1
|
Mizukami H. Pathological evaluation of the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy. Pathol Int 2024; 74:438-453. [PMID: 38888200 DOI: 10.1111/pin.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
Currently, there are more than 10 million patients with diabetes mellitus in Japan. Therefore, the need to explore the pathogenesis of diabetes and the complications leading to its cure is becoming increasingly urgent. Pathological examination of pancreatic tissues from patients with type 2 diabetes reveals a decrease in the volume of beta cells because of a combination of various stresses. In human type 2 diabetes, islet amyloid deposition is a unique pathological change characterized by proinflammatory macrophage (M1) infiltration into the islets. The pathological changes in the pancreas with islet amyloid were different according to clinical factors, which suggests that type 2 diabetes can be further subclassified based on islet pathology. On the other hand, diabetic peripheral neuropathy is the most frequent diabetic complication. In early diabetic peripheral neuropathy, M1 infiltration in the sciatic nerve evokes oxidative stress or attenuates retrograde axonal transport, as clearly demonstrated by in vitro live imaging. Furthermore, islet parasympathetic nerve density and beta cell volume were inversely correlated in type 2 diabetic Goto-Kakizaki rats, suggesting that diabetic peripheral neuropathy itself may contribute to the decrease in beta cell volume. These findings suggest that the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy may be interrelated.
Collapse
Affiliation(s)
- Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
2
|
Muñoz F, Fex M, Moritz T, Mulder H, Cataldo LR. Unique features of β-cell metabolism are lost in type 2 diabetes. Acta Physiol (Oxf) 2024; 240:e14148. [PMID: 38656044 DOI: 10.1111/apha.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Pancreatic β cells play an essential role in the control of systemic glucose homeostasis as they sense blood glucose levels and respond by secreting insulin. Upon stimulating glucose uptake in insulin-sensitive tissues post-prandially, this anabolic hormone restores blood glucose levels to pre-prandial levels. Maintaining physiological glucose levels thus relies on proper β-cell function. To fulfill this highly specialized nutrient sensor role, β cells have evolved a unique genetic program that shapes its distinct cellular metabolism. In this review, the unique genetic and metabolic features of β cells will be outlined, including their alterations in type 2 diabetes (T2D). β cells selectively express a set of genes in a cell type-specific manner; for instance, the glucose activating hexokinase IV enzyme or Glucokinase (GCK), whereas other genes are selectively "disallowed", including lactate dehydrogenase A (LDHA) and monocarboxylate transporter 1 (MCT1). This selective gene program equips β cells with a unique metabolic apparatus to ensure that nutrient metabolism is coupled to appropriate insulin secretion, thereby avoiding hyperglycemia, as well as life-threatening hypoglycemia. Unlike most cell types, β cells exhibit specialized bioenergetic features, including supply-driven rather than demand-driven metabolism and a high basal mitochondrial proton leak respiration. The understanding of these unique genetically programmed metabolic features and their alterations that lead to β-cell dysfunction is crucial for a comprehensive understanding of T2D pathophysiology and the development of innovative therapeutic approaches for T2D patients.
Collapse
Affiliation(s)
- Felipe Muñoz
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Malin Fex
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hindrik Mulder
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Luis Rodrigo Cataldo
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Aoyagi K, Nishiwaki C, Nakamichi Y, Yamashita SI, Kanki T, Ohara-Imaizumi M. Imeglimin mitigates the accumulation of dysfunctional mitochondria to restore insulin secretion and suppress apoptosis of pancreatic β-cells from db/db mice. Sci Rep 2024; 14:6178. [PMID: 38485716 PMCID: PMC10940628 DOI: 10.1038/s41598-024-56769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Mitochondrial dysfunction in pancreatic β-cells leads to impaired glucose-stimulated insulin secretion (GSIS) and type 2 diabetes (T2D), highlighting the importance of autophagic elimination of dysfunctional mitochondria (mitophagy) in mitochondrial quality control (mQC). Imeglimin, a new oral anti-diabetic drug that improves hyperglycemia and GSIS, may enhance mitochondrial activity. However, chronic imeglimin treatment's effects on mQC in diabetic β-cells are unknown. Here, we compared imeglimin, structurally similar anti-diabetic drug metformin, and insulin for their effects on clearance of dysfunctional mitochondria through mitophagy in pancreatic β-cells from diabetic model db/db mice and mitophagy reporter (CMMR) mice. Pancreatic islets from db/db mice showed aberrant accumulation of dysfunctional mitochondria and excessive production of reactive oxygen species (ROS) along with markedly elevated mitophagy, suggesting that the generation of dysfunctional mitochondria overwhelmed the mitophagic capacity in db/db β-cells. Treatment with imeglimin or insulin, but not metformin, reduced ROS production and the numbers of dysfunctional mitochondria, and normalized mitophagic activity in db/db β-cells. Concomitantly, imeglimin and insulin, but not metformin, restored the secreted insulin level and reduced β-cell apoptosis in db/db mice. In conclusion, imeglimin mitigated accumulation of dysfunctional mitochondria through mitophagy in diabetic mice, and may contribute to preserving β-cell function and effective glycemic control in T2D.
