1
|
Maupilé L, Chaib J, Boualem A, Bendahmane A. Parthenocarpy, a pollination-independent fruit set mechanism to ensure yield stability. TRENDS IN PLANT SCIENCE 2024; 29:1254-1265. [PMID: 39034223 DOI: 10.1016/j.tplants.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Fruit development is essential for flowering plants' reproduction and a significant food source. Climate change threatens fruit yields due to its impact on pollination and fertilization processes, especially vulnerable to extreme temperatures, insufficient light, and pollinator decline. Parthenocarpy, the development of fruit without fertilization, offers a solution, ensuring yield stability in adverse conditions and enhancing fruit quality. Parthenocarpic fruits not only secure agricultural production but also exhibit improved texture, appearance, and shelf life, making them desirable for food processing and other applications. Recent research unveils the molecular mechanisms behind parthenocarpy, implicating transcription factors (TFs), noncoding RNAs, and phytohormones such as auxin, gibberellin (GA), and cytokinin (CK). Here we review recent findings, construct regulatory models, and identify areas for further research.
Collapse
Affiliation(s)
- Lea Maupilé
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Vilmorin & Cie, Route d'Ennezat, 63720 Chappes, France
| | - Jamila Chaib
- Vilmorin & Cie, Paraje La Reserva, 04725 La Mojonera, Spain
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| |
Collapse
|
2
|
Wang T, Zheng Y, Xu C, Deng Y, Hao X, Chu Z, Tian J, Wang Y, Zhang X, Han Z, Wu T. Movement of ACC oxidase 3 mRNA from seeds to flesh promotes fruit ripening in apple. MOLECULAR PLANT 2024; 17:1221-1235. [PMID: 38902921 DOI: 10.1016/j.molp.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Xenia, the phenomenon in which the pollen genotype directly affects the phenotypic characteristics of maternal tissues (i.e., fruit ripening), has applications in crop production and breeding. However, the underlying molecular mechanism has yet to be elucidated. Here, we investigated whether mobile mRNAs from the pollen affect the ripening and quality-related characteristics of the fruit using cross-pollination between distinct Malus domestica (apple) cultivars. We demonstrated that hundreds of mobile mRNAs originating from the seeds are delivered to the fruit. We found that the movement of one of these mRNAs, ACC oxidase 3 (MdACO3), is coordinated with fruit ripening. Salicylic acid treatment, which can cause plasmodesmal closure, blocks MdACO3 movement, indicating that MdACO3 transcripts may move through the plasmodesmata. To assess the role of mobile MdACO3 transcripts in apple fruit, we created MdACO3-GFP-expressing apple seeds using MdACO3-GFP-overexpressing pollen for pollination and showed that MdACO3 transcripts in the transgenic seeds move to the flesh, where they promote fruit ripening. Furthermore, we demonstrated that MdACO3 can be transported from the seeds to fruit in the fleshy-fruited species tomato and strawberry. These results underscore the potential of mobile mRNAs from seeds to influence fruit characteristics, providing an explanation for the xenia phenomenon. Notably, our findings highlight the feasibility of leveraging diverse pollen genomic resources, without resorting to genome editing, to improve fruit quality.
Collapse
Affiliation(s)
- Ting Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yi Zheng
- Plant Science and Technology College, Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Chen Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yulin Deng
- Plant Science and Technology College, Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Xinyi Hao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zicheng Chu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ji Tian
- Plant Science and Technology College, Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Pérez-Rojas M, Díaz-Ramírez D, Ortíz-Ramírez CI, Galaz-Ávalos RM, Loyola-Vargas VM, Ferrándiz C, Abraham-Juárez MDR, Marsch-Martínez N. The Role of Cytokinins during the Development of Strawberry Flowers and Receptacles. PLANTS (BASEL, SWITZERLAND) 2023; 12:3672. [PMID: 37960026 PMCID: PMC10649685 DOI: 10.3390/plants12213672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
Cytokinins play a relevant role in flower and fruit development and plant yield. Strawberry fruits have a high commercial value, although what is known as the "fruit" is not a "true" botanical fruit because it develops from a non-reproductive organ (receptacle) on which the true botanical fruits (achenes) are found. Given cytokinins' roles in botanical fruits, it is important to understand their participation in the development of a non-botanical or accessory "fruit". Therefore, in this work, the role of cytokinin in strawberry flowers and fruits was investigated by identifying and exploring the expression of homologous genes for different families that participate in the pathway, through publicly available genomic and expression data analyses. Next, trans-zeatin content in developing flowers and receptacles was determined. A high concentration was observed in flower buds and at anthesis and decreased as the fruit approached maturity. Moreover, the spatio-temporal expression pattern of selected CKX genes was evaluated and detected in receptacles at pre-anthesis stages. The results point to an important role and effect of cytokinins in flower and receptacle development, which is valuable both from a biological point of view and to improve yield and the quality of this fruit.
Collapse
Affiliation(s)
- Moises Pérez-Rojas
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36824, Mexico; (M.P.-R.); (D.D.-R.)
| | - David Díaz-Ramírez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36824, Mexico; (M.P.-R.); (D.D.-R.)
| | - Clara Inés Ortíz-Ramírez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas—Universidad Politécnica de Valencia (CSIC-UPV), 46022 Valencia, Spain; (C.I.O.-R.); (C.F.)
| | - Rosa M. Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico; (R.M.G.-Á.); (V.M.L.-V.)
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico; (R.M.G.-Á.); (V.M.L.-V.)
