1
|
Li Q, Lan Y, Yang Y, Kang S, Wang X, Jiang J, Liu S, Wang Q, Zhang W, Zhang L. Effect of luminescent materials on the biochemistry, ultrastructure, and rhizobial microbiota of Spirodela polyrhiza. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108427. [PMID: 38367389 DOI: 10.1016/j.plaphy.2024.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Fluorescent materials and technologies have become widely used in scientific research, and due to the ability to convert light wavelengths, their application to photosynthetic organisms can affect their development by altering light quality. However, the impacts of fluorescent materials on aquatic plants and their environmental risks remain unclear. To assess the effects of luminescent materials on floating aquatic macrophytes and their rhizosphere microorganisms, 4-(di-p-tolylamino)benzaldehyde-A (DTB-A) and 4-(di-p-tolylamino)benzaldehyde-M (DTB-M) (emitting blue-green and orange-red light, respectively) were added individually and jointly to Spirodela polyrhiza cultures and set at different concentrations (1, 10, and 100 μM). Both DTB-A and DTB-M exhibited phytotoxicity, which increased with concentration under separate treatment. Moreover, the combined group exhibited obvious stress relief at 10 μM compared to the individually treated group. Fluorescence imaging showed that DTB-A and DTB-M were able to enter the cell matrix and organelles of plant leaves and roots. Peroxidation induced cellular damage, contributing to a decrease in superoxide dismutase (SOD) and peroxidase (POD) activities and malondialdehyde (MDA) accumulation. Decomposition of organelle structures, starch accumulation in chloroplasts, and plasmolysis were observed under the ultrastructure, disrupting photosynthetic pigment content and photosynthesis. DTB-A and DTB-M exposure resulted in growth inhibition, dry weight loss, and leaf yellowing in S. polyrhiza. A total of 3519 Operational Taxonomic Units (OTUs) were identified in the rhizosphere microbiome. The microbial communities were dominated by Alphaproteobacteria, Oxyphotobacteria, and Gammaproteobacteria, with the abundance and diversity varied significantly among treatment groups according to Shannon, Simpson, and Chao1 indices. This study revealed the stress defense response of S. polyrhiza to DTB-A and DTB-M exposures, which provides a broader perspective for the bioremediation of pollutants using aquatic plants and supports the further development of fluorescent materials for applications.
Collapse
Affiliation(s)
- Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Yiyang Lan
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Yixia Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Shiyun Kang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Xin Wang
- The Chinese University of Hong Kong, Shenzhen, 518172, PR China
| | - Jiarui Jiang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Shengyue Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | | | - Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Liping Zhang
- The Chinese University of Hong Kong, Shenzhen, 518172, PR China.
| |
Collapse
|
2
|
Kim SH, Yoon J, Kim H, Lee SJ, Paek NC. Rice Basic Helix-Loop-Helix 079 (OsbHLH079) Delays Leaf Senescence by Attenuating ABA Signaling. RICE (NEW YORK, N.Y.) 2023; 16:60. [PMID: 38093151 PMCID: PMC10719235 DOI: 10.1186/s12284-023-00673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Leaf senescence represents the final phase of leaf development and is characterized by a highly organized degenerative process involving the active translocation of nutrients from senescing leaves to growing tissues or storage organs. To date, a large number of senescence-associated transcription factors (sen-TFs) have been identified that regulate the initiation and progression of leaf senescence. Many of these TFs, including NAC (NAM/ATAF1/2/CUC2), WRKY, and MYB TFs, have been implicated in modulating the expression of downstream senescence-associated genes (SAGs) and chlorophyll degradation genes (CDGs) under the control of phytohormones. However, the involvement of basic helix-loop-helix (bHLH) TFs in leaf senescence has been less investigated. Here, we show that OsbHLH079 delays both natural senescence and dark-induced senescence: Overexpression of OsbHLH079 led to a stay-green phenotype, whereas osbhlh079 knockout mutation displayed accelerated leaf senescence. Similar to other sen-TFs, OsbHLH079 showed a gradual escalation in expression as leaves underwent senescence. During this process, the mRNA levels of SAGs and CDGs remained relatively low in OsbHLH079 overexpressors, but increased sharply in osbhlh079 mutants, suggesting that OsbHLH079 negatively regulates the transcription of SAGs and CDGs under senescence conditions. Additionally, we found that OsbHLH079 delays ABA-induced senescence. Subsequent RT-qPCR and dual-luciferase reporter assays revealed that OsbHLH079 downregulates the expression of ABA signaling genes, such as OsABF2, OsABF4, OsABI5, and OsNAP. Taken together, these results demonstrate that OsbHLH079 functions in delaying leaf yellowing by attenuating the ABA responses.
Collapse
Affiliation(s)
- Suk-Hwan Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jungwon Yoon
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hanna Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Jiang EY, Fan Y, Phung NV, Xia WY, Hu GR, Li FL. Overexpression of plastid lipid-associated protein in marine diatom enhances the xanthophyll synthesis and storage. Front Microbiol 2023; 14:1143017. [PMID: 37152729 PMCID: PMC10160619 DOI: 10.3389/fmicb.2023.1143017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Plastoglobules, which are lipoprotein structures surrounded by a single hydrophobic phospholipid membrane, are subcellular organelles in plant chromoplasts and chloroplasts. They contain neutral lipids, tocopherols, quinones, chlorophyll metabolites, carotenoids and their derivatives. Proteomic studies indicated that plastoglobules are involved in carotenoid metabolism and storage. In this study, one of the plastid lipid-associated proteins (PAP), the major protein in plastoglobules, was selected and overexpressed in Phaeodactylum tricornutum. The diameter of the plastoglobules in mutants was decreased by a mean of 19.2% versus the wild-type, while the fucoxanthin level was increased by a mean of 51.2%. All mutants exhibited morphological differences from the wild-type, including a prominent increase in the transverse diameter. Moreover, the unsaturated fatty acid levels were increased in different mutants, including an 18.9-59.3% increase in eicosapentaenoic acid content. Transcriptomic analysis revealed that PAP expression and the morphological changes altered xanthophyll synthesis and storage, which affected the assembly of the fucoxanthin chlorophyll a/c-binding protein and expression of antenna proteins as well as reduced the non-photochemical quenching activity of diatom cells. Therefore, metabolic regulation at the suborganelle level can be achieved by modulating PAP expression. These findings provide a subcellular structural site and target for synthetic biology to modify pigment and lipid metabolism in microalgae chassis cells.
Collapse
Affiliation(s)
- Er-Ying Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Yong Fan,
| | - Nghi-Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wan-Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guang-Rong Hu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Fu-Li Li,
| |
Collapse
|
4
|
Peršić V, Antunović Dunić J, Domjan L, Zellnig G, Cesar V. Time Course of Age-Linked Changes in Photosynthetic Efficiency of Spirodela polyrhiza Exposed to Cadmium. FRONTIERS IN PLANT SCIENCE 2022; 13:872793. [PMID: 35693160 PMCID: PMC9175006 DOI: 10.3389/fpls.2022.872793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Short-term assessment of adverse effects is essential for populations exposed to higher risk of environmental pollution. This study presents the time course of physiological and morphological changes attributed to cadmium, emphasizing age-linked differences in the susceptibility of photosynthetic apparatus of Spirodela polyrhiza fronds exposed to different cadmium concentrations. A four-frond colony represented by mother, daughter, and granddaughter plants was exposed to cadmium concentrations for 6, 24, and 72 h to establish its effect on different generations of the great duckweed. The duration of cadmium exposure accounted for the most variation in chlorophyll content as the most influential variable, and after 72 h, frond responsiveness was a function of cadmium concentration. Carotenoid contents behaved slightly differently in fronds of different ages, with the oldest mother frond exhibiting accelerated senescence. Chlorophyll fluorescence measurements showed that cadmium affects different photosynthetic electron transport segments relative to the frond's chloroplast structure level. Photosynthesis of mother fronds exposed to low cadmium and daughter fronds exposed to high cadmium was determined by the functionality of primary electron acceptance at the PSII level. Mother plants exposed to higher cadmium concentrations were characterized by closed and inactive reaction centers, dissipated energy outflux, and inhibited photosynthesis. Young fronds exposed to low and high cadmium concentrations were characterized by increased non-reducing reaction centers and thermal phase reduction, with activated dissipative mechanisms at high cadmium concentrations. Cadmium-induced changes in the ultrastructure of chloroplasts were visible after 6 h of exposure to lowest concentrations, with gradual degradation of the thylakoid system as the fronds aged. Younger fronds responded to cadmium more dynamically through molecular, physiological, and anatomical changes and tolerated a more reduced electron transport chain under given conditions than older fronds.