Collapse
Affiliation(s)
- Kyota Aoyagi
- Department of Cellular Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
| | - Chiyono Nishiwaki
- Department of Cellular Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
| | - Yoko Nakamichi
- Department of Cellular Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Mica Ohara-Imaizumi
- Department of Cellular Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
4
|
Wu D, Tian L, Hoskin V, Dasgupta A. Editorial: The effects of mitochondrial dysfunction on the cell cycle. Front Cell Dev Biol 2023; 11:1303834. [PMID: 37928899 PMCID: PMC10622665 DOI: 10.3389/fcell.2023.1303834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Danchen Wu
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Lian Tian
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Victoria Hoskin
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Asish Dasgupta
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
5
|
Kabra UD, Jastroch M. Mitochondrial Dynamics and Insulin Secretion. Int J Mol Sci 2023; 24:13782. [PMID: 37762083 PMCID: PMC10530730 DOI: 10.3390/ijms241813782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria are involved in the regulation of cellular energy metabolism, calcium homeostasis, and apoptosis. For mitochondrial quality control, dynamic processes, such as mitochondrial fission and fusion, are necessary to maintain shape and function. Disturbances of mitochondrial dynamics lead to dysfunctional mitochondria, which contribute to the development and progression of numerous diseases, including Type 2 Diabetes (T2D). Compelling evidence has been put forward that mitochondrial dynamics play a significant role in the metabolism-secretion coupling of pancreatic β cells. The disruption of mitochondrial dynamics is linked to defects in energy production and increased apoptosis, ultimately impairing insulin secretion and β cell death. This review provides an overview of molecular mechanisms controlling mitochondrial dynamics, their dysfunction in pancreatic β cells, and pharmaceutical agents targeting mitochondrial dynamic proteins, such as mitochondrial division inhibitor-1 (mdivi-1), dynasore, P110, and 15-oxospiramilactone (S3).
Collapse
Affiliation(s)
- Uma D. Kabra
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara 391760, India;
| | - Martin Jastroch
- The Arrhenius Laboratories F3, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Barzalobre-Geronimo R, Contreras-Ramos A, Cervantes-Cruz AI, Cruz M, Suárez-Sánchez F, Goméz-Zamudio J, Diaz-Rosas G, Ávalos-Rodríguez A, Díaz-Flores M, Ortega-Camarillo C. Pancreatic β-Cell Apoptosis in Normoglycemic Rats is Due to Mitochondrial Translocation of p53-Induced by the Consumption of Sugar-Sweetened Beverages. Cell Biochem Biophys 2023; 81:503-514. [PMID: 37392315 DOI: 10.1007/s12013-023-01147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Overstimulation of pancreatic β-cells can lead to dysfunction and death, prior to the clinical manifestations of type 2 diabetes (T2D). The excessive consumption of carbohydrates induces metabolic alterations that can affect the functions of the β-cells and cause their death. We analyzed the role of p53 in pancreatic β cell death in carbohydrate-supplemented Sprague Dawley rats. For four months, the animals received drinking water containing either 40% sucrose or 40% fructose. The glucose tolerance test was performed at week 15. Apoptosis was assessed with the TUNEL assay (TdT-mediated dUTP-nick end-labeling). Bax, p53, and insulin were assessed by Western blotting, immunofluorescence, and real-time quantitative PCR. Insulin, triacylglycerol, and serum glucose and fatty acids in pancreatic tissue were measured. Carbohydrate consumption promotes apoptosis and mobilization of p53 from the cytosol to rat pancreatic β-cell mitochondria before blood glucose rises. An increase in p53, miR-34a, and Bax mRNA was also detected (P < 0.001) in the sucrose group. As well as hypertriglyceridemia, hyperinsulinemia, glucose intolerance, insulin resistance, visceral fat accumulation, and increased pancreatic fatty acids in the sucrose group. Carbohydrate consumption increases p53 and its mobilization into β-cell mitochondria and coincides with the increased rate of apoptosis, which occurs before serum glucose levels rise.
Collapse
Affiliation(s)
- Raúl Barzalobre-Geronimo
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. CDMX, México, Mexico
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México
| | - Alejandra Contreras-Ramos
- Molecular Biology Research Lab Congenital Malformations Center, Children Hospital of Mexico Federico Gomez (HIMFG). CDMX, México, Mexico
| | - Aaron I Cervantes-Cruz
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México
| | - Miguel Cruz
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México
| | - Fernando Suárez-Sánchez
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México
| | - Jaime Goméz-Zamudio
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México
| | - Guadalupe Diaz-Rosas
- Molecular Biology Research Lab Congenital Malformations Center, Children Hospital of Mexico Federico Gomez (HIMFG). CDMX, México, Mexico
| | - Alejandro Ávalos-Rodríguez
- Deparment of Agricultural and Animal Prod, Universidad Autónoma Metropolitana- Xoch. CDMX, México, México
| | - Margarita Díaz-Flores
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México
| | - Clara Ortega-Camarillo
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social. CDMX, México, México.
| |
Collapse
|
7
|
Takahashi K, Mizukami H, Osonoi S, Takeuchi Y, Kudoh K, Sasaki T, Daimon M, Yagihashi S. Islet microangiopathy and augmented β-cell loss in Japanese non-obese type 2 diabetes patients who died of acute myocardial infarction. J Diabetes Investig 2021; 12:2149-2161. [PMID: 34032392 PMCID: PMC8668063 DOI: 10.1111/jdi.13601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION Islets have microvessels that might develop pathological alterations similar to microangiopathy in type 2 diabetes patients. It remains unclear, however, whether the changes correlate with endocrine cell deficits or whether the presence of macroangiopathy influences the islet microvasculature in Japanese type 2 diabetes patients. In this study, we characterized changes of the islet microvessels and endocrine cells in Japanese non-obese patients with type 2 diabetes who died of acute myocardial infarction (AMI). MATERIALS AND METHODS Clinical profiles and islet pathology were examined for 35 diabetes patients who died of AMI (DM + AMI) and 13 diabetes patients who were free from AMI (DM). A total of 13 age-matched, individuals without diabetes who died of AMI and 16 individuals without diabetes who were free from AMI were also studied. Pancreata were subjected to morphometric evaluation of islets, including microvascular alterations of immunostained sections. RESULTS Body mass index in DM + AMI was comparable to those in DM. Compared with DM, DM + AMI showed greater glycated hemoglobin levels, higher prevalence of renal failure, hypertension, smaller β-cell volume density and greater amyloid area. DM + AMI showed an increased microvascular area and density compared with other groups. There was a significant increase in vascular basement membrane thickness and loss of pericytes in DM and DM + AMI compared with individuals without diabetes in each group, and the extent of thickening was correlated with the amyloid area and occurrence of β-cell loss in DM + AMI. CONCLUSIONS Islet microangiopathy was associated with augmented β-cell loss and amyloid deposition in non-obese Japanese type 2 diabetes patients who died of AMI.
