1
|
Siqueiros-Sanchez M, Serur Y, McGhee CA, Smith TF, Green T. Social Communication in Ras Pathway Disorders: A Comprehensive Review from Genetics to Behavior in Neurofibromatosis Type 1 and Noonan Syndrome. Biol Psychiatry 2024:S0006-3223(24)01624-X. [PMID: 39366539 DOI: 10.1016/j.biopsych.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are neurogenetic syndromes caused by pathogenetic variants encoding components of the Ras-ERK-MAPK signaling pathway (Ras pathway). NF1 and NS are associated with differences in social communication and related neuropsychiatric risks. During the last decade, there has been growing interest in Ras-linked syndromes as models to understand social communication deficits and autism spectrum disorders. We systematically review the literature between 2010-2023 focusing on the social communication construct of the RDoC framework. We provide an integrative summary of the research on facial and non-facial social communication processes in NF1 and NS across molecular, cellular, neural circuitry, and behavioral domains. At the molecular and cellular levels, dysregulation in the Ras pathway is intricately tied to variations in social communication through changes in GABAergic, glutamatergic, and serotonergic transmission, as well as inhibitory/excitatory imbalance. Neural circuitry typically associated with learning, attention, and memory in NF1 and NS (e.g., cortico-striatal connectivity), is also implicated in social communication. We highlight less researched, potential mechanisms for social communication, such as white matter connectivity and the default mode network. Finally, key gaps in NF1 and NS literature are identified and a roadmap for future research is provided. By leveraging genetic syndromes research, we can understand the mechanisms associated with behaviors and psychiatric disorders.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Yaffa Serur
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chloe A McGhee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taylor F Smith
- Department of Psychology and Child Development, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA
| | - Tamar Green
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Castro-Mendoza PB, Weaver CM, Chang W, Medalla M, Rockland KS, Lowery L, McDonough E, Varghese M, Hof PR, Meyer DE, Luebke JI. Proteomic features of gray matter layers and superficial white matter of the rhesus monkey neocortex: comparison of prefrontal area 46 and occipital area 17. Brain Struct Funct 2024; 229:1495-1525. [PMID: 38943018 PMCID: PMC11374833 DOI: 10.1007/s00429-024-02819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/08/2024] [Indexed: 06/30/2024]
Abstract
In this novel large-scale multiplexed immunofluorescence study we comprehensively characterized and compared layer-specific proteomic features within regions of interest of the widely divergent dorsolateral prefrontal cortex (A46) and primary visual cortex (A17) of adult rhesus monkeys. Twenty-eight markers were imaged in rounds of sequential staining, and their spatial distribution precisely quantified within gray matter layers and superficial white matter. Cells were classified as neurons, astrocytes, oligodendrocytes, microglia, or endothelial cells. The distribution of fibers and blood vessels were assessed by quantification of staining intensity across regions of interest. This method revealed multivariate similarities and differences between layers and areas. Protein expression in neurons was the strongest determinant of both laminar and regional differences, whereas protein expression in glia was more important for intra-areal laminar distinctions. Among specific results, we observed a lower glia-to-neuron ratio in A17 than in A46 and the pan-neuronal markers HuD and NeuN were differentially distributed in both brain areas with a lower intensity of NeuN in layers 4 and 5 of A17 compared to A46 and other A17 layers. Astrocytes and oligodendrocytes exhibited distinct marker-specific laminar distributions that differed between regions; notably, there was a high proportion of ALDH1L1-expressing astrocytes and of oligodendrocyte markers in layer 4 of A17. The many nuanced differences in protein expression between layers and regions observed here highlight the need for direct assessment of proteins, in addition to RNA expression, and set the stage for future protein-focused studies of these and other brain regions in normal and pathological conditions.
Collapse
Affiliation(s)
- Paola B Castro-Mendoza
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Christina M Weaver
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, 17604, USA
| | - Wayne Chang
- Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Lisa Lowery
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | | | - Merina Varghese
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Dan E Meyer
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
3
|
Zhang X, Liu L, Yang F, Liu Z, Jin X, Han S, Zhang Y, Cheng J, Wen B. Neurovascular coupling dysfunction in high myopia patients: Evidence from a multi-modal magnetic resonance imaging analysis. J Neuroradiol 2023:S0150-9861(23)00242-0. [PMID: 37777086 DOI: 10.1016/j.neurad.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/09/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND AND PURPOSE To investigate neurovascular coupling dysfunction in high myopia (HM) patients. MATERIALS AND METHODS A total of 37 HM patients and 36 healthy controls were included in this study. Degree centrality (DC), regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), and fractional ALFF (fALFF) maps were employed to represent neuronal activity. Cerebral blood perfusion was characterized by cerebral blood flow (CBF). The correlation coefficient was calculated to reflect the relationship between neuronal activity and cerebral blood perfusion. Pearson partial correlation analysis was utilized to evaluate the association between HM dysfunction and clinical indicators. RESULTS HM patients exhibited significant alterations in neurovascular coupling across 37 brain regions compared to healthy controls. The brain regions with marked changes varied among the four neurovascular coupling patterns, including the middle frontal gyrus, superior occipital gyrus, middle occipital gyrus, and fusiform gyrus. Additionally, the superior frontal gyrus orbital part, medial superior frontal gyrus, inferior occipital gyrus, and dorsolateral superior frontal gyrus displayed significant changes in three coupling patterns. In HM patients, the ReHo-CBF changes in the inferior frontal gyrus orbital part were positively correlated with best-corrected visual acuity (BCVA) and refractive diopter changes. Similarly, the ALFF-CBF changes in the inferior frontal gyrus orbital part showed a positive correlation with refractive diopter changes. ReHo-CBF and ALFF-CBF alterations in the paracentral lobule were positively correlated with BCVA and refractive diopter changes. CONCLUSION Our findings underscore the abnormal alterations in neurovascular coupling across multiple brain regions in HM patients. These results suggest that neurovascular dysfunction in HM patients may be associated with an aberrant visual regulation mechanism.
Collapse
Affiliation(s)
- Xiaopan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of magnetic resonance and brain function, Zhengzhou 450052, China
| | - Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zijun Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of magnetic resonance and brain function, Zhengzhou 450052, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of magnetic resonance and brain function, Zhengzhou 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
4
|
Zachlod D, Palomero-Gallagher N, Dickscheid T, Amunts K. Mapping Cytoarchitectonics and Receptor Architectonics to Understand Brain Function and Connectivity. Biol Psychiatry 2023; 93:471-479. [PMID: 36567226 DOI: 10.1016/j.biopsych.2022.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
This review focuses on cytoarchitectonics and receptor architectonics as biological correlates of function and connectivity. It introduces the 3-dimensional cytoarchitectonic probabilistic maps of cortical areas and nuclei of the Julich-Brain Atlas, available at EBRAINS, to study structure-function relationships. The maps are linked to the BigBrain as microanatomical reference model and template space. The siibra software tool suite enables programmatic access to the maps and to receptor architectonic data that are anchored to brain areas. Such cellular and molecular data are tools for studying magnetic resonance connectivity including modeling and simulation. At the end, we highlight perspectives of the Julich-Brain as well as methodological considerations. Thus, microstructural maps as part of a multimodal atlas help elucidate the biological correlates of large-scale networks and brain function with a high level of anatomical detail, which provides a basis to study brains of patients with psychiatric disorders.
