1
|
Veldmann M, Edwards LJ, Pine KJ, Ehses P, Ferreira M, Weiskopf N, Stoecker T. Improving MR axon radius estimation in human white matter using spiral acquisition and field monitoring. Magn Reson Med 2024; 92:1898-1912. [PMID: 38817204 DOI: 10.1002/mrm.30180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE To compare MR axon radius estimation in human white matter using a multiband spiral sequence combined with field monitoring to the current state-of-the-art echo-planar imaging (EPI)-based approach. METHODS A custom multiband spiral sequence was used for diffusion-weighted imaging at ultra-highb $$ b $$ -values. Field monitoring and higher order image reconstruction were employed to greatly reduce artifacts in spiral images. Diffusion weighting parameters were chosen to match a state-of-the art EPI-based axon radius mapping protocol. The spiral approach was compared to the EPI approach by comparing the image signal-to-noise ratio (SNR) and performing a test-retest study to assess the respective variability and repeatability of axon radius mapping. Effective axon radius estimates were compared over white matter voxels and along the left corticospinal tract. RESULTS Increased SNR and reduced artifacts in spiral images led to reduced variability in resulting axon radius maps, especially in low-SNR regions. Test-retest variability was reduced by a factor of approximately 1.5 using the spiral approach. Reduced repeatability due to significant bias was found for some subjects in both spiral and EPI approaches, and attributed to scanner instability, pointing to a previously unknown limitation of the state-of-the-art approach. CONCLUSION Combining spiral readouts with field monitoring improved mapping of the effective axon radius compared to the conventional EPI approach.
Collapse
Affiliation(s)
- Marten Veldmann
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Luke J Edwards
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Philipp Ehses
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Mónica Ferreira
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
- University of Bonn, Bonn, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth System Sciences, Leipzig University, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Tony Stoecker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
- Department of Physics & Astronomy, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Friesen E, Gosal R, Herrera S, Mercredi M, Buist R, Matsuda K, Martin M. Comparisons of MR and EM inferred tissue microstructure properties using a human autopsy corpus callosum sample. Magn Reson Imaging 2024; 115:110255. [PMID: 39401603 DOI: 10.1016/j.mri.2024.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Degeneration of white matter (WM) microstructure in the central nervous system is characteristic of many neurodegenerative conditions. Previous research indicates that axonal degeneration visible in ex vivo electron microscopy (EM) photomicrographs precede the onset of clinical symptoms. Measuring WM microstructural features, such as axon diameter and packing fraction, currently require these highly invasive methods of analysis and it is therefore of great importance to develop methods for in vivo measurements. Diffusion weighted Magnetic Resonance Imaging (MRI) is a non-invasive method which can be used in conjunction with temporal diffusion spectroscopy (TDS) and an oscillating gradient spin echo (OGSE) pulse sequence to probe micron-scale structures within neural tissue. The current experiment aims to compare axon diameter measurements, mean effective axon diameter (AxD¯), and packing fractions calculated from EM histopathological analysis and inferred values from MR images. Mathematical models of axon diameters used for analysis include the ActiveAx Frequency-Dependent Extra-Axonal Diffusion (AAD) model and the AxCaliber Frequency-Dependent Extra-Axonal Diffusion (ACD) model using ROI (Region of Interest) based analysis (RBA) and voxel-based analysis (VBA), respectively. Overall, it was observed that MRI inferred WM microstructural parameters overestimate those calculated from EM. This may be attributable to tissue shrinkage during EM dehydration, the sensitivity of MR pulse sequences to larger diameter axons, and/or inaccurate model assumptions. The results of the current study provide a means to characterize the precision and accuracy of RBA-ACD and VBA-AAD OGSE-TDS and highlight the need for further research investigating the relationship between ex vivo MRI and EM, with the goal of reaching in vivo MRI.
Collapse
Affiliation(s)
- Emma Friesen
- Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada.
| | - Rubeena Gosal
- Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada.
| | - Sheryl Herrera
- Department of Physics, University of Winnipeg, Winnipeg, MB, Canada
| | - Morgan Mercredi
- Department of Physics, University of Winnipeg, Winnipeg, MB, Canada
| | - Richard Buist
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada.
| | - Kant Matsuda
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Melanie Martin
- Department of Physics, University of Winnipeg, Winnipeg, MB, Canada.
| |
Collapse
|
3
|
Harrison DM, Sati P, Klawiter EC, Narayanan S, Bagnato F, Beck ES, Barker P, Calvi A, Cagol A, Donadieu M, Duyn J, Granziera C, Henry RG, Huang SY, Hoff MN, Mainero C, Ontaneda D, Reich DS, Rudko DA, Smith SA, Trattnig S, Zurawski J, Bakshi R, Gauthier S, Laule C. The use of 7T MRI in multiple sclerosis: review and consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Brain Commun 2024; 6:fcae359. [PMID: 39445084 PMCID: PMC11497623 DOI: 10.1093/braincomms/fcae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The use of ultra-high-field 7-Tesla (7T) MRI in multiple sclerosis (MS) research has grown significantly over the past two decades. With recent regulatory approvals of 7T scanners for clinical use in 2017 and 2020, the use of this technology for routine care is poised to continue to increase in the coming years. In this context, the North American Imaging in MS Cooperative (NAIMS) convened a workshop in February 2023 to review the previous and current use of 7T technology for MS research and potential future research and clinical applications. In this workshop, experts were tasked with reviewing the current literature and proposing a series of consensus statements, which were reviewed and approved by the NAIMS. In this review and consensus paper, we provide background on the use of 7T MRI in MS research, highlighting this technology's promise for identification and quantification of aspects of MS pathology that are more difficult to visualize with lower-field MRI, such as grey matter lesions, paramagnetic rim lesions, leptomeningeal enhancement and the central vein sign. We also review the promise of 7T MRI to study metabolic and functional changes to the brain in MS. The NAIMS provides a series of consensus statements regarding what is currently known about the use of 7T MRI in MS, and additional statements intended to provide guidance as to what work is necessary going forward to accelerate 7T MRI research in MS and translate this technology for use in clinical practice and clinical trials. This includes guidance on technical development, proposals for a universal acquisition protocol and suggestions for research geared towards assessing the utility of 7T MRI to improve MS diagnostics, prognostics and therapeutic efficacy monitoring. The NAIMS expects that this article will provide a roadmap for future use of 7T MRI in MS.
Collapse
Affiliation(s)
- Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, H3A 2B4
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, TN Valley Healthcare System, Nashville, TN 37212, USA
| | - Erin S Beck
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alberto Calvi
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Maxime Donadieu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Duyn
- Advanced MRI Section, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Neurology, University Hospital Basel, 4001 Basel, Switzerland
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Susie Y Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Michael N Hoff
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37212, USA
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Jonathan Zurawski
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cornelia Laule
- Radiology, Pathology and Laboratory Medicine, Physics and Astronomy, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada, BC V6T 1Z4
| |
Collapse
|
4
|
Robinson TD, Chad JA, Sun YL, Chang PTH, Chen JJ. Testing retrogenesis and physiological explanations for tract-wise white matter aging: links to developmental order, fibre calibre, and vascularization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576373. [PMID: 38328223 PMCID: PMC10849490 DOI: 10.1101/2024.01.20.576373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
To understand the consistently observed spatial distribution of white-matter (WM) aging, developmentally driven theories termed "retrogenesis" have gained traction, positing that the order of WM tract development predicts the order of declines. Regions that develop first are expected to deteriorate the last, i.e. "last-in-first-out". Alternatively, regions which develop most rapidly may also decline most rapidly in aging, or "gains-predict-loss". The validity of such theories remains uncertain, in part due to lack of clarity on the definition of developmental order. Importantly, our recent findings suggest that WM aging is also associated with physiological parameters such as perfusion, which may be linked to fibre metabolic need, which in turn varies with fibre size. Here we address the extent to which the degree of WM aging is determined by development trajectory (i.e. retrogenesis) and/or by physiological state. We obtained microstructural and perfusion measures using data from the Human Connectome Project in Aging (HCP-A), complemented by a meta-analysis involving maps of fibre calibre and macrovascular volume. Our results suggest that (1) while tracts that appear last or finish myelinating first in development display the slowest aging, the pattern of aging is not fully explained by retrogenesis; in fact, time courses of tract emergence and myelination give rise to opposite associations with WM decline; (2) tracts that appear earlier also have higher mean axon calibre and are also associated with lower degrees of WM microstructural aging; (3) such tracts also tend to exhibit relatively sustained CBF with a higher rate of lengthening of the arterial transit times (ATT), suggestive of collateral blood supply. These findings were also sex dependent in a tract-specific manner. Future work will investigate whether these are ultimately influenced by each tract's metabolic demand and the role of macrovascular collateral flow.
Collapse
|
5
|
Meisler SL, Kubota E, Grotheer M, Gabrieli JDE, Grill-Spector K. A practical guide for combining functional regions of interest and white matter bundles. Front Neurosci 2024; 18:1385847. [PMID: 39221005 PMCID: PMC11363198 DOI: 10.3389/fnins.2024.1385847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
Diffusion-weighted imaging (DWI) is the primary method to investigate macro- and microstructure of neural white matter in vivo. DWI can be used to identify and characterize individual-specific white matter bundles, enabling precise analyses on hypothesis-driven connections in the brain and bridging the relationships between brain structure, function, and behavior. However, cortical endpoints of bundles may span larger areas than what a researcher is interested in, challenging presumptions that bundles are specifically tied to certain brain functions. Functional MRI (fMRI) can be integrated to further refine bundles such that they are restricted to functionally-defined cortical regions. Analyzing properties of these Functional Sub-Bundles (FSuB) increases precision and interpretability of results when studying neural connections supporting specific tasks. Several parameters of DWI and fMRI analyses, ranging from data acquisition to processing, can impact the efficacy of integrating functional and diffusion MRI. Here, we discuss the applications of the FSuB approach, suggest best practices for acquiring and processing neuroimaging data towards this end, and introduce the FSuB-Extractor, a flexible open-source software for creating FSuBs. We demonstrate our processing code and the FSuB-Extractor on an openly-available dataset, the Natural Scenes Dataset.