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas—Universidad Politécnica de Valencia (CSIC-UPV), 46022 Valencia, Spain; (C.I.O.-R.); (C.F.)
| | | | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36824, Mexico; (M.P.-R.); (D.D.-R.)
| |
Collapse
|
4
|
Abstract
Flowering plants produce flowers and one of the most complex floral structures is the pistil or the gynoecium. All the floral organs differentiate from the floral meristem. Various reviews exist on molecular mechanisms controlling reproductive development, but most focus on a short time window and there has been no recent review on the complete developmental time frame of gynoecium and fruit formation. Here, we highlight recent discoveries, including the players, interactions and mechanisms that govern gynoecium and fruit development in Arabidopsis. We also present the currently known gene regulatory networks from gynoecium initiation until fruit maturation.
Collapse
Affiliation(s)
- Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, México
| |
Collapse
|
5
|
Liu C, Xiao P, Jiang F, Wang S, Liu Z, Song G, Li W, Lv T, Li J, Wang D, Li Y, Wu C, Li T. Exogenous gibberellin treatment improves fruit quality in self-pollinated apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:11-21. [PMID: 35121481 DOI: 10.1016/j.plaphy.2022.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Although a few apple (Malus × ×domestica) varieties are self-compatible, little is known about the differences in fruit quality between self- and cross-pollinated apple. In our current study, we compared the fruit quality of self-pollinated apple plants (cultivar 'Hanfu') in self-pollination or cross-pollinated by another cultivar 'Qinguan'. Analysis of fruit quality revealed substantial differences in the external qualities between self- and cross-pollinated apple fruit, but not in the internal qualities. Fruits harvested from self-pollinated 'Hanfu' were smaller and more asymmetrical than those harvested from the cross-pollinated plants. We developed a mathematical model describing how seed number and distribution affect fruit growth. According to this model, the fewer the seeds, the greater the force released from the seeds and the more asymmetrical the fruit. Detection of endogenous hormone and the associated gene expression revealed that gibberellin (GA) levels and GA transporter gene expression on the seedless side were significantly lower than those on the seeded side. Analysis of fruit pectin methylesterase activity and demethylated pectin levels indicated that the lack of GA limits fruit cell wall extension. Additionally, spraying the self-pollinating plants with gibberellic acid increased the fruit weight and lowered the proportion of asymmetrical fruit, recovering the exterior fruit quality to that of the cross-pollinated fruit. Furthermore, exogenous GA treatment increased the wax layer thickness and reduced the fruit water loss rate, leading to a dramatic improvement in fruit storage capacity. Therefore, exogenous GA treatment could be used to ensure regular fruit production of self-pollinated 'Hanfu'.
Collapse
Affiliation(s)
- Chunsheng Liu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Pengshuai Xiao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Zhi Liu
- Institute of Pomology, Liaoning Academy of Agricultural Sciences, Yingkou, 115009, China.
| | - Guozhu Song
- Liaoning Green Agriculture Technology Center, Shenyang, 110034, China.
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Tianxing Lv
- Institute of Pomology, Liaoning Academy of Agricultural Sciences, Yingkou, 115009, China.
| | - Jun Li
- Liaoning Green Agriculture Technology Center, Shenyang, 110034, China.
| | - Dongmei Wang
- Institute of Pomology, Liaoning Academy of Agricultural Sciences, Yingkou, 115009, China.
| | - Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Zhang C, Cui L, Fang J. Genome-wide association study of the candidate genes for grape berry shape-related traits. BMC PLANT BIOLOGY 2022; 22:42. [PMID: 35057757 PMCID: PMC8772106 DOI: 10.1186/s12870-022-03434-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In the breeding of new horticultural crops, fruit shape is an important selection characteristic. A variety of fruit shapes appeared during the gradual process of selection and domestication. However, few studies have been conducted on grape berry shape, especially studies related to mining candidate genes. To discover candidate genes related to grape berry shape, the present study first took the berry shape parameters analyzed by Tomato Analyzer as the target traits and used a genome-wide association analysis to analyze candidate genes. RESULTS In total, 122 single-nucleotide polymorphism (SNP) loci had significant correlations with multiple berry shape traits in both years, and some candidate genes were further mined. These genes were mainly related to LRR receptor-like serine/threonine-protein kinase (At1g05700 and At1g07650), transcription factors (GATA transcription factor 23-like, transcription factor VIP1, transcription initiation factor TFIID, and MADS-box transcription factor 6), ubiquitin ligases (F-box protein SKIP19 and RING finger protein 44), and plant hormones (indole-3-acetic acid-amido synthetase GH3.6 and ethylene-responsive transcription factor ERF061). In addition, some important SNP loci were associated with multiple berry-shape traits. The study further revealed some genes that control multiple traits simultaneously, indicating that these berry shape traits are subject to the coordinated regulation of some genes in controlling berry shape. CONCLUSIONS In the present work, we identified interesting genetic determinants of grape berry shape-related traits. The identification of molecular markers that are closely related to these berry-shape traits is of great significance for breeding specific berry-shaped grape varieties.
