1
|
Atanasoff KE, Ophir SI, Parsons AJ, Paredes Casado J, Lurain NS, Bowlin TL, Opperman TJ, Tortorella D. N-arylpyrimidinamine (NAPA) compounds are broadly acting inhibitors of human cytomegalovirus infection and spread. Antiviral Res 2025; 233:106044. [PMID: 39608645 DOI: 10.1016/j.antiviral.2024.106044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that contributes to the disease burden of immunocompromised and immunomodulated individuals, including transplant recipients and newborns. The FDA-approved HCMV drugs can exhibit drug resistance and severe side effects including bone marrow toxicity, gastrointestinal disruption, and nephrotoxicity. In a previous study, we identified the N-arylpyrimidinamine (NAPA) compound series as a new class of HCMV inhibitors that target early stages of infection. Here we describe the inhibitory activity of two potent NAPA analogs, MBXC-4336 and MBX-4992, that broadly block infection and spread. MBXC-4336 and MBX-4992 effectively inhibited infection by diverse HCMV strains and significantly prevented virus spread in fibroblast and epithelial cells as evaluated by quantifying infected cells and viral genome levels. Further, the NAPA compounds limited replication of clinical HCMV isolates, including a ganciclovir-resistant strain. Importantly, combination studies of NAPA compounds with ganciclovir demonstrated additive or synergistic inhibition of HCMV spread. Collectively, NAPA compounds have therapeutic potential for development as a novel class of anti-HCMV drugs.
Collapse
Affiliation(s)
- Kristina E Atanasoff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sabrina I Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrea J Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jailene Paredes Casado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nell S Lurain
- Department of Immunology-Microbiology, Rush University, Chicago, IL, USA
| | | | | | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Jiang H, Nace R, Ferguson C, Zhang L, Peng KW, Russell SJ. Oncolytic cytomegaloviruses expressing EGFR-retargeted fusogenic glycoprotein complex and drug-controllable interleukin 12. Cell Rep Med 2024:101874. [PMID: 39694038 DOI: 10.1016/j.xcrm.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
Cytomegalovirus (CMV) infects a wide range of cell types, including tumor-associated myeloid cells and glioma cells. Clinical observations suggest a potential link between long-term glioblastoma survival and CMV reactivation. We herein present an oncolytic CMV vector, AD169r, which includes a restored pentamer complex gH/gL/pUL128-131 and the removal of UL1-UL20 and UL/b' sequences. The epidermal growth factor receptor (EGFR)-retargeted paramyxoviral glycoprotein H/F complexes are incorporated into AD169r backbone to enhance viral oncolysis. Additionally, a tet-off-controlled single-chain interleukin (IL)-12 is added to boost antitumor immune responses. The engineered oncolytic CMVs expressing EGFR-retargeted H/F complex demonstrate enhanced antitumor efficacy in human glioblastoma xenograft models. In the immunocompetent mouse CT-2A glioblastoma model, an oncolytic murine CMV (mCMV) expressing IL-12 significantly increases the abundance and cytotoxicity of CD4+ T cells, CD8+ T cells, and CD4-CD8- T cells in both treated and untreated tumors. Our findings highlight the potential of the AD169r-derived oncolytic viruses as CMV-based cancer viroimmunotherapy.
Collapse
Affiliation(s)