Collapse
Affiliation(s)
- Daniel Zachlod
- Institute of Neurosciences and Medicine, Research Centre Jülich, Jülich, Germany.
| | - Nicola Palomero-Gallagher
- Institute of Neurosciences and Medicine, Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Department of Psychiatry, Psychotherapy, Psychosomatics, Medical Faculty, RWTH Aachen, Jülich Aachen Research Alliance-Translational Brain Medicine, Aachen, Germany
| | - Timo Dickscheid
- Institute of Neurosciences and Medicine, Research Centre Jülich, Jülich, Germany; Helmholtz AI, Research Centre Jülich, Jülich, Germany; Department of Computer Science, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine, Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Qu J, Pang Y, Liu X, Cao Y, Huang C, Mei L. Task modulates the orthographic and phonological representations in the bilateral ventral Occipitotemporal cortex. Brain Imaging Behav 2022; 16:1695-1707. [PMID: 35247162 DOI: 10.1007/s11682-022-00641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
As a key area in word reading, the left ventral occipitotemporal cortex is proposed for abstract orthographic processing, and its middle part has even been labeled as the visual word form area. Because the definition of the VWFA largely varies and the reading task differs across studies, the function of the left ventral occipitotemporal cortex in word reading is continuingly debated on whether this region is specific for orthographic processing or be involved in an interactive framework. By using representational similarity analysis (RSA), this study examined information representation in the VWFA at the individual level and the modulatory effect of reading task. Twenty-four subjects were scanned while performing the explicit (i.e., the naming task) and implicit (i.e., the perceptual task) reading tasks. Activation analysis showed that the naming task elicited greater activation in regions related to phonological processing (e.g., the bilateral prefrontal cortex and temporoparietal cortex), while the perceptual task recruited greater activation in visual cortex and default mode network (e.g., the bilateral middle frontal gyrus, angular gyrus, and the right middle temporal gyrus). More importantly, RSA also showed that task modulated information representation in the bilateral anterior occipitotemporal cortex and VWFA. Specifically, ROI-based RSA revealed enhanced orthographic and phonological representations in the bilateral anterior fusiform cortex and VWFA in the naming task relative to the perceptual task. These results suggest that lexical representation in the VWFA is influenced by the demand of phonological processing, which supports the interactive account of the VWFA.
Collapse
Affiliation(s)
- Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yingdan Pang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyu Liu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ying Cao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Chengmei Huang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
6
|
Hettwer MD, Lancaster TM, Raspor E, Hahn PK, Mota NR, Singer W, Reif A, Linden DEJ, Bittner RA. Evidence From Imaging Resilience Genetics for a Protective Mechanism Against Schizophrenia in the Ventral Visual Pathway. Schizophr Bull 2022; 48:551-562. [PMID: 35137221 PMCID: PMC9077432 DOI: 10.1093/schbul/sbab151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Illuminating neurobiological mechanisms underlying the protective effect of recently discovered common genetic resilience variants for schizophrenia is crucial for more effective prevention efforts. Current models implicate adaptive neuroplastic changes in the visual system and their pro-cognitive effects as a schizophrenia resilience mechanism. We investigated whether common genetic resilience variants might affect brain structure in similar neural circuits. METHOD Using structural magnetic resonance imaging, we measured the impact of an established schizophrenia polygenic resilience score (PRSResilience) on cortical volume, thickness, and surface area in 101 healthy subjects and in a replication sample of 33 224 healthy subjects (UK Biobank). FINDING We observed a significant positive whole-brain correlation between PRSResilience and cortical volume in the right fusiform gyrus (FFG) (r = 0.35; P = .0004). Post-hoc analyses in this cluster revealed an impact of PRSResilience on cortical surface area. The replication sample showed a positive correlation between PRSResilience and global cortical volume and surface area in the left FFG. CONCLUSION Our findings represent the first evidence of a neurobiological correlate of a genetic resilience factor for schizophrenia. They support the view that schizophrenia resilience emerges from strengthening neural circuits in the ventral visual pathway and an increased capacity for the disambiguation of social and nonsocial visual information. This may aid psychosocial functioning, ameliorate the detrimental effects of subtle perceptual and cognitive disturbances in at-risk individuals, and facilitate coping with the cognitive and psychosocial consequences of stressors. Our results thus provide a novel link between visual cognition, the vulnerability-stress concept, and schizophrenia resilience models.
Collapse
Affiliation(s)
- Meike D Hettwer
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany,Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas M Lancaster
- School of Psychology, Bath University, Bath, UK,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Eva Raspor
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Peter K Hahn
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Roth Mota
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands,Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Wolf Singer
- Ernst Strüngmann Institute for Neuroscience (ESI) in Cooperation with Max Planck Society, Frankfurt am Main, Germany,Max Planck Institute for Brain Research (MPI BR), Frankfurt am Main, Germany,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK,School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Robert A Bittner
- To whom correspondence should be addressed; Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany; tel: 69-6301-84713, fax: 69-6301-81775, e-mail:
| |
Collapse
|
7
|
Cloppenborg T, Mertens M, Hopf JL, Kalbhenn T, Bien CG, Woermann FG, Polster T. Reading and the visual word form area (VWFA) - Management and clinical experience at one epilepsy surgery center. Epilepsy Behav 2021; 124:108274. [PMID: 34536734 DOI: 10.1016/j.yebeh.2021.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Presurgical evaluation has no established routine to assess reading competence and to identify essential "not to resect" reading areas. Functional models describe a visual word form area (VWFA) located in the midfusiform gyrus in the dominant ventral occipito-temporal cortex (vOTC) as essential for reading. We demonstrate the relevance and feasibility of invasive VWFA-mapping. METHODS Four patients with epilepsy received invasive VWFA-mapping via left temporo-basal strip-electrodes. Co-registration of the results and additional data from the literature led to the definition of a region of interest (ROI) for a retrospective assessment of postoperative reading deficits by a standardized telephone-interview in patients with resections in this ROI between 2004 and 2018. RESULTS Electrical cortical stimulation disturbed whole word recognition and reading in four patients with structural epilepsy. Stimulation results showed distribution in the basal temporal lobe (dorsal mesencephalon to preoccipital notch). We identified 34 patients with resections in the ROI of the dominant hemisphere. Of these, 15 (44.1%) showed a postoperative reading deficit with a mean duration of 18.2 months (+/-32.4, 0.5-122). Six patients suffered from letter-by-letter (LBL) reading. Two patients had permanent LBL reading after resection in the ROI. SIGNIFICANCE We present evidence on the functional relevance of the vOTC for reading by (1) extra-operative cortical stimulation of the VWFA and by (2) a retrospective case study of reading deficits in patients operated in this area. Reading assessments and data concerning essential reading structures should be included in the presurgical evaluation of patients with lesions in the left vOTC.
Collapse
Affiliation(s)
- Thomas Cloppenborg
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Bielefeld, Germany.
| | - Markus Mertens
- Society of Epilepsy Research, Bethel Epilepsy Centre, Bielefeld, Germany
| | - Johanna L Hopf
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Bielefeld, Germany
| | - Thilo Kalbhenn
- Bielefeld University, Medical School, Department of Neurosurgery (Evangelisches Klinikum Bethel), Bielefeld, Germany
| | - Christian G Bien
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Bielefeld, Germany
| | - Friedrich G Woermann
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Bielefeld, Germany
| | - Tilman Polster
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Bielefeld, Germany
| |
Collapse
|
8
|
Rolls ET, Cheng W, Gilson M, Gong W, Deco G, Lo CYZ, Yang AC, Tsai SJ, Liu ME, Lin CP, Feng J. Beyond the disconnectivity hypothesis of schizophrenia. Cereb Cortex 2021; 30:1213-1233. [PMID: 31381086 DOI: 10.1093/cercor/bhz161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023] Open
Abstract
To go beyond the disconnectivity hypothesis of schizophrenia, directed (effective) connectivity was measured between 94 brain regions, to provide evidence on the source of the changes in schizophrenia and a mechanistic model. Effective connectivity (EC) was measured in 180 participants with schizophrenia and 208 controls. For the significantly different effective connectivities in schizophrenia, on average the forward (stronger) effective connectivities were smaller, whereas the backward connectivities tended to be larger. Further, higher EC in schizophrenia was found from the precuneus and posterior cingulate cortex (PCC) to areas such as the parahippocampal, hippocampal, temporal, fusiform, and occipital cortices. These are backward effective connectivities and were positively correlated with the positive symptoms of schizophrenia. Lower effective connectivities were found from temporal and other regions and were negatively correlated with the symptoms, especially the negative and general symptoms. Further, a signal variance parameter was increased for areas that included the parahippocampal gyrus and hippocampus, consistent with the hypothesis that hippocampal overactivity is involved in schizophrenia. This investigation goes beyond the disconnectivity hypothesis by drawing attention to differences in schizophrenia between backprojections and forward connections, with the backward connections from the precuneus and PCC implicated in memory stronger in schizophrenia.
