice thermo-tolerance by affecting trehalose metabolism and ATP consumption.
Collapse
Affiliation(s)
- Aike Zhu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Nanchong Academy of Agricultural Sciences, Nanchong 637000, China
| | - Juncai Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Agronomy College, Jilin Agricultural University, Changchun 130118, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Wenting Wang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Correspondence: (T.C.); (B.F.); Tel.: +86-571-63370264 (T.C.); +86-571-63370370 (B.F.); Fax: +86-571-63370358 (T.C. & B.F.)
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Correspondence: (T.C.); (B.F.); Tel.: +86-571-63370264 (T.C.); +86-571-63370370 (B.F.); Fax: +86-571-63370358 (T.C. & B.F.)
| |
Collapse
|
47
|
Liu K, Zhou Y. Genome-wide identification of the trehalose-6-phosphate synthase gene family in sweet orange ( Citrus sinensis) and expression analysis in response to phytohormones and abiotic stresses. PeerJ 2022; 10:e13934. [PMID: 36105645 PMCID: PMC9466596 DOI: 10.7717/peerj.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023] Open
Abstract
Background Trehalose-6-phosphate synthase (TPS) is an essential enzyme for synthesizing trehalose and is a significant regulator of plant development and stress response. Sweet orange (Citrus sinensis) is an economically important fruit tree crop and a common transgenic material. At present, little information is available about the TPS gene family in sweet orange. Methods The TPS gene family were identified from sweet orange genome by bioinformatics analysis. Additionally, the expression of CisTPS genes was analyzed under phytohormones and abiotic stresses by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Results Here, eight TPS genes were identified and were found to be randomly distributed in five sweet orange chromosomes. TPS and trehalose-6-phosphate phosphatase (TPP) domains were observed in all CisTPS proteins. The phylogenetic tree showed that CisTPS genes were divided into two subfamilies, and genes in each subfamily had conserved intron structures and motif compositions. The cis-acting elements of CisTPS genes suggested their roles in phytohormone and stress responses. All CisTPS genes were ubiquitously expressed in roots, leaves, and stems, and six members were highly expressed in roots. Expression profiles showed that CisTPS genes exhibited tissue specificity and were differentially expressed in response to phytohormones and abiotic stresses. This study lays a foundation for revealing the functions of the TPS gene family in trehalose regulation in sweet orange, and provides a valuable reference for this gene family in other plants.
Collapse
Affiliation(s)
- Kehong Liu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Yan Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
48
|
Zhu F, Li M, Sun M, Jiang X, Qiao F. Plant hormone signals regulate trehalose accumulation against osmotic stress in watermelon cells. PROTOPLASMA 2022; 259:1351-1369. [PMID: 35088161 DOI: 10.1007/s00709-021-01715-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Trehalose, one of the most chemically stable sugars, can effectively improve the tolerance of various plants against abiotic stress by protecting and stabilizing protein and cell membranes. However, the signaling pathway in trehalose biosynthesis triggered by abiotic stresses is still unclear. In the study, it can be shown that exogenous trehalose can alleviate the inhibitory effect of osmotic stress on cell growth, suppress extracellular alkalization, ROS burst, and maintain the integrity of the microtubular cytoskeleton. Trehalose-6-phosphate synthase (TPS) is the key limiting enzyme for trehalose synthesis and is encoded by 7 ClTPS genes, located in 7 different chromosomes of the watermelon genome. Expression analysis by qRT-PCR indicated that osmotic stress could upregulate the expression of all the family members of ClTPS and promote the accumulation of trehalose in watermelon cells accordingly. Exogenous methyl jasmonate (MeJA), ethephon (ETH), abscisic acid (ABA), or salicylic acid (SA) induced trehalose accumulation, with MeJA being the most effective treatment. When fluridone (FL), an ABA biosynthesis inhibitor, was pre-perfused into the cells before osmotic stress, trehalose accumulation and packed cell volume were suppressed significantly, whereas inhibition of ethylene biosynthesis could even restore cell growth. Moreover, inhibition of trehalose hydrolysis could also increase the tolerance against osmotic stress. This study shows that trehalose biosynthesis is phytohormone-dependent and the hydrolysis of trehalose is involved in osmotic tolerance regulation.