Collapse
Affiliation(s)
- Vesna Peršić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | - Lucija Domjan
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | - Vera Cesar
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
5
|
Hanano A, Perez-Matas E, Shaban M, Cusido RM, Murphy DJ. Characterization of lipid droplets from a Taxus media cell suspension and their potential involvement in trafficking and secretion of paclitaxel. PLANT CELL REPORTS 2022; 41:853-871. [PMID: 34984531 DOI: 10.1007/s00299-021-02823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Our paper describes the potential roles of lipid droplets of Taxus media cell suspension in the biosynthesis and secretion of paclitaxel and, therefore, highlights their involvement in improving its production. Paclitaxel (PTX) is a highly potent anticancer drug that is mainly produced using Taxus sp. cell suspension cultures. The main purpose of the current study is to characterize cellular LDs from T. media cell suspension with a particular focus on the biological connection of their associated proteins, the caleosins (CLOs), with the biosynthesis and secretion of PTX. A pure LD fraction obtained from T. media cells and characterized in terms of their proteome. Interestingly, the cellular LD in T. media sequester the PTX. This was confirmed in vitro, where about 96% of PTX (C0PTX,aq [mg L-1]) in the aqueous solution was partitioned into the isolated LDs. Furthermore, silencing of CLO-encoding genes in the T. media cells led to a net decrease in the number and size of LDs. This coincided with a significant reduction in expression levels of TXS, DBAT and DBTNBT, key genes in the PTX biosynthesis pathway. Subsequently, the biosynthesis of PTX was declined in cell culture. In contrast, treatment of cells with 13-hydroperoxide C18:3, a substrate of the peroxygenase activity, induced the expression of CLOs, and, therefore, the accumulation of cellular LDs in the T. media cells cultures, thus increasing the PTX secretion. The accumulation of stable LDs is critically important for effective secretion of PTX. This is modulated by the expression of caleosins, a class of LD-associated proteins with a dual role conferring the structural stability of LDs as well as regulating lipidic bioactive metabolites via their enzymatic activity, thus enhancing the biosynthesis of PTX.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| | - Edgar Perez-Matas
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII Sn., 08028, Barcelona, Spain
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Rosa M Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII Sn., 08028, Barcelona, Spain
| | - Denis J Murphy
- Genomics and Computational Biology Group, University of South Wales, Pontypridd, Wales, UK
| |
Collapse
|
6
|
Fisher KE, Krishnamoorthy P, Joens MS, Chory J, Fitzpatrick JAJ, Woodson JD. Singlet Oxygen Leads to Structural Changes to Chloroplasts during their Degradation in the Arabidopsis thaliana plastid ferrochelatase two Mutant. PLANT & CELL PHYSIOLOGY 2022; 63:248-264. [PMID: 34850209 DOI: 10.1093/pcp/pcab167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
During stress, chloroplasts produce large amounts of reactive oxygen species (ROS). Chloroplasts also contain many nutrients, including 80% of a leaf's nitrogen supply. Therefore, to protect cells from photo-oxidative damage and to redistribute nutrients to sink tissues, chloroplasts are prime targets for degradation. Multiple chloroplast degradation pathways are induced by photo-oxidative stress or nutrient starvation, but the mechanisms by which damaged or senescing chloroplasts are identified, transported to the central vacuole and degraded are poorly defined. Here, we investigated the structures involved with degrading chloroplasts induced by the ROS singlet oxygen (1O2) in the Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant. Under mild 1O2 stress, most fc2 chloroplasts appeared normal, but had reduced starch content. A subset of chloroplasts was degrading, and some protruded into the central vacuole via 'blebbing' structures. A 3D electron microscopy analysis demonstrated that up to 35% of degrading chloroplasts contained such structures. While the location of a chloroplast within a cell did not affect the likelihood of its degradation, chloroplasts in spongy mesophyll cells were degraded at a higher rate than those in palisade mesophyll cells. To determine if degrading chloroplasts have unique structural characteristics, allowing them to be distinguished from healthy chloroplasts, we analyzed fc2 seedlings grown under different levels of photo-oxidative stress. A correlation was observed among chloroplast swelling, 1O2 signaling and the state of degradation. Finally, plastoglobule (PG) enzymes involved in chloroplast disassembly were upregulated while PGs increased their association with the thylakoid grana, implicating an interaction between 1O2-induced chloroplast degradation and senescence pathways.
Collapse
Affiliation(s)
- Karen E Fisher
- The School of Plant Sciences, University of Arizona, 1140 E South Campus Dr., Tucson, AZ 85721, USA
| | - Praveen Krishnamoorthy
- Washington University Center for Cellular Imaging, Washington University School of Medicine, 660 W. Euclid Avenue, St. Louis, MO 63110, USA
| | | | - Joanne Chory
- Plant Biology Laboratory and the Howard Hughes Medical Institute, The Salk Institute, 10010 N Torrey Pines Rd., La Jolla, CA 92037, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, 660 W. Euclid Avenue, St. Louis, MO 63110, USA
- Departments of Cell Biology & Physiology and Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, 1140 E South Campus Dr., Tucson, AZ 85721, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine, 660 W. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Li P, Lv S, Zhang D, Su T, Xin X, Wang W, Zhao X, Yu Y, Zhang Y, Yu S, Zhang F. The Carotenoid Esterification Gene BrPYP Controls Pale-Yellow Petal Color in Flowering Chinese Cabbage ( Brassica rapa L. subsp. parachinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:844140. [PMID: 35592555 PMCID: PMC9111173 DOI: 10.3389/fpls.2022.844140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/14/2022] [Indexed: 05/13/2023]
Abstract
Carotenoid esterification plays indispensable roles in preventing degradation and maintaining the stability of carotenoids. Although the carotenoid biosynthetic pathway has been well characterized, the molecular mechanisms underlying carotenoid esterification, especially in floral organs, remain poorly understood. In this study, we identified a natural mutant flowering Chinese cabbage (Caixin, Brassica rapa L. subsp. chinensis var. parachinensis) with visually distinguishable pale-yellow petals controlled by a single recessive gene. Transmission electron microscopy (TEM) demonstrated that the chromoplasts in the yellow petals were surrounded by more fully developed plastoglobules compared to the pale-yellow mutant. Carotenoid analyses further revealed that, compared to the pale-yellow petals, the yellow petals contained high levels of esterified carotenoids, including lutein caprate, violaxanthin dilaurate, violaxanthin-myristate-laurate, 5,6epoxy-luttein dilaurate, lutein dilaurate, and lutein laurate. Based on bulked segregation analysis and fine mapping, we subsequently identified the critical role of a phytyl ester synthase 2 protein (PALE YELLOW PETAL, BrPYP) in regulating carotenoid pigmentation in flowering Chinese cabbage petals. Compared to the yellow wild-type, a 1,148 bp deletion was identified in the promoter region of BrPYP in the pale-yellow mutant, resulting in down-regulated expression. Transgenic Arabidopsis plants harboring beta-glucuronidase (GUS) driven by yellow (BrPYP Y ::GUS) and pale-yellow type (BrPYP PY ::GUS) promoters were subsequently constructed, revealing stronger expression of BrPYP Y ::GUS both in the leaves and petals. Furthermore, virus-induced gene silencing of BrPYP significantly altered petal color from yellow to pale yellow. These findings demonstrate the molecular mechanism of carotenoid esterification, suggesting a role of phytyl ester synthase in carotenoid biosynthesis of flowering Chinese cabbage.