Collapse
Affiliation(s)
- Edmund T Rolls
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, PR China.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,Oxford Centre for Computational Neuroscience, Oxford OX1 4BH, UK
| | - Wei Cheng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, PR China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, 200433, China
| | - Matthieu Gilson
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona E-08018, Spain and Brain and Cognition, Pompeu Fabra University, Barcelona, Spain
| | - Weikang Gong
- Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX1 4BH, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona E-08018, Spain and Brain and Cognition, Pompeu Fabra University, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, PR China
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Mu-En Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Ching-Po Lin
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, PR China.,Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, PR China.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200433, PR China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, 200433, China
| |
Collapse
|
9
|
Within- and across-network alterations of the sensorimotor network in Parkinson's disease. Neuroradiology 2021; 63:2073-2085. [PMID: 34019112 PMCID: PMC8589810 DOI: 10.1007/s00234-021-02731-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/02/2021] [Indexed: 12/03/2022]
Abstract
Purpose Parkinson’s disease (PD) is primarily defined by motor symptoms and is associated with alterations of sensorimotor areas. Evidence for network changes of the sensorimotor network (SMN) in PD is inconsistent and a systematic evaluation of SMN in PD yet missing. We investigate functional connectivity changes of the SMN in PD, both, within the network, and to other large-scale connectivity networks. Methods Resting-state fMRI was assessed in 38 PD patients under long-term dopaminergic treatment and 43 matched healthy controls (HC). Independent component analysis (ICA) into 20 components was conducted and the SMN was identified within the resulting networks. Functional connectivity within the SMN was analyzed using a dual regression approach. Connectivity between the SMN and the other networks from group ICA was investigated with FSLNets. We investigated for functional connectivity changes between patients and controls as well as between medication states (OFF vs. ON) in PD and for correlations with clinical parameters. Results There was decreased functional connectivity within the SMN in left inferior parietal and primary somatosensory cortex in PD OFF. Across networks, connectivity between SMN and two motor networks as well as two visual networks was diminished in PD OFF. All connectivity decreases partially normalized in PD ON. Conclusion PD is accompanied by functional connectivity losses of the SMN, both, within the network and in interaction to other networks. The connectivity changes in short- and long-range connections are probably related to impaired sensory integration for motor function in PD. SMN decoupling can be partially compensated by dopaminergic therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-021-02731-w.
Collapse
|
10
|
Niu M, Rapan L, Funck T, Froudist-Walsh S, Zhao L, Zilles K, Palomero-Gallagher N. Organization of the macaque monkey inferior parietal lobule based on multimodal receptor architectonics. Neuroimage 2021; 231:117843. [PMID: 33577936 PMCID: PMC8188735 DOI: 10.1016/j.neuroimage.2021.117843] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
The macaque monkey inferior parietal lobe (IPL) is a structurally heterogeneous brain region, although the number of areas it contains and the anatomical/functional relationship of identified subdivisions remains controversial. Neurotransmitter receptor distribution patterns not only reveal the position of the cortical borders, but also segregate areas associated to different functional systems. Thus we carried out a multimodal quantitative analysis of the cyto- and receptor architecture of the macaque IPL to determine the number and extent of distinct areas it encompasses. We identified four areas on the IPL convexity arranged in a caudo-rostral sequence, as well as two areas in the parietal operculum, which we projected onto the Yerkes19 surface. We found rostral areas to have relatively smaller receptor fingerprints than the caudal ones, which is in an agreement with the functional gradient along the caudo-rostral axis described in previous studies. The hierarchical analysis segregated IPL areas into two clusters: the caudal one, contains areas involved in multisensory integration and visual-motor functions, and rostral cluster, encompasses areas active during motor planning and action-related functions. The results of the present study provide novel insights into clarifying the homologies between human and macaque IPL areas. The ensuing 3D map of the macaque IPL, and the receptor fingerprints are made publicly available to the neuroscientific community via the Human Brain Project and BALSA repositories for future cyto- and/or receptor architectonically driven analyses of functional imaging studies in non-human primates.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
11
|
Gryglewski G, Murgaš M, Klöbl M, Reed MB, Unterholzner J, Michenthaler P, Lanzenberger R. Enrichment of Disease-Associated Genes in Cortical Areas Defined by Transcriptome-Based Parcellation. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:10-23. [PMID: 33711548 DOI: 10.1016/j.bpsc.2021.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Parcellation of the cerebral cortex serves the investigation of the emergence of uniquely human brain functions and disorders. Transcriptome data enable the characterization of the molecular properties of cortical areas in unprecedented detail. Previously, we predicted the expression of 18,686 genes in the entire human brain based on microarray data. Here, we employed these data to parcellate the cortex and study the regional enrichment of disease-associated genes. METHODS We performed agglomerative hierarchical clustering based on normalized transcriptome data to delineate areas with distinct gene expression profiles. Subsequently, we tested these profiles for the enrichment of gene sets associated with brain disorders by genome-wide association studies and expert-curated databases using gene set enrichment analysis. RESULTS Transcriptome-based parcellation identified borders in line with major anatomical landmarks and the functional differentiation of primary motor, somatosensory, visual, and auditory areas. Gene set enrichment analysis based on curated databases suggested new roles of specific areas in psychiatric and neurological disorders while reproducing well-established links for movement and neurodegenerative disorders, for example, amyotrophic lateral sclerosis (motor cortex) and Alzheimer's disease (entorhinal cortex). Meanwhile, gene sets derived from genome-wide association studies on psychiatric disorders exhibited similar enrichment patterns driven by pleiotropic genes expressed in the posterior fusiform gyrus and inferior parietal lobule. CONCLUSIONS The identified enrichment patterns suggest the vulnerability of specific cortical areas to various influences that might alter the risk of developing one or several brain disorders. For several diseases, specific genes were highlighted, which could lead to the discovery of novel disease mechanisms and urgently needed treatments.
Collapse
Affiliation(s)
- Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Rapan L, Froudist-Walsh S, Niu M, Xu T, Funck T, Zilles K, Palomero-Gallagher N. Multimodal 3D atlas of the macaque monkey motor and premotor cortex. Neuroimage 2021; 226:117574. [PMID: 33221453 PMCID: PMC8168280 DOI: 10.1016/j.neuroimage.2020.117574] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 01/16/2023] Open
Abstract
In the present study we reevaluated the parcellation scheme of the macaque frontal agranular cortex by implementing quantitative cytoarchitectonic and multireceptor analyses, with the purpose to integrate and reconcile the discrepancies between previously published maps of this region. We applied an observer-independent and statistically testable approach to determine the position of cytoarchitectonic borders. Analysis of the regional and laminar distribution patterns of 13 different transmitter receptors confirmed the position of cytoarchitectonically identified borders. Receptor densities were extracted from each area and visualized as its "receptor fingerprint". Hierarchical and principal components analyses were conducted to detect clusters of areas according to the degree of (dis)similarity of their fingerprints. Finally, functional connectivity pattern of each identified area was analyzed with areas of prefrontal, cingulate, somatosensory and lateral parietal cortex and the results were depicted as "connectivity fingerprints" and seed-to-vertex connectivity maps. We identified 16 cyto- and receptor architectonically distinct areas, including novel subdivisions of the primary motor area 4 (i.e. 4a, 4p, 4m) and of premotor areas F4 (i.e. F4s, F4d, F4v), F5 (i.e. F5s, F5d, F5v) and F7 (i.e. F7d, F7i, F7s). Multivariate analyses of receptor fingerprints revealed three clusters, which first segregated the subdivisions of area 4 with F4d and F4s from the remaining premotor areas, then separated ventrolateral from dorsolateral and medial premotor areas. The functional connectivity analysis revealed that medial and dorsolateral premotor and motor areas show stronger functional connectivity with areas involved in visual processing, whereas 4p and ventrolateral premotor areas presented a stronger functional connectivity with areas involved in somatomotor responses. For the first time, we provide a 3D atlas integrating cyto- and multi-receptor architectonic features of the macaque motor and premotor cortex. This atlas constitutes a valuable resource for the analysis of functional experiments carried out with non-human primates, for modeling approaches with realistic synaptic dynamics, as well as to provide insights into how brain functions have developed by changes in the underlying microstructure and encoding strategies during evolution.