Collapse
Affiliation(s)
- Kazuhisa Takahashi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
- Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Hiroki Mizukami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Sho Osonoi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
- Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Yuki Takeuchi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
- Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Takanori Sasaki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Makoto Daimon
- Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Soroku Yagihashi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| |
Collapse
|
8
|
Georgiadou E, Rutter GA. Control by Ca 2+ of mitochondrial structure and function in pancreatic β-cells. Cell Calcium 2020; 91:102282. [PMID: 32961506 PMCID: PMC7116533 DOI: 10.1016/j.ceca.2020.102282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Mitochondria play a central role in glucose metabolism and the stimulation of insulin secretion from pancreatic β-cells. In this review, we discuss firstly the regulation and roles of mitochondrial Ca2+ transport in glucose-regulated insulin secretion, and the molecular machinery involved. Next, we discuss the evidence that mitochondrial dysfunction in β-cells is associated with type 2 diabetes, from a genetic, functional and structural point of view, and then the possibility that these changes may in part be mediated by dysregulation of cytosolic Ca2+. Finally, we review the importance of preserved mitochondrial structure and dynamics for mitochondrial gene expression and their possible relevance to the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
9
|
Guo D, Mizukami H, Osonoi S, Takahashi K, Ogasawara S, Kudo K, Sasaki T, Yagihashi S. Beneficial effects of combination therapy of canagliflozin and teneligliptin on diabetic polyneuropathy and β-cell volume density in spontaneously type 2 diabetic Goto-Kakizaki rats. Metabolism 2020; 107:154232. [PMID: 32302619 DOI: 10.1016/j.metabol.2020.154232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
AIMS Parasympathetic nerve (PN) signaling plays a crucial role in the maintenance of pancreatic β-cell volume density (Vβ). PN may be pathologically affected in diabetic polyneuropathy (DPN). However, the association between the reduction of PNs in islets and Vβ and the therapeutic effects of a DPP4 inhibitor (DPP4i) and an SGLT2 inhibitor (SGLT2i) in nonobese type 2 diabetes mellitus (T2DM) Goto-Kakizaki rats (GK) have not been investigated. MATERIALS AND METHODS We divided 5-week old male GK and Wistar rats (W) into a DPP4i-treated group (GKTe), SGLT2i-treated group (GKCa), and combination-treated group (GKCaTe). After 25 weeks, the pancreata was pathologically evaluated. RESULTS Vβ in GK was significantly decreased (p < 0.01 vs. W), whereas Vβ was the most well preserved in GKCaTe (p < 0.05 vs. GKTe), followed by GKTe (p < 0.05 vs. GK). The decreased amount of PNs in the islets and intraepidermal nerve fiber density (IENFD) in GK was significantly improved in the treated groups compared with GK (p < 0.05 vs. GKCa and GKTe and p < 0.01 vs. GKCaTe). PN density and IENFD were significantly correlated with Vβ (r = 0.55, p < 0.01 and r = 0.54, p < 0.01, respectively). IENFD was identified as a surrogate marker for the prediction of Vβ (cutoff value, 16.39). CONCLUSIONS The combination therapy of DPP4i and SGLT2i improved Vβ accompanied by PNs density and IENFD. IENFD was proportionally correlated with Vβ. Therefore, the prevention of DPN development may be concurrently beneficial for the preservation of Vβ in nonobese T2DM.
Collapse
Affiliation(s)
- Danyang Guo
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kazuhisa Takahashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kazuhiro Kudo
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
10
|
Las G, Oliveira MF, Shirihai OS. Emerging roles of β-cell mitochondria in type-2-diabetes. Mol Aspects Med 2020; 71:100843. [PMID: 31918997 DOI: 10.1016/j.mam.2019.100843] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
Type-2-Diabetes (T2D) is the most common metabolic disease in the world today. It erupts as a result of peripheral insulin resistance combined with hyperinsulinemia followed by suppression of insulin secretion from pancreatic β-cells. Mitochondria play a central role in β-cells by sensing glucose and also by mediating the suppression of insulin secretion in T2D. Here, we will summarize the evidence accumulated for the roles of β-cells mitochondria in T2D. We will present an updated view on how mitochondria in β-cells have been associated with T2D, from the genetic, bioenergetic, redox and structural points of view. The emerging picture is that mitochondrial structure and dysfunction directly contribute to β-cell function and in the pathogenesis of T2D.
Collapse
Affiliation(s)
- Guy Las
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Orian S Shirihai
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Gerencser AA. Metabolic activation-driven mitochondrial hyperpolarization predicts insulin secretion in human pancreatic beta-cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:817-828. [PMID: 29886047 DOI: 10.1016/j.bbabio.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/18/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial metabolism plays a central role in insulin secretion in pancreatic beta-cells. Generation of protonmotive force and ATP synthesis from glucose-originated pyruvate are critical steps in the canonical pathway of glucose-stimulated insulin secretion. Mitochondrial metabolism is intertwined with pathways that are thought to amplify insulin secretion with mechanisms distinct from the canonical pathway, and the relative importance of these two pathways is controversial. Here I show that glucose-induced mitochondrial membrane potential (MMP) hyperpolarization is necessary for, and predicts, the rate of insulin secretion in primary cultured human beta-cells. When glucose concentration is elevated, increased metabolism results in a substantial MMP hyperpolarization, as well as in increased rates of ATP synthesis and turnover marked by faster cell respiration. Using modular kinetic analysis I explored what properties of cellular energy metabolism enable a large glucose-induced change in MMP in human beta-cells. I found that an ATP-dependent pathway activates glucose or substrate oxidation, acting as a positive feedback in energy metabolism. This activation mechanism is essential for concomitant fast respiration and high MMP, and for a high magnitude glucose-induced MMP hyperpolarization and therefore for insulin secretion.