Collapse
Affiliation(s)
- Chuan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liwen Cui
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
7
|
Costantini L, Moreno-Sanz P, Nwafor CC, Lorenzi S, Marrano A, Cristofolini F, Gottardini E, Raimondi S, Ruffa P, Gribaudo I, Schneider A, Grando MS. Somatic variants for seed and fruit set in grapevine. BMC PLANT BIOLOGY 2021; 21:135. [PMID: 33711928 PMCID: PMC7955655 DOI: 10.1186/s12870-021-02865-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Grapevine reproductive development has direct implications on yield. It also impacts on berry and wine quality by affecting traits like seedlessness, berry and bunch size, cluster compactness and berry skin to pulp ratio. Seasonal fluctuations in yield, fruit composition and wine attributes, which are largely driven by climatic factors, are major challenges for worldwide table grape and wine industry. Accordingly, a better understanding of reproductive processes such as gamete development, fertilization, seed and fruit set is of paramount relevance for managing yield and quality. With the aim of providing new insights into this field, we searched for clones with contrasting seed content in two germplasm collections. RESULTS We identified eight variant pairs that seemingly differ only in seed-related characteristics while showing identical genotype when tested with the GrapeReSeq_Illumina_20K_SNP_chip and several microsatellites. We performed multi-year observations on seed and fruit set deriving from different pollination treatments, with special emphasis on the pair composed by Sangiovese and its seedless variant locally named Corinto Nero. The pollen of Corinto Nero failed to germinate in vitro and gave poor berry set when used to pollinate other varieties. Most berries from both open- and cross-pollinated Corinto Nero inflorescences did not contain seeds. The genetic analysis of seedlings derived from occasional Corinto Nero normal seeds revealed that the few Corinto Nero functional gametes are mostly unreduced. Moreover, three genotypes, including Sangiovese and Corinto Nero, were unexpectedly found to develop fruits without pollen contribution and occasionally showed normal-like seeds. Five missense single nucleotide polymorphisms were identified between Corinto Nero and Sangiovese from transcriptomic data. CONCLUSIONS Our observations allowed us to attribute a seedlessness type to some variants for which it was not documented in the literature. Interestingly, the VvAGL11 mutation responsible for Sultanina stenospermocarpy was also discovered in a seedless mutant of Gouais Blanc. We suggest that Corinto Nero parthenocarpy is driven by pollen and/or embryo sac defects, and both events likely arise from meiotic anomalies. The single nucleotide polymorphisms identified between Sangiovese and Corinto Nero are suitable for testing as traceability markers for propagated material and as functional candidates for the seedless phenotype.
Collapse
Affiliation(s)
- Laura Costantini
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy.
| | - Paula Moreno-Sanz
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Chinedu Charles Nwafor
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Silvia Lorenzi
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Annarita Marrano
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Fabiana Cristofolini
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Elena Gottardini
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Stefano Raimondi
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Paola Ruffa
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Anna Schneider
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Maria Stella Grando
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010, San Michele all'Adige, Italy
| |
Collapse
|
8
|
How Hormones and MADS-Box Transcription Factors Are Involved in Controlling Fruit Set and Parthenocarpy in Tomato. Genes (Basel) 2020; 11:genes11121441. [PMID: 33265980 PMCID: PMC7760363 DOI: 10.3390/genes11121441] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 02/03/2023] Open
Abstract
Fruit set is the earliest phase of fruit growth and represents the onset of ovary growth after successful fertilization. In parthenocarpy, fruit formation is less affected by environmental factors because it occurs in the absence of pollination and fertilization, making parthenocarpy a highly desired agronomic trait. Elucidating the genetic program controlling parthenocarpy, and more generally fruit set, may have important implications in agriculture, considering the need for crops to be adaptable to climate changes. Several phytohormones play an important role in the transition from flower to fruit. Further complexity emerges from functional analysis of floral homeotic genes. Some homeotic MADS-box genes are implicated in fruit growth and development, displaying an expression pattern commonly observed for ovary growth repressors. Here, we provide an overview of recent discoveries on the molecular regulatory gene network underlying fruit set in tomato, the model organism for fleshy fruit development due to the many genetic and genomic resources available. We describe how the genetic modification of components of this network can cause parthenocarpy, discussing the contribution of hormonal signals and MADS-box transcription factors.
Collapse
|
9
|
Zhu Z, Liang H, Chen G, Li F, Wang Y, Liao C, Hu Z. The bHLH transcription factor SlPRE2 regulates tomato fruit development and modulates plant response to gibberellin. PLANT CELL REPORTS 2019; 38:1053-1064. [PMID: 31123809 DOI: 10.1007/s00299-019-02425-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 05/22/2023]
Abstract
SlPRE2 is gibberellin inducible and mediates plant response to gibberellin. Silencing of SlPRE2 decreases tomato fruit size, pericarp thickness, placenta size and seed size by regulating cell expansion. Gibberellin is one of the crucial hormones essential for plant growth and developmental processes, including seed germination, stem elongation, and sex expression. Previous studies indicated gibberellin could control fruit development by regulation of genes downstream gibberellin pathway. In the present study, we found that the SlPRE2, a bHLH family transcription factor gene, is highly expressed in immature green fruit. Silencing of SlPRE2 caused reduction of fruits size, pericarp thickness, and placenta size. Meanwhile, smaller seeds were observed in SlPRE2 silenced lines. In addition, the SlPRE2-silenced fruit mesocarp had reduced cell size and expression of SlXTH2 and SlXTH5 which are involved in cell enlargement. Further research showed that SlPRE2 is gibberellic acid-inducible and the expression of gibberellin metabolism-related genes in immature green fruit was affected by the downregulation of SlPRE2. Moreover, the SlPRE2-silenced plants had changed responses to application of exogenous gibberellic acid and paclobutrazol, an inhibitor of gibberellin biosynthesis. These findings indicated that SlPRE2 is a regulator of fruit development and affects plant response to gibberellic acid via the gibberellin pathway.