Collapse
Affiliation(s)
- Steven L. Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Emily Kubota
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior – CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg, Germany
| | - John D. E. Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
6
|
Lee H, Lee HH, Ma Y, Eskandarian L, Gaudet K, Tian Q, Krijnen EA, Russo AW, Salat DH, Klawiter EC, Huang SY. Age-related alterations in human cortical microstructure across the lifespan: Insights from high-gradient diffusion MRI. Aging Cell 2024:e14267. [PMID: 39118344 DOI: 10.1111/acel.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The human brain undergoes age-related microstructural alterations across the lifespan. Soma and Neurite Density Imaging (SANDI), a novel biophysical model of diffusion MRI, provides estimates of cell body (soma) radius and density, and neurite density in gray matter. The goal of this cross-sectional study was to assess the sensitivity of high-gradient diffusion MRI toward age-related alterations in cortical microstructure across the adult lifespan using SANDI. Seventy-two cognitively unimpaired healthy subjects (ages 19-85 years; 40 females) were scanned on the 3T Connectome MRI scanner with a maximum gradient strength of 300mT/m using a multi-shell diffusion MRI protocol incorporating 8 b-values and diffusion time of 19 ms. Intra-soma signal fraction obtained from SANDI model-fitting to the data was strongly correlated with age in all major cortical lobes (r = -0.69 to -0.60, FDR-p < 0.001). Intra-soma signal fraction (r = 0.48-0.63, FDR-p < 0.001) and soma radius (r = 0.28-0.40, FDR-p < 0.04) were significantly correlated with cortical volume in the prefrontal cortex, frontal, parietal, and temporal lobes. The strength of the relationship between SANDI metrics and age was greater than or comparable to the relationship between cortical volume and age across the cortical regions, particularly in the occipital lobe and anterior cingulate gyrus. In contrast to the SANDI metrics, all associations between diffusion tensor imaging (DTI) and diffusion kurtosis imaging metrics and age were low to moderate. These results suggest that high-gradient diffusion MRI may be more sensitive to underlying substrates of neurodegeneration in the aging brain than DTI and traditional macroscopic measures of neurodegeneration such as cortical volume and thickness.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Hong-Hsi Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Yixin Ma
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Laleh Eskandarian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Kyla Gaudet
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Qiyuan Tian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Eva A Krijnen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Andrew W Russo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David H Salat
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Y Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Li Z, Li Z, Bilgic B, Lee H, Ying K, Huang SY, Liao H, Tian Q. DIMOND: DIffusion Model OptimizatioN with Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307965. [PMID: 38634608 PMCID: PMC11200022 DOI: 10.1002/advs.202307965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/09/2024] [Indexed: 04/19/2024]
Abstract
Diffusion magnetic resonance imaging is an important tool for mapping tissue microstructure and structural connectivity non-invasively in the in vivo human brain. Numerous diffusion signal models are proposed to quantify microstructural properties. Nonetheless, accurate estimation of model parameters is computationally expensive and impeded by image noise. Supervised deep learning-based estimation approaches exhibit efficiency and superior performance but require additional training data and may be not generalizable. A new DIffusion Model OptimizatioN framework using physics-informed and self-supervised Deep learning entitled "DIMOND" is proposed to address this problem. DIMOND employs a neural network to map input image data to model parameters and optimizes the network by minimizing the difference between the input acquired data and synthetic data generated via the diffusion model parametrized by network outputs. DIMOND produces accurate diffusion tensor imaging results and is generalizable across subjects and datasets. Moreover, DIMOND outperforms conventional methods for fitting sophisticated microstructural models including the kurtosis and NODDI model. Importantly, DIMOND reduces NODDI model fitting time from hours to minutes, or seconds by leveraging transfer learning. In summary, the self-supervised manner, high efficacy, and efficiency of DIMOND increase the practical feasibility and adoption of microstructure and connectivity mapping in clinical and neuroscientific applications.
Collapse
Affiliation(s)
- Zihan Li
- School of Biomedical EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Ziyu Li
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordOX3 9DUUK
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMA02129USA
- Harvard Medical SchoolBostonMA02129USA
| | - Hong‐Hsi Lee
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMA02129USA
- Harvard Medical SchoolBostonMA02129USA
| | - Kui Ying
- Department of Engineering PhysicsTsinghua UniversityBeijing100084P. R. China
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMA02129USA
- Harvard Medical SchoolBostonMA02129USA
| | - Hongen Liao
- School of Biomedical EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Qiyuan Tian
- School of Biomedical EngineeringTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
8
|
Ng PR, Bush A, Vissani M, McIntyre CC, Richardson RM. Biophysical Principles and Computational Modeling of Deep Brain Stimulation. Neuromodulation 2024; 27:422-439. [PMID: 37204360 DOI: 10.1016/j.neurom.2023.04.471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) has revolutionized the treatment of neurological disorders, yet the mechanisms of DBS are still under investigation. Computational models are important in silico tools for elucidating these underlying principles and potentially for personalizing DBS therapy to individual patients. The basic principles underlying neurostimulation computational models, however, are not well known in the clinical neuromodulation community. OBJECTIVE In this study, we present a tutorial on the derivation of computational models of DBS and outline the biophysical contributions of electrodes, stimulation parameters, and tissue substrates to the effects of DBS. RESULTS Given that many aspects of DBS are difficult to characterize experimentally, computational models have played an important role in understanding how material, size, shape, and contact segmentation influence device biocompatibility, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Neural activation is dictated by stimulation parameters including frequency, current vs voltage control, amplitude, pulse width, polarity configurations, and waveform. These parameters also affect the potential for tissue damage, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Activation of the neural substrate also is influenced by the encapsulation layer surrounding the electrode, the conductivity of the surrounding tissue, and the size and orientation of white matter fibers. These properties modulate the effects of the electric field and determine the ultimate therapeutic response. CONCLUSION This article describes biophysical principles that are useful for understanding the mechanisms of neurostimulation.
Collapse
Affiliation(s)
| | - Alan Bush
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Matteo Vissani
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Robert Mark Richardson
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
9
|
Lee HH, Tian Q, Sheft M, Coronado-Leija R, Ramos-Llorden G, Abdollahzadeh A, Fieremans E, Novikov DS, Huang SY. The effects of axonal beading and undulation on axonal diameter estimation from diffusion MRI: Insights from simulations in human axons segmented from three-dimensional electron microscopy. NMR IN BIOMEDICINE 2024; 37:e5087. [PMID: 38168082 PMCID: PMC10942763 DOI: 10.1002/nbm.5087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
The increasing availability of high-performance gradient systems in human MRI scanners has generated great interest in diffusion microstructural imaging applications such as axonal diameter mapping. Practically, sensitivity to axon diameter in diffusion MRI is attained at strong diffusion weightings b , where the deviation from the expected 1 / b scaling in white matter yields a finite transverse diffusivity, which is then translated into an axon diameter estimate. While axons are usually modeled as perfectly straight, impermeable cylinders, local variations in diameter (caliber variation or beading) and direction (undulation) are known to influence axonal diameter estimates and have been observed in microscopy data of human axons. In this study, we performed Monte Carlo simulations of diffusion in axons reconstructed from three-dimensional electron microscopy of a human temporal lobe specimen using simulated sequence parameters matched to the maximal gradient strength of the next-generation Connectome 2.0 human MRI scanner ( ≲ 500 mT/m). We show that axon diameter estimation is accurate for nonbeaded, nonundulating fibers; however, in fibers with caliber variations and undulations, the axon diameter is heavily underestimated due to caliber variations, and this effect overshadows the known overestimation of the axon diameter due to undulations. This unexpected underestimation may originate from variations in the coarse-grained axial diffusivity due to caliber variations. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Maxina Sheft
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard–MIT Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Ricardo Coronado-Leija
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Gabriel Ramos-Llorden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Chen Y, Dortch RD, Li J. Response to "Validity of Quantitative, Multi-Parametric MRI in the Diagnosis of Polyneuropathies". J Magn Reson Imaging 2024; 59:1465-1466. [PMID: 37427879 PMCID: PMC11221075 DOI: 10.1002/jmri.28889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
Level of Evidence5Technical Efficacy Stage1
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Neurology, Wayne State University School of
Medicine, Detroit, MI, USA
| | - Richard D. Dortch
- Department of Translational Neuroscience, Barrow
Neurological Institute, Phoenix, AZ, USA
| | - Jun Li
- Department of Neurology, Houston Methodist Research
Institute, Houston, TX, USA
| |
Collapse
|
11
|
Chakwizira A, Zhu A, Foo T, Westin CF, Szczepankiewicz F, Nilsson M. Diffusion MRI with free gradient waveforms on a high-performance gradient system: Probing restriction and exchange in the human brain. Neuroimage 2023; 283:120409. [PMID: 37839729 DOI: 10.1016/j.neuroimage.2023.120409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023] Open
Abstract
The dependence of the diffusion MRI signal on the diffusion time carries signatures of restricted diffusion and exchange. Here we seek to highlight these signatures in the human brain by performing experiments using free gradient waveforms designed to be selectively sensitive to the two effects. We examine six healthy volunteers using both strong and ultra-strong gradients (80, 200 and 300 mT/m). In an experiment featuring a large set of 150 gradient waveforms with different sensitivities to restricted diffusion and exchange, our results reveal unique and different time-dependence signatures in grey and white matter. Grey matter was characterised by both restricted diffusion and exchange and white matter predominantly by restricted diffusion. Exchange in grey matter was at least twice as fast as in white matter, across all subjects and all gradient strengths. The cerebellar cortex featured relatively short exchange times (115 ms). Furthermore, we show that gradient waveforms with tailored designs can be used to map exchange in the human brain. We also assessed the feasibility of clinical applications of the method used in this work and found that the exchange-related contrast obtained with a 25-minute protocol at 300 mT/m was preserved in a 4-minute protocol at 300 mT/m and a 10-minute protocol at 80 mT/m. Our work underlines the utility of free waveforms for detecting time dependence signatures due to restricted diffusion and exchange in vivo, which may potentially serve as a tool for studying diseased tissue.
Collapse
Affiliation(s)
- Arthur Chakwizira
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Ante Zhu
- GE Research, Niskayuna, New York, United States
| | - Thomas Foo
- GE Research, Niskayuna, New York, United States
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Filip Szczepankiewicz
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Markus Nilsson
- Department of Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden; Department of Radiology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
12
|
Raven EP, Veraart J, Kievit RA, Genc S, Ward IL, Hall J, Cunningham A, Doherty J, van den Bree MBM, Jones DK. In vivo evidence of microstructural hypo-connectivity of brain white matter in 22q11.2 deletion syndrome. Mol Psychiatry 2023; 28:4342-4352. [PMID: 37495890 PMCID: PMC7615578 DOI: 10.1038/s41380-023-02178-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
22q11.2 deletion syndrome, or 22q11.2DS, is a genetic syndrome associated with high rates of schizophrenia and autism spectrum disorders, in addition to widespread structural and functional abnormalities throughout the brain. Experimental animal models have identified neuronal connectivity deficits, e.g., decreased axonal length and complexity of axonal branching, as a primary mechanism underlying atypical brain development in 22q11.2DS. However, it is still unclear whether deficits in axonal morphology can also be observed in people with 22q11.2DS. Here, we provide an unparalleled in vivo characterization of white matter microstructure in participants with 22q11.2DS (12-15 years) and those undergoing typical development (8-18 years) using a customized magnetic resonance imaging scanner which is sensitive to axonal morphology. A rich array of diffusion MRI metrics are extracted to present microstructural profiles of typical and atypical white matter development, and provide new evidence of connectivity differences in individuals with 22q11.2DS. A recent, large-scale consortium study of 22q11.2DS identified higher diffusion anisotropy and reduced overall diffusion mobility of water as hallmark microstructural alterations of white matter in individuals across a wide age range (6-52 years). We observed similar findings across the white matter tracts included in this study, in addition to identifying deficits in axonal morphology. This, in combination with reduced tract volume measurements, supports the hypothesis that abnormal microstructural connectivity in 22q11.2DS may be mediated by densely packed axons with disproportionately small diameters. Our findings provide insight into the in vivo white matter phenotype of 22q11.2DS, and promote the continued investigation of shared features in neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rogier A Kievit
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Isobel L Ward
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Jessica Hall
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Adam Cunningham
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Joanne Doherty
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
13
|
Oliveira R, De Lucia M, Lutti A. Single-subject electroencephalography measurement of interhemispheric transfer time for the in-vivo estimation of axonal morphology. Hum Brain Mapp 2023; 44:4859-4874. [PMID: 37470446 PMCID: PMC10472916 DOI: 10.1002/hbm.26420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject-specific IHTTs are computed in a data-driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject-specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between-session variability was comparable to between-subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g-ratio with axonal radius ranged from 0.62 to 0.81 μm-α . The single-subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single-subject axonal morphology estimates.