Collapse
Affiliation(s)
- Akos A Gerencser
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States; Image Analyst Software, 43 Nova Lane, Novato, CA 94945, United States.
| |
Collapse
|
12
|
Alán L, Špaček T, Zelenka J, Tauber J, Berková Z, Zacharovová K, Saudek F, Ježek P. Assessment of mitochondrial DNA as an indicator of islet quality: an example in Goto Kakizaki rats. Transplant Proc 2014; 43:3281-4. [PMID: 22099777 DOI: 10.1016/j.transproceed.2011.09.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Diabetic Goto Kakizaki (GK) rats represent an established model of type 2 diabetes that exhibit an onset of pancreatic islet (PI) pathology characterized by islet hypertrophy with a decreased number of insulin-secreting β-cells. Among the remaining β-cells, oxidative phosphorylation (OXPHOS) and consequently glucose-stimulated insulin secretion (GSIS) are impaired, perhaps owing to a deficit in mitochondrial DNA (mtDNA). We sought to identify this abnormality. METHODS β-Cells were obtained from Accutase-dissolved PI isolated from GK or Wistar rats and sorted based on the positive Zn(2+) signal of Newport Green. The mtDNA copy number per cell was quantified as the amplicon ratio by polymerase chain reaction using specific primers against the rat ND5 mt gene and UCP2 nuclear gene. RESULTS The 12-month-old GK rats exhibited drastically reduced copy numbers per remaining β-cell, from 7,400 ± 600 in 12-month old Wistar rats (100%) to 24 ± 4%; mtDNA content in heart and liver was 70 ± 25% and 60 ± 20%, respectively. Versus age-paired Wistar rats, 6- and 4-month-old GK rats showed reductions to 60 ± 15% and 50 ± 20%, respectively. CONCLUSIONS OXPHOS of remnant β-cells in diabetic GK was drastically impaired due to the lack of sufficient mtDNA levels. We suggest the use of mtDNA quantification to quickly assess PI quality before transplantation.
Collapse
Affiliation(s)
- L Alán
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mizukami H, Takahashi K, Inaba W, Tsuboi K, Osonoi S, Yoshida T, Yagihashi S. Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients. Diabetes Care 2014; 37:1966-74. [PMID: 24705612 DOI: 10.2337/dc13-2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Deficits of β-cells characterize the islet pathology in type 2 diabetes. It is yet to be clear how the β-cell loss develops in type 2 diabetes. We explored the implication of oxidative stress, endoplasmic reticulum (ER)-induced stress, and autophagy deficit in the β-cell decline in Japanese type 2 diabetic patients. RESEARCH DESIGN AND METHODS Pancreases from recent autopsy cases of 47 type 2 diabetic and 30 nondiabetic subjects were investigated on the islet structure with morphometric analysis. Volume densities of islet (Vi), β-cell (Vβ), and α-cell (Vα) were measured. To evaluate cell damage of endocrine cells, immunohistochemical expressions of oxidative stress-related DNA damage as expressed by γH2AX, ER stress-related cell damage as CCAAT/enhancer 1 binding protein-β (C/EBP-β), and autophagy deficit as P62 were semiquantified, and their correlations to islet changes were sought. RESULTS Compared with nondiabetic subjects, Vβ was reduced in diabetic subjects. Contrariwise, there was an increase in Vα. There was a significant link between reduced Vβ and increased HbA1c levels (P < 0.01) and a trend of inverse correlation between Vβ and duration of diabetes (P = 0.06). Expressions of γH2AX, P62, and C/EBP-β were all enhanced in diabetic islets, and reduced Vβ correlated with the intensity of γH2AX expression but not with C/EBP-β or P62 expressions. Combined expressions of γH2AX, P62, and C/EBP-β were associated with severe reduction of Vβ. CONCLUSIONS β-Cell deficit in type 2 diabetes was associated with increased oxidative stress and may further be augmented by autophagic deficits and ER stress.