Collapse
Affiliation(s)
- Fangming Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province/Key Laboratory of Tropical Agritourism in Greenhouse of Haikou, College of Horticulture, Hainan University (HNU), Haikou, 570228, China
| | - Mingyan Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province/Key Laboratory of Tropical Agritourism in Greenhouse of Haikou, College of Horticulture, Hainan University (HNU), Haikou, 570228, China
| | - Mengli Sun
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province/Key Laboratory of Tropical Agritourism in Greenhouse of Haikou, College of Horticulture, Hainan University (HNU), Haikou, 570228, China
| | - Xuefei Jiang
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province/Key Laboratory of Tropical Agritourism in Greenhouse of Haikou, College of Horticulture, Hainan University (HNU), Haikou, 570228, China.
| | - Fei Qiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| |
Collapse
|
49
|
Stephen K, Beena R, Kiran AG, Shanija S, Saravanan R. Changes in physiological traits and expression of key genes involved in sugar signaling pathway in rice under high temperature stress. 3 Biotech 2022; 12:183. [PMID: 35875179 PMCID: PMC9300813 DOI: 10.1007/s13205-022-03242-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Efficient assimilate partitioning between the source and sink organs to achieve increased grain weight is coordinated by the sugar signaling mechanism. The expression of the genes involved in sugar signaling mainly hexokinases 2 (OsHXK2), Sucrose-nonfermentation1-related protein kinase1 (OsSnRK1), trehalose-6-phosphate synthase 1 (OsTPS1) and target of rapamycin (OsTOR) under high temperature stress was examined in tolerant (NL-44) and susceptible (Vandana) varieties of rice. The photosynthetic rate, stomatal conductance, water-use efficiency, photochemical efficiency (Fv/Fm), quantum yield (ϕPSII), pollen viability, spikelet fertility and 1000 grain weight were significantly higher in NL-44 compared to Vandana under stress. The difference in the gene expression levels in the vegetative and grain-filling phases as well as between the tolerant and susceptible varieties, revealed unique pathways of sugar signaling under heat stress. In the vegetative phase, the expression of OsTOR seems to be the difference between NL-44 and Vandana for their differed heat stress tolerance whereas, in the grain-filling phase, the difference between the varieties lay in the regulation of OsHXK2. The comparative changes in the expression levels between the genes under the varying conditions indicate the sugar status in the source and sink organs that are available for translocation or remobilization.
Collapse
Affiliation(s)
- K. Stephen
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - R. Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - A. G. Kiran
- Department of Plant Biotechnology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - S. Shanija
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - R. Saravanan
- ICAR-CTCRI, Thiruvananthapuram, Kerala 695017 India
| |
Collapse
|
50
|
Abid M, Gu S, Zhang YJ, Sun S, Li Z, Bai DF, Sun L, Qi XJ, Zhong YP, Fang JB. Comparative transcriptome and metabolome analysis reveal key regulatory defense networks and genes involved in enhanced salt tolerance of Actinidia (kiwifruit). HORTICULTURE RESEARCH 2022; 9:uhac189. [PMID: 36338850 PMCID: PMC9630968 DOI: 10.1093/hr/uhac189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 05/25/2023]
Abstract
The Actinidia (kiwifruit) is an emerging fruit plant that is severely affected by salt stress in northern China. Plants have evolved several signaling network mechanisms to cope with the detrimental effects of salt stress. To date, no reported work is available on metabolic and molecular mechanisms involved in kiwifruit salt tolerance. Therefore, the present study aims to decipher intricate adaptive responses of two contrasting salt tolerance kiwifruit species Actinidia valvata [ZMH (an important genotype), hereafter referred to as R] and Actinidia deliciosa ['Hayward' (an important green-fleshed cultivar), hereafter referred to as H] under 0.4% (w/w) salt stress for time courses of 0, 12, 24, and 72 hours (hereafter refered to as h) by combined transcriptome and metabolome analysis. Data revealed that kiwifruit displayed specific enrichment of differentially expressed genes (DEGs) under salt stress. Interestingly, roots of R plants showed a differential expression pattern for up-regulated genes. The KEGG pathway analysis revealed the enrichment of DEGs related to plant hormone signal transduction, glycine metabolism, serine and threonine metabolism, glutathione metabolism, and pyruvate metabolism in the roots of R under salt stress. The WGCNA resulted in the identification of five candidate genes related to glycine betaine (GB), pyruvate, total soluble sugars (TSS), and glutathione biosynthesis in kiwifruit. An integrated study of transcriptome and metabolome identified several genes encoding metabolites involved in pyruvate metabolism. Furthermore, several genes encoding transcription factors were mainly induced in R under salt stress. Functional validation results for overexpression of a candidate gene betaine aldehyde dehydrogenase (AvBADH, R_transcript_80484) from R showed significantly improved salt tolerance in Arabidopsis thaliana (hereafter referred to as At) and Actinidia chinensis ['Hongyang' (an important red-fleshed cultivar), hereafter referred to as Ac] transgenic plants than in WT plants. All in all, salt stress tolerance in kiwifruit roots is an intricate regulatory mechanism that consists of several genes encoding specific metabolites.
Collapse
Affiliation(s)
- Muhammad Abid
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Shichao Gu
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yong-Jie Zhang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Shihang Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhi Li
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Dan-Feng Bai
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Leiming Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xiu-Juan Qi
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yun-Peng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jin-Bao Fang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|