Collapse
Affiliation(s)
- Peirong Li
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Sirui Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Tongbing Su
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Weihong Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yangjun Yu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yaowei Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Shuancang Yu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- *Correspondence: Shuancang Yu,
| | - Fenglan Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Fenglan Zhang,
| |
Collapse
|
8
|
Domínguez F, Cejudo FJ. Chloroplast dismantling in leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5905-5918. [PMID: 33959761 PMCID: PMC8760853 DOI: 10.1093/jxb/erab200] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 05/02/2023]
Abstract
In photosynthetic plant cells, chloroplasts act as factories of metabolic intermediates that support plant growth. Chloroplast performance is highly influenced by environmental cues. Thus, these organelles have the additional function of sensing ever changing environmental conditions, thereby playing a key role in harmonizing the growth and development of different organs and in plant acclimation to the environment. Moreover, chloroplasts constitute an excellent source of metabolic intermediates that are remobilized to sink tissues during senescence so that chloroplast dismantling is a tightly regulated process that plays a key role in plant development. Stressful environmental conditions enhance the generation of reactive oxygen species (ROS) by chloroplasts, which may lead to oxidative stress causing damage to the organelle. These environmental conditions trigger mechanisms that allow the rapid dismantling of damaged chloroplasts, which is crucial to avoid deleterious effects of toxic by-products of the degradative process. In this review, we discuss the effect of redox homeostasis and ROS generation in the process of chloroplast dismantling. Furthermore, we summarize the structural and biochemical events, both intra- and extraplastid, that characterize the process of chloroplast dismantling in senescence and in response to environmental stresses.
Collapse
Affiliation(s)
- Fernando Domínguez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | | |
Collapse
|
9
|
Espinoza-Corral R, Schwenkert S, Lundquist PK. Molecular changes of Arabidopsis thaliana plastoglobules facilitate thylakoid membrane remodeling under high light stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1571-1587. [PMID: 33783866 DOI: 10.1111/tpj.15253] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 05/21/2023]
Abstract
Plants require rapid responses to adapt to environmental stresses. This includes dramatic changes in the size and number of plastoglobule lipid droplets within chloroplasts. Although the morphological changes of plastoglobules are well documented, little is known about the corresponding molecular changes. To address this gap, we have compared the quantitative proteome, oligomeric state, prenyl-lipid content and kinase activities of Arabidopsis thaliana plastoglobules under unstressed and 5-day light-stressed conditions. Our results show a specific recruitment of proteins related to leaf senescence and jasmonic acid biosynthesis under light stress, and identify nearly half of the plastoglobule proteins in high native molecular weight masses. Additionally, a specific increase in plastoglobule carotenoid abundance under the light stress was consistent with enhanced thylakoid disassembly and leaf senescence, supporting a specific role for plastoglobules in senescence and thylakoid remodeling as an intermediate storage site for photosynthetic pigments. In vitro kinase assays of isolated plastoglobules demonstrated kinase activity towards multiple target proteins, which was more pronounced in the plastoglobules of unstressed than light-stressed leaf tissue, and which was diminished in plastoglobules of the abc1k1/abc1k3 double-mutant. These results strongly suggest that plastoglobule-localized ABC1 kinases hold endogenous kinase activity, as these were the only known or putative kinases identified in the isolated plastoglobules by deep bottom-up proteomics. Collectively, our study reveals targeted changes to the protein and prenyl-lipid composition of plastoglobules under light stress that present strategies by which plastoglobules appear to facilitate stress adaptation within chloroplasts.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Serena Schwenkert
- Department I, Plant Biochemistry, Ludwig Maximilians University Munich, Großhadernerstr. 2-4, Planegg-Martinsried, 82152, Germany
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
Tetraploid Citrumelo 4475 rootstocks improve diploid common clementine tolerance to long-term nutrient deficiency. Sci Rep 2021; 11:8902. [PMID: 33903646 PMCID: PMC8076223 DOI: 10.1038/s41598-021-88383-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/09/2021] [Indexed: 02/02/2023] Open
Abstract
Nutrient deficiency alters growth and the production of high-quality nutritious food. In Citrus crops, rootstock technologies have become a key tool for enhancing tolerance to abiotic stress. The use of doubled diploid rootstocks can improve adaptation to lower nutrient inputs. This study investigated leaf structure and ultrastructure and physiological and biochemical parameters of diploid common clementine scions (C) grafted on diploid (2x) and doubled diploid (4x) Carrizo citrange (C/CC2x and C/CC4x) and Citrumelo 4475 (C/CM2x and C/CM4x) rootstocks under optimal fertigation and after 7 months of nutrient deficiency. Rootstock ploidy level had no impact on structure but induced changes in the number and/or size of cells and some cell components of 2x common clementine leaves under optimal nutrition. Rootstock ploidy level did not modify gas exchanges in Carrizo citrange but induced a reduction in the leaf net photosynthetic rate in Citrumelo 4475. By assessing foliar damage, changes in photosynthetic processes and malondialdehyde accumulation, we found that C/CM4x were less affected by nutrient deficiency than the other scion/rootstock combinations. Their greater tolerance to nutrient deficiency was probably due to the better performance of the enzyme-based antioxidant system. Nutrient deficiency had similar impacts on C/CC2x and C/CC4x. Tolerance to nutrient deficiency can therefore be improved by rootstock polyploidy but remains dependent on the rootstock genotype.
Collapse
|
11
|
Barros JAS, Magen S, Lapidot-Cohen T, Rosental L, Brotman Y, Araújo WL, Avin-Wittenberg T. Autophagy is required for lipid homeostasis during dark-induced senescence. PLANT PHYSIOLOGY 2021; 185:1542-1558. [PMID: 33793926 PMCID: PMC8133563 DOI: 10.1093/plphys/kiaa120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/14/2020] [Indexed: 05/31/2023]
Abstract
Autophagy is an evolutionarily conserved mechanism that mediates the degradation of cytoplasmic components in eukaryotic cells. In plants, autophagy has been extensively associated with the recycling of proteins during carbon-starvation conditions. Even though lipids constitute a significant energy reserve, our understanding of the function of autophagy in the management of cell lipid reserves and components remains fragmented. To further investigate the significance of autophagy in lipid metabolism, we performed an extensive lipidomic characterization of Arabidopsis (Arabidopsis thaliana) autophagy mutants (atg) subjected to dark-induced senescence conditions. Our results revealed an altered lipid profile in atg mutants, suggesting that autophagy affects the homeostasis of multiple lipid components under dark-induced senescence. The acute degradation of chloroplast lipids coupled with the differential accumulation of triacylglycerols (TAGs) and plastoglobuli indicates an alternative metabolic reprogramming toward lipid storage in atg mutants. The imbalance of lipid metabolism compromises the production of cytosolic lipid droplets and the regulation of peroxisomal lipid oxidation pathways in atg mutants.
Collapse
Affiliation(s)
- Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Brazil
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram 9190401, Israel
| | - Sahar Magen
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram 9190401, Israel
| | - Taly Lapidot-Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Brazil
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram 9190401, Israel
| |
Collapse
|
12
|
Variations of Structural and Functional Traits of Azolla pinnata R. Br. in Response to Crude Oil Pollution in Arid Regions. SUSTAINABILITY 2021. [DOI: 10.3390/su13042142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In oil-producing countries, water pollution by crude petroleum oil frequently occurs and causes many environmental problems. This study aims to investigate the effect of crude petroleum oil on the growth and functional trails of the economically important freshwater plant Azolla pinnata R. Br. and to report on the plant’s resistance to this abiotic stress. Plants were raised in an open greenhouse experiment under different levels of crude oil pollution ranging from 0.5 to 2.0 g/L. Plant functional traits were monitored over a three-week period. Plant cover of A. pinnata was decreased with the increased levels of oil pollution. The total chlorophyll content decreased from 0.76 mg/g fresh weight under 2 g/L oil treatment after 21 days of growth. The chlorophyll a/b ratio exceeded the unity at crude oil treatments above 1 g/L, with values reaching 2.78 after seven days, while after 21 days, the ratio ranged from 1.14 to 1.31. The carotenoid content ranged from 0.17 mg/g in the control to 0.11 mg/g in the 2 g/L oil treatment. The carotenoid content varied over time in relation to DNA% damage, which increased from 3.63% in the control to 11.36% in the highest oil treatment level of 2 g/L. The crude oil stress caused severe damage in the frond tissues and chloroplast structure of A. pinnata, including a less compacted palisade, the malformation of the epidermis, the disintegration of parenchyma tissue, and the lysis and malformation of the chloroplasts. Since A. pinnata cannot withstand high concentrations of crude oil pollution, it is for use in the remediation of slightly polluted freshwaters up to 0.5 g/L.