Collapse
Affiliation(s)
- Rita Oliveira
- Laboratory for Research in Neuroimaging, Department of Clinical NeuroscienceLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Marzia De Lucia
- Laboratory for Research in Neuroimaging, Department of Clinical NeuroscienceLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical NeuroscienceLausanne University Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
14
|
Gast H, Horowitz A, Krupnik R, Barazany D, Lifshits S, Ben-Amitay S, Assaf Y. A Method for In-Vivo Mapping of Axonal Diameter Distributions in the Human Brain Using Diffusion-Based Axonal Spectrum Imaging (AxSI). Neuroinformatics 2023; 21:469-482. [PMID: 37036548 PMCID: PMC10406702 DOI: 10.1007/s12021-023-09630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/11/2023]
Abstract
In this paper we demonstrate a generalized and simplified pipeline called axonal spectrum imaging (AxSI) for in-vivo estimation of axonal characteristics in the human brain. Whole-brain estimation of the axon diameter, in-vivo and non-invasively, across all fiber systems will allow exploring uncharted aspects of brain structure and function relations with emphasis on connectivity and connectome analysis. While axon diameter mapping is important in and of itself, its correlation with conduction velocity will allow, for the first time, the explorations of information transfer mechanisms within the brain. We demonstrate various well-known aspects of axonal morphometry (e.g., the corpus callosum axon diameter variation) as well as other aspects that are less explored (e.g., axon diameter-based separation of the superior longitudinal fasciculus into segments). Moreover, we have created an MNI based mean axon diameter map over the entire brain for a large cohort of subjects providing the reference basis for future studies exploring relation between axon properties, its connectome representation, and other functional and behavioral aspects of the brain.
Collapse
Affiliation(s)
- Hila Gast
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Assaf Horowitz
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ronnie Krupnik
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Barazany
- The Strauss center for neuroimaging, Tel Aviv University, Tel Aviv, Israel
| | - Shlomi Lifshits
- Department of Statistics and Operations Research, Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Shani Ben-Amitay
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Strauss center for neuroimaging, Tel Aviv University, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Krijnen EA, Russo AW, Salim Karam E, Lee H, Chiang FL, Schoonheim MM, Huang SY, Klawiter EC. Detection of grey matter microstructural substrates of neurodegeneration in multiple sclerosis. Brain Commun 2023; 5:fcad153. [PMID: 37274832 PMCID: PMC10233898 DOI: 10.1093/braincomms/fcad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Multiple sclerosis features complex pathological changes in grey matter that begin early and eventually lead to diffuse atrophy. Novel approaches to image grey-matter microstructural alterations in vivo are highly sought after and would enable more sensitive monitoring of disease activity and progression. This cross-sectional study aimed to assess the sensitivity of high-gradient diffusion MRI for microstructural tissue damage in cortical and deep grey matter in people with multiple sclerosis and test the hypothesis that reduced cortical cell body density is associated with cortical and deep grey-matter volume loss. Forty-one people with multiple sclerosis (age 24-72, 14 females) and 37 age- and sex-matched healthy controls were scanned on a 3 T Connectom MRI scanner equipped with 300 mT/m gradients using a multi-shell diffusion MRI protocol. The soma and neurite density imaging model was fitted to high-gradient diffusion MRI data to obtain estimates of intra-neurite, intra-cellular and extra-cellular signal fractions and apparent soma radius. Cortical and deep grey-matter microstructural imaging metrics were compared between multiple sclerosis and healthy controls and correlated with grey-matter volume, clinical disability and cognitive outcomes. People with multiple sclerosis showed significant cortical and deep grey-matter volume loss compared with healthy controls. People with multiple sclerosis showed trends towards lower cortical intra-cellular signal fraction and significantly lower intra-cellular and higher extra-cellular signal fractions in deep grey matter, especially the thalamus and caudate, compared with healthy controls. Changes were most pronounced in progressive disease and correlated with the Expanded Disability Status Scale, but not the Symbol Digit Modalities Test. In multiple sclerosis, normalized thalamic volume was associated with thalamic microstructural imaging metrics. Whereas thalamic volume loss did not correlate with cortical volume loss, cortical microstructural imaging metrics were significantly associated with thalamic volume, and not with cortical volume. Compared with the short diffusion time (Δ = 19 ms) achievable on the Connectom scanner, at the longer diffusion time of Δ = 49 ms attainable on clinical scanners, multiple sclerosis-related changes in imaging metrics were generally less apparent with lower effect sizes in cortical and deep grey matter. Soma and neurite density imaging metrics obtained from high-gradient diffusion MRI data provide detailed grey-matter characterization beyond cortical and thalamic volumes and distinguish multiple sclerosis-related microstructural pathology from healthy controls. Cortical cell body density correlates with thalamic volume, appears sensitive to the microstructural substrate of neurodegeneration and reflects disability status in people with multiple sclerosis, becoming more pronounced as disability worsens.
Collapse
Affiliation(s)
- Eva A Krijnen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
| | - Andrew W Russo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Elsa Salim Karam
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hansol Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Florence L Chiang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
| | - Susie Y Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
16
|
Genc S, Raven EP, Drakesmith M, Blakemore SJ, Jones DK. Novel insights into axon diameter and myelin content in late childhood and adolescence. Cereb Cortex 2023; 33:6435-6448. [PMID: 36610731 PMCID: PMC10183755 DOI: 10.1093/cercor/bhac515] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
White matter microstructural development in late childhood and adolescence is driven predominantly by increasing axon density and myelin thickness. Ex vivo studies suggest that the increase in axon diameter drives developmental increases in axon density observed with pubertal onset. In this cross-sectional study, 50 typically developing participants aged 8-18 years were scanned using an ultra-strong gradient magnetic resonance imaging scanner. Microstructural properties, including apparent axon diameter $({d}_a)$, myelin content, and g-ratio, were estimated in regions of the corpus callosum. We observed age-related differences in ${d}_a$, myelin content, and g-ratio. In early puberty, males had larger ${d}_a$ in the splenium and lower myelin content in the genu and body of the corpus callosum, compared with females. Overall, this work provides novel insights into developmental, pubertal, and cognitive correlates of individual differences in apparent axon diameter and myelin content in the developing human brain.
Collapse
Affiliation(s)
- Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
- Department of Radiology, New York University School of Medicine, 550 1st Ave., New York, NY 10016, United States
| | - Mark Drakesmith
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
| | - Sarah-Jayne Blakemore
- Department of Psychology, University of Cambridge, Downing Pl, Cambridge CB2 3EB, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
17
|
Lee HH, Tian Q, Sheft M, Coronado-Leija R, Ramos-Llorden G, Abdollahzadeh A, Fieremans E, Novikov DS, Huang SY. The influence of axonal beading and undulation on axonal diameter mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537494. [PMID: 37131702 PMCID: PMC10153226 DOI: 10.1101/2023.04.19.537494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We consider the effect of non-cylindrical axonal shape on axonal diameter mapping with diffusion MRI. Practical sensitivity to axon diameter is attained at strong diffusion weightings b , where the deviation from the 1 / b scaling yields the finite transverse diffusivity, which is then translated into axon diameter. While axons are usually modeled as perfectly straight, impermeable cylinders, the local variations in diameter (caliber variation or beading) and direction (undulation) have been observed in microscopy data of human axons. Here we quantify the influence of cellular-level features such as caliber variation and undulation on axon diameter estimation. For that, we simulate the diffusion MRI signal in realistic axons segmented from 3-dimensional electron microscopy of a human brain sample. We then create artificial fibers with the same features and tune the amplitude of their caliber variations and undulations. Numerical simulations of diffusion in fibers with such tunable features show that caliber variations and undulations result in under- and over-estimation of axon diameters, correspondingly; this bias can be as large as 100%. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Maxina Sheft
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ricardo Coronado-Leija
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Gabriel Ramos-Llorden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Chakwizira A, Zhu A, Foo T, Westin CF, Szczepankiewicz F, Nilsson M. Diffusion MRI with free gradient waveforms on a high-performance gradient system: Probing restriction and exchange in the human brain. ARXIV 2023:arXiv:2304.02764v1. [PMID: 37064535 PMCID: PMC10104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The dependence of the diffusion MRI signal on the diffusion time carries signatures of restricted diffusion and exchange. Here we seek to highlight these signatures in the human brain by performing experiments using free gradient waveforms that are selectively sensitive to the two effects. We examine six healthy volunteers using both strong and ultra-strong gradients (80, 200 and 300 mT/m). In an experiment featuring a large set of gradient waveforms with different sensitivities to restricted diffusion and exchange (150 samples), our results reveal unique time-dependence signatures in grey and white matter, where the former is characterised by both restricted diffusion and exchange and the latter predominantly exhibits restricted diffusion. Furthermore, we show that gradient waveforms with independently varying sensitivities to restricted diffusion and exchange can be used to map exchange in the human brain. We consistently find that exchange in grey matter is at least twice as fast as in white matter, across all subjects and all gradient strengths. The shortest exchange times observed in this study were in the cerebellar cortex (115 ms). We also assess the feasibility of future clinical applications of the method used in this work, where we find that the grey-white matter exchange contrast obtained with a 25-minute 300 mT/m protocol is preserved by a 4-minute 300 mT/m and a 10-minute 80 mT/m protocol. Our work underlines the utility of free waveforms for detecting time-dependence signatures due to restricted diffusion and exchange in vivo, which may potentially serve as a tool for studying diseased tissue.
Collapse
Affiliation(s)
- Arthur Chakwizira
- Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ante Zhu
- GE Research, Niskayuna, New York, USA
| | | | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Markus Nilsson
- Department of Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Warner W, Palombo M, Cruz R, Callaghan R, Shemesh N, Jones DK, Dell'Acqua F, Ianus A, Drobnjak I. Temporal Diffusion Ratio (TDR) for imaging restricted diffusion: Optimisation and pre-clinical demonstration. Neuroimage 2023; 269:119930. [PMID: 36750150 PMCID: PMC7615244 DOI: 10.1016/j.neuroimage.2023.119930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023] Open
Abstract
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.
Collapse
Affiliation(s)
- William Warner
- Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Renata Cruz
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Flavio Dell'Acqua
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Andrada Ianus
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| | - Ivana Drobnjak
- Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom.
| |
Collapse
|
20
|
Charvet CJ. Mapping Human Brain Pathways: Challenges and Opportunities in the Integration of Scales. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:194-209. [PMID: 36972574 PMCID: PMC11310840 DOI: 10.1159/000530317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
The human brain is composed of a complex web of pathways. Diffusion magnetic resonance (MR) tractography is a neuroimaging technique that relies on the principle of diffusion to reconstruct brain pathways. Its tractography is broadly applicable to a range of problems as it is amenable for study in individuals of any age and from any species. However, it is well known that this technique can generate biologically implausible pathways, especially in regions of the brain where multiple fibers cross. This review highlights potential misconnections in two cortico-cortical association pathways with a focus on the aslant tract and inferior frontal occipital fasciculus. The lack of alternative methods to validate observations from diffusion MR tractography means there is a need to develop new integrative approaches to trace human brain pathways. This review discusses integrative approaches in neuroimaging, anatomical, and transcriptional variation as having much potential to trace the evolution of human brain pathways.