Collapse
Affiliation(s)
- Zhiguo Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Honglian Liang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Guoping Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| | - Fenfen Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yunshu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Changguang Liao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Zongli Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
10
|
Mignolli F, Vidoz ML, Picciarelli P, Mariotti L. Gibberellins modulate auxin responses during tomato (Solanum lycopersicum L.) fruit development. PHYSIOLOGIA PLANTARUM 2019; 165:768-779. [PMID: 29888535 DOI: 10.1111/ppl.12770] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
In tomato, auxin and gibberellins (GAs) interact with each other to drive fruit growth and development. While the role of auxin in directing GA biosynthesis and signal is already known, very little information has been obtained about GA-mediated control of auxin signalling and response. Interestingly, we show that gibberellic acid (GA3 ) is able to modify the expression of several auxin signalling genes in the partial auxin-insensitive diageotropica (dgt) mutant, suggesting that GAs may override the control of DGT on auxin signal. Procera (pro) mutation, which confers a constitutively active GA signal, enhances the effects of exogenous auxin, indicating that PRO may act as a negative effector of auxin responses in fruits. Indeed, transcript modulation of some auxin/indole acetic acid and auxin response factor genes in auxin-treated dgt/pro fruits suggests that PRO controls their expression possibly bypassing DGT. It was also shown that GA biosynthesis, in response to auxin treatment, is largely controlled by DGT. It is therefore conceivable that the DGT-mediated increase of active GAs in auxin-treated or pollinated fruits would promote PRO degradation, which in turn activates part of the auxin signalling cascade.
Collapse
Affiliation(s)
- Francesco Mignolli
- Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, 3400 Corrientes, Argentina
| | - Maria L Vidoz
- Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, 3400 Corrientes, Argentina
- Facultad de Ciencias Agrarias, UNNE, 3400 Corrientes, Argentina
| | - Piero Picciarelli
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124 Pisa, Italy
| | - Lorenzo Mariotti
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124 Pisa, Italy
| |
Collapse
|
11
|
Chai P, Dong S, Chai L, Chen S, Flaishman M, Ma H. Cytokinin-induced parthenocarpy of San Pedro type fig (Ficus carica L.) main crop: explained by phytohormone assay and transcriptomic network comparison. PLANT MOLECULAR BIOLOGY 2019; 99:329-346. [PMID: 30656555 DOI: 10.1007/s11103-019-00820-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/02/2019] [Indexed: 05/15/2023]
Abstract
CPPU-induced San Pedro type fig main crop parthenocarpy exhibited constantly increasing IAA content and more significantly enriched KEGG pathways in the receptacle than in female flowers. N-(2-chloro-4-pyridyl)-N-phenylurea (CPPU) was applied to San Pedro fig (Ficus carica L.) main crop to induce parthenocarpy; the optimal effect was obtained with 25 mg L-1 application to syconia when female flowers were at anthesis. To elucidate the key expression changes in parthenocarpy conversion, significant changes in phytohormone level and transcriptome of fig female flowers and receptacles were monitored. HPLC-MS revealed increased IAA content in female flowers and receptacle 2, 4 and 10 days after treatment (DAT), decreased zeatin level in the receptacle 2, 4 and 10 DAT, decreased GA3 content 2 and 4 DAT, and increased GA3 content 10 DAT. ABA level increased 2 and 4 DAT, and decreased 10 DAT. CPPU-treated syconia released more ethylene than the control except 2 DAT. RNA-Seq and bioinformatics analysis revealed notably more differentially expressed KEGG pathways in the receptacle than in female flowers. In the phytohormone gene network, GA-biosynthesis genes GA20ox and GA3ox were upregulated, along with GA signal-transduction genes GID1 and GID2, and IAA-signaling genes AUX/IAA and GH3. ABA-biosynthesis gene NCED and signaling genes PP2C and ABF were downregulated 10 DAT. One ACO gene showed consistent upregulation in both female flowers and receptacle after CPPU treatment, and more than a dozen of ERFs demonstrated opposing changes in expression. Our results revealed early-stage spatiotemporal phytohormone and transcriptomic responses in CPPU-induced San Pedro fig main crop parthenocarpy, which could be valuable for further understanding the nature of the parthenocarpy of different fig types.
Collapse
Affiliation(s)
- Peng Chai
- College of Horticulture, China Agricultural University, Beijing, People's Republic of China
| | - Sujuan Dong
- College of Horticulture, China Agricultural University, Beijing, People's Republic of China
| | - Lijuan Chai
- College of Horticulture, China Agricultural University, Beijing, People's Republic of China
| | - Shangwu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Moshe Flaishman
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet-Dagan, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Picarella ME, Mazzucato A. The Occurrence of Seedlessness in Higher Plants; Insights on Roles and Mechanisms of Parthenocarpy. FRONTIERS IN PLANT SCIENCE 2019; 9:1997. [PMID: 30713546 PMCID: PMC6345683 DOI: 10.3389/fpls.2018.01997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/24/2018] [Indexed: 05/06/2023]
Abstract
Parthenocarpy in a broad sense includes those processes that allow the production of seedless fruits. Such fruits are favorable to growers, because they are set independently of successful pollination, and to processors and consumers, because they are easier to deal with and to eat. Seedless fruits however represent a biological paradox because they do not contribute to offspring production. In this work, the occurrence of parthenocarpy in Angiosperms was investigated by conducting a bibliographic survey. We distinguished monospermic (single seeded) from plurispermic (multiseeded) species and wild from cultivated taxa. Out of 96 seedless taxa, 66% belonged to plurispermic species. Of these, cultivated species were represented six times higher than wild species, suggesting a selective pressure for parthenocarpy during domestication and breeding. In monospermic taxa, wild and cultivated species were similarly represented. The occurrence of parthenocarpy in wild species suggests that seedlessness may have an adaptive role. In monospermic species, seedless fruits are proposed to reduce seed predation through deceptive mechanisms. In plurispermic fruit species, parthenocarpy may exert an adaptive advantage under suboptimal pollination regimes, when too few embryos are formed to support fruit growth. In this situation, parthenocarpy offers the opportunity to accomplish the production and dispersal of few seeds, thus representing a selective advantage. Approximately 20 sources of seedlessness have been described in tomato. Excluding the EMS induced mutation parthenocarpic fruit (pat), the parthenocarpic phenotype always emerged in biparental populations derived from wide crosses between cultivated tomato and wild relatives. Following a theory postulated for apomictic species, we argument that wide hybridization could also be the force driving parthenocarpy, following the disruption of synchrony in time and space of reproductive developmental events, from sporogenesis to fruit development. The high occurrence of polyploidy among parthenocarpic species supported this suggestion. Other commonalities between apomixis and parthenocarpy emerged from genetic and molecular studies of the two phenomena. Such insights may improve the understanding of the mechanisms underlying these two reproductive variants of great importance to modern breeding.