Collapse
|
13
|
Xu C, Fan J, Shanklin J. Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. Prog Lipid Res 2020; 80:101069. [DOI: 10.1016/j.plipres.2020.101069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
|
14
|
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree. Prog Lipid Res 2020; 78:101029. [PMID: 32348789 DOI: 10.1016/j.plipres.2020.101029] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Roberto Espinoza-Corral
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
15
|
Xu XY, Akbar S, Shrestha P, Venugoban L, Devilla R, Hussain D, Lee J, Rug M, Tian L, Vanhercke T, Singh SP, Li Z, Sharp PJ, Liu Q. A Synergistic Genetic Engineering Strategy Induced Triacylglycerol Accumulation in Potato ( Solanum tuberosum) Leaf. FRONTIERS IN PLANT SCIENCE 2020; 11:215. [PMID: 32210994 PMCID: PMC7069356 DOI: 10.3389/fpls.2020.00215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/12/2020] [Indexed: 05/23/2023]
Abstract
Potato is the 4th largest staple food in the world currently. As a high biomass crop, potato harbors excellent potential to produce energy-rich compounds such as triacylglycerol as a valuable co-product. We have previously reported that transgenic potato tubers overexpressing WRINKLED1, DIACYLGLYCEROL ACYLTRANSFERASE 1, and OLEOSIN genes produced considerable levels of triacylglycerol. In this study, the same genetic engineering strategy was employed on potato leaves. The overexpression of Arabidopsis thaliana WRINKED1 under the transcriptional control of a senescence-inducible promoter together with Arabidopsis thaliana DIACYLGLYCEROL ACYLTRANSFERASE 1 and Sesamum indicum OLEOSIN driven by the Cauliflower Mosaic Virus 35S promoter and small subunit of Rubisco promoter respectively, resulted in an approximately 30- fold enhancement of triacylglycerols in the senescent transgenic potato leaves compared to the wild type. The increase of triacylglycerol in the transgenic potato leaves was accompanied by perturbations of carbohydrate accumulation, apparent in a reduction in starch content and increased total soluble sugars, as well as changes of polar membrane lipids at different developmental stages. Microscopic and biochemical analysis further indicated that triacylglycerols and lipid droplets could not be produced in chloroplasts, despite the increase and enlargement of plastoglobuli at the senescent stage. Possibly enhanced accumulation of fatty acid phytyl esters in the plastoglobuli were reflected in transgenic potato leaves relative to wild type. It is likely that the plastoglobuli may have hijacked some of the carbon as the result of WRINKED1 expression, which could be a potential factor restricting the effective accumulation of triacylglycerols in potato leaves. Increased lipid production was also observed in potato tubers, which may have affected the tuberization to a certain extent. The expression of transgenes in potato leaf not only altered the carbon partitioning in the photosynthetic source tissue, but also the underground sink organs which highly relies on the leaves in development and energy deposition.
Collapse
Affiliation(s)
- Xiao-yu Xu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Sehrish Akbar
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | | | | - Dawar Hussain
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Jiwon Lee
- Center for Advanced Microscopy, The Australian National University, Canberra, ACT, Australia
| | - Melanie Rug
- Center for Advanced Microscopy, The Australian National University, Canberra, ACT, Australia
| | - Lijun Tian
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | | - Zhongyi Li
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Peter J. Sharp
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Qing Liu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
16
|
Solovchenko A, Baulina O, Ptushenko O, Gorelova O. Ultrastructural patterns of photoacclimation and photodamage to photosynthetic algae cell under environmental stress. PHYSIOLOGIA PLANTARUM 2019; 166:251-263. [PMID: 30561763 DOI: 10.1111/ppl.12912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 05/16/2023]
Abstract
In oxygenic phototrophs including unicellular algae, acclimation to and damage by diverse environmental stresses induce profound changes in the ultrastructural organization of the cell. These alterations reflect acclimation of the photosynthetic apparatus to unfavorable conditions (mainly reduction of the chloroplast and its membranal system) and rewiring of the photo-fixed carbon fluxes in the cell. These changes, eventually pursuing mitigation of the photooxidative damage risk, are manifested by the formation of diverse carbon-rich inclusions. Although the physiological and molecular basis of these processes are well understood, the ultrastructural manifestations of the stress responses are often fragmented and frequently controversial. This minireview attempts to generalize on the ultrastructural patterns accompanying stresses in the photosynthetic cell, involving the concerted rearrangements of its assimilatory and storage compartments. The changes characteristic of normal functioning and emergency reduction of the chloroplast thylakoids under harsh stress are also addressed. Special attention is paid to the manifestations of the engagement of photoprotection via active (energy-dependent non-photochemical quenching) and passive mechanisms (e.g. optical shielding by secondary carotenoids). We also underline the potentially important role of autophagy-like processes and provide a more integral view of ultrastructural rearrangements under stress.
Collapse
Affiliation(s)
- Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Moscow State University, Moscow, 119234, Russia
- Institute of Agriculture and Technolgy, Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Olga Baulina
- Department of Bioengineering, Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| | - Oksana Ptushenko
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119991, Russia
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
17
|
Fan X, Chang W, Feng F, Song F. Responses of photosynthesis-related parameters and chloroplast ultrastructure to atrazine in alfalfa (Medicago sativa L.) inoculated with arbuscular mycorrhizal fungi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:102-108. [PMID: 30253284 DOI: 10.1016/j.ecoenv.2018.09.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/13/2018] [Accepted: 09/06/2018] [Indexed: 05/25/2023]
Abstract
Atrazine is an ingredient in photosynthesis-inhibiting herbicides and has been widely used to combat weeds in farmland. However, most atrazine that is applied fails to degrade in the soil and subsequently affects non-target plants. In this study, we investigated the influence of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae on the photosynthesis-related parameters, chlorophyll content, and chloroplast ultrastructure in alfalfa plants, some of which had been exposed to atrazine. Our results showed that the percentage of AMF hyphal colonization reached 91.23% 35 days after the alfalfa was planted, which suggests a symbiotic relationship between F. mosseae and alfalfa roots. F. mosseae alleviated the inhibition of net photosynthesis and stomatal function significantly in alfalfa exposed to atrazine for 24 h. A chlorophyll fluorescence analysis revealed that F. mosseae prevented a major reduction in the performance of photosystem II (PSII) photochemistry in the presence of atrazine, such as the relative decrease of Fv/Fm between the non-mycorrhizal and F. mosseae mycorrhizal treatments was 4.4% and 5.8% after 24 and 48 h of atrazine exposure time. However, F. mosseae has no significant alleviation on a sharp reduction in the chlorophyll a, chlorophyll b and carotenoid content in alfalfa exposed to atrazine. For the chloroplast ultrastructure in alfalfa exposed to atrazine, the number of both plastoglobules and partial granal stacks was greater in the presence of F. mosseae. In general, our results indicate that the F. mosseae inoculation was beneficial to sustain photosynthesis-related performance, such as net photosynthesis, stomatal conductance, the maximum quantum yield (Fv/Fm) and effective quantum yield (ΦPSII) of PSII photochemistry in alfalfa after exposure to atrazine, because the mycorrhizal alfalfa had a greater number of plastoglobules and granal stacks in the chloroplast, thereby enhancing its resistance to the oxidative damage induced by atrazine.