Collapse
Affiliation(s)
- Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, New York
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA - Translational Brain Medicine, Aachen, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| |
Collapse
|
13
|
Miller JA, Voorhies WI, Li X, Raghuram I, Palomero-Gallagher N, Zilles K, Sherwood CC, Hopkins WD, Weiner KS. Sulcal morphology of ventral temporal cortex is shared between humans and other hominoids. Sci Rep 2020; 10:17132. [PMID: 33051475 PMCID: PMC7555511 DOI: 10.1038/s41598-020-73213-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/13/2020] [Indexed: 01/27/2023] Open
Abstract
Hominoid-specific brain structures are of particular importance in understanding the evolution of human brain structure and function, as they are absent in mammals that are widely studied in the extended neuroscience field. Recent research indicates that the human fusiform gyrus (FG), which is a hominoid-specific structure critical for complex object recognition, contains a tertiary, longitudinal sulcus (mid-fusiform sulcus, MFS) that bisects the FG into lateral and medial parallel gyri. The MFS is a functional and architectonic landmark in the human brain. Here, we tested if the MFS is specific to the human FG or if the MFS is also identifiable in other hominoids. Using magnetic resonance imaging and cortical surface reconstructions in 30 chimpanzees and 30 humans, we show that the MFS is also present in chimpanzees. The MFS is relatively deeper and cortically thinner in chimpanzees compared to humans. Additional histological analyses reveal that the MFS is not only present in humans and chimpanzees, but also in bonobos, gorillas, orangutans, and gibbons. Taken together, these results reveal that the MFS is a sulcal landmark that is shared between humans and other hominoids. These results require a reconsideration of the sulcal patterning in ventral temporal cortex across hominoids, as well as revise the compensation theory of cortical folding.
Collapse
Affiliation(s)
- Jacob A Miller
- Helen Wills Neuroscience Institute, 210 Barker Hall, University of California, Berkeley, Berkeley, CA, 94720, USA.
| | - Willa I Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Xiang Li
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Ishana Raghuram
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Nicola Palomero-Gallagher
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Karl Zilles
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany
- JARA-Translational Brain Medicine, Aachen, Germany
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, 800 22nd Street NW, Suite 6000, Washington, DC, 20052, USA
| | - William D Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, 78602, USA
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, 210 Barker Hall, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
14
|
Rodríguez-Aranda C, Castro-Chavira SA, Espenes R, Barrios FA, Waterloo K, Vangberg TR. The Role of Moderating Variables on BOLD fMRI Response During Semantic Verbal Fluency and Finger Tapping in Active and Educated Healthy Seniors. Front Hum Neurosci 2020; 14:203. [PMID: 32581748 PMCID: PMC7290010 DOI: 10.3389/fnhum.2020.00203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/06/2020] [Indexed: 11/28/2022] Open
Abstract
Semantic verbal fluency is among the most employed tasks in cognitive aging research and substantial work is devoted to understanding the underlying mechanisms behind age-related differences at the neural and behavioral levels. The present investigation aimed to evaluate the role of moderating variables, such as age, sex, MMSE, and proxies of cognitive reserve (CR) on the hemodynamic response evoked by semantic verbal fluency in healthy young and healthy older adults. So far, no study has been conducted to this end. To elucidate the exclusive effect of the mentioned variables on brain activation during semantic fluency, finger tapping was included as a control task. Results showed that disregarding adjustments for age, older adults displayed important parietal activations during semantic fluency as well as during finger-tapping. Specifically, the anterior intra-parietal sulcus (IPS) and left inferior parietal lobule (IPL) were areas activated in both tasks in the older group. Younger adults, only displayed parietal activations related to age and sex when these demographics were employed as predictors. Concerning proxies of CR in semantic fluency, the only vocabulary was an important moderator in both age groups. Higher vocabulary scores were associated with lesser activation in occipital areas. Education did not show significant correlations with brain activity during semantic fluency in any of the groups. However, both CR proxies were significantly correlated to brain activations of older adults during finger tapping. Specifically, vocabulary was associated with frontal regions, while education correlated with parietal lobe and cingulate gyrus. Finally, the effects of MMSE were mostly observed on brain activation of older adults in both tasks. These findings demonstrate that the effects of moderating variables on shaping brain activation are intricate and not exclusive of complex verbal tasks. Thus, before adjusting for “nuisance variables,” their importance needs to be established. This is especially true for samples including older adults for whom a motor task may be a demanding operation due to normal age-related processes of dedifferentiation.
Collapse
Affiliation(s)
- Claudia Rodríguez-Aranda
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Susana A Castro-Chavira
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ragna Espenes
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Fernando A Barrios
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Knut Waterloo
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| | - Torgil R Vangberg
- Department of Radiology and Nuclear Medicine, University Hospital of North Norway, Tromsø, Norway.,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Dinkelbach L, Südmeyer M, Hartmann CJ, Roeber S, Arzberger T, Felsberg J, Ferrea S, Moldovan AS, Amunts K, Schnitzler A, Caspers S. Somatosensory area 3b is selectively unaffected in corticobasal syndrome: combining MRI and histology. Neurobiol Aging 2020; 94:89-100. [PMID: 32593032 DOI: 10.1016/j.neurobiolaging.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/04/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
An increasing number of neuroimaging studies addressing patients with corticobasal syndrome use macroscopic definitions of brain regions. As a closer link to functionally relevant units, we aimed at identifying magnetic resonance-based atrophy patterns in regions defined by probability maps of cortical microstructure. For this purpose, three analyses were conducted: (1) Whole-brain cortical thickness was compared between 36 patients with corticobasal syndrome and 24 controls. A pattern of pericentral atrophy was found, covering primary motor area 4, premotor area 6, and primary somatosensory areas 1, 2, and 3a. Within the central region, only area 3b was without atrophy. (2) In 18 patients, longitudinal measures with follow-ups of up to 59 months (mean 21.3 ± 15.4) were analyzed. Areas 1, 2, and 6 showed significantly faster atrophy rates than primary somatosensory area 3b. (3) In an individual autopsy case, longitudinal in vivo morphometry and postmortem pathohistology were conducted. The rate of magnetic resonance-based atrophy was significantly correlated with tufted-astrocyte load in those cytoarchitectonically defined regions also seen in the group study, with area 3b being selectively unaffected.
Collapse
Affiliation(s)
- Lars Dinkelbach
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Ernst von Bergmann Klinikum, Potsdam, Germany
| | - Christian Johannes Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Jörg Felsberg
- Department of Neuropathology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Stefano Ferrea
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Alexia-Sabine Moldovan
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
16
|
Behrmann M, Plaut DC. Hemispheric Organization for Visual Object Recognition: A Theoretical Account and Empirical Evidence. Perception 2020; 49:373-404. [PMID: 31980013 PMCID: PMC9944149 DOI: 10.1177/0301006619899049] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Despite the similarity in structure, the hemispheres of the human brain have somewhat different functions. A traditional view of hemispheric organization asserts that there are independent and largely lateralized domain-specific regions in ventral occipitotemporal (VOTC), specialized for the recognition of distinct classes of objects. Here, we offer an alternative account of the organization of the hemispheres, with a specific focus on face and word recognition. This alternative account relies on three computational principles: distributed representations and knowledge, cooperation and competition between representations, and topography and proximity. The crux is that visual recognition results from a network of regions with graded functional specialization that is distributed across both hemispheres. Specifically, the claim is that face recognition, which is acquired relatively early in life, is processed by VOTC regions in both hemispheres. Once literacy is acquired, word recognition, which is co-lateralized with language areas, primarily engages the left VOTC and, consequently, face recognition is primarily, albeit not exclusively, mediated by the right VOTC. We review psychological and neural evidence from a range of studies conducted with normal and brain-damaged adults and children and consider findings which challenge this account. Last, we offer suggestions for future investigations whose findings may further refine this account.