Collapse
Affiliation(s)
| | - Andrea Mazzucato
- Laboratory of Biotechnologies of Vegetable Crops, Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
13
|
Galimba KD, Bullock DG, Dardick C, Liu Z, Callahan AM. Gibberellic acid induced parthenocarpic 'Honeycrisp' apples ( Malus domestica) exhibit reduced ovary width and lower acidity. HORTICULTURE RESEARCH 2019; 6:41. [PMID: 30962935 PMCID: PMC6441655 DOI: 10.1038/s41438-019-0124-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 05/07/2023]
Abstract
Fruit set and development are dependent on auxin, gibberellin, and cytokinin, which cause parthenocarpic development in many species when applied ectopically. Commercial sprays containing these hormones are used to improve apple fruit set, size, and shape, but have been implicated negatively in other aspects of fruit quality. We applied gibberellic acid (GA3), synthetic auxin (NAA), and the auxin-transport inhibitor NPA to 'Honeycrisp' apple flowers. Fruit retention and size were quantified throughout development, and seed number and fruit quality parameters were measured at maturity. GA3 alone caused the development of seedless parthenocarpic apples. At maturity, GA3-treated apples were narrower due to reduced ovary width, indicating that GA3 induced normal growth of the hypanthium, but not the ovary. GA3-treated fruits were also less acidic than hand-pollinated controls, but had similar firmness, starch, and sugar content. To further understand the regulation of parthenocarpy, we performed tissue-specific transcriptome analysis on GA3-treated, NAA-treated, and control fruits, at 18 days after treatment and again at maturity. Overall, transcriptome analysis showed GA3-treated and hand-pollinated fruits were highly similar in RNA expression profiles. Early expression differences in putative cell division, cytokinin degradation, and cell wall modification genes in GA3-treated ovaries correlated with the observed shape differences, while early expression differences in the acidity gene Ma1 may be responsible for the changes in pH. Taken together, our results indicate that GA3 triggers the development of parthenocarpic apple fruit with morphological deviations that correlate with a number of candidate gene expression differences.
Collapse
Affiliation(s)
- Kelsey D. Galimba
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, 2217 Wiltshire Road, Kearneysville, WV 25430 USA
- Department of Cell Biology and Molecular Genetics, College of Mathematics and Natural Sciences, University of Maryland, College Park, MD 20742 USA
| | - Daniel G. Bullock
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, 2217 Wiltshire Road, Kearneysville, WV 25430 USA
| | - Chris Dardick
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, 2217 Wiltshire Road, Kearneysville, WV 25430 USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, College of Mathematics and Natural Sciences, University of Maryland, College Park, MD 20742 USA
| | - Ann M. Callahan
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, 2217 Wiltshire Road, Kearneysville, WV 25430 USA
| |
Collapse
|
14
|
Fortes AM, Agudelo-Romero P. Polyamine Metabolism in Climacteric and Non-Climacteric Fruit Ripening. Methods Mol Biol 2018; 1694:433-447. [PMID: 29080186 DOI: 10.1007/978-1-4939-7398-9_36] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyamines are small aliphatic amines that are found in both prokaryotic and eukaryotic organisms. These growth regulators have been implicated in abiotic and biotic stresses as well as plant development and morphogenesis. Several studies have also suggested a key role of polyamines during fruit set and early development. Polyamines have also been linked to fruit ripening and in the regulation of fruit quality-related traits.Recent studies indicate that during ripening of both climacteric and non-climacteric fruits, a decline in total polyamine contents is observed together with an increased catabolism of these growth regulators.In this review, we explore the current knowledge on polyamine biosynthesis and catabolism during fruit set and ripening. The study of the role of polyamine metabolism in fruit ripening indicates the possible application of these natural polycations to control ripening and postharvest decay as well as to improve fruit quality traits.
Collapse
Affiliation(s)
- Ana Margarida Fortes
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Patricia Agudelo-Romero
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
15
|
Turc O, Tardieu F. Drought affects abortion of reproductive organs by exacerbating developmentally driven processes via expansive growth and hydraulics. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3245-3254. [PMID: 29546424 DOI: 10.1093/jxb/ery078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/21/2018] [Indexed: 05/18/2023]
Abstract
Abortion of reproductive organs is a major limiting factor of yield under water deficit, but is also a trait selected for by evolutionary processes. The youngest reproductive organs must be prone to abortion so older organs can finish their development in case of limited resources. Water deficit increases natural abortion via two developmentally driven processes, namely a signal from the first fertilized ovaries and a simultaneous arrest of the expansive growth of all ovaries at a precise stage. In maize (Zea mays) subjected to water deficits typically encountered in dryland agriculture, these developmental mechanisms account for 90% of drought-associated abortion and are irreversible 3 d after silk emergence. Consistently, transcripts and enzyme activities suggest that the molecular events associated with abortion affect expansive growth in silks whereas ovaries maintain a favourable carbon status. Abortion due to carbon starvation is only observed for severe drought scenarios occurring after silking. Both kinetic and genetic evidence indicates that vegetative and reproductive structures share a partly common hydraulic control of expansive growth. Hence, the control of expansive growth of reproductive structures probably has a prominent effect on abortion for mild water deficits occurring at flowering time, while carbon starvation dominates in severe post-flowering drought scenarios.