Collapse
Affiliation(s)
- Xiaoxu Fan
- Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fujuan Feng
- Northeast Forestry University, Harbin 150040, China.
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
18
|
van Wijk KJ, Kessler F. Plastoglobuli: Plastid Microcompartments with Integrated Functions in Metabolism, Plastid Developmental Transitions, and Environmental Adaptation. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:253-289. [PMID: 28125283 DOI: 10.1146/annurev-arplant-043015-111737] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plastoglobuli (PGs) are plastid lipoprotein particles surrounded by a membrane lipid monolayer. PGs contain small specialized proteomes and metabolomes. They are present in different plastid types (e.g., chloroplasts, chromoplasts, and elaioplasts) and are dynamic in size and shape in response to abiotic stress or developmental transitions. PGs in chromoplasts are highly enriched in carotenoid esters and enzymes involved in carotenoid metabolism. PGs in chloroplasts are associated with thylakoids and contain ∼30 core proteins (including six ABC1 kinases) as well as additional proteins recruited under specific conditions. Systems analysis has suggested that chloroplast PGs function in metabolism of prenyl lipids (e.g., tocopherols, plastoquinone, and phylloquinone); redox and photosynthetic regulation; plastid biogenesis; and senescence, including recycling of phytol, remobilization of thylakoid lipids, and metabolism of jasmonate. These functionalities contribute to chloroplast PGs' role in responses to stresses such as high light and nitrogen starvation. PGs are thus lipid microcompartments with multiple functions integrated into plastid metabolism, developmental transitions, and environmental adaptation. This review provides an in-depth overview of PG experimental observations, summarizes the present understanding of PG features and functions, and provides a conceptual framework for PG research and the realization of opportunities for crop improvement.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853;
| | - Felix Kessler
- Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland;
| |
Collapse
|
19
|
Ahrazem O, Gómez-Gómez L, Rodrigo MJ, Avalos J, Limón MC. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. Int J Mol Sci 2016; 17:E1781. [PMID: 27792173 PMCID: PMC5133782 DOI: 10.3390/ijms17111781] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 11/17/2022] Open
Abstract
Apocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs), a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon-carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends. From the identification of the first CCD enzyme in plants, an increasing number of CCDs have been identified in many other species, including microorganisms, proving to be a ubiquitously distributed and evolutionarily conserved enzymatic family. This review focuses on CCDs from plants, algae, fungi, and bacteria, describing recent progress in their functions and regulatory mechanisms in relation to the different roles played by the apocarotenoids in these organisms.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - María J Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento de Ciencia de los Alimentos, Calle Catedrático Agustín Escardino 7, 46980 Paterna, Spain.
| | - Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain.
| | - María Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain.
| |
Collapse
|
20
|
Shibuya K, Yamada T, Ichimura K. Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5909-5918. [PMID: 27625416 DOI: 10.1093/jxb/erw337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Petal senescence, or programmed cell death (PCD) in petals, is a developmentally regulated and genetically programmed process. During petal senescence, petal cells show morphological changes associated with PCD: tonoplast rupture and rapid destruction of the cytoplasm. This type of PCD is classified as vacuolar cell death or autolytic PCD based on morphological criteria. In PCD of petal cells, characteristic morphological features including an autophagy-like process, chromatin condensation, and nuclear fragmentation are also observed. While the phytohormone ethylene is known to play a crucial role in petal senescence in some plant species, little is known about the early regulation of ethylene-independent petal senescence. Recently, a NAC (NAM/ATAF1,2/CUC2) transcription factor was reported to control the progression of PCD during petal senescence in Japanese morning glory, which shows ethylene-independent petal senescence. In ethylene-dependent petal senescence, functional analyses of transcription factor genes have revealed the involvement of a basic helix-loop-helix protein and a homeodomain-leucine zipper protein in the transcriptional regulation of the ethylene biosynthesis pathway. Here we review the recent advances in our knowledge of petal senescence, mostly focusing on the morphology of senescing petal cells and the regulatory mechanisms of PCD by senescence-associated transcription factors during petal senescence.
Collapse
Affiliation(s)
- Kenichi Shibuya
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba 305-0852, Japan
| | - Tetsuya Yamada
- Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazuo Ichimura
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba 305-0852, Japan
| |
Collapse
|
21
|
Damrow R, Maldener I, Zilliges Y. The Multiple Functions of Common Microbial Carbon Polymers, Glycogen and PHB, during Stress Responses in the Non-Diazotrophic Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2016; 7:966. [PMID: 27446007 PMCID: PMC4914499 DOI: 10.3389/fmicb.2016.00966] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/03/2016] [Indexed: 12/31/2022] Open
Abstract
Classical microbial carbon polymers such as glycogen and polyhydroxybutyrate (PHB) have a crucial impact as both a sink and a reserve under macronutrient stress conditions. Most microbial species exclusively synthesize and degrade either glycogen or PHB. A few bacteria such as the phototrophic model organism Synechocystis sp. PCC 6803 surprisingly produce both physico-chemically different polymers under conditions of high C to N ratios. For the first time, the function and interrelation of both carbon polymers in non-diazotrophic cyanobacteria are analyzed in a comparative physiological study of single- and double-knockout mutants (ΔglgC; ΔphaC; ΔglgC/ΔphaC), respectively. Most of the observed phenotypes are explicitly related to the knockout of glycogen synthesis, highlighting the metabolic, energetic, and structural impact of this process whenever cells switch from an active, photosynthetic 'protein status' to a dormant 'glycogen status'. The carbon flux regulation into glycogen granules is apparently crucial for both phycobilisome degradation and thylakoid layer disassembly in the presence of light. In contrast, PHB synthesis is definitely not involved in this primary acclimation response. Moreover, the very weak interrelations between the two carbon-polymer syntheses indicate that the regulation and role of PHB synthesis in Synechocystis sp. PCC 6803 is different from glycogen synthesis.
Collapse
Affiliation(s)
- Ramon Damrow
- Section of Plant Biochemistry, Institute of Biology, Humboldt-Universität zu Berlin Berlin, Germany
| | - Iris Maldener
- Section of Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen Tübingen, Germany
| | - Yvonne Zilliges
- Section of Plant Biochemistry, Institute of Biology, Humboldt-Universität zu BerlinBerlin, Germany; Section of Biophysics and Photosynthesis, Institute of Physics, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
22
|
Virdi KS, Wamboldt Y, Kundariya H, Laurie JD, Keren I, Kumar KRS, Block A, Basset G, Luebker S, Elowsky C, Day PM, Roose JL, Bricker TM, Elthon T, Mackenzie SA. MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development. MOLECULAR PLANT 2016; 9:245-260. [PMID: 26584715 DOI: 10.1016/j.molp.2015.10.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 05/20/2023]
Abstract
As metabolic centers, plant organelles participate in maintenance, defense, and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We investigated the msh1 phenotype using hemi-complementation mutants and transgene-null segregants from RNAi suppression lines to sub-compartmentalize MSH1 effects. We show that MSH1 expression is spatially regulated, specifically localizing to plastids within the epidermis and vascular parenchyma. The protein binds DNA and localizes to plastid and mitochondrial nucleoids, but fractionation and protein-protein interactions data indicate that MSH1 also associates with the thylakoid membrane. Plastid MSH1 depletion results in variegation, abiotic stress tolerance, variable growth rate, and delayed maturity. Depletion from mitochondria results in 7%-10% of plants altered in leaf morphology, heat tolerance, and mitochondrial genome stability. MSH1 does not localize within the nucleus directly, but plastid depletion produces non-genetic changes in flowering time, maturation, and growth rate that are heritable independent of MSH1. MSH1 depletion alters non-photoactive redox behavior in plastids and a sub-set of mitochondrially altered lines. Ectopic expression produces deleterious effects, underlining its strict expression control. Unraveling the complexity of the MSH1 effect offers insight into triggers of plant-specific, transgenerational adaptation behaviors.