Collapse
Affiliation(s)
- Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - David C. Plaut
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Human visual cortex is organized along two genetically opposed hierarchical gradients with unique developmental and evolutionary origins. PLoS Biol 2019; 17:e3000362. [PMID: 31269028 PMCID: PMC6634416 DOI: 10.1371/journal.pbio.3000362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/16/2019] [Accepted: 06/25/2019] [Indexed: 01/24/2023] Open
Abstract
Human visual cortex is organized with striking consistency across individuals. While recent findings demonstrate an unexpected coupling between functional and cytoarchitectonic regions relative to the folding of human visual cortex, a unifying principle linking these anatomical and functional features of the cortex remains elusive. To fill this gap in knowledge, we combined independent and ground truth measurements of cytoarchitectonic regions and genetic tissue characterization within human occipitotemporal cortex. Using a data-driven approach, we examined whether differential gene expression among cytoarchitectonic areas could contribute to the arealization of occipitotemporal cortex into a hierarchy based on transcriptomics. This approach revealed two opposing gene expression gradients: one that contains a series of genes with expression magnitudes that ascend from posterior (e.g., areas human occipital [hOc]1, hOc2, hOc3, etc.) to anterior cytoarchitectonic areas (e.g., areas fusiform gyrus [FG]1–FG4) and another that contains a separate series of genes that show a descending gradient from posterior to anterior areas. Using data from the living human brain, we show that each of these gradients correlates strongly with variations in measures related to either thickness or myelination of cortex, respectively. We further reveal that these genetic gradients emerge along unique trajectories in human development: the ascending gradient is present at 10–12 gestational weeks, while the descending gradient emerges later (19–24 gestational weeks). Interestingly, it is not until early childhood (before 5 years of age) that the two expression gradients achieve their adult-like mean expression values. Additional analyses in nonhuman primates (NHPs) reveal that homologous genes do not generate the same ascending and descending expression gradients as in humans. We discuss these findings relative to previously proposed hierarchies based on functional and cytoarchitectonic features of visual cortex. Altogether, these findings bridge macroscopic features of human cytoarchitectonic areas in visual cortex with microscopic features of cellular organization and genetic expression, which, despite the complexity of this multiscale correspondence, can be described by a sparse subset (approximately 200) of genes. These findings help pinpoint the genes contributing to healthy cortical development and explicate the cortical biology distinguishing humans from other primates, as well as establishing essential groundwork for understanding future work linking genetic mutations with the function and development of the human brain. The expression of a sparse subset of human genes forms two opposed gradients that capture the processing hierarchy of visual cortex; these transcription gradients emerge at different points during human development and distinguish human from nonhuman primates.
Collapse
|
18
|
Shi WQ, Wu W, Ye L, Jiang N, Liu WF, Shu YQ, Su T, Lin Q, Min YL, Li B, Zhu PW, Shao Y. Altered spontaneous brain activity patterns in patients with corneal ulcer using amplitude of low-frequency fluctuation: An fMRI study. Exp Ther Med 2019; 18:125-132. [PMID: 31258645 DOI: 10.3892/etm.2019.7550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to investigate the altered spontaneous brain activity in patients with corneal ulcer (CU) through the amplitude of low-frequency fluctuation (ALFF) technique and the association with their visual performance. A total of 40 patients with CU and 40 healthy controls (HCs) matched for sex, age and educational level were enrolled. Resting-state functional magnetic resonance imaging (rs-fMRI) was performed to examine the probands. Spontaneous cerebral activity variations were investigated using the ALFF technique. The average ALFF values of the CU patients and the HCs were classified by utilizing receiver operating characteristic (ROC) curves. Contrary to HCs, the CU patients had significantly lower ALFF values in the left cerebellar anterior lobe, right middle frontal gyrus and left middle frontal gyrus, but higher ALFF values in the right cerebellar inferior lobe, left cerebellar inferior lobe, left inferior temporal gyrus, right fusiform gyrus, left superior frontal gyrus, right angular gyrus and bilateral superior frontal gyrus. ROC curve analysis of each brain region indicated that the accuracy of ALFF value specificity between the CU and HCs of the area under the curve was perfect. In conclusion, abnormal spontaneous activities were detected in numerous brain regions of CU patients, which may provide useful information for understanding the dysfunction of CU. These activity changes in brain regions may be used as effective clinical indicators for CU.
Collapse
Affiliation(s)
- Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi 330006, P.R. China
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi 330006, P.R. China
| | - Nan Jiang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Wen-Feng Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi 330006, P.R. China
| | - Yong-Qiang Shu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Ting Su
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi 330006, P.R. China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi 330006, P.R. China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi 330006, P.R. China
| | - Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
19
|
Weiner KS. The Mid‐Fusiform Sulcus (
sulcus sagittalis gyri fusiformis
). Anat Rec (Hoboken) 2019; 302:1491-1503. [DOI: 10.1002/ar.24041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Kevin S. Weiner
- Department of PsychologyUC Berkeley Berkeley California
- Helen Wills Neuroscience Institute Berkeley California
| |
Collapse
|
20
|
Palomero-Gallagher N, Zilles K. Cyto- and receptor architectonic mapping of the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:355-387. [PMID: 29496153 DOI: 10.1016/b978-0-444-63639-3.00024-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.
| |
Collapse
|
21
|
Zilles K, Amunts K. Cytoarchitectonic and receptorarchitectonic organization in Broca's region and surrounding cortex. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Kuehn E, Dinse J, Jakobsen E, Long X, Schäfer A, Bazin PL, Villringer A, Sereno MI, Margulies DS. Body Topography Parcellates Human Sensory and Motor Cortex. Cereb Cortex 2018; 27:3790-3805. [PMID: 28184419 PMCID: PMC6248394 DOI: 10.1093/cercor/bhx026] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 12/25/2022] Open
Abstract
The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing.
Collapse
Affiliation(s)
- Esther Kuehn
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Department of Psychology and Language Sciences, University College London, London WC1H 0DG, UK.,Center for Behavioral Brain Sciences Magdeburg, Magdeburg 39106, Germany.,Aging and Cognition Research Group, DZNE, Magdeburg 39106, Germany
| | - Juliane Dinse
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Faculty of Computer Science, Otto-von-Guericke University, Magdeburg 39106, Germany
| | - Estrid Jakobsen
- Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Xiangyu Long
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Andreas Schäfer
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Pierre-Louis Bazin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Martin I Sereno
- Department of Psychology and Language Sciences, University College London, LondonWC1H 0DG, UK
| | - Daniel S Margulies
- Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| |
Collapse
|
23
|
Barttfeld P, Abboud S, Lagercrantz H, Adén U, Padilla N, Edwards AD, Cohen L, Sigman M, Dehaene S, Dehaene-Lambertz G. A lateral-to-mesial organization of human ventral visual cortex at birth. Brain Struct Funct 2018; 223:3107-3119. [PMID: 29752588 DOI: 10.1007/s00429-018-1676-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Abstract
In human adults, ventral extra-striate visual cortex contains a mosaic of functionally specialized areas, some responding preferentially to natural visual categories such as faces (fusiform face area) or places (parahippocampal place area) and others to cultural inventions such as written words and numbers (visual word form and number form areas). It has been hypothesized that this mosaic arises from innate biases in cortico-cortical connectivity. We tested this hypothesis by examining functional resting-state correlation at birth using fMRI data from full-term human newborns. The results revealed that ventral visual regions are functionally connected with their contra-lateral homologous regions and also exhibit distinct patterns of long-distance functional correlation with anterior associative regions. A mesial-to-lateral organization was observed, with the signal of the more lateral regions, including the sites of visual word and number form areas, exhibiting higher correlations with voxels of the prefrontal, inferior parietal and temporal cortices, including language areas. Finally, we observed hemispheric asymmetries in the functional correlation of key areas of the language network that may influence later adult hemispheric lateralization. We suggest that long-distance circuits present at birth constrain the subsequent functional differentiation of the ventral visual cortex.