Collapse
Affiliation(s)
- Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazunori Takahashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Wataru Inaba
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Tsuboi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Taro Yoshida
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
14
|
Mizukami H, Inaba W, Takahashi K, Inoue K, Sawanobori K, Yagihashi S. Augmented reduction of islet β-cell mass in Goto-Kakizaki rats fed high-fat diet and its suppression by pitavastatin treatment. J Diabetes Investig 2014; 3:235-44. [PMID: 24843571 PMCID: PMC4014944 DOI: 10.1111/j.2040-1124.2011.00173.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aims/Introduction: High fat diet (HFD) is known to be a risk for development of type 2 diabetes. It is unclear, however, how it affects the glucose tolerance or the islet structure in type 2 diabetes. The aim of this study is: (i) to examine the effects of HFD on the islet in GK rats, non‐obese type 2 diabetic model; and (ii) to explore if pitavastatin treatment influences the change. Materials and Methods: To see the effects of HFD on islet changes in type 2 diabetes, 4‐week old male GK and Wistar rats were fed HFD for 16 weeks and subjected to glucose tolerance tests and pathological studies of the islet. The effects of pitavastatin (3 mg/kg/day for 16 weeks, oral), one of the lipophilc statins, were also examined in both GK and Wistrar rats fed with or without HFD. Results: The HFD induced hyperlipidemia and aggravated glucose intolerance in both GK and Wistar rats. Pitavastatin treatment did not influence the glucose tolerance in HFD‐fed animals. HFD caused an increase in hepatic lipid contents in all the animals, which was partially suppressed by pitavastatin treatment. GK rats showed reduced β‐cell mass, and fibrosis and macrophage migration in the islets. HFD feeding in GK rats augmented these changes which were associated with enhanced expression of 8‐hydroxydeoxyguanosine and an increase in apoptotic cells. Pitavastatin treatment improved the HFD‐induced islet pathology, and pancreatic insulin contents paralleled the structural changes. Conclusions: HFD feeding worsened the islet pathology in GK rats which was suppressed by pitavastatin treatment. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2011.00173.x, 2011)
Collapse
Affiliation(s)
- Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki
| | - Wataru Inaba
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki
| | - Kazunori Takahashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki
| | - Keisuke Inoue
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company Ltd., Higashimurayama, Tokyo, Japan
| | - Kimio Sawanobori
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company Ltd., Higashimurayama, Tokyo, Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki
| |
Collapse
|
15
|
Abstract
Background Insulin secreted by pancreatic islet β-cells is the principal regulating hormone of glucose metabolism and plays a key role in controlling glucose level in blood. Impairment of the pancreatic islet function may cause glucose to accumulate in blood, and result in diabetes mellitus. Recent studies have shown that mitochondrial dysfunction has a strong negative effect on insulin secretion. Methods In order to study the cause of dysfunction of pancreatic islets, a multiple cell model containing healthy and unhealthy cells is proposed based on an existing single cell model. A parameter that represents the function of mitochondria is modified for unhealthy cells. A 3-D hexagonal lattice structure is used to model the spatial differences among β-cells in a pancreatic islet. The β-cells in the model are connected through direct electrical connections between neighboring β-cells. Results The simulation results show that the low ratio of total mitochondrial volume over cytoplasm volume per β-cell is a main reason that causes some mitochondria to lose their function. The results also show that the overall insulin secretion will be seriously disrupted when more than 15% of the β-cells in pancreatic islets become unhealthy. Conclusion Analysis of the model shows that the insulin secretion can be reinstated by increasing the glucokinase level. This new discovery sheds light on antidiabetic medication.
Collapse
|
16
|
Nagao M, Asai A, Inaba W, Kawahara M, Shuto Y, Kobayashi S, Sanoyama D, Sugihara H, Yagihashi S, Oikawa S. Characterization of pancreatic islets in two selectively bred mouse lines with different susceptibilities to high-fat diet-induced glucose intolerance. PLoS One 2014; 9:e84725. [PMID: 24454742 PMCID: PMC3890274 DOI: 10.1371/journal.pone.0084725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/18/2013] [Indexed: 12/26/2022] Open
Abstract
Hereditary predisposition to diet-induced type 2 diabetes has not yet been fully elucidated. We recently established 2 mouse lines with different susceptibilities (resistant and prone) to high-fat diet (HFD)-induced glucose intolerance by selective breeding (designated selectively bred diet-induced glucose intolerance-resistant [SDG-R] and -prone [SDG-P], respectively). To investigate the predisposition to HFD-induced glucose intolerance in pancreatic islets, we examined the islet morphological features and functions in these novel mouse lines. Male SDG-P and SDG-R mice were fed a HFD for 5 weeks. Before and after HFD feeding, glucose tolerance was evaluated by oral glucose tolerance test (OGTT). Morphometry and functional analyses of the pancreatic islets were also performed before and after the feeding period. Before HFD feeding, SDG-P mice showed modestly higher postchallenge blood glucose levels and lower insulin increments in OGTT than SDG-R mice. Although SDG-P mice showed greater β cell proliferation than SDG-R mice under HFD feeding, SDG-P mice developed overt glucose intolerance, whereas SDG-R mice maintained normal glucose tolerance. Regardless of whether it was before or after HFD feeding, the isolated islets from SDG-P mice showed impaired glucose- and KCl-stimulated insulin secretion relative to those from SDG-R mice; accordingly, the expression levels of the insulin secretion-related genes in SDG-P islets were significantly lower than those in SDG-R islets. These findings suggest that the innate predispositions in pancreatic islets may determine the susceptibility to diet-induced diabetes. SDG-R and SDG-P mice may therefore be useful polygenic animal models to study the gene–environment interactions in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akira Asai
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Wataru Inaba
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Momoyo Kawahara
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuki Shuto
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shunsuke Kobayashi
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Daisuke Sanoyama
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinichi Oikawa
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- * E-mail:
| |
Collapse
|
17
|
Redox homeostasis in pancreatic β cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:932838. [PMID: 23304259 PMCID: PMC3532876 DOI: 10.1155/2012/932838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022]
Abstract
We reviewed mechanisms that determine reactive oxygen species (redox) homeostasis, redox information signaling and metabolic/regulatory function of autocrine insulin signaling in pancreatic β cells, and consequences of oxidative stress and dysregulation of redox/information signaling for their dysfunction. We emphasize the role of mitochondrion in β cell molecular physiology and pathology, including the antioxidant role of mitochondrial uncoupling protein UCP2. Since in pancreatic β cells pyruvate cannot be easily diverted towards lactate dehydrogenase for lactate formation, the respiration and oxidative phosphorylation intensity are governed by the availability of glucose, leading to a certain ATP/ADP ratio, whereas in other cell types, cell demand dictates respiration/metabolism rates. Moreover, we examine the possibility that type 2 diabetes mellitus might be considered as an inevitable result of progressive self-accelerating oxidative stress and concomitantly dysregulated information signaling in peripheral tissues as well as in pancreatic β cells. It is because the redox signaling is inherent to the insulin receptor signaling mechanism and its impairment leads to the oxidative and nitrosative stress. Also emerging concepts, admiting participation of redox signaling even in glucose sensing and insulin release in pancreatic β cells, fit in this view. For example, NADPH has been firmly established to be a modulator of glucose-stimulated insulin release.