Collapse
Affiliation(s)
- Kamaldeep S Virdi
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Yashitola Wamboldt
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Hardik Kundariya
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - John D Laurie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Ido Keren
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - K R Sunil Kumar
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Anna Block
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Gilles Basset
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Steve Luebker
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Christian Elowsky
- Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA
| | - Philip M Day
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Johnna L Roose
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Terry M Bricker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thomas Elthon
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Sally A Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
23
|
Spicher L, Glauser G, Kessler F. Lipid Antioxidant and Galactolipid Remodeling under Temperature Stress in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:167. [PMID: 26925083 PMCID: PMC4756161 DOI: 10.3389/fpls.2016.00167] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/31/2016] [Indexed: 05/22/2023]
Abstract
Increased temperatures are a major scenario in climate change and present a threat to plant growth and agriculture. Plant growth depends on photosynthesis. To function optimally, the photosynthetic machinery at the thylakoid membrane in chloroplasts continuously adapts to changing conditions. Here, we set out to discover the most important changes arising at the lipid level under high temperature (38°C) in comparison to mild (20°C) and moderately cold temperature (10°C) using a non-targeted lipidomics approach. To our knowledge, no comparable experiment at the level of the whole membrane system has been documented. Here, 791 molecular species were detected by mass spectrometry and ranged from membrane lipids, prenylquinones (tocopherols, phylloquinone, plastoquinone, plastochromanol), carotenoids (β-carotene, xanthophylls) to numerous unidentified compounds. At high temperatures, the most striking changes were observed for the prenylquinones (α-tocopherol and plastoquinone/-ol) and the degree of saturation of fatty acids in galactolipids and phosphatidyl ethanolamine. Photosynthetic efficiency at high temperature was not affected but at moderately cold temperature mild photoinhibition occurred. The results indicate, that the thylakoid membrane is remodeled with regard to fatty acid saturation in galactolipids and lipid antioxidant concentrations under high temperature stress. The data strongly suggest, that massively increased concentrations of α-tocopherol and plastoquinone are important for protection against high temperature stress and proper function of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Livia Spicher
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of NeuchâtelNeuchâtel, Switzerland
| | - Felix Kessler
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
- *Correspondence: Felix Kessler
| |
Collapse
|
24
|
Rottet S, Devillers J, Glauser G, Douet V, Besagni C, Kessler F. Identification of Plastoglobules as a Site of Carotenoid Cleavage. FRONTIERS IN PLANT SCIENCE 2016; 7:1855. [PMID: 28018391 PMCID: PMC5161054 DOI: 10.3389/fpls.2016.01855] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/24/2016] [Indexed: 05/18/2023]
Abstract
Carotenoids play an essential role in light harvesting and protection from excess light. During chloroplast senescence carotenoids are released from their binding proteins and are eventually metabolized. Carotenoid cleavage dioxygenase 4 (CCD4) is involved in carotenoid breakdown in senescing leaf and desiccating seed, and is part of the proteome of plastoglobules (PG), which are thylakoid-associated lipid droplets. Here, we demonstrate that CCD4 is functionally active in PG. Leaves of Arabidopsis thaliana ccd4 mutants constitutively expressing CCD4 fused to yellow fluorescent protein showed strong fluorescence in PG and reduced carotenoid levels upon dark-induced senescence. Lipidome-wide analysis indicated that β-carotene, lutein, and violaxanthin were the principle substrates of CCD4 in vivo and were cleaved in senescing chloroplasts. Moreover, carotenoids were shown to accumulate in PG of ccd4 mutant plants during senescence, indicating translocation of carotenoids to PG prior to degradation.
Collapse
Affiliation(s)
- Sarah Rottet
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Julie Devillers
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of NeuchâtelNeuchâtel, Switzerland
| | - Véronique Douet
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Céline Besagni
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Felix Kessler
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
- *Correspondence: Felix Kessler,
| |
Collapse
|
25
|
Sabia A, Baldisserotto C, Biondi S, Marchesini R, Tedeschi P, Maietti A, Giovanardi M, Ferroni L, Pancaldi S. Re-cultivation of Neochloris oleoabundans in exhausted autotrophic and mixotrophic media: the potential role of polyamines and free fatty acids. Appl Microbiol Biotechnol 2015; 99:10597-609. [DOI: 10.1007/s00253-015-6908-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/20/2015] [Accepted: 08/01/2015] [Indexed: 11/28/2022]
|
26
|
Spicher L, Kessler F. Unexpected roles of plastoglobules (plastid lipid droplets) in vitamin K1 and E metabolism. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:123-9. [PMID: 26037391 DOI: 10.1016/j.pbi.2015.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 05/09/2023]
Abstract
Tocopherol (vitamin E) and phylloquinone (vitamin K1) are lipid-soluble antioxidants that can only be synthesized by photosynthetic organisms. These compounds function primarily at the thylakoid membrane but are also present in chloroplast lipid droplets, also known as plastoglobules (PG). Depending on environmental conditions and stage of plant development, changes in the content, number and size of PG occur. PG are directly connected to the thylakoid membrane via the outer lipid leaflet. Apart from storage, PG are active in metabolism and likely trafficking of diverse lipid species. This review presents recent advances on how plastoglobules are implicated in the biosynthesis and metabolism of vitamin E and K.
Collapse
Affiliation(s)
- Livia Spicher
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Felix Kessler
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
27
|
Fatihi A, Latimer S, Schmollinger S, Block A, Dussault PH, Vermaas WFJ, Merchant SS, Basset GJ. A Dedicated Type II NADPH Dehydrogenase Performs the Penultimate Step in the Biosynthesis of Vitamin K1 in Synechocystis and Arabidopsis. THE PLANT CELL 2015; 27:1730-41. [PMID: 26023160 PMCID: PMC4498204 DOI: 10.1105/tpc.15.00103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/07/2015] [Indexed: 05/04/2023]
Abstract
Mutation of Arabidopsis thaliana NAD(P)H DEHYDROGENASE C1 (NDC1; At5g08740) results in the accumulation of demethylphylloquinone, a late biosynthetic intermediate of vitamin K1. Gene coexpression and phylogenomics analyses showed that conserved functional associations occur between vitamin K biosynthesis and NDC1 homologs throughout the prokaryotic and eukaryotic lineages. Deletion of Synechocystis ndbB, which encodes for one such homolog, resulted in the same defects as those observed in the cyanobacterial demethylnaphthoquinone methyltransferase knockout. Chemical modeling and assay of purified demethylnaphthoquinone methyltransferase demonstrated that, by virtue of the strong electrophilic nature of S-adenosyl-l-methionine, the transmethylation of the demethylated precursor of vitamin K is strictly dependent on the reduced form of its naphthoquinone ring. NDC1 was shown to catalyze such a prerequisite reduction by using NADPH and demethylphylloquinone as substrates and flavine adenine dinucleotide as a cofactor. NDC1 displayed Michaelis-Menten kinetics and was markedly inhibited by dicumarol, a competitive inhibitor of naphthoquinone oxidoreductases. These data demonstrate that the reduction of the demethylnaphthoquinone ring represents an authentic step in the biosynthetic pathway of vitamin K, that this reaction is enzymatically driven, and that a selection pressure is operating to retain type II NAD(P)H dehydrogenases in this process.