Collapse
Affiliation(s)
- P Barttfeld
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France. .,Instituto de Investigaciones Psicológicas (IIPsi), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - S Abboud
- INSERM, U 1127, Paris, 75013, France.,Institut Du Cerveau Et De La Moelle Epinière, ICM, PICNIC Lab, Paris, 75013, France
| | - H Lagercrantz
- Department of Women's and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - U Adén
- Department of Women's and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - N Padilla
- Department of Women's and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - A D Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - L Cohen
- INSERM, U 1127, Paris, 75013, France.,Institut Du Cerveau Et De La Moelle Epinière, ICM, PICNIC Lab, Paris, 75013, France
| | - M Sigman
- Universidad Torcuato Di Tella, Almirante Juan Saenz Valiente 1010, C1428BIJ, Buenos Aires, Argentina
| | - S Dehaene
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France.,Collège de France, 75005, Paris, France
| | - G Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| |
Collapse
|
24
|
Gryglewski G, Seiger R, James GM, Godbersen GM, Komorowski A, Unterholzner J, Michenthaler P, Hahn A, Wadsak W, Mitterhauser M, Kasper S, Lanzenberger R. Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging. Neuroimage 2018; 176:259-267. [PMID: 29723639 DOI: 10.1016/j.neuroimage.2018.04.068] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/30/2018] [Accepted: 04/29/2018] [Indexed: 11/16/2022] Open
Abstract
The quantification of big pools of diverse molecules provides important insights on brain function, but is often restricted to a limited number of observations, which impairs integration with other modalities. To resolve this issue, a method allowing for the prediction of mRNA expression in the entire brain based on microarray data provided in the Allen Human Brain Atlas was developed. Microarray data of 3702 samples from 6 brain donors was registered to MNI and cortical surface space using FreeSurfer. For each of 18,686 genes, spatial dependence of transcription was assessed using variogram modelling. Variogram models were employed in Gaussian process regression to calculate best linear unbiased predictions for gene expression at all locations represented in well-established imaging atlases for cortex, subcortical structures and cerebellum. For validation, predicted whole-brain transcription of the HTR1A gene was correlated with [carbonyl-11C]WAY-100635 positron emission tomography data collected from 30 healthy subjects. Prediction results showed minimal bias ranging within ±0.016 (cortical surface), ±0.12 (subcortical regions) and ±0.14 (cerebellum) in units of log2 expression intensity for all genes. Across genes, the correlation of predicted and observed mRNA expression in leave-one-out cross-validation correlated with the strength of spatial dependence (cortical surface: r = 0.91, subcortical regions: r = 0.85, cerebellum: r = 0.84). 816 out of 18,686 genes exhibited a high spatial dependence accounting for more than 50% of variance in the difference of gene expression on the cortical surface. In subcortical regions and cerebellum, different sets of genes were implicated by high spatially structured variability. For the serotonin 1A receptor, correlation between PET binding potentials and predicted comprehensive mRNA expression was markedly higher (Spearman ρ = 0.72 for cortical surface, ρ = 0.84 for subcortical regions) than correlation of PET and discrete samples only (ρ = 0.55 and ρ = 0.63, respectively). Prediction of mRNA expression in the entire human brain allows for intuitive visualization of gene transcription and seamless integration in multimodal analysis without bias arising from non-uniform distribution of available samples. Extension of this methodology promises to facilitate translation of omics research and enable investigation of human brain function at a systems level.
Collapse
Affiliation(s)
- Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - René Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Gregory Miles James
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | | | - Arkadiusz Komorowski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
25
|
Weiner KS, Barnett MA, Witthoft N, Golarai G, Stigliani A, Kay KN, Gomez J, Natu VS, Amunts K, Zilles K, Grill-Spector K. Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. Neuroimage 2018; 170:373-384. [PMID: 28435097 PMCID: PMC6330657 DOI: 10.1016/j.neuroimage.2017.04.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/17/2017] [Indexed: 01/28/2023] Open
Abstract
The parahippocampal place area (PPA) is a widely studied high-level visual region in the human brain involved in place and scene processing. The goal of the present study was to identify the most probable location of place-selective voxels in medial ventral temporal cortex. To achieve this goal, we first used cortex-based alignment (CBA) to create a probabilistic place-selective region of interest (ROI) from one group of 12 participants. We then tested how well this ROI could predict place selectivity in each hemisphere within a new group of 12 participants. Our results reveal that a probabilistic ROI (pROI) generated from one group of 12 participants accurately predicts the location and functional selectivity in individual brains from a new group of 12 participants, despite between subject variability in the exact location of place-selective voxels relative to the folding of parahippocampal cortex. Additionally, the prediction accuracy of our pROI is significantly higher than that achieved by volume-based Talairach alignment. Comparing the location of the pROI of the PPA relative to published data from over 500 participants, including data from the Human Connectome Project, shows a striking convergence of the predicted location of the PPA and the cortical location of voxels exhibiting the highest place selectivity across studies using various methods and stimuli. Specifically, the most predictive anatomical location of voxels exhibiting the highest place selectivity in medial ventral temporal cortex is the junction of the collateral and anterior lingual sulci. Methodologically, we make this pROI freely available (vpnl.stanford.edu/PlaceSelectivity), which provides a means to accurately identify a functional region from anatomical MRI data when fMRI data are not available (for example, in patient populations). Theoretically, we consider different anatomical and functional factors that may contribute to the consistent anatomical location of place selectivity relative to the folding of high-level visual cortex.
Collapse
Affiliation(s)
- Kevin S Weiner
- Department of Psychology, Stanford University, Stanford, CA 94305, United States.
| | - Michael A Barnett
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Nathan Witthoft
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Golijeh Golarai
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Anthony Stigliani
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Kendrick N Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jesse Gomez
- Stanford Neurosciences Program, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Vaidehi S Natu
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Katrin Amunts
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Karl Zilles
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Dept. of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA 94305, United States; Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
26
|
Lorenz S, Weiner KS, Caspers J, Mohlberg H, Schleicher A, Bludau S, Eickhoff SB, Grill-Spector K, Zilles K, Amunts K. Two New Cytoarchitectonic Areas on the Human Mid-Fusiform Gyrus. Cereb Cortex 2018; 27:373-385. [PMID: 26464475 DOI: 10.1093/cercor/bhv225] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Areas of the fusiform gyrus (FG) within human ventral temporal cortex (VTC) process high-level visual information associated with faces, limbs, words, and places. Since classical cytoarchitectonic maps do not adequately reflect the functional and structural heterogeneity of the VTC, we studied the cytoarchitectonic segregation in a region, which is rostral to the recently identified cytoarchitectonic areas FG1 and FG2. Using an observer-independent and statistically testable parcellation method, we identify 2 new areas, FG3 and FG4, in 10 human postmortem brains on the mid-FG. The mid-fusiform sulcus reliably identifies the cytoarchitectonic transition between FG3 and FG4. We registered these cytoarchitectonic areas to the common reference space of the single-subject Montreal Neurological Institute (MNI) template and generated probability maps, which reflect the intersubject variability of both areas. Future studies can relate in vivo neuroimaging data with these microscopically defined cortical areas to functional parcellations. We discuss these results in the context of both large-scale functional maps and fine-scale functional clusters that have been identified within the human VTC. We propose that our observer-independent cytoarchitectonic parcellation of the FG better explains the functional heterogeneity of the FG compared with the homogeneity of classic cytoarchitectonic maps.
Collapse
Affiliation(s)
- Simon Lorenz
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Julian Caspers
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Axel Schleicher
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Kalanit Grill-Spector
- Department of Psychology.,Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Karl Zilles
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| |
Collapse
|
27
|
Rolls ET, Mills WPC. Computations in the deep vs superficial layers of the cerebral cortex. Neurobiol Learn Mem 2017; 145:205-221. [PMID: 29042296 DOI: 10.1016/j.nlm.2017.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022]
Abstract
A fundamental question is how the cerebral neocortex operates functionally, computationally. The cerebral neocortex with its superficial and deep layers and highly developed recurrent collateral systems that provide a basis for memory-related processing might perform somewhat different computations in the superficial and deep layers. Here we take into account the quantitative connectivity within and between laminae. Using integrate-and-fire neuronal network simulations that incorporate this connectivity, we first show that attractor networks implemented in the deep layers that are activated by the superficial layers could be partly independent in that the deep layers might have a different time course, which might because of adaptation be more transient and useful for outputs from the neocortex. In contrast the superficial layers could implement more prolonged firing, useful for slow learning and for short-term memory. Second, we show that a different type of computation could in principle be performed in the superficial and deep layers, by showing that the superficial layers could operate as a discrete attractor network useful for categorisation and feeding information forward up a cortical hierarchy, whereas the deep layers could operate as a continuous attractor network useful for providing a spatially and temporally smooth output to output systems in the brain. A key advance is that we draw attention to the functions of the recurrent collateral connections between cortical pyramidal cells, often omitted in canonical models of the neocortex, and address principles of operation of the neocortex by which the superficial and deep layers might be specialized for different types of attractor-related memory functions implemented by the recurrent collaterals.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; University of Warwick, Department of Computer Science, Coventry, UK.