Collapse
|
18
|
Abstract
Mitochondrial dynamics contribute to the regulation of mitochondrial shape as well as various mitochondrial functions and quality control. This is of particular interest in the beta-cell because of the key role mitochondria play in the regulation of beta-cell insulin secretion function. Moreover, mitochondrial dysfunction has been suggested to contribute to the development of Type 2 Diabetes. Genetic tools that shift the balance of mitochondrial fusion and fission result in alterations to beta-cell function and viability. Additionally, conditions that induce beta-cell dysfunction, such as exposure to a high nutrient environment, disrupt mitochondrial morphology and dynamics. While it has been shown that mitochondria display a fragmented morphology in islets of diabetic patients and animal models, the mechanism behind this is currently unknown. Here, we review the current literature on mitochondrial morphology and dynamics in the beta-cell as well as some of the unanswered question in this field.
Collapse
Affiliation(s)
| | - Orian S. Shirihai
- Corresponding author: Orian Shirihai, Boston University School of Medicine, 650 Albany St., EBRC X-840, Boston, MA 02118, 1-617-230-8570,
| |
Collapse
|
19
|
Supale S, Li N, Brun T, Maechler P. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol Metab 2012; 23:477-87. [PMID: 22766318 DOI: 10.1016/j.tem.2012.06.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/02/2012] [Accepted: 06/02/2012] [Indexed: 12/17/2022]
Abstract
In pancreatic β cells, mitochondria play a central role in coupling glucose metabolism to insulin exocytosis, thereby ensuring strict control of glucose-stimulated insulin secretion. Defects in mitochondrial function impair this metabolic coupling, and ultimately promote apoptosis and β cell death. Various factors have been identified that may contribute to mitochondrial dysfunction. In this review we address the emerging concept of complex links between these factors. We also discuss the role of the mitochondrial genome and mutations associated with diabetes, the effect of oxidative stress and reactive oxygen species, the sensitivity of mitochondria to lipotoxicity, and the adaptive dynamics of mitochondrial morphology. Better comprehension of the molecular mechanisms contributing to mitochondrial dysfunction will help drive the development of effective therapeutic approaches.
Collapse
Affiliation(s)
- Sachin Supale
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
20
|
Ma Z, Wirström T, Borg LH, Larsson-Nyrén G, Hals I, Bondo-Hansen J, Grill V, Björklund A. Diabetes reduces β-cell mitochondria and induces distinct morphological abnormalities, which are reproducible by high glucose in vitro with attendant dysfunction. Islets 2012; 4:233-42. [PMID: 22854606 PMCID: PMC3442821 DOI: 10.4161/isl.20516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We investigated the impact of a diabetic state with hyperglycemia on morphometry of β cell mitochondria and modifying influence of a K (+) -ATP channel opener and we related in vivo findings with glucose effects in vitro. For in vivo experiments islets from syngeneic rats were transplanted under the kidney capsule to neonatally streptozotocin-diabetic or non-diabetic recipients. Diabetic recipients received vehicle, or tifenazoxide (NN414), intragastrically for 9 weeks. Non-diabetic rats received vehicle. Transplants were excised 7 d after cessation of treatment (wash-out) and prepared for electron microscopy. Morphological parameters were measured from approx. 25,000 mitochondria. Rat islets were cultured in vitro for 2-3 weeks at 27 or 11 (control) mmol/l glucose. Transplants to diabetic rats displayed decreased numbers of mitochondria (-31%, p < 0.05), increased mitochondrial volume and increased mitochondrial outer surface area, p < 0.001. Diabetes increased variability in mitochondrial size with frequent appearance of mega-mitochondria. Tifenazoxide partly normalized diabetes-induced effects, and mega-mitochondria disappeared. Long-term culture of islets at 27 mmol/l glucose reproduced the in vivo morphological abnormalities. High-glucose culture was also associated with reduced ATP and ADP contents, reduced oxygen consumption, reduced signaling by MitoTracker Red and reduction of mitochondrial proteins (complexes I-IV), OPA 1 and glucose-induced insulin release. We conclude that (1) a long-term diabetic state leads to a reduced number of mitochondria and to distinct morphological abnormalities which are replicated by high glucose in vitro; (2) the morphological abnormalities are coupled to dysfunction; (3) K (+) -ATP channel openers may have potential to partly reverse glucose-induced effects.
Collapse
MESH Headings
- Animals
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cyclic S-Oxides/pharmacology
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Female
- Hyperglycemia/metabolism
- Hyperglycemia/pathology
- Hypoglycemic Agents/pharmacology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Male
- Microscopy, Electron
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondria/ultrastructure
- Rats
- Rats, Inbred WF
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Zuheng Ma
- Department of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm, Sweden
| | - Tina Wirström
- Department of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm, Sweden
| | - L.A. Håkan Borg
- Department of Medical Cell Biology; University of Uppsala; Uppsala, Sweden
| | - Gerd Larsson-Nyrén
- Department of Integrative Medical Biology; Section for Histology and Cell Biology; Umeå University; Umeå, Sweden
| | - Ingrid Hals
- Institute of Cancer Research and Molecular Medicine; The Medical Faculty; Norwegian University of Science and Technology; Trondheim, Norway
| | | | - Valdemar Grill
- Department of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm, Sweden
- Institute of Cancer Research and Molecular Medicine; The Medical Faculty; Norwegian University of Science and Technology; Trondheim, Norway
- Department of Endocrinology; St. Olav’s University Hospital; Trondheim, Norway
| | - Anneli Björklund
- Department of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm, Sweden
- Correspondence to: Anneli Björklund,
| |
Collapse
|
21
|
Portha B, Giroix MH, Tourrel-Cuzin C, Le-Stunff H, Movassat J. The GK rat: a prototype for the study of non-overweight type 2 diabetes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 933:125-59. [PMID: 22893405 DOI: 10.1007/978-1-62703-068-7_9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of β-cell secretory dysfunction and/or decreased β-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK abnormalities so far identified is proposed in this perspective, together with their time-course and interactions. A special focus is given toward the pathogenesis of defective β-cell number and function in the GK model. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (1) several susceptibility loci containing genes responsible for some diabetic traits; (2) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas and the major insulin target tissues; and (3) environmentally induced loss of β-cell differentiation due to chronic exposure to hyperglycemia/hyperlipidemia, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Bernard Portha
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), Université Paris-Diderot, CNRS EAC 4413, Paris, France.