Collapse
Affiliation(s)
- Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
21
|
Wichtmann BD, Fan Q, Eskandarian L, Witzel T, Attenberger UI, Pieper CC, Schad L, Rosen BR, Wald LL, Huang SY, Nummenmaa A. Linear multi-scale modeling of diffusion MRI data: A framework for characterization of oriented structures across length scales. Hum Brain Mapp 2023; 44:1496-1514. [PMID: 36477997 PMCID: PMC9921225 DOI: 10.1002/hbm.26143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 12/12/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) has evolved to provide increasingly sophisticated investigations of the human brain's structural connectome in vivo. Restriction spectrum imaging (RSI) is a method that reconstructs the orientation distribution of diffusion within tissues over a range of length scales. In its original formulation, RSI represented the signal as consisting of a spectrum of Gaussian diffusion response functions. Recent technological advances have enabled the use of ultra-high b-values on human MRI scanners, providing higher sensitivity to intracellular water diffusion in the living human brain. To capture the complex diffusion time dependence of the signal within restricted water compartments, we expand upon the RSI approach to represent restricted water compartments with non-Gaussian response functions, in an extended analysis framework called linear multi-scale modeling (LMM). The LMM approach is designed to resolve length scale and orientation-specific information with greater specificity to tissue microstructure in the restricted and hindered compartments, while retaining the advantages of the RSI approach in its implementation as a linear inverse problem. Using multi-shell, multi-diffusion time DW-MRI data acquired with a state-of-the-art 3 T MRI scanner equipped with 300 mT/m gradients, we demonstrate the ability of the LMM approach to distinguish different anatomical structures in the human brain and the potential to advance mapping of the human connectome through joint estimation of the fiber orientation distributions and compartment size characteristics.
Collapse
Affiliation(s)
- Barbara D. Wichtmann
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Qiuyun Fan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics EngineeringTianjin UniversityTianjinChina
| | - Laleh Eskandarian
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
| | | | - Ulrike I. Attenberger
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Claus C. Pieper
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Lothar Schad
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Bruce R. Rosen
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
| | - Lawrence L. Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Susie Y. Huang
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Aapo Nummenmaa
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
| |
Collapse
|
22
|
Ramos-Llordén G, Park D, Kirsch JE, Scholz A, Keil B, Maffei C, Lee HH, Bilgiç B, Edlow BL, Mekkaoui C, Yendiki A, Witzel T, Huang SY. Eddy current-induced artifacts correction in high gradient strength diffusion MRI with dynamic field monitoring: demonstration in ex vivo human brain imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528684. [PMID: 36824894 PMCID: PMC9948962 DOI: 10.1101/2023.02.15.528684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Purpose To demonstrate the advantages of spatiotemporal magnetic field monitoring to correct eddy current-induced artifacts (ghosting and geometric distortions) in high gradient strength diffusion MRI (dMRI). Methods A dynamic field camera with 16 NMR field probes was used to characterize eddy current fields induced from diffusion gradients for different gradients strengths (up to 300 mT/m), diffusion directions, and shots in a 3D multi-shot EPI sequence on a 3T Connectom scanner. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-resolution whole brain ex vivo dMRI. A 3D multi-shot image reconstruction framework was informed with the actual nonlinear phase evolution measured with the dynamic field camera, thereby accounting for high-order eddy currents fields on top of the image encoding gradients in the image formation model. Results Eddy current fields from diffusion gradients at high gradient strength in a 3T Connectom scanner are highly nonlinear in space and time, inducing high-order spatial phase modulations between odd/even echoes and shots that are not static during the readout. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting approaches such as navigator- and structured low-rank-based methods or MUSE, followed by image-based distortion correction with eddy. Improved dMRI analysis is demonstrated with diffusion tensor imaging and high-angular resolution diffusion imaging. Conclusion Strong eddy current artifacts characteristic of high gradient strength dMRI can be well corrected with dynamic field monitoring-based image reconstruction, unlike the two-step approach consisting of ghosting correction followed by geometric distortion reduction with eddy.
Collapse
|
23
|
Schilling KG, Archer D, Yeh FC, Rheault F, Cai LY, Shafer A, Resnick SM, Hohman T, Jefferson A, Anderson AW, Kang H, Landman BA. Short superficial white matter and aging: a longitudinal multi-site study of 1293 subjects and 2711 sessions. AGING BRAIN 2023; 3:100067. [PMID: 36817413 PMCID: PMC9937516 DOI: 10.1016/j.nbas.2023.100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is estimated that short association fibers running immediately beneath the cortex may make up as much as 60% of the total white matter volume. However, these have been understudied relative to the long-range association, projection, and commissural fibers of the brain. This is largely because of limitations of diffusion MRI fiber tractography, which is the primary methodology used to non-invasively study the white matter connections. Inspired by recent anatomical considerations and methodological improvements in superficial white matter (SWM) tractography, we aim to characterize changes in these fiber systems in cognitively normal aging, which provide insight into the biological foundation of age-related cognitive changes, and a better understanding of how age-related pathology differs from healthy aging. To do this, we used three large, longitudinal and cross-sectional datasets (N = 1293 subjects, 2711 sessions) to quantify microstructural features and length/volume features of several SWM systems. We find that axial, radial, and mean diffusivities show positive associations with age, while fractional anisotropy has negative associations with age in SWM throughout the entire brain. These associations were most pronounced in the frontal, temporal, and temporoparietal regions. Moreover, measures of SWM volume and length decrease with age in a heterogenous manner across the brain, with different rates of change in inter-gyri and intra-gyri SWM, and at slower rates than well-studied long-range white matter pathways. These features, and their variations with age, provide the background for characterizing normal aging, and, in combination with larger association pathways and gray matter microstructural features, may provide insight into fundamental mechanisms associated with aging and cognition.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Derek Archer
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francois Rheault
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Leon Y Cai
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Andrea Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Timothy Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Angela Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
24
|
Gudino N, Littin S. Advancements in Gradient System Performance for Clinical and Research MRI. J Magn Reson Imaging 2023; 57:57-70. [PMID: 36073722 DOI: 10.1002/jmri.28421] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 02/03/2023] Open
Abstract
In magnetic resonance imaging (MRI), spatial field gradients are applied along each axis to encode the location of the nuclear spin in the frequency domain. During recent years, the development of new gradient technologies has been focused on the generation of stronger and faster gradient fields for imaging with higher spatial and temporal resolution. This benefits imaging methods, such as brain diffusion and functional MRI, and enables human imaging at ultra-high field MRI. In addition to improving gradient performance, new technologies have been presented to minimize peripheral nerve stimulation and gradient-related acoustic noise, both generated by the rapid switching of strong gradient fields. This review will provide a general background on the gradient system and update on the state-of-the-art gradient technology. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Natalia Gudino
- MRI Engineering Core, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Sebastian Littin
- Medical Physics, Department of Radiology, Faculty of Medicine, University Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Chakwizira A, Westin C, Brabec J, Lasič S, Knutsson L, Szczepankiewicz F, Nilsson M. Diffusion MRI with pulsed and free gradient waveforms: Effects of restricted diffusion and exchange. NMR IN BIOMEDICINE 2023; 36:e4827. [PMID: 36075110 PMCID: PMC10078514 DOI: 10.1002/nbm.4827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 05/06/2023]
Abstract
Monitoring time dependence with diffusion MRI yields observables sensitive to compartment sizes (restricted diffusion) and membrane permeability (water exchange). However, restricted diffusion and exchange have opposite effects on the diffusion-weighted signal, which can lead to errors in parameter estimates. In this work, we propose a signal representation that incorporates the effects of both restricted diffusion and exchange up to second order in b-value and is compatible with gradient waveforms of arbitrary shape. The representation features mappings from a gradient waveform to two scalars that separately control the sensitivity to restriction and exchange. We demonstrate that these scalars span a two-dimensional space that can be used to choose waveforms that selectively probe restricted diffusion or exchange, eliminating the correlation between the two phenomena. We found that waveforms with specific but unconventional shapes provide an advantage over conventional pulsed and oscillating gradient acquisitions. We also show that parametrization of waveforms into a two-dimensional space can be used to understand protocols from other approaches that probe restricted diffusion and exchange. For example, we found that the variation of mixing time in filter-exchange imaging corresponds to variation of our exchange-weighting scalar at a fixed value of the restriction-weighting scalar. The proposed signal representation was evaluated using Monte Carlo simulations in identical parallel cylinders with hexagonal and random packing as well as parallel cylinders with gamma-distributed radii. Results showed that the approach is sensitive to sizes in the interval 4-12 μm and exchange rates in the simulated range of 0 to 20 s - 1 , but also that there is a sensitivity to the extracellular geometry. The presented theory constitutes a simple and intuitive description of how restricted diffusion and exchange influence the signal as well as a guide to protocol design capable of separating the two effects.
Collapse
Affiliation(s)
- Arthur Chakwizira
- Department of Medical Radiation Physics, LundLund UniversityLundSweden
| | - Carl‐Fredrik Westin
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jan Brabec
- Department of Medical Radiation Physics, LundLund UniversityLundSweden
| | - Samo Lasič
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital ‐ Amager and HvidovreCopenhagenDenmark
- Random Walk Imaging ABLundSweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, LundLund UniversityLundSweden
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| | | | - Markus Nilsson
- Department of Clinical Sciences Lund, RadiologyLund UniversityLundSweden
| |
Collapse
|
26
|
Krijnen EA, Ngamsombat C, George IC, Yu FF, Fan Q, Tian Q, Huang SY, Klawiter EC. Axonal and myelin changes and their inter-relationship in the optic radiations in people with multiple sclerosis. Mult Scler J Exp Transl Clin 2023; 9:20552173221147620. [PMID: 36814811 PMCID: PMC9940187 DOI: 10.1177/20552173221147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Background The imaging g-ratio, estimated from axonal volume fraction (AVF) and myelin volume fraction (MVF), is a novel biomarker of microstructural tissue integrity in multiple sclerosis (MS). Objective To assess axonal and myelin changes and their inter-relationship as measured by g-ratio in the optic radiations (OR) in people with MS (pwMS) with and without previous optic neuritis (ON) compared to healthy controls (HC). Methods Thirty pwMS and 17 HCs were scanned on a 3Tesla Connectom scanner. AVF and MVF, derived from a multi-shell diffusion protocol and macromolecular tissue volume, respectively, were measured in normal-appearing white matter (NAWM) and lesions within the OR and used to calculate imaging g-ratio. Results OR AVF and MVF were decreased in pwMS compared to HC, and in OR lesions compared to NAWM, whereas the g-ratio was not different. Compared to pwMS with previous ON, AVF and g-ratio tended to be higher in pwMS without prior ON. AVF and MVF, particularly in NAWM, were positively correlated with retinal thickness, which was more pronounced in pwMS with prior ON. Conclusion Axonal measures reflect microstructural tissue damage in the OR, particularly in the setting of remote ON, and correlate with established metrics of visual health in MS.