| | | |
Collapse
|
28
|
Zilles K, Palomero-Gallagher N. Multiple Transmitter Receptors in Regions and Layers of the Human Cerebral Cortex. Front Neuroanat 2017; 11:78. [PMID: 28970785 PMCID: PMC5609104 DOI: 10.3389/fnana.2017.00078] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 01/16/2023] Open
Abstract
We measured the densities (fmol/mg protein) of 15 different receptors of various transmitter systems in the supragranular, granular and infragranular strata of 44 areas of visual, somatosensory, auditory and multimodal association systems of the human cerebral cortex. Receptor densities were obtained after labeling of the receptors using quantitative in vitro receptor autoradiography in human postmortem brains. The mean density of each receptor type over all cortical layers and of each of the three major strata varies between cortical regions. In a single cortical area, the multi-receptor fingerprints of its strata (i.e., polar plots, each visualizing the densities of multiple different receptor types in supragranular, granular or infragranular layers of the same cortical area) differ in shape and size indicating regional and laminar specific balances between the receptors. Furthermore, the three strata are clearly segregated into well definable clusters by their receptor fingerprints. Fingerprints of different cortical areas systematically vary between functional networks, and with the hierarchical levels within sensory systems. Primary sensory areas are clearly separated from all other cortical areas particularly by their very high muscarinic M2 and nicotinic α4β2 receptor densities, and to a lesser degree also by noradrenergic α2 and serotonergic 5-HT2 receptors. Early visual areas of the dorsal and ventral streams are segregated by their multi-receptor fingerprints. The results are discussed on the background of functional segregation, cortical hierarchies, microstructural types, and the horizontal (layers) and vertical (columns) organization in the cerebral cortex. We conclude that a cortical column is composed of segments, which can be assigned to the cortical strata. The segments differ by their patterns of multi-receptor balances, indicating different layer-specific signal processing mechanisms. Additionally, the differences between the strata-and area-specific fingerprints of the 44 areas reflect the segregation of the cerebral cortex into functionally and topographically definable groups of cortical areas (visual, auditory, somatosensory, limbic, motor), and reveals their hierarchical position (primary and unimodal (early) sensory to higher sensory and finally to multimodal association areas). HighlightsDensities of transmitter receptors vary between areas of human cerebral cortex. Multi-receptor fingerprints segregate cortical layers. The densities of all examined receptor types together reach highest values in the supragranular stratum of all areas. The lowest values are found in the infragranular stratum. Multi-receptor fingerprints of entire areas and their layers segregate functional systems Cortical types (primary sensory, motor, multimodal association) differ in their receptor fingerprints.
Collapse
Affiliation(s)
- Karl Zilles
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1)Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA-Translational Brain MedicineAachen, Germany
| | - Nicola Palomero-Gallagher
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1)Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA-Translational Brain MedicineAachen, Germany
| |
Collapse
|
29
|
Palomero-Gallagher N, Zilles K. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. Neuroimage 2017; 197:716-741. [PMID: 28811255 DOI: 10.1016/j.neuroimage.2017.08.035] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022] Open
Abstract
Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany.
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany.
| |
Collapse
|
30
|
Genon S, Li H, Fan L, Müller VI, Cieslik EC, Hoffstaedter F, Reid AT, Langner R, Grefkes C, Fox PT, Moebus S, Caspers S, Amunts K, Jiang T, Eickhoff SB. The Right Dorsal Premotor Mosaic: Organization, Functions, and Connectivity. Cereb Cortex 2017; 27:2095-2110. [PMID: 26965906 DOI: 10.1093/cercor/bhw065] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The right dorsal premotor cortex (PMd) of humans has been reported to be involved in a broad range of motor and cognitive functions. We explored the basis of this behavioral heterogeneity by performing a connectivity-based parcellation using meta-analytic approach applied to PMd coactivations. We compared our connectivity-based parcellation results with parcellations obtained through resting-state functional connectivity and probabilistic diffusion tractography. Functional connectivity profiles and behavioral decoding of the resulting PMd subregions allowed characterizing their respective behavior profile. These procedures divided the right PMd into 5 distinct subregions that formed a cognitive-motor gradient along a rostro-caudal axis. In particular, we found 1) a rostral subregion functionally connected with prefrontal cortex, which likely supports high-level cognitive processes, such as working memory, 2) a central subregion showing a mixed behavioral profile and functional connectivity to parietal regions of the dorsal attention network, and 3) a caudal subregion closely integrated with the motor system. Additionally, we found 4) a dorsal subregion, preferentially related to hand movements and connected to both cognitive and motor regions, and 5) a ventral subregion, whose functional profile fits the concept of an eye movement-related field. In conclusion, right PMd may be considered as a functional mosaic formed by 5 subregions.
Collapse
Affiliation(s)
- Sarah Genon
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Hai Li
- Brainnetome Center, Institute of Automation and.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation and.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Veronika I Müller
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, Jülich, Germany
| | - Andrew T Reid
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Grefkes
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, Jülich, Germany.,Department of Neurology, Cologne University Hospital, Cologne, Germany
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, TX, USA
| | - Susanne Moebus
- Centre for Urban Epidemiology (CUE), Universitätsklinikum Essen, University of Duisburg-Essen, Essen, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, Jülich, Germany
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation and.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
31
|
Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A, Amunts K, Zilles K, Fischl B, Grill-Spector K. The Cytoarchitecture of Domain-specific Regions in Human High-level Visual Cortex. Cereb Cortex 2017; 27:146-161. [PMID: 27909003 PMCID: PMC5939223 DOI: 10.1093/cercor/bhw361] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/05/2016] [Accepted: 10/29/2016] [Indexed: 12/02/2022] Open
Abstract
A fundamental hypothesis in neuroscience proposes that underlying cellular architecture (cytoarchitecture) contributes to the functionality of a brain area. However, this hypothesis has not been tested in human ventral temporal cortex (VTC) that contains domain-specific regions causally involved in perception. To fill this gap in knowledge, we used cortex-based alignment to register functional regions from living participants to cytoarchitectonic areas in ex vivo brains. This novel approach reveals 3 findings. First, there is a consistent relationship between domain-specific regions and cytoarchitectonic areas: each functional region is largely restricted to 1 cytoarchitectonic area. Second, extracting cytoarchitectonic profiles from face- and place-selective regions after back-projecting each region to 20-μm thick histological sections indicates that cytoarchitectonic properties distinguish these regions from each other. Third, some cytoarchitectonic areas contain more than 1 domain-specific region. For example, face-, body-, and character-selective regions are located within the same cytoarchitectonic area. We summarize these findings with a parsimonious hypothesis incorporating how cellular properties may contribute to functional specialization in human VTC. Specifically, we link computational principles to correlated axes of functional and cytoarchitectonic segregation in human VTC, in which parallel processing across domains occurs along a lateral-medial axis while transformations of information within domain occur along an anterior-posterior axis.