| | | | | | | | | |
Collapse
|
22
|
Roncal-Jimenez CA, Lanaspa MA, Rivard CJ, Nakagawa T, Sanchez-Lozada LG, Jalal D, Andres-Hernando A, Tanabe K, Madero M, Li N, Cicerchi C, Mc Fann K, Sautin YY, Johnson RJ. Sucrose induces fatty liver and pancreatic inflammation in male breeder rats independent of excess energy intake. Metabolism 2011; 60:1259-70. [PMID: 21489572 PMCID: PMC3137694 DOI: 10.1016/j.metabol.2011.01.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 02/07/2023]
Abstract
Fructose induces metabolic syndrome in rats; but studies have been criticized for using high concentrations of fructose that are not physiologic, for using only pure fructose, and for not controlling for energy intake. We tested the hypothesis that a 40% sucrose diet (containing 20% fructose) might induce features of metabolic syndrome in male breeder rats independent of excess energy intake. Male Sprague-Dawley breeder rats were pair fed 40% sucrose or isocaloric starch diet for 4 months and evaluated for metabolic syndrome and diabetes. In vitro studies were performed in rat insulinoma cells (RIN-m5F) exposed to uric acid, and markers of inflammation were assessed. Rats fed a 40% sucrose diet developed accelerated features of metabolic syndrome with up-regulation of fructose-dependent transporter Glut5 and fructokinase. Fatty liver and low-grade pancreatic inflammation also occurred. Uric acid was found to stimulate inflammatory mediators and oxidative stress in islet cells in vitro. Sucrose, at concentrations ingested by a subset of Americans, can accelerate metabolic syndrome, fatty liver, and type 2 diabetes mellitus in male breeder rats; and the effects are independent of excess energy intake.
Collapse
Affiliation(s)
- Carlos A Roncal-Jimenez
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80016, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang Z, Wakabayashi N, Wakabayashi J, Tamura Y, Song WJ, Sereda S, Clerc P, Polster BM, Aja SM, Pletnikov MV, Kensler TW, Shirihai OS, Iijima M, Hussain MA, Sesaki H. The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells. Mol Biol Cell 2011; 22:2235-45. [PMID: 21551073 PMCID: PMC3128526 DOI: 10.1091/mbc.e10-12-0933] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The physiological function of Opa1, a dynamin-related GTPase required for mitochondrial fusion, is described in glucose-stimulated ATP production in pancreatic beta cells. Previous studies using in vitro cell culture systems have shown the role of the dynamin-related GTPase Opa1 in apoptosis prevention and mitochondrial DNA (mtDNA) maintenance. However, it remains to be tested whether these functions of Opa1 are physiologically important in vivo in mammals. Here, using the Cre-loxP system, we deleted mouse Opa1 in pancreatic beta cells, in which glucose-stimulated ATP production in mitochondria plays a key role in insulin secretion. Beta cells lacking Opa1 maintained normal copy numbers of mtDNA; however, the amount and activity of electron transport chain complex IV were significantly decreased, leading to impaired glucose-stimulated ATP production and insulin secretion. In addition, in Opa1-null beta cells, cell proliferation was impaired, whereas apoptosis was not promoted. Consequently, mice lacking Opa1 in beta cells develop hyperglycemia. The data suggest that the function of Opa1 in the maintenance of the electron transport chain is physiologically relevant in beta cells.
Collapse
Affiliation(s)
- Zhongyan Zhang
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chaturvedi P, George S. Momordica charantiaMaintains Normal Glucose Levels and Lipid Profiles and Prevents Oxidative Stress in Diabetic Rats Subjected to Chronic Sucrose Load. J Med Food 2010; 13:520-7. [DOI: 10.1089/jmf.2009.0151] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Padmaja Chaturvedi
- Department of Biological Sciences, Botswana College of Agriculture, Gaborone, Botswana
| | - Saramma George
- Department of Basic Sciences, Botswana College of Agriculture, Gaborone, Botswana
| |
Collapse
|
25
|
Bruin JE, Petrik JJ, Hyslop JR, Raha S, Tarnopolsky MA, Gerstein HC, Holloway AC. Rosiglitazone improves pancreatic mitochondrial function in an animal model of dysglycemia: role of the insulin-like growth factor axis. Endocrine 2010; 37:303-11. [PMID: 20960268 DOI: 10.1007/s12020-009-9294-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/21/2009] [Indexed: 01/09/2023]
Abstract
Thiazolidinediones (TZDs) improve insulin sensitivity and maintain beta cell mass. This study examined whether this effect is attributable to improved mitochondrial function in the pancreas and the potential involvement of the pancreatic insulin-like growth factor (IGF) axis in mediating this effect. Female Wistar rats were given either saline (vehicle) or nicotine (1 mg kg⁻¹ day⁻¹) during pregnancy and lactation. Following weaning, nicotine-exposed offspring were randomized to receive either vehicle or rosiglitazone (3 mg kg⁻¹ day⁻¹) until 26 weeks of age when serum and pancreas tissue were collected. The effect of rosiglitazone on nicotine-induced mitochondrial dysfunction was also examined in vitro. Fetal and neonatal nicotine exposure resulted in structural and functional mitochondrial deficits relative to saline controls. The nicotine-induced mitochondrial defects were attenuated by postnatal rosiglitazone administration. A similar effect was observed in vitro; nicotine (25 ng/ml) inhibited beta cell mitochondrial function and co-treatment with rosiglitazone (1 μM) restored enzyme activity to control levels. Fetal and neonatal nicotine exposure also altered key components of the adult pancreatic IGF axis, an effect that was not prevented by rosiglitazone treatment. Rosiglitazone treatment maintains mitochondrial structure and function in the pancreas of rats that are prone to diabetes, as well as mitochondrial function in beta cell culture. We propose that this may be an important part of the mechanism by which rosiglitazone improves beta cell mass and prevents diabetes in individuals with impaired glucose tolerance and/or impaired fasting glucose. The underlying mechanism through which rosiglitazone targets the mitochondria remains to be determined, but does not appear to involve the IGF axis.