Collapse
Affiliation(s)
- Eva A Krijnen
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chanon Ngamsombat
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ilena C George
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang F Yu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiuyun Fan
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Qiyuan Tian
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Susie Y Huang
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Russo AW, Stockel KE, Tobyne SM, Ngamsombat C, Brewer K, Nummenmaa A, Huang SY, Klawite EC. Associations between corpus callosum damage, clinical disability, and surface-based homologous inter-hemispheric connectivity in multiple sclerosis. Brain Struct Funct 2022; 227:2909-2922. [PMID: 35536387 PMCID: PMC9850837 DOI: 10.1007/s00429-022-02498-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/11/2022] [Indexed: 01/22/2023]
Abstract
Axonal damage in the corpus callosum is prevalent in multiple sclerosis (MS). Although callosal damage is associated with disrupted functional connectivity between hemispheres, it is unclear how this relates to cognitive and physical disability. We investigated this phenomenon using advanced measures of microstructural integrity in the corpus callosum and surface-based homologous inter-hemispheric connectivity (sHIC) in the cortex. We found that sHIC was significantly decreased in primary motor, somatosensory, visual, and temporal cortical areas in a group of 36 participants with MS (29 relapsing-remitting, 4 secondary progressive MS, and 3 primary-progressive MS) compared with 42 healthy controls (cluster level, p < 0.05). In participants with MS, global sHIC correlated with fractional anisotropy and restricted volume fraction in the posterior segment of the corpus callosum (r = 0.426, p = 0.013; r = 0.399, p = 0.020, respectively). Lower sHIC, particularly in somatomotor and posterior cortical areas, was associated with cognitive impairment and higher disability scores on the Expanded Disability Status Scale (EDSS). We demonstrated that higher levels of sHIC attenuated the effects of posterior callosal damage on physical disability and cognitive dysfunction, as measured by the EDSS and Brief Visuospatial Memory Test-Revised (interaction effect, p < 0.05). We also observed a positive association between global sHIC and years of education (r = 0.402, p = 0.018), supporting the phenomenon of "brain reserve" in MS. Our data suggest that preserved sHIC helps prevent cognitive and physical decline in MS.
Collapse
Affiliation(s)
- Andrew W. Russo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, US
| | | | - Sean M. Tobyne
- Department of Neurology, Massachusetts General Hospital, Boston, MA, US
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, No. 149, 13th Street, Charlestown, Boston, MA 02129, US
| | - Kristina Brewer
- Department of Neurology, Massachusetts General Hospital, Boston, MA, US
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, No. 149, 13th Street, Charlestown, Boston, MA 02129, US
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, No. 149, 13th Street, Charlestown, Boston, MA 02129, US
| | - Eric C. Klawite
- Department of Neurology, Massachusetts General Hospital, Boston, MA, US
| |
Collapse
|
28
|
Yendiki A, Aggarwal M, Axer M, Howard AF, van Cappellen van Walsum AM, Haber SN. Post mortem mapping of connectional anatomy for the validation of diffusion MRI. Neuroimage 2022; 256:119146. [PMID: 35346838 PMCID: PMC9832921 DOI: 10.1016/j.neuroimage.2022.119146] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Diffusion MRI (dMRI) is a unique tool for the study of brain circuitry, as it allows us to image both the macroscopic trajectories and the microstructural properties of axon bundles in vivo. The Human Connectome Project ushered in an era of impressive advances in dMRI acquisition and analysis. As a result of these efforts, the quality of dMRI data that could be acquired in vivo improved substantially, and large collections of such data became widely available. Despite this progress, the main limitation of dMRI remains: it does not image axons directly, but only provides indirect measurements based on the diffusion of water molecules. Thus, it must be validated by methods that allow direct visualization of axons but that can only be performed in post mortem brain tissue. In this review, we discuss methods for validating the various features of connectional anatomy that are extracted from dMRI, both at the macro-scale (trajectories of axon bundles), and at micro-scale (axonal orientations and other microstructural properties). We present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.
Collapse
Affiliation(s)
- Anastasia Yendiki
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States,Corresponding author (A. Yendiki)
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus Axer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Jülich, Germany,Department of Physics, University of Wuppertal Germany
| | - Amy F.D. Howard
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Anne-Marie van Cappellen van Walsum
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Nijmegen, the Netherland,Cognition and Behaviour, Donders Institute for Brain, Nijmegen, the Netherland
| | - Suzanne N. Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States,McLean Hospital, Belmont, MA, United States
| |
Collapse
|
29
|
Fan Q, Eichner C, Afzali M, Mueller L, Tax CMW, Davids M, Mahmutovic M, Keil B, Bilgic B, Setsompop K, Lee HH, Tian Q, Maffei C, Ramos-Llordén G, Nummenmaa A, Witzel T, Yendiki A, Song YQ, Huang CC, Lin CP, Weiskopf N, Anwander A, Jones DK, Rosen BR, Wald LL, Huang SY. Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: Methodological advances and scientific impact. Neuroimage 2022; 254:118958. [PMID: 35217204 PMCID: PMC9121330 DOI: 10.1016/j.neuroimage.2022.118958] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
Tremendous efforts have been made in the last decade to advance cutting-edge MRI technology in pursuit of mapping structural connectivity in the living human brain with unprecedented sensitivity and speed. The first Connectom 3T MRI scanner equipped with a 300 mT/m whole-body gradient system was installed at the Massachusetts General Hospital in 2011 and was specifically constructed as part of the Human Connectome Project. Since that time, numerous technological advances have been made to enable the broader use of the Connectom high gradient system for diffusion tractography and tissue microstructure studies and leverage its unique advantages and sensitivity to resolving macroscopic and microscopic structural information in neural tissue for clinical and neuroscientific studies. The goal of this review article is to summarize the technical developments that have emerged in the last decade to support and promote large-scale and scientific studies of the human brain using the Connectom scanner. We provide a brief historical perspective on the development of Connectom gradient technology and the efforts that led to the installation of three other Connectom 3T MRI scanners worldwide - one in the United Kingdom in Cardiff, Wales, another in continental Europe in Leipzig, Germany, and the latest in Asia in Shanghai, China. We summarize the key developments in gradient hardware and image acquisition technology that have formed the backbone of Connectom-related research efforts, including the rich array of high-sensitivity receiver coils, pulse sequences, image artifact correction strategies and data preprocessing methods needed to optimize the quality of high-gradient strength diffusion MRI data for subsequent analyses. Finally, we review the scientific impact of the Connectom MRI scanner, including advances in diffusion tractography, tissue microstructural imaging, ex vivo validation, and clinical investigations that have been enabled by Connectom technology. We conclude with brief insights into the unique value of strong gradients for diffusion MRI and where the field is headed in the coming years.
Collapse
Affiliation(s)
- Qiuyun Fan
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Cornelius Eichner
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany
| | - Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales, UK; Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Lars Mueller
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales, UK; Image Sciences Institute, University Medical Center (UMC) Utrecht, Utrecht, the Netherlands
| | - Mathias Davids
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mirsad Mahmutovic
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gabriel Ramos-Llordén
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Yi-Qiao Song
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
| | - Chu-Chung Huang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Alfred Anwander
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales, UK
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
30
|
Ianuş A, Carvalho J, Fernandes FF, Cruz R, Chavarrias C, Palombo M, Shemesh N. Soma and Neurite Density MRI (SANDI) of the in-vivo mouse brain and comparison with the Allen Brain Atlas. Neuroimage 2022; 254:119135. [PMID: 35339686 DOI: 10.1016/j.neuroimage.2022.119135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/15/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022] Open
Abstract
Diffusion MRI (dMRI) provides unique insights into the neural tissue milieu by probing interactions between diffusing molecules and tissue microstructure. Most dMRI techniques focus on white matter (WM) tissues, nevertheless, interest in gray matter characterizations is growing. The Soma and Neurite Density MRI (SANDI) methodology harnesses a model incorporating water diffusion in spherical objects (assumed to be associated with cell bodies) and in impermeable "sticks" (assumed to represent neurites), which potentially enables the characterization of cellular and neurite densities. Recognising the importance of rodents in animal models of development, aging, plasticity, and disease, we here employ SANDI for in-vivo preclinical imaging and provide a first validation of the methodology by comparing SANDI metrics with cellular density reflected by the Allen mouse brain atlas. SANDI was implemented on a 9.4T scanner equipped with a cryogenic coil, and in-vivo experiments were carried out on N = 6 mice. Pixelwise, ROI-based, and atlas comparisons were performed, magnitude vs. real-valued analyses were compared, and shorter acquisitions with reduced the number of b-value shells were investigated. Our findings reveal good reproducibility of the SANDI parameters, including the sphere and stick fractions, as well as sphere size (CoV < 7%, 12% and 3%, respectively). Additionally, we find a very good rank correlation between SANDI-driven sphere fraction and Allen mouse brain atlas contrast that represents cellular density. We conclude that SANDI is a viable preclinical MRI technique that can greatly contribute to research on brain tissue microstructure.
Collapse
Affiliation(s)
- Andrada Ianuş
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal.
| | - Joana Carvalho
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Francisca F Fernandes
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Renata Cruz
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Cristina Chavarrias
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Marco Palombo
- Center for Medical Image Computing, Department of Computer Science, University College London, UK; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, UK; School of Computer Science and Informatics, Cardiff University, UK
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal.
| |
Collapse
|
31
|
Edlow BL, Bodien YG, Baxter T, Belanger H, Cali R, Deary K, Fischl B, Foulkes AS, Gilmore N, Greve DN, Hooker JM, Huang SY, Kelemen JN, Kimberly WT, Maffei C, Masood M, Perl D, Polimeni JR, Rosen BR, Tromly S, Tseng CEJ, Yao EF, Zurcher NR, Mac Donald CL, Dams-O'Connor K. Long-Term Effects of Repeated Blast Exposure in United States Special Operations Forces Personnel: A Pilot Study Protocol. J Neurotrauma 2022; 39:1391-1407. [PMID: 35620901 PMCID: PMC9529318 DOI: 10.1089/neu.2022.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Emerging evidence suggests that repeated blast exposure (RBE) is associated with brain injury in military personnel. United States (U.S.) Special Operations Forces (SOF) personnel experience high rates of blast exposure during training and combat, but the effects of low-level RBE on brain structure and function in SOF have not been comprehensively characterized. Further, the pathophysiological link between RBE-related brain injuries and cognitive, behavioral, and physical symptoms has not been fully elucidated. We present a protocol for an observational pilot study, Long-Term Effects of Repeated Blast Exposure in U.S. SOF Personnel (ReBlast). In this exploratory study, 30 active-duty SOF personnel with RBE will participate in a comprehensive evaluation of: 1) brain network structure and function using Connectome magnetic resonance imaging (MRI) and 7 Tesla MRI; 2) neuroinflammation and tau deposition using positron emission tomography; 3) blood proteomics and metabolomics; 4) behavioral and physical symptoms using self-report measures; and 5) cognition using a battery of conventional and digitized assessments designed to detect subtle deficits in otherwise high-performing individuals. We will identify clinical, neuroimaging, and blood-based phenotypes that are associated with level of RBE, as measured by the Generalized Blast Exposure Value. Candidate biomarkers of RBE-related brain injury will inform the design of a subsequent study that will test a diagnostic assessment battery for detecting RBE-related brain injury. Ultimately, we anticipate that the ReBlast study will facilitate the development of interventions to optimize the brain health, quality of life, and battle readiness of U.S. SOF personnel.