Collapse
Affiliation(s)
- Abdelhak Fatihi
- Department of Agronomy and Horticulture, and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Scott Latimer
- Department of Agronomy and Horticulture, and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Stefan Schmollinger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Anna Block
- Department of Agronomy and Horticulture, and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Patrick H Dussault
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Wim F J Vermaas
- School of Life Sciences and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Gilles J Basset
- Department of Agronomy and Horticulture, and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| |
Collapse
|
28
|
Springer A, Acker G, Bartsch S, Bauerschmitt H, Reinbothe S, Reinbothe C. Differences in gene expression between natural and artificially induced leaf senescence in barley. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:180-91. [PMID: 25637827 DOI: 10.1016/j.jplph.2015.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/24/2014] [Accepted: 01/02/2015] [Indexed: 05/22/2023]
Abstract
Senescence is the last step of leaf development in the life span of an annual plant. Senescence can be induced prematurely by treating leaf tissues with jasmonic acid methyl ester (methyl jasmonate, MeJA). During both senescence programmes, drastic changes occur at the biochemical, cellular and ultra-structural levels that were compared here for primary leaves of barley (Hordeum vulgare L.). Our findings indicate that both types of senescence are similar with respect to the morphological changes including the loss of chlorophyll, disintegration of thylakoids, and formation of plastoglobules. However, the time elapsed for reaching senescence completion was different and ranged from 7 to 8 days for artificially senescing, MeJA-treated plants to 7-8 weeks for naturally senescing plants. Pulse-labelling studies along with RNA and protein gel blot analyses showed differential changes in the expression of both plastid and nuclear genes coding for photosynthetic proteins. Several unique messenger products accumulated in naturally and artificially senescing, MeJA-treated leaves. Detailed expression and crosslinking studies revealed that pheophorbide a oxygenase (PAO), a previously implicated key enzyme of chlorophyll breakdown, is most likely not rate-limiting for chlorophyll destruction under both senescence conditions. Metabolite profiling identified differential changes in the composition of carotenoid derivatives and prenyl-lipids to occur in naturally senescing and artificially senescing plants that underscored the differences between both senescence programmes.
Collapse
Affiliation(s)
- Armin Springer
- Universität Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | - Georg Acker
- Universität Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | - Sandra Bartsch
- Universität Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | | | - Steffen Reinbothe
- Université Joseph Fourier, LBFA, BP53, F-38041 Grenoble cedex 9, France.
| | | |
Collapse
|
29
|
Rottet S, Besagni C, Kessler F. The role of plastoglobules in thylakoid lipid remodeling during plant development. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:889-99. [PMID: 25667966 DOI: 10.1016/j.bbabio.2015.02.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 12/16/2022]
Abstract
Photosynthesis is the key bioenergetic process taking place in the chloroplast. The components of the photosynthetic machinery are embedded in a highly dynamic matrix, the thylakoid membrane. This membrane has the capacity to adapt during developmental transitions and under stress conditions. The galactolipids are the major polar lipid components of the thylakoid membrane conferring bilayer properties, while neutral thylakoid lipids such as the prenyllipids and carotenoids contribute to essential functions such as electron transport and photoprotection. Despite a large number of studies, the intriguing processes of thylakoid membrane biogenesis and dynamics remain unsolved. Plastoglobules, thylakoid-associated lipid droplets, appear to actively participate in thylakoid function from biogenesis to senescence. Recruitment of specific proteins enables the plastoglobules to act in metabolite synthesis, repair and disposal under changing environmental conditions and developmental stages. In this review, we describe plastoglobules as thylakoid membrane microdomains and discuss their involvement in lipid remodeling during stress and in the conversion from one plastid type to another. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Sarah Rottet
- Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Céline Besagni
- Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Felix Kessler
- Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
30
|
Davidi L, Levin Y, Ben-Dor S, Pick U. Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil. PLANT PHYSIOLOGY 2015; 167:60-79. [PMID: 25404729 PMCID: PMC4281002 DOI: 10.1104/pp.114.248450] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The halotolerant green alga Dunaliella bardawil is unique in that it accumulates under stress two types of lipid droplets: cytoplasmatic lipid droplets (CLD) and β-carotene-rich (βC) plastoglobuli. Recently, we isolated and analyzed the lipid and pigment compositions of these lipid droplets. Here, we describe their proteome analysis. A contamination filter and an enrichment filter were utilized to define core proteins. A proteome database of Dunaliella salina/D. bardawil was constructed to aid the identification of lipid droplet proteins. A total of 124 and 42 core proteins were identified in βC-plastoglobuli and CLD, respectively, with only eight common proteins. Dunaliella spp. CLD resemble cytoplasmic droplets from Chlamydomonas reinhardtii and contain major lipid droplet-associated protein and enzymes involved in lipid and sterol metabolism. The βC-plastoglobuli proteome resembles the C. reinhardtii eyespot and Arabidopsis (Arabidopsis thaliana) plastoglobule proteomes and contains carotene-globule-associated protein, plastid-lipid-associated protein-fibrillins, SOUL heme-binding proteins, phytyl ester synthases, β-carotene biosynthesis enzymes, and proteins involved in membrane remodeling/lipid droplet biogenesis: VESICLE-INDUCING PLASTID PROTEIN1, synaptotagmin, and the eyespot assembly proteins EYE3 and SOUL3. Based on these and previous results, we propose models for the biogenesis of βC-plastoglobuli and the biosynthesis of β-carotene within βC-plastoglobuli and hypothesize that βC-plastoglobuli evolved from eyespot lipid droplets.
Collapse
Affiliation(s)
- Lital Davidi
- Department of Biological Chemistry (L.D., U.P.), Nancy and Stephen Grand Israel National Center for Personalized Medicine (Y.L.), and Biological Services Unit (S.B.-D.), Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yishai Levin
- Department of Biological Chemistry (L.D., U.P.), Nancy and Stephen Grand Israel National Center for Personalized Medicine (Y.L.), and Biological Services Unit (S.B.-D.), Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shifra Ben-Dor
- Department of Biological Chemistry (L.D., U.P.), Nancy and Stephen Grand Israel National Center for Personalized Medicine (Y.L.), and Biological Services Unit (S.B.-D.), Weizmann Institute of Science, Rehovot 76100, Israel
| | - Uri Pick
- Department of Biological Chemistry (L.D., U.P.), Nancy and Stephen Grand Israel National Center for Personalized Medicine (Y.L.), and Biological Services Unit (S.B.-D.), Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
31
|
van Doorn WG, Prisa D. Lipid globules on the plastid surface in Iris tepal epidermis cells during tepal maturation and senescence. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1714-1721. [PMID: 25213705 DOI: 10.1016/j.jplph.2014.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 06/03/2023]
Abstract
Epidermis cells in the outer tepals of Iris flowers (Iris×hollandica, cv. Blue Magic) start programmed cell death (PCD) prior to floral opening. The tepals show visible senescence symptoms three days after full opening. Visible senescence coincides with collapse (death) of the upper epidermis cells. In these cells, electron-dense particles (plastoglobuli), membranes, and oil bodies were observed in the plastid interior. Electron-dense globules similar to plastoglobuli, thus apparently mainly consisting of lipids, were found on the plastid surface, from before flower opening until cell death. Such electron-dense globules were also present in the cytosol. The size of some of the globules on the plastid surface increased with time. The globules are likely involved in transfer of lipidic/proteinaceous material from the plastid to the cytosol. As the plastids contained ample oil bodies, up to the time of cell death, cell death was likely not due to lack of reserves. Mitochondrial ultrastructure also remained the same until cell death. The role of mitochondria in PCD is discussed.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Domenico Prisa
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA-VIV), Via dei Fiori 8, 51012 Pescia, Italy
| |
Collapse
|
32
|
Gámez-Arjona FM, Raynaud S, Ragel P, Mérida A. Starch synthase 4 is located in the thylakoid membrane and interacts with plastoglobule-associated proteins in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:305-16. [PMID: 25088399 DOI: 10.1111/tpj.12633] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 05/04/2023]
Abstract
Starch synthesis requires the formation of a primer that can be subsequently elongated and branched. How this primer is produced, however, remains unknown. The control of the number of starch granules produced per chloroplast is also a matter of debate. We previously showed starch synthase 4 (SS4) to be involved in both processes, although the mechanisms involved are yet to be fully characterised. The present work shows that SS4 displays a specific localization different from other starch synthases. Thus, this protein is located in specific areas of the thylakoid membrane and interacts with the proteins fibrillin 1a (FBN1a) and 1b (FBN1b), which are mainly located in plastoglobules. SS4 would seem to be associated with plastoglobules attached to the thylakoids (or to that portion of the thylakoids where plastoglobules have originated), forming a complex that includes the FBN1s and other as-yet unidentified proteins. The present results also indicate that the localization pattern of SS4, and its interactions with the FBN1 proteins, are mediated through its N-terminal region, which contains two long coiled-coil motifs. The localization of SS4 in specific areas of the thylakoid membrane suggests that starch granules are originated at specific regions of the chloroplast.