Collapse
Affiliation(s)
- Kevin S. Weiner
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | | | - Simon Lorenz
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany
| | - Julian Caspers
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany
- Department of Diagnostic and Interventional Radiology, Medical Faculty,University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Anthony Stigliani
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Katrin Amunts
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Heinrich-Heine University of Düsseldorf, 40225 Düsseldorf, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52428 Jülich, Germany
| | - Karl Zilles
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52428 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52062 Aachen, Germany
| | - Bruce Fischl
- Martinos Center for Biomedical Imaging and Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
- Computer Science and Artificial Intelligence Laboratory, MIT EECS/HST, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
32
|
van den Heuvel MP, Scholtens LH, Turk E, Mantini D, Vanduffel W, Feldman Barrett L. Multimodal analysis of cortical chemoarchitecture and macroscale fMRI resting-state functional connectivity. Hum Brain Mapp 2016; 37:3103-13. [PMID: 27207489 PMCID: PMC5111767 DOI: 10.1002/hbm.23229] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/14/2022] Open
Abstract
The cerebral cortex is well known to display a large variation in excitatory and inhibitory chemoarchitecture, but the effect of this variation on global scale functional neural communication and synchronization patterns remains less well understood. Here, we provide evidence of the chemoarchitecture of cortical regions to be associated with large-scale region-to-region resting-state functional connectivity. We assessed the excitatory versus inhibitory chemoarchitecture of cortical areas as an ExIn ratio between receptor density mappings of excitatory (AMPA, M1 ) and inhibitory (GABAA , M2 ) receptors, computed on the basis of data collated from pioneering studies of autoradiography mappings as present in literature of the human (2 datasets) and macaque (1 dataset) cortex. Cortical variation in ExIn ratio significantly correlated with total level of functional connectivity as derived from resting-state functional connectivity recordings of cortical areas across all three datasets (human I: P = 0.0004; human II: P = 0.0008; macaque: P = 0.0007), suggesting cortical areas with an overall more excitatory character to show higher levels of intrinsic functional connectivity during resting-state. Our findings are indicative of the microscale chemoarchitecture of cortical regions to be related to resting-state fMRI connectivity patterns at the global system's level of connectome organization. Hum Brain Mapp 37:3103-3113, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martijn P van den Heuvel
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, The Netherlands
| | - Lianne H Scholtens
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, The Netherlands
| | - Elise Turk
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, The Netherlands
| | - Dante Mantini
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, Massachusetts
- Psychiatric Neuroimaging Program, Department of Psychiatry, and the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
33
|
Kadipasaoglu CM, Conner CR, Whaley ML, Baboyan VG, Tandon N. Category-Selectivity in Human Visual Cortex Follows Cortical Topology: A Grouped icEEG Study. PLoS One 2016; 11:e0157109. [PMID: 27272936 PMCID: PMC4896492 DOI: 10.1371/journal.pone.0157109] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/24/2016] [Indexed: 01/20/2023] Open
Abstract
Neuroimaging studies suggest that category-selective regions in higher-order visual cortex are topologically organized around specific anatomical landmarks: the mid-fusiform sulcus (MFS) in the ventral temporal cortex (VTC) and lateral occipital sulcus (LOS) in the lateral occipital cortex (LOC). To derive precise structure-function maps from direct neural signals, we collected intracranial EEG (icEEG) recordings in a large human cohort (n = 26) undergoing implantation of subdural electrodes. A surface-based approach to grouped icEEG analysis was used to overcome challenges from sparse electrode coverage within subjects and variable cortical anatomy across subjects. The topology of category-selectivity in bilateral VTC and LOC was assessed for five classes of visual stimuli-faces, animate non-face (animals/body-parts), places, tools, and words-using correlational and linear mixed effects analyses. In the LOC, selectivity for living (faces and animate non-face) and non-living (places and tools) classes was arranged in a ventral-to-dorsal axis along the LOS. In the VTC, selectivity for living and non-living stimuli was arranged in a latero-medial axis along the MFS. Written word-selectivity was reliably localized to the intersection of the left MFS and the occipito-temporal sulcus. These findings provide direct electrophysiological evidence for topological information structuring of functional representations within higher-order visual cortex.
Collapse
Affiliation(s)
- Cihan Mehmet Kadipasaoglu
- Vivian Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, TX, United States of America
| | - Christopher Richard Conner
- Vivian Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, TX, United States of America
| | - Meagan Lee Whaley
- Vivian Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, TX, United States of America
| | - Vatche George Baboyan
- Vivian Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, TX, United States of America
| | - Nitin Tandon
- Vivian Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, TX, United States of America
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
34
|
Bi Y, Wang X, Caramazza A. Object Domain and Modality in the Ventral Visual Pathway. Trends Cogn Sci 2016; 20:282-290. [PMID: 26944219 DOI: 10.1016/j.tics.2016.02.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
The nature of domain-specific organization in higher-order visual cortex (ventral occipital temporal cortex, VOTC) has been investigated both in the case of visual experience deprivation and of modality of stimulation in sighted individuals. Object domain interacts in an intriguing and revelatory way with visual experience and modality of stimulation: selectivity for artifacts and scene domains is largely immune to visual deprivation and is multi-modal, whereas selectivity for animate items in lateral posterior fusiform gyrus is present only with visual stimulation. This domain-by-modality interaction is not readily accommodated by existing theories of VOTC representation. We conjecture that these effects reflect a distinction between the visual features that characterize different object domains and their interaction with different types of downstream computational systems.
Collapse
Affiliation(s)
- Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Xiaoying Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Alfonso Caramazza
- Department of Psychology, Harvard University, Cambridge, MA, USA; Center for Mind/Brain Sciences, University of Trento, Rovereto TN, Italy
| |
Collapse
|
35
|
Abstract
Understanding the process by which the cerebral hemispheres reach their mature functional organization remains challenging. We propose a theoretical account in which, in the domain of vision, faces and words come to be represented adjacent to retinotopic cortex by virtue of the need to discriminate among homogeneous exemplars. Orthographic representations are further constrained to be proximal to typically left-lateralized language-related information to minimize connectivity length between visual and language areas. As reading is acquired, orthography comes to rely more heavily (albeit not exclusively) on the left fusiform region to bridge vision and language. Consequently, due to competition from emerging word representations, face representations that were initially bilateral become lateralized to the right fusiform region (albeit, again, not exclusively). We review recent research that describes constraints that give rise to this graded hemispheric arrangement. We then summarize empirical evidence from a variety of studies (behavioral, evoked response potential, functional imaging) across different populations (children, adolescents, and adults; left handers and individuals with developmental dyslexia) that supports the claims that hemispheric lateralization is graded rather than binary and that this graded organization emerges dynamically over the course of development. Perturbations of this system either during development or in adulthood provide further insights into the principles governing hemispheric organization.
Collapse
Affiliation(s)
- Marlene Behrmann
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - David C Plaut
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
36
|
Weiner KS, Zilles K. The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia 2015; 83:48-62. [PMID: 26119921 DOI: 10.1016/j.neuropsychologia.2015.06.033] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/20/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
The fusiform gyrus (FG) is commonly included in anatomical atlases and is considered a key structure for functionally-specialized computations of high-level vision such as face perception, object recognition, and reading. However, it is not widely known that the FG has a contentious history. In this review, we first provide a historical analysis of the discovery of the FG and why certain features, such as the mid-fusiform sulcus, were discovered and then forgotten. We then discuss how observer-independent methods for identifying cytoarchitectonical boundaries of the cortex revolutionized our understanding of cytoarchitecture and the correspondence between those boundaries and cortical folding patterns of the FG. We further explain that the co-occurrence between cortical folding patterns and cytoarchitectonical boundaries are more common than classically thought and also, are functionally meaningful especially on the FG and probably in high-level visual cortex more generally. We conclude by proposing a series of alternatives for how the anatomical organization of the FG can accommodate seemingly different theoretical aspects of functional processing, such as domain specificity and perceptual expertise.
Collapse
Affiliation(s)
- Kevin S Weiner
- Department of Psychology, Stanford University, Stanford, CA 94305, USA.
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Jülich-Aachen Research Alliance (JARA) - Translational Brain Medicine, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH University Aachen, Aachen, Germany
| |
Collapse
|
37
|
The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 2014; 15:536-48. [PMID: 24962370 DOI: 10.1038/nrn3747] [Citation(s) in RCA: 455] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Visual categorization is thought to occur in the human ventral temporal cortex (VTC), but how this categorization is achieved is still largely unknown. In this Review, we consider the computations and representations that are necessary for categorization and examine how the microanatomical and macroanatomical layout of the VTC might optimize them to achieve rapid and flexible visual categorization. We propose that efficient categorization is achieved by organizing representations in a nested spatial hierarchy in the VTC. This spatial hierarchy serves as a neural infrastructure for the representational hierarchy of visual information in the VTC and thereby enables flexible access to category information at several levels of abstraction.
Collapse
|