Collapse
Affiliation(s)
- Brian L Edlow
- Harvard Medical School, 1811, 175 Cambridge Street - Suite 300, Boston, Massachusetts, United States, 02115.,Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Yelena G Bodien
- Massachusetts General Hospital, 2348, Department of Neurology, 101 Merrimac, Boston, Massachusetts, United States, 02114;
| | - Timothy Baxter
- University of South Florida, 7831, Institute for Applied Engineering, Tampa, Florida, United States;
| | - Heather Belanger
- University of South Florida, 7831, Department of Psychiatry and Behavioral Neurosciences, Tampa, Florida, United States;
| | - Ryan Cali
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Katryna Deary
- Navy SEAL Foundation, Virginia Beach, Virginia, United States;
| | - Bruce Fischl
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Room 2301, 149 13th Street, Charlestown, Massachusetts, United States, 02129-2020.,Massachusetts General Hospital;
| | - Andrea S Foulkes
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Natalie Gilmore
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Douglas N Greve
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Jacob M Hooker
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Susie Y Huang
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Jessica N Kelemen
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - W Taylor Kimberly
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Chiara Maffei
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Maryam Masood
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Daniel Perl
- Uniformed Services University of the Health Sciences, 1685, Pathology, 4301 Jones Bridge Road, Room B3138, Bethesda, Maryland, United States, 20814;
| | - Jonathan R Polimeni
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Bruce R Rosen
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States;
| | - Samantha Tromly
- University of South Florida, 7831, Institute for Applied Engineering, Tampa, Florida, United States;
| | - Chieh-En J Tseng
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Eveline F Yao
- United States Special Operations Command, Office of the Surgeon General, MacDill Air Force Base, United States;
| | - Nicole R Zurcher
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Christine L Mac Donald
- University of Washington, 7284, Department of Neurological Surgery, Seattle, Washington, United States;
| | - Kristen Dams-O'Connor
- Icahn School of Medicine at Mount Sinai, 5925, Rehabilitation Medicine, One Gustave Levy Place, Box 1163, New York, New York, United States, 10029; kristen.dams-o'
| |
Collapse
|
32
|
Resolution and b value dependent Structural Connectome in ex vivo Mouse Brain. Neuroimage 2022; 255:119199. [PMID: 35417754 PMCID: PMC9195912 DOI: 10.1016/j.neuroimage.2022.119199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Diffusion magnetic resonance imaging has been widely used in both clinical and preclinical studies to characterize tissue microstructure and structural connectivity. The diffusion MRI protocol for the Human Connectome Project (HCP) has been developed and optimized to obtain high-quality, high-resolution diffusion MRI (dMRI) datasets. However, such efforts have not been fully explored in preclinical studies, especially for rodents. In this study, high quality dMRI datasets of mouse brains were acquired at 9.4T system from two vendors. In particular, we acquired a high-spatial resolution dMRI dataset (25 μm isotropic with 126 diffusion encoding directions), which we believe to be the highest spatial resolution yet obtained; and a high-angular resolution dMRI dataset (50 μm isotropic with 384 diffusion encoding directions), which we believe to be the highest angular resolution compared to the dMRI datasets at the microscopic resolution. We systematically investigated the effects of three important parameters that affect the final outcome of the connectome: b value (1000s/mm2 to 8000 s/mm2), angular resolution (10 to 126), and spatial resolution (25 μm to 200 μm). The stability of tractography and connectome increase with the angular resolution, where more than 50 angles is necessary to achieve consistent results. The connectome and quantitative parameters derived from graph theory exhibit a linear relationship to the b value (R2 > 0.99); a single-shell acquisition with b value of 3000 s/mm2 shows comparable results to the multi-shell high angular resolution dataset. The dice coefficient decreases and both false positive rate and false negative rate gradually increase with coarser spatial resolution. Our study provides guidelines and foundations for exploration of tradeoffs among acquisition parameters for the structural connectome in ex vivo mouse brain.
Collapse
|
33
|
Rosen BQ, Halgren E. An estimation of the absolute number of axons indicates that human cortical areas are sparsely connected. PLoS Biol 2022; 20:e3001575. [PMID: 35286306 PMCID: PMC8947121 DOI: 10.1371/journal.pbio.3001575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/24/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
The tracts between cortical areas are conceived as playing a central role in cortical information processing, but their actual numbers have never been determined in humans. Here, we estimate the absolute number of axons linking cortical areas from a whole-cortex diffusion MRI (dMRI) connectome, calibrated using the histologically measured callosal fiber density. Median connectivity is estimated as approximately 6,200 axons between cortical areas within hemisphere and approximately 1,300 axons interhemispherically, with axons connecting functionally related areas surprisingly sparse. For example, we estimate that <5% of the axons in the trunk of the arcuate and superior longitudinal fasciculi connect Wernicke's and Broca's areas. These results suggest that detailed information is transmitted between cortical areas either via linkage of the dense local connections or via rare, extraordinarily privileged long-range connections.
Collapse
Affiliation(s)
- Burke Q Rosen
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Eric Halgren
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Departments of Neurosciences & Radiology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
34
|
Tian Q, Fan Q, Witzel T, Polackal MN, Ohringer NA, Ngamsombat C, Russo AW, Machado N, Brewer K, Wang F, Setsompop K, Polimeni JR, Keil B, Wald LL, Rosen BR, Klawiter EC, Nummenmaa A, Huang SY. Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients. Sci Data 2022; 9:7. [PMID: 35042861 PMCID: PMC8766594 DOI: 10.1038/s41597-021-01092-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
Strong gradient systems can improve the signal-to-noise ratio of diffusion MRI measurements and enable a wider range of acquisition parameters that are beneficial for microstructural imaging. We present a comprehensive diffusion MRI dataset of 26 healthy participants acquired on the MGH-USC 3 T Connectome scanner equipped with 300 mT/m maximum gradient strength and a custom-built 64-channel head coil. For each participant, the one-hour long acquisition systematically sampled the accessible diffusion measurement space, including two diffusion times (19 and 49 ms), eight gradient strengths linearly spaced between 30 mT/m and 290 mT/m for each diffusion time, and 32 or 64 uniformly distributed directions. The diffusion MRI data were preprocessed to correct for gradient nonlinearity, eddy currents, and susceptibility induced distortions. In addition, scan/rescan data from a subset of seven individuals were also acquired and provided. The MGH Connectome Diffusion Microstructure Dataset (CDMD) may serve as a test bed for the development of new data analysis methods, such as fiber orientation estimation, tractography and microstructural modelling.
Collapse
Affiliation(s)
- Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Maya N Polackal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Ned A Ohringer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Andrew W Russo
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Natalya Machado
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Kristina Brewer
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Boris Keil
- Department of Life Science Engineering, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Eric C Klawiter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States.
- Harvard Medical School, Boston, Massachusetts, United States.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States.
| |
Collapse
|
35
|
Maffei C, Lee C, Planich M, Ramprasad M, Ravi N, Trainor D, Urban Z, Kim M, Jones RJ, Henin A, Hofmann SG, Pizzagalli DA, Auerbach RP, Gabrieli JDE, Whitfield-Gabrieli S, Greve DN, Haber SN, Yendiki A. Using diffusion MRI data acquired with ultra-high gradient strength to improve tractography in routine-quality data. Neuroimage 2021; 245:118706. [PMID: 34780916 PMCID: PMC8835483 DOI: 10.1016/j.neuroimage.2021.118706] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022] Open
Abstract
The development of scanners with ultra-high gradient strength, spearheaded by the Human Connectome Project, has led to dramatic improvements in the spatial, angular, and diffusion resolution that is feasible for in vivo diffusion MRI acquisitions. The improved quality of the data can be exploited to achieve higher accuracy in the inference of both microstructural and macrostructural anatomy. However, such high-quality data can only be acquired on a handful of Connectom MRI scanners worldwide, while remaining prohibitive in clinical settings because of the constraints imposed by hardware and scanning time. In this study, we first update the classical protocols for tractography-based, manual annotation of major white-matter pathways, to adapt them to the much greater volume and variability of the streamlines that can be produced from today’s state-of-the-art diffusion MRI data. We then use these protocols to annotate 42 major pathways manually in data from a Connectom scanner. Finally, we show that, when we use these manually annotated pathways as training data for global probabilistic tractography with anatomical neighborhood priors, we can perform highly accurate, automated reconstruction of the same pathways in much lower-quality, more widely available diffusion MRI data. The outcomes of this work include both a new, comprehensive atlas of WM pathways from Connectom data, and an updated version of our tractography toolbox, TRActs Constrained by UnderLying Anatomy (TRACULA), which is trained on data from this atlas. Both the atlas and TRACULA are distributed publicly as part of FreeSurfer. We present the first comprehensive comparison of TRACULA to the more conventional, multi-region-of-interest approach to automated tractography, and the first demonstration of training TRACULA on high-quality, Connectom data to benefit studies that use more modest acquisition protocols.
Collapse
Affiliation(s)
- C Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - C Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - M Planich
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - M Ramprasad
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - N Ravi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - D Trainor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Z Urban
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - M Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - R J Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - A Henin
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - S G Hofmann
- Department of Clinical Psychology, Philipps University Marburg, Germany; Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - D A Pizzagalli
- McLean Hospital and Harvard Medical School, Belmont, MA, USA
| | | | - J D E Gabrieli
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - D N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - S N Haber
- McLean Hospital and Harvard Medical School, Belmont, MA, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY, USA
| | - A Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
36
|
Huang SY, Witzel T, Keil B, Scholz A, Davids M, Dietz P, Rummert E, Ramb R, Kirsch JE, Yendiki A, Fan Q, Tian Q, Ramos-Llordén G, Lee HH, Nummenmaa A, Bilgic B, Setsompop K, Wang F, Avram AV, Komlosh M, Benjamini D, Magdoom KN, Pathak S, Schneider W, Novikov DS, Fieremans E, Tounekti S, Mekkaoui C, Augustinack J, Berger D, Shapson-Coe A, Lichtman J, Basser PJ, Wald LL, Rosen BR. Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome. Neuroimage 2021; 243:118530. [PMID: 34464739 PMCID: PMC8863543 DOI: 10.1016/j.neuroimage.2021.118530] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022] Open
Abstract
The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient strength of 300 mT/m, the highest ever achieved for human imaging. While this instrument has made important contributions to the understanding of macroscale connectional topology, it has also demonstrated the potential of dedicated high-gradient performance scanners to provide unparalleled in vivo assessment of neural tissue microstructure. Building on the initial groundwork laid by the original Connectome scanner, we have now embarked on an international, multi-site effort to build the next-generation human 3T Connectome scanner (Connectome 2.0) optimized for the study of neural tissue microstructure and connectional anatomy across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly doubling the current maximum gradient strength from 300 mT/m to 500 mT/m and tripling the maximum slew rate from 200 T/m/s to 600 T/m/s through the design of a one-of-a-kind head gradient coil optimized to minimize peripheral nerve stimulation; (2) developing high-sensitivity multi-channel radiofrequency receive coils for in vivo and ex vivo human brain imaging; (3) incorporating dynamic field monitoring to minimize image distortions and artifacts; (4) developing new pulse sequences to integrate the strongest diffusion encoding and highest spatial resolution ever achieved in the living human brain; and (5) calibrating the measurements obtained from this next-generation instrument through systematic validation of diffusion microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales with accompanying diffusion simulations in histology-based micro-geometries. We envision creating the ultimate diffusion MRI instrument capable of capturing the complex multi-scale organization of the living human brain - from the microscopic scale needed to probe cellular geometry, heterogeneity and plasticity, to the mesoscopic scale for quantifying the distinctions in cortical structure and connectivity that define cyto- and myeloarchitectonic boundaries, to improvements in estimates of macroscopic connectivity.
Collapse
Affiliation(s)
- Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | - Boris Keil
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Alina Scholz
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Mathias Davids
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - John E Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Ramos-Llordén
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kawin Setsompop
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandru V Avram
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michal Komlosh
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Dan Benjamini
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kulam Najmudeen Magdoom
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sudhir Pathak
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Walter Schneider
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Slimane Tounekti
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Berger
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Alexander Shapson-Coe
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeff Lichtman
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Vachha B, Huang SY. MRI with ultrahigh field strength and high-performance gradients: challenges and opportunities for clinical neuroimaging at 7 T and beyond. Eur Radiol Exp 2021; 5:35. [PMID: 34435246 PMCID: PMC8387544 DOI: 10.1186/s41747-021-00216-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Research in ultrahigh magnetic field strength combined with ultrahigh and ultrafast gradient technology has provided enormous gains in sensitivity, resolution, and contrast for neuroimaging. This article provides an overview of the technical advantages and challenges of performing clinical neuroimaging studies at ultrahigh magnetic field strength combined with ultrahigh and ultrafast gradient technology. Emerging clinical applications of 7-T MRI and state-of-the-art gradient systems equipped with up to 300 mT/m gradient strength are reviewed, and the impact and benefits of such advances to anatomical, structural and functional MRI are discussed in a variety of neurological conditions. Finally, an outlook and future directions for ultrahigh field MRI combined with ultrahigh and ultrafast gradient technology in neuroimaging are examined.