Collapse
Affiliation(s)
- Francisco M Gámez-Arjona
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-US, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | | | | | | |
Collapse
|
33
|
Coordinated rearrangements of assimilatory and storage cell compartments in a nitrogen-starving symbiotic chlorophyte cultivated under high light. Arch Microbiol 2014; 197:181-95. [PMID: 25239707 DOI: 10.1007/s00203-014-1036-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/01/2014] [Accepted: 09/06/2014] [Indexed: 12/28/2022]
Abstract
A quantitative micromorphometric study of the cell compartment rearrangements was performed in a symbiotic chlorophyte Desmodesmus sp. 3Dp86E-1 grown on nitrogen (N) replete or N-free medium under 480 μmol PAR quanta m(-2) s(-1). The changes in the chloroplast, intraplastidial, and cytoplasmic inclusions induced by high light (HL) and N starvation were similar to those characteristic of free-living chlorophytes. The N-sufficient culture responded to HL by a transient swelling of the thylakoid lumen and a decline in photosynthetic efficiency followed by its recovery. In the N-starving cells, a more rapid expansion and thylakoid swelling occurred along with the irreversible decline in the photosynthetic efficiency. Differential induction of starch grains, oil bodies, and cell wall polysaccharides depending on the stress exposure and type was recorded. Tight relationships between the changes in the assimilatory and storage compartments in the stressed Desmodesmus sp. cells were revealed.
Collapse
|
34
|
Joaquín-Ramos A, Huerta-Ocampo JÁ, Barrera-Pacheco A, De León-Rodríguez A, Baginsky S, Barba de la Rosa AP. Comparative proteomic analysis of amaranth mesophyll and bundle sheath chloroplasts and their adaptation to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1423-1435. [PMID: 25046763 DOI: 10.1016/j.jplph.2014.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
The effect of salt stress was analyzed in chloroplasts of Amaranthus cruentus var. Amaranteca, a plant NAD-malic enzyme (NAD-ME) type. Morphology of chloroplasts from bundle sheath (BSC) and mesophyll (MC) was observed by transmission electron microscopy (TEM). BSC and MC from control plants showed similar morphology, however under stress, changes in BSC were observed. The presence of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) was confirmed by immunohistochemical staining in both types of chloroplasts. Proteomic profiles of thylakoid protein complexes from BSC and MC, and their changes induced by salt stress were analyzed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (2-D BN/SDS-PAGE). Differentially accumulated protein spots were analyzed by LC-MS/MS. Although A. cruentus photosynthetic tissue showed the Kranz anatomy, the thylakoid proteins showed some differences at photosystem structure level. Our results suggest that A. cruentus var. Amaranteca could be better classified as a C3-C4 photosynthetic plant.
Collapse
Affiliation(s)
- Ahuitzolt Joaquín-Ramos
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - José Á Huerta-Ocampo
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - Alberto Barrera-Pacheco
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - Antonio De León-Rodríguez
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - Sacha Baginsky
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie, Abteilung Pflanzenbiochemie, Weinbergweg 22 (Biozentrum), 06120 Halle (Saale), Germany
| | - Ana P Barba de la Rosa
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, Mexico.
| |
Collapse
|
35
|
Peramuna A, Summers ML. Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme. Arch Microbiol 2014; 196:881-90. [PMID: 25135835 DOI: 10.1007/s00203-014-1027-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/03/2014] [Accepted: 08/06/2014] [Indexed: 12/12/2022]
Abstract
Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophylic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen-fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), α-tocopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids, whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location, these structures represent a novel sub-organelle in cyanobacteria.
Collapse
Affiliation(s)
- Anantha Peramuna
- Department of Biology, California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330-8303, USA
| | | |
Collapse
|
36
|
Gabotti D, Caporali E, Manzotti P, Persico M, Vigani G, Consonni G. The maize pentatricopeptide repeat gene empty pericarp4 (emp4) is required for proper cellular development in vegetative tissues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:25-35. [PMID: 24767112 DOI: 10.1016/j.plantsci.2014.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
The empty pericarp4 (emp4) gene encodes a mitochondrion-targeted pentatricopeptide repeat (ppr) protein that is involved in the regulation of mitochondrial gene expression and is required for seed development. In homozygous mutant emp4-1 kernels the endosperm is drastically reduced and the embryo is retarded in its development and unable to germinate. With the aim of investigating the role of emp4 during post-germinative development, homozygous mutant seedlings were obtained by cultivation of excised immature embryos on a synthetic medium. In the mutants both germination frequency as well as the proportion of seedlings reaching the first and second leaf stages were reduced. The anatomy of the leaf blades and the root cortex was not affected by the mutation, however severe alterations such as the presence of empty cells or cells containing poorly organized organelles, were observed. Moreover both mitochondria and chloroplast functionality was impaired in the mutants. Our hypothesis is that mitochondrial impairment, the primary effect of the mutation, causes secondary effects on the development of other cellular organelles. Ultra-structural features of mutant leaf blade mesophyll cells are reminiscent of cells undergoing senescence. Interestingly, both structural and functional damage was less severe in seedlings grown in total darkness compared with those exposed to light, thus suggesting that the effects of the mutation are enhanced by the presence of light.
Collapse
Affiliation(s)
- Damiano Gabotti
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Elisabetta Caporali
- Dipartimento di Bioscienze, Università degli Studi di Milano - Via Celoria 26, 20133 Milano, Italy
| | - Priscilla Manzotti
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Martina Persico
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Gianpiero Vigani
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Gabriella Consonni
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
37
|
Lundquist PK, Poliakov A, Giacomelli L, Friso G, Appel M, McQuinn RP, Krasnoff SB, Rowland E, Ponnala L, Sun Q, van Wijk KJ. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway. THE PLANT CELL 2013; 25:1818-39. [PMID: 23673981 PMCID: PMC3694708 DOI: 10.1105/tpc.113.111120] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/02/2013] [Accepted: 04/25/2013] [Indexed: 05/04/2023]
Abstract
Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the double mutant (k1 k3) displayed rapid chlorosis upon high light stress. Also, k1 k3 showed a slower, but irreversible, senescence-like phenotype during moderate light stress that was phenocopied by drought and nitrogen limitation, but not cold stress. This senescence-like phenotype involved degradation of the photosystem II core and upregulation of chlorophyll degradation. The senescence-like phenotype was independent of the EXECUTER pathway that mediates genetically controlled cell death from the chloroplast and correlated with increased levels of the singlet oxygen-derived carotenoid β-cyclocitral, a retrograde plastid signal. Total PG volume increased during light stress in wild type and k1 k3 plants, but with different size distributions. Isolated PGs from k1 k3 showed a modified prenyl-lipid composition, suggesting reduced activity of PG-localized tocopherol cyclase (VTE1), and was consistent with loss of carotenoid cleavage dioxygenase 4. Plastid jasmonate biosynthesis enzymes were recruited to the k1 k3 PGs but not wild-type PGs, while pheophytinase, which is involved in chlorophyll degradation, was induced in k1 k3 and not wild-type plants and was localized to PGs. Thus, the ABC1K1/3 complex contributes to PG function in prenyl-lipid metabolism, stress response, and thylakoid remodeling.
Collapse
Affiliation(s)
| | - Anton Poliakov
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lisa Giacomelli
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Mason Appel
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Ryan P. McQuinn
- Boyce Thompson Institute for Plant Science Research, Ithaca, New York 14853
| | - Stuart B. Krasnoff
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Elden Rowland
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|