Collapse
Affiliation(s)
- Jennifer E Bruin
- Reproductive Biology Division, Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Dlasková A, Spacek T, Santorová J, Plecitá-Hlavatá L, Berková Z, Saudek F, Lessard M, Bewersdorf J, Jezek P. 4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet beta-cells, an experimental model of type-2 diabetes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1327-41. [PMID: 20144584 DOI: 10.1016/j.bbabio.2010.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/26/2010] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
Abstract
Insulin production in pancreatic beta-cells is critically linked to mitochondrial oxidative phosphorylation. Increased ATP production triggered by blood glucose represents the beta-cells' glucose sensor. Type-2 diabetes mellitus results from insulin resistance in peripheral tissues and impaired insulin secretion. Pathology of diabetic beta-cells might be reflected by the altered morphology of mitochondrial network. Its characterization is however hampered by the complexity and density of the three-dimensional (3D) mitochondrial tubular networks in these cell types. Conventional confocal microscopy does not provide sufficient axial resolution to reveal the required details; electron tomography reconstruction of these dense networks is still difficult and time consuming. However, mitochondrial network morphology in fixed cells can also be studied by 4Pi microscopy, a laser scanning microscopy technique which provides an approximately 7-fold improved axial resolution (approximately 100 nm) over conventional confocal microscopy. Here we present a quantitative study of these networks in insulinoma INS-1E cells and primary beta-cells in Langerhans islets. The former were a stably-transfected cell line while the latter were transfected with lentivirus, both expressing mitochondrial matrix targeted redox-sensitive GFP. The mitochondrial networks and their partial disintegration and fragmentation are revealed by carefully created iso-surface plots and their quantitative analysis. We demonstrate that beta-cells within the Langerhans islets from diabetic Goto Kakizaki rats exhibited a more disintegrated mitochondrial network compared to those from control Wistar rats and model insulinoma INS-1E cells. Standardization of these patterns may lead to development of morphological diagnostics for Langerhans islets, for the assessment of beta-cell condition, before their transplantations.
Collapse
Affiliation(s)
- Andrea Dlasková
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Portha B, Lacraz G, Chavey A, Figeac F, Fradet M, Tourrel-Cuzin C, Homo-Delarche F, Giroix MH, Bailbé D, Gangnerau MN, Movassat J. Islet structure and function in the GK rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:479-500. [PMID: 20217511 DOI: 10.1007/978-90-481-3271-3_21] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of beta-cell secretory dysfunction and/or decreased beta-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto-Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK islet abnormalities so far identified is proposed in this perspective. The pathogenesis of defective beta-cell number and function in the GK model is also discussed. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (i) several susceptibility loci containing genes responsible for some diabetic traits (distinct loci encoding impairment of beta-cell metabolism and insulin exocytosis, but no quantitative trait locus for decreased beta-cell mass); (ii) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas (decreased beta-cell neogenesis and proliferation) transmitted over generations; and (iii) loss of beta-cell differentiation related to chronic exposure to hyperglycaemia/hyperlipidaemia, islet inflammation, islet oxidative stress, islet fibrosis and perturbed islet vasculature.
Collapse
Affiliation(s)
- Bernard Portha
- Laboratoire B2PE, Unité BFA, Université Paris-Diderot et CNRS EAC4413, F - 75205 Paris Cedex13, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The ability of pancreatic beta-cell mass to vary according to insulin requirements is an important component of optimal long-term control of glucose homeostasis. It is generally assumed that alteration of this property largely contributes to the impairment of insulin secretion in type 2 diabetes. However, data in humans are scarce and it is impossible to correlate beta-cell mass and function with the various stages of the disease. Thus, the importance of animal models is obvious. In rodents, increased beta-cell mass associated with an increase in the function of individual beta-cells contributes to the adaptation of the insulin response to insulin resistance in late pregnancy and in obesity. A reduction in beta-cell mass always corresponds to an alteration in insulin secretory capacity of islet tissue (Zucker diabetic fatty and Goto-Kakisaki rats, db/db mice). During regenerative processes following experimental reduction of beta-cell mass [partial pancreatectomy, streptozocin (STZ) injection], beta-cell mass increase is not associated with a corresponding improvement of beta-cell function, thus indicating that regenerative beta-cells did not achieve functional maturity. The main lesson from experimental diabetes is therefore that beta-cell mass cannot always predict functional capacity of the beta-cell tissue and that the functional beta-cell mass rather than the anatomical beta-cell mass must be taken into account at all times.
Collapse
Affiliation(s)
- C Kargar
- Diabetes and Metabolic Diseases Research Department, Institut de Recherches Servier, Suresnes, France.
| | | |
Collapse
|