Collapse
Affiliation(s)
- Behroze Vachha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Room 2301, Charlestown, MA, 02129, USA.
| |
Collapse
|
38
|
Mancini M, Tian Q, Fan Q, Cercignani M, Huang SY. Dissecting whole-brain conduction delays through MRI microstructural measures. Brain Struct Funct 2021; 226:2651-2663. [PMID: 34390416 PMCID: PMC8448685 DOI: 10.1007/s00429-021-02358-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/28/2021] [Indexed: 01/24/2023]
Abstract
Network models based on structural connectivity have been increasingly used as the blueprint for large-scale simulations of the human brain. As the nodes of this network are distributed through the cortex and interconnected by white matter pathways with different characteristics, modeling the associated conduction delays becomes important. The goal of this study is to estimate and characterize these delays directly from the brain structure. To achieve this, we leveraged microstructural measures from a combination of advanced magnetic resonance imaging acquisitions and computed the main determinants of conduction velocity, namely axonal diameter and myelin content. Using the model proposed by Rushton, we used these measures to calculate the conduction velocity and estimated the associated delays using tractography. We observed that both the axonal diameter and conduction velocity distributions presented a rather constant trend across different connection lengths, with resulting delays that scale linearly with the connection length. Relying on insights from graph theory and Kuramoto simulations, our results support the approximation of constant conduction velocity but also show path- and region-specific differences.
Collapse
Affiliation(s)
- Matteo Mancini
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK. .,Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK. .,NeuroPoly Lab, Polytechnique Montréal, Montréal, Canada.
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Mara Cercignani
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
39
|
Scan-rescan repeatability of axonal imaging metrics using high-gradient diffusion MRI and statistical implications for study design. Neuroimage 2021; 240:118323. [PMID: 34216774 PMCID: PMC8646020 DOI: 10.1016/j.neuroimage.2021.118323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/12/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022] Open
Abstract
Axon diameter mapping using diffusion MRI in the living human brain has attracted growing interests with the increasing availability of high gradient strength MRI systems. A systematic assessment of the consistency of axon diameter estimates within and between individuals is needed to gain a comprehensive understanding of how such methods extend to quantifying differences in axon diameter index between groups and facilitate the design of neurobiological studies using such measures. We examined the scan-rescan repeatability of axon diameter index estimation based on the spherical mean technique (SMT) approach using diffusion MRI data acquired with gradient strengths up to 300 mT/m on a 3T Connectom system in 7 healthy volunteers. We performed statistical power analyses using data acquired with the same protocol in a larger cohort consisting of 15 healthy adults to investigate the implications for study design. Results revealed a high degree of repeatability in voxel-wise restricted volume fraction estimates and tract-wise estimates of axon diameter index derived from high-gradient diffusion MRI data. On the region of interest (ROI) level, across white matter tracts in the whole brain, the Pearson’s correlation coefficient of the axon diameter index estimated between scan and rescan experiments was r = 0.72 with an absolute deviation of 0.18 μm. For an anticipated 10% effect size in studies of axon diameter index, most white matter regions required a sample size of less than 15 people to observe a measurable difference between groups using an ROI-based approach. To facilitate the use of high-gradient strength diffusion MRI data for neuroscientific studies of axonal microstructure, the comprehensive multi-gradient strength, multi-diffusion time data used in this work will be made publicly available, in support of open science and increasing the accessibility of such data to the greater scientific community.
Collapse
|
40
|
Barakovic M, Girard G, Schiavi S, Romascano D, Descoteaux M, Granziera C, Jones DK, Innocenti GM, Thiran JP, Daducci A. Bundle-Specific Axon Diameter Index as a New Contrast to Differentiate White Matter Tracts. Front Neurosci 2021; 15:646034. [PMID: 34211362 PMCID: PMC8239216 DOI: 10.3389/fnins.2021.646034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
In the central nervous system of primates, several pathways are characterized by different spectra of axon diameters. In vivo methods, based on diffusion-weighted magnetic resonance imaging, can provide axon diameter index estimates non-invasively. However, such methods report voxel-wise estimates, which vary from voxel-to-voxel for the same white matter bundle due to partial volume contributions from other pathways having different microstructure properties. Here, we propose a novel microstructure-informed tractography approach, COMMITAxSize, to resolve axon diameter index estimates at the streamline level, thus making the estimates invariant along trajectories. Compared to previously proposed voxel-wise methods, our formulation allows the estimation of a distinct axon diameter index value for each streamline, directly, furnishing a complementary measure to the existing calculation of the mean value along the bundle. We demonstrate the favourable performance of our approach comparing our estimates with existing histologically-derived measurements performed in the corpus callosum and the posterior limb of the internal capsule. Overall, our method provides a more robust estimation of the axon diameter index of pathways by jointly estimating the microstructure properties of the tissue and the macroscopic organisation of the white matter connectivity.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Signal Processing Lab 5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriel Girard
- Signal Processing Lab 5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- CIBM Center for BioMedical Imaging, Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Simona Schiavi
- Signal Processing Lab 5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Computer Science, University of Verona, Verona, Italy
| | - David Romascano
- Signal Processing Lab 5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Giorgio M. Innocenti
- Signal Processing Lab 5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Brain and Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Lab 5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- CIBM Center for BioMedical Imaging, Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
41
|
Scholz A, Etzel R, May MW, Mahmutovic M, Tian Q, Ramos-Llordén G, Maffei C, Bilgiç B, Witzel T, Stockmann JP, Mekkaoui C, Wald LL, Huang SY, Yendiki A, Keil B. A 48-channel receive array coil for mesoscopic diffusion-weighted MRI of ex vivo human brain on the 3 T connectome scanner. Neuroimage 2021; 238:118256. [PMID: 34118399 PMCID: PMC8439104 DOI: 10.1016/j.neuroimage.2021.118256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
In vivo diffusion-weighted magnetic resonance imaging is limited in signal-to-noise-ratio (SNR) and acquisition time, which constrains spatial resolution to the macroscale regime. Ex vivo imaging, which allows for arbitrarily long scan times, is critical for exploring human brain structure in the mesoscale regime without loss of SNR. Standard head array coils designed for patients are sub-optimal for imaging ex vivo whole brain specimens. The goal of this work was to design and construct a 48-channel ex vivo whole brain array coil for high-resolution and high b-value diffusion-weighted imaging on a 3T Connectome scanner. The coil was validated with bench measurements and characterized by imaging metrics on an agar brain phantom and an ex vivo human brain sample. The two-segment coil former was constructed for a close fit to a whole human brain, with small receive elements distributed over the entire brain. Imaging tests including SNR and G-factor maps were compared to a 64-channel head coil designed for in vivo use. There was a 2.9-fold increase in SNR in the peripheral cortex and a 1.3-fold gain in the center when compared to the 64-channel head coil. The 48-channel ex vivo whole brain coil also decreases noise amplification in highly parallel imaging, allowing acceleration factors of approximately one unit higher for a given noise amplification level. The acquired diffusion-weighted images in a whole ex vivo brain specimen demonstrate the applicability and advantage of the developed coil for high-resolution and high b-value diffusion-weighted ex vivo brain MRI studies.
Collapse
Affiliation(s)
- Alina Scholz
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany.
| | - Robin Etzel
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany
| | - Markus W May
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany
| | - Mirsad Mahmutovic
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany
| | - Qiyuan Tian
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gabriel Ramos-Llordén
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Chiara Maffei
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Berkin Bilgiç
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Thomas Witzel
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jason P Stockmann
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Choukri Mekkaoui
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Lawrence L Wald
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Susie Yi Huang
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Anastasia Yendiki
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| |
Collapse
|
42
|
Veraart J, Raven EP, Edwards LJ, Weiskopf N, Jones DK. The variability of MR axon radii estimates in the human white matter. Hum Brain Mapp 2021; 42:2201-2213. [PMID: 33576105 PMCID: PMC8046139 DOI: 10.1002/hbm.25359] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
The noninvasive quantification of axonal morphology is an exciting avenue for gaining understanding of the function and structure of the central nervous system. Accurate non-invasive mapping of micron-sized axon radii using commonly applied neuroimaging techniques, that is, diffusion-weighted MRI, has been bolstered by recent hardware developments, specifically MR gradient design. Here the whole brain characterization of the effective MR axon radius is presented and the inter- and intra-scanner test-retest repeatability and reproducibility are evaluated to promote the further development of the effective MR axon radius as a neuroimaging biomarker. A coefficient-of-variability of approximately 10% in the voxelwise estimation of the effective MR radius is observed in the test-retest analysis, but it is shown that the performance can be improved fourfold using a customized along-tract analysis.
Collapse
Affiliation(s)
- Jelle Veraart
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Erika P. Raven
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- CUBRIC, School of PsychologyCardiff UniversityCardiffUK
| | - Luke J. Edwards
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Nikolaus Weiskopf
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth SciencesLeipzig UniversityLeipzigGermany
| | - Derek K. Jones
- CUBRIC, School of PsychologyCardiff UniversityCardiffUK
- Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneVictoriaAustralia
| |
Collapse
|
43
|
Hu Y, Xu Y, Tian Q, Chen F, Shi X, Moran CJ, Daniel BL, Hargreaves BA. RUN-UP: Accelerated multishot diffusion-weighted MRI reconstruction using an unrolled network with U-Net as priors. Magn Reson Med 2021; 85:709-720. [PMID: 32783339 PMCID: PMC8095163 DOI: 10.1002/mrm.28446] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To accelerate and improve multishot diffusion-weighted MRI reconstruction using deep learning. METHODS An unrolled pipeline containing recurrences of model-based gradient updates and neural networks was introduced for accelerating multishot DWI reconstruction with shot-to-shot phase correction. The network was trained to predict results of jointly reconstructed multidirection data using single-direction data as input. In vivo brain and breast experiments were performed for evaluation. RESULTS The proposed method achieves a reconstruction time of 0.1 second per image, over 100-fold faster than a shot locally low-rank reconstruction. The resultant image quality is comparable to the target from the joint reconstruction with a peak signal-to-noise ratio of 35.3 dB, a normalized root-mean-square error of 0.0177, and a structural similarity index of 0.944. The proposed method also improves upon the locally low-rank reconstruction (2.9 dB higher peak signal-to-noise ratio, 29% lower normalized root-mean-square error, and 0.037 higher structural similarity index). With training data from the brain, this method also generalizes well to breast diffusion-weighted imaging, and fine-tuning further reduces aliasing artifacts. CONCLUSION A proposed data-driven approach enables almost real-time reconstruction with improved image quality, which improves the feasibility of multishot DWI in a wide range of clinical and neuroscientific studies.