Collapse
Affiliation(s)
- Olivier Turc
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - François Tardieu
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
16
|
Lenser T, Tarkowská D, Novák O, Wilhelmsson PKI, Bennett T, Rensing SA, Strnad M, Theißen G. When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in Aethionema. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:352-371. [PMID: 29418033 DOI: 10.1111/tpj.13861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/21/2017] [Accepted: 01/04/2018] [Indexed: 05/27/2023]
Abstract
Life in unpredictably changing habitats is a great challenge, especially for sessile organisms like plants. Fruit and seed heteromorphism is one way to cope with such variable environmental conditions. It denotes the production of distinct types of fruits and seeds that often mediate distinct life-history strategies in terms of dispersal, germination and seedling establishment. But although the phenomenon can be found in numerous species and apparently evolved several times independently, its developmental time course or molecular regulation remains largely unknown. Here, we studied fruit development in Aethionema arabicum, a dimorphic member of the Brassicaceae family. We characterized fruit morph differentiation by comparatively analyzing discriminating characters like fruit growth, seed abortion and dehiscence zone development. Our data demonstrate that fruit morph determination is a 'last-minute' decision happening in flowers after anthesis directly before the first morphotypical differences start to occur. Several growth experiments in combination with hormone and gene expression analyses further indicate that an accumulation balance of the plant hormones auxin and cytokinin in open flowers together with the transcript abundance of the Ae. arabicum ortholog of BRANCHED1, encoding a transcription factor known for its conserved function as a branching repressor, may guide fruit morph determination. Thus, we hypothesize that the plasticity of the fruit morph ratio in Ae. arabicum may have evolved through the modification of a preexisting network known to govern correlative dominance between shoot organs.
Collapse
Affiliation(s)
- Teresa Lenser
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Per K I Wilhelmsson
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| |
Collapse
|
17
|
Joldersma D, Liu Z. The making of virgin fruit: the molecular and genetic basis of parthenocarpy. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:955-962. [PMID: 29325151 PMCID: PMC6018997 DOI: 10.1093/jxb/erx446] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/25/2017] [Indexed: 05/16/2023]
Abstract
Fruit set-the commitment of an angiosperm plant to develop fruit-is a key developmental process that normally occurs following successful fertilization. Parthenocarpy arises when fruit automatically develop in the absence of fertilization. This review uses parthenocarpic fruit development as a focal device through which to recapitulate and understand the molecular effectors that mediate and regulate fruit set. The review demonstrates that studies of parthenocarpy are providing vital insight into plant development, signaling and, potentially, high-value agricultural products.
Collapse
Affiliation(s)
- Dirk Joldersma
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Correspondence:
| |
Collapse
|
18
|
Opportunities for genome editing in vegetable crops. Emerg Top Life Sci 2017; 1:193-207. [DOI: 10.1042/etls20170033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022]
Abstract
Vegetables include high-value crops with health-promoting effects and reduced environmental impact. The availability of genomic and biotechnological tools in certain species, coupled with the recent development of new breeding techniques based on precise editing of DNA, provides unique opportunities to finally take advantage of the past decades of detailed genetic analyses, thus making improvement of traits related to quality and stress tolerance achievable in a reasonable time frame. Recent reports of such approaches in vegetables illustrate the feasibility of obtaining multiple homozygous mutations in a single generation, heritable by the progeny, using stable or transient transformation approaches, which may not rely on the integration of unwanted foreign DNA. Application of these approaches to currently non-sequenced/tissue culture recalcitrant crops will contribute to meet the challenges posed by the increase in population and climate change.
Collapse
|
19
|
Ezura K, Ji-Seong K, Mori K, Suzuki Y, Kuhara S, Ariizumi T, Ezura H. Genome-wide identification of pistil-specific genes expressed during fruit set initiation in tomato (Solanum lycopersicum). PLoS One 2017; 12:e0180003. [PMID: 28683065 PMCID: PMC5500324 DOI: 10.1371/journal.pone.0180003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022] Open
Abstract
Fruit set involves the developmental transition of an unfertilized quiescent ovary in the pistil into a fruit. While fruit set is known to involve the activation of signals (including various plant hormones) in the ovary, many biological aspects of this process remain elusive. To further expand our understanding of this process, we identified genes that are specifically expressed in tomato (Solanum lycopersicum L.) pistils during fruit set through comprehensive RNA-seq-based transcriptome analysis using 17 different tissues including pistils at six different developmental stages. First, we identified 532 candidate genes that are preferentially expressed in the pistil based on their tissue-specific expression profiles. Next, we compared our RNA-seq data with publically available transcriptome data, further refining the candidate genes that are specifically expressed within the pistil. As a result, 108 pistil-specific genes were identified, including several transcription factor genes that function in reproductive development. We also identified genes encoding hormone-like peptides with a secretion signal and cysteine-rich residues that are conserved among some Solanaceae species, suggesting that peptide hormones may function as signaling molecules during fruit set initiation. This study provides important information about pistil-specific genes, which may play specific roles in regulating pistil development in relation to fruit set.
Collapse
Affiliation(s)
- Kentaro Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kim Ji-Seong
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuki Mori
- Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Satoru Kuhara
- Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Rojas-Gracia P, Roque E, Medina M, Rochina M, Hamza R, Angarita-Díaz MP, Moreno V, Pérez-Martín F, Lozano R, Cañas L, Beltrán JP, Gómez-Mena C. The parthenocarpic hydra mutant reveals a new function for a SPOROCYTELESS-like gene in the control of fruit set in tomato. THE NEW PHYTOLOGIST 2017; 214:1198-1212. [PMID: 28134991 DOI: 10.1111/nph.14433] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/12/2016] [Indexed: 05/20/2023]
Abstract
Fruit set is an essential process to ensure successful sexual plant reproduction. The development of the flower into a fruit is actively repressed in the absence of pollination. However, some cultivars from a few species are able to develop seedless fruits overcoming the standard restriction of unpollinated ovaries to growth. We report here the identification of the tomato hydra mutant that produces seedless (parthenocarpic) fruits. Seedless fruit production in hydra plants is linked to the absence of both male and female sporocyte development. The HYDRA gene is therefore essential for the initiation of sporogenesis in tomato. Using positional cloning, virus-induced gene silencing and expression analysis experiments, we identified the HYDRA gene and demonstrated that it encodes the tomato orthologue of SPOROCYTELESS/NOZZLE (SPL/NZZ) of Arabidopsis. We found that the precocious growth of the ovary is associated with changes in the expression of genes involved in gibberellin (GA) metabolism. Our results support the conservation of the function of SPL-like genes in the control of sporogenesis in plants. Moreover, this study uncovers a new function for the tomato SlSPL/HYDRA gene in the control of fruit initiation.
Collapse
Affiliation(s)
- Pilar Rojas-Gracia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Edelin Roque
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Mónica Medina
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Maricruz Rochina
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Rim Hamza
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - María Pilar Angarita-Díaz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Fernando Pérez-Martín
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Ctra de Sacramento s/n, 04120, Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Ctra de Sacramento s/n, 04120, Almería, Spain
| | - Luis Cañas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - José Pío Beltrán
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Concepción Gómez-Mena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| |
Collapse
|
21
|
Renaudin JP, Deluche C, Cheniclet C, Chevalier C, Frangne N. Cell layer-specific patterns of cell division and cell expansion during fruit set and fruit growth in tomato pericarp. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1613-1623. [PMID: 28369617 PMCID: PMC5444452 DOI: 10.1093/jxb/erx058] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In angiosperms, the ovary wall resumes growth after pollination through a balanced combination of cell division and cell expansion. The quantitative pattern of these events remains poorly known in fleshy fruits such as tomato (Solanum spp.), in which dramatic growth of the pericarp occurs together with endoreduplication. Here, this pattern is reported at the level of each of the cell layers or groups of cell layers composing the pericarp, except for vascular bundles. Overall, cell division and cell expansion occurred at similar rates for 9 days post anthesis (DPA), with very specific patterns according to the layers. Subsequently, only cell expansion continued for up to 3-4 more weeks. New cell layers in the pericarp originated from periclinal cell divisions in the two sub-epidermal cell layers. The shortest doubling times for cell number and for cell volume were both detected early, at 4 DPA, in epicarp and mesocarp respectively, and were both found to be close to 14 h. Endoreduplication started before anthesis in pericarp and was stimulated at fruit set. It is proposed that cell division, endoreduplication, and cell expansion are triggered simultaneously in specific cell layers by the same signals issuing from pollination and fertilization, which contribute to the fastest relative fruit growth early after fruit set.
Collapse
Affiliation(s)
- Jean-Pierre Renaudin
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
| | - Cynthia Deluche
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
| | - Catherine Cheniclet
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
- UMS 3420, Bordeaux Imaging Center, CNRS, US4, INSERM, University of Bordeaux, F-33000 Bordeaux, France
| | - Christian Chevalier
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
| | - Nathalie Frangne
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
| |
Collapse
|
22
|
Tu D, Luo Z, Wu B, Ma X, Shi H, Mo C, Huang J, Xie W. Developmental, chemical and transcriptional characteristics of artificially pollinated and hormone-induced parthenocarpic fruits of Siraitia grosvenorii. RSC Adv 2017. [DOI: 10.1039/c6ra28341a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Unpollinated ovaries of Siraitia grosvenorii grew parthenocarpically in response to the application of GA3 and CPPU.
Collapse
Affiliation(s)
- Dongping Tu
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
- Guangxi University of Chinese Medicine
| | - Zuliang Luo
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
| | - Bin Wu
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
| | - Hongwu Shi
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- China
| | - Changming Mo
- Guangxi Botanical Garden of Medicinal Plants
- Nanning 530023
- China
| | - Jie Huang
- Guangxi Botanical Garden of Medicinal Plants
- Nanning 530023
- China
| | | |
Collapse
|
23
|
Marsch-Martínez N, de Folter S. Hormonal control of the development of the gynoecium. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:104-14. [PMID: 26799132 DOI: 10.1016/j.pbi.2015.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 05/03/2023]
Abstract
Flowering plants are called angiosperms and most of their flowers produce at their center a pistil or a gynoecium, which is the female reproductive structure. After a double fertilization event, the gynoecium develops into a fruit with great importance for the plant because it protects and helps the dispersion of a new generation, and, for humans is a key nutritional source. Over 20 years, Arabidopsis thaliana has been used to discover important genes for gynoecium development, and in the early years, auxin was already proposed to play a role. More recently, new discoveries are unveiling the importance of other hormones, particularly cytokinins, and providing insights about the action of these hormones in gynoecium development, which is the focus of this review. One of the next challenges is to further refine the knowledge about the mechanisms by which hormones shape the gynoecium, understand the communication among them and their interactions with transcription factors that altogether guide gynoecium development.
Collapse
Affiliation(s)
- Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36821 Irapuato, Gto, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), CINVESTAV-IPN, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36821 Irapuato, Gto, Mexico.
| |
Collapse
|
24
|
Royo C, Carbonell-Bejerano P, Torres-Pérez R, Nebish A, Martínez Ó, Rey M, Aroutiounian R, Ibáñez J, Martínez-Zapater JM. Developmental, transcriptome, and genetic alterations associated with parthenocarpy in the grapevine seedless somatic variant Corinto bianco. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:259-73. [PMID: 26454283 DOI: 10.1093/jxb/erv452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Seedlessness is a relevant trait in grapevine cultivars intended for fresh consumption or raisin production. Previous DNA marker analysis indicated that Corinto bianco (CB) is a parthenocarpic somatic variant of the seeded cultivar Pedro Ximenes (PX). This study compared both variant lines to determine the basis of this parthenocarpic phenotype. At maturity, CB seedless berries were 6-fold smaller than PX berries. The macrogametophyte was absent from CB ovules, and CB was also pollen sterile. Occasionally, one seed developed in 1.6% of CB berries. Microsatellite genotyping and flow cytometry analyses of seedlings generated from these seeds showed that most CB viable seeds were formed by fertilization of unreduced gametes generated by meiotic diplospory, a process that has not been described previously in grapevine. Microarray and RNA-sequencing analyses identified 1958 genes that were differentially expressed between CB and PX developing flowers. Genes downregulated in CB were enriched in gametophyte-preferentially expressed transcripts, indicating the absence of regular post-meiotic germline development in CB. RNA-sequencing was also used for genetic variant calling and 14 single-nucleotide polymorphisms distinguishing the CB and PX variant lines were detected. Among these, CB-specific polymorphisms were considered as candidate parthenocarpy-responsible mutations, including a putative deleterious substitution in a HAL2-like protein. Collectively, these results revealed that the absence of a mature macrogametophyte, probably due to meiosis arrest, coupled with a process of fertilization-independent fruit growth, caused parthenocarpy in CB. This study provides a number of grapevine parthenocarpy-responsible candidate genes and shows how genomic approaches can shed light on the genetic origin of woody crop somatic variants.
Collapse
Affiliation(s)
- Carolina Royo
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - Rafael Torres-Pérez
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - Anna Nebish
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian str., 0025 Yerevan, Armenia
| | - Óscar Martínez
- Departamento de Biología Vegetal y Ciencia del Suelo. Facultad de Biología. Universidad de Vigo, 36310 Vigo, Spain
| | - Manuel Rey
- Departamento de Biología Vegetal y Ciencia del Suelo. Facultad de Biología. Universidad de Vigo, 36310 Vigo, Spain
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian str., 0025 Yerevan, Armenia
| | - Javier Ibáñez
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - José M Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| |
Collapse
|
25
|
Molesini B, Mennella G, Martini F, Francese G, Pandolfini T. Involvement of the Putative N-Acetylornithine Deacetylase from Arabidopsis thaliana in Flowering and Fruit Development. PLANT & CELL PHYSIOLOGY 2015; 56:1084-96. [PMID: 25713174 DOI: 10.1093/pcp/pcv030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/18/2015] [Indexed: 05/22/2023]
Abstract
In eukaryotic cells, the non-proteinogenic amino acid ornithine is the precursor of arginine and polyamines (PAs). The final step of ornithine biosynthesis occurs in plants via a cyclic pathway catalyzed by N(2)-acetylornithine:N-acetylglutamate acetyltransferase (NAOGAcT). An alternative route for ornithine formation, the linear pathway, has been reported for enteric bacteria and a few other organisms; the acetyl group of N(2)-acetylornithine is released as acetate by N(2)-acetylornithine deacetylase (NAOD). NAOD activity has never been demonstrated in plants, although many putative NAOD-like genes have been identified. In this investigation, we examined the effect of down-regulation of the putative Arabidopsis thaliana NAOD gene by using AtNAOD-silenced (sil#17) and T-DNA insertional mutant (atnaod) plants. The ornithine content was consistently reduced in sil#17 and atnaod plants compared with wild-type plants, suggesting that in addition to NAOGAcT action, AtNAOD contributes to the regulation of ornithine levels in plant cells. Ornithine depletion was associated with altered levels of putrescine and spermine. Reduced AtNAOD expression resulted in alterations at the reproductive level, causing early flowering and impaired fruit setting. In this regard, the highest level of AtNAOD expression was observed in unfertilized ovules. Our findings suggest that AtNAOD acts as a positive regulator of fruit setting and agree with those obtained in tomato auxin-synthesizing parthenocarpic plants, where induction of SlNAOD was associated with the onset of ovary growth. Thus, here we have uncovered the first hints of the functions of AtNAOD by connecting its role in flower and fruit development with the regulation of ornithine and PA levels.
Collapse
Affiliation(s)
- Barbara Molesini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Giuseppe Mennella
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, CRA-ORT Centro di Ricerca per l'Orticoltura, via Cavalleggeri 25, 84098 Pontecagnano-Faiano (Salerno), Italy
| | - Flavio Martini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Gianluca Francese
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, CRA-ORT Centro di Ricerca per l'Orticoltura, via Cavalleggeri 25, 84098 Pontecagnano-Faiano (Salerno), Italy
| | - Tiziana Pandolfini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|