Collapse
Affiliation(s)
- Yuxin Hu
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Yunyingying Xu
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Qiyuan Tian
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Feiyu Chen
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Xinwei Shi
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | | - Bruce L. Daniel
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Brian A. Hargreaves
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
44
|
Harkins KD, Beaulieu C, Xu J, Gore JC, Does MD. A simple estimate of axon size with diffusion MRI. Neuroimage 2020; 227:117619. [PMID: 33301942 PMCID: PMC7949481 DOI: 10.1016/j.neuroimage.2020.117619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/06/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
Noninvasive estimation of mean axon diameter presents a new opportunity to explore white matter plasticity, development, and pathology. Several diffusion-weighted MRI (DW-MRI) methods have been proposed to measure the average axon diameter in white matter, but they typically require many diffusion encoding measurements and complicated mathematical models to fit the signal to multiple tissue compartments, including intra- and extra-axonal spaces. Here, Monte Carlo simulations uncovered a straightforward DW-MRI metric of axon diameter: the change in radial apparent diffusion coefficient estimated at different effective diffusion times, ΔD⊥. Simulations indicated that this metric increases monotonically within a relevant range of effective mean axon diameter while being insensitive to changes in extra-axonal volume fraction, axon diameter distribution, g-ratio, and influence of myelin water. Also, a monotonic relationship was found to exist for signals coming from both intra- and extra-axonal compartments. The slope in ΔD⊥ with effective axon diameter increased with the difference in diffusion time of both oscillating and pulsed gradient diffusion sequences.
Collapse
Affiliation(s)
- Kevin D Harkins
- Biomedical Engineering, Vanderbilt University, United States; Institute of Imaging Science, Vanderbilt University, United States.
| | | | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, United States; Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States
| | - John C Gore
- Biomedical Engineering, Vanderbilt University, United States; Institute of Imaging Science, Vanderbilt University, United States; Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States
| | - Mark D Does
- Biomedical Engineering, Vanderbilt University, United States; Institute of Imaging Science, Vanderbilt University, United States
| |
Collapse
|
45
|
Fan Q, Nummenmaa A, Witzel T, Ohringer N, Tian Q, Setsompop K, Klawiter EC, Rosen BR, Wald LL, Huang SY. Axon diameter index estimation independent of fiber orientation distribution using high-gradient diffusion MRI. Neuroimage 2020; 222:117197. [PMID: 32745680 PMCID: PMC7736138 DOI: 10.1016/j.neuroimage.2020.117197] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022] Open
Abstract
Axon diameter mapping using high-gradient diffusion MRI has generated great interest as a noninvasive tool for studying trends in axonal size in the human brain. One of the main barriers to mapping axon diameter across the whole brain is accounting for complex white matter fiber configurations (e.g., crossings and fanning), which are prevalent throughout the brain. Here, we present a framework for generalizing axon diameter index estimation to the whole brain independent of the underlying fiber orientation distribution using the spherical mean technique (SMT). This approach is shown to significantly benefit from the use of real-valued diffusion data with Gaussian noise, which reduces the systematic bias in the estimated parameters resulting from the elevation of the noise floor when using magnitude data with Rician noise. We demonstrate the feasibility of obtaining whole-brain orientationally invariant estimates of axon diameter index and relative volume fractions in six healthy human volunteers using real-valued diffusion data acquired on a dedicated high-gradient 3-Tesla human MRI scanner with 300 mT/m maximum gradient strength. The trends in axon diameter index are consistent with known variations in axon diameter from histology and demonstrate the potential of this generalized framework for revealing coherent patterns in axonal structure throughout the living human brain. The use of real-valued diffusion data provides a viable solution for eliminating the Rician noise floor and should be considered for all spherical mean approaches to microstructural parameter estimation.
Collapse
Affiliation(s)
- Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Ned Ohringer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Eric C Klawiter
- Harvard Medical School, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
46
|
Tian Q, Bilgic B, Fan Q, Liao C, Ngamsombat C, Hu Y, Witzel T, Setsompop K, Polimeni JR, Huang SY. DeepDTI: High-fidelity six-direction diffusion tensor imaging using deep learning. Neuroimage 2020; 219:117017. [PMID: 32504817 PMCID: PMC7646449 DOI: 10.1016/j.neuroimage.2020.117017] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusion tensor magnetic resonance imaging (DTI) is unsurpassed in its ability to map tissue microstructure and structural connectivity in the living human brain. Nonetheless, the angular sampling requirement for DTI leads to long scan times and poses a critical barrier to performing high-quality DTI in routine clinical practice and large-scale research studies. In this work we present a new processing framework for DTI entitled DeepDTI that minimizes the data requirement of DTI to six diffusion-weighted images (DWIs) required by conventional voxel-wise fitting methods for deriving the six unique unknowns in a diffusion tensor using data-driven supervised deep learning. DeepDTI maps the input non-diffusion-weighted (b = 0) image and six DWI volumes sampled along optimized diffusion-encoding directions, along with T1-weighted and T2-weighted image volumes, to the residuals between the input and high-quality output b = 0 image and DWI volumes using a 10-layer three-dimensional convolutional neural network (CNN). The inputs and outputs of DeepDTI are uniquely formulated, which not only enables residual learning to boost CNN performance but also enables tensor fitting of resultant high-quality DWIs to generate orientational DTI metrics for tractography. The very deep CNN used by DeepDTI leverages the redundancy in local and non-local spatial information and across diffusion-encoding directions and image contrasts in the data. The performance of DeepDTI was systematically quantified in terms of the quality of the output images, DTI metrics, DTI-based tractography and tract-specific analysis results. We demonstrate rotationally-invariant and robust estimation of DTI metrics from DeepDTI that are comparable to those obtained with two b = 0 images and 21 DWIs for the primary eigenvector derived from DTI and two b = 0 images and 26-30 DWIs for various scalar metrics derived from DTI, achieving 3.3-4.6 × acceleration, and twice as good as those of a state-of-the-art denoising algorithm at the group level. The twenty major white-matter tracts can be accurately identified from the tractography of DeepDTI results. The mean distance between the core of the major white-matter tracts identified from DeepDTI results and those from the ground-truth results using 18 b = 0 images and 90 DWIs measures around 1-1.5 mm. DeepDTI leverages domain knowledge of diffusion MRI physics and power of deep learning to render DTI, DTI-based tractography, major white-matter tracts identification and tract-specific analysis more feasible for a wider range of neuroscientific and clinical studies.
Collapse
Affiliation(s)
- Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Congyu Liao
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Yuxin Hu
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
47
|
Takemura H, Thiebaut de Schotten M. Perspectives given by structural connectivity bridge the gap between structure and function. Brain Struct Funct 2020; 225:1189-1192. [PMID: 32415413 PMCID: PMC7270985 DOI: 10.1007/s00429-020-02080-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita-shi, Japan. .,Graduate School of Frontier Biosciences, Osaka University, Suita-shi, Japan.
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.,Groupe D'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| |
Collapse
|
48
|
Ngamsombat C, Tian Q, Fan Q, Russo A, Machado N, Polackal M, George IC, Witzel T, Klawiter EC, Huang SY. Axonal damage in the optic radiation assessed by white matter tract integrity metrics is associated with retinal thinning in multiple sclerosis. NEUROIMAGE-CLINICAL 2020; 27:102293. [PMID: 32563921 PMCID: PMC7305426 DOI: 10.1016/j.nicl.2020.102293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/23/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION White matter damage in the visual pathway is common in multiple sclerosis (MS) and is associated with retinal thinning, although the underlying mechanism of association remains unclear. The goal of this work was to evaluate the presence and extent of white matter tract integrity (WMTI) alterations in the optic radiation (OR) in people with MS and to investigate the association between WMTI metrics and retinal thinning in the eyes of MS patients without a history of optic neuritis (ON) as measured by optical coherence tomography (OCT). We hypothesized that WMTI metrics would reflect axonal damage that occurs in the OR in MS, and that axonal alterations revealed by WMTI would be associated with retinal thinning. METHODS Twenty-nine MS patients without previous ON in at least one eye and twenty-nine age-matched healthy controls (HC) were scanned on a dedicated high-gradient 3-Tesla MRI scanner with 300 mT/m maximum gradient strength using a multi-shell diffusion MRI protocol (b = 800, 1500, 2400 s/mm2). The patients were divided into two subgroups according to history without ON (N = 18) or with ON in one eye (N = 11). Diffusion tensor imaging (DTI) metrics and WMTI metrics derived from diffusion kurtosis imaging were assessed in normal-appearing white matter (NAWM) of the OR and in focal lesions. Retinal thickness in the eyes of MS patients was measured by OCT. Student's t-test was used to assess group differences between MRI metrics. Linear regression was used to study the relationship between OCT metrics, including retinal nerve fiber layer (RNFL) and combined ganglion cell and inner plexiform layer thickness (GCL/IPL), visual acuity measures and DTI and WMTI metrics. RESULTS OR NAWM in MS showed significantly decreased axonal water fraction (AWF) compared to HC (0.36 vs 0.39, p < 0.001), with similar trends observed in AWF of lesions compared to NAWM (0.27 vs 0.36, p < 0.001). Fractional anisotropy (FA) was lower in OR NAWM of MS patients compared to HC (0.49 vs 0.52, p < 0.001). In patients without ON, AWF was the only diffusion MRI metric that was significantly associated with average RNFL (r = 0.68, p = 0.005), adjusting for age, sex and disease duration and correcting for multiple comparisons. Of all the DTI and WMTI metrics, AWF was the strongest and most significant predictor of average RNFL thickness in MS patients without ON. There was no significant correlation between visual acuity scores and DTI or WMTI metrics after correction for multiple comparisons. CONCLUSION Axonal damage may be the substrate of previously observed DTI alterations in the OR, as supported by the significant reduction in AWF within both NAWM and lesions of the OR in MS. Our results support the concept that axonal damage is widespread throughout the visual pathway in MS and may be mediated through trans-synaptic degeneration.
Collapse
Affiliation(s)
- Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Russo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalya Machado
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maya Polackal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ilena C George
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
49
|
Lakhani DA, Schilling KG, Xu J, Bagnato F. Advanced Multicompartment Diffusion MRI Models and Their Application in Multiple Sclerosis. AJNR Am J Neuroradiol 2020; 41:751-757. [PMID: 32354707 DOI: 10.3174/ajnr.a6484] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/03/2020] [Indexed: 01/22/2023]
Abstract
Conventional MR imaging techniques are sensitive to pathologic changes of the brain and spinal cord seen in MS, but they lack specificity for underlying axonal and myelin integrity. By isolating the signal contribution from different tissue compartments, newly developed advanced multicompartment diffusion MR imaging models have the potential to detect specific tissue subtypes and associated injuries with increased pathologic specificity. These models include neurite orientation dispersion and density imaging, diffusion basis spectrum imaging, multicompartment microscopic diffusion MR imaging with the spherical mean technique, and models enabled through high-gradient diffusion MR imaging. In this review, we provide an appraisal of the current literature on the physics principles, histopathologic validation, and clinical applications of each of these techniques in both brains and spinal cords of patients with MS. We discuss limitations of each of the methods and directions that future research could take to provide additional validation of their roles as biomarkers of axonal and myelin injury in MS.
Collapse
Affiliation(s)
- D A Lakhani
- From the Neuroimaging Unit (D.A.L., F.B.), Neuroimmunology Division, Department of Neurology
- Division of Internal Medicine (D.A.L.)
- Department of Radiology (D.A.L.), West Virginia University, Morgantown, West Virginia
| | - K G Schilling
- Department of Radiology and Radiological Sciences (K.G.S., J.X.), Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - J Xu
- Department of Radiology and Radiological Sciences (K.G.S., J.X.), Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - F Bagnato
- From the Neuroimaging Unit (D.A.L., F.B.), Neuroimmunology Division, Department of Neurology
- Department of Neurology (F.B.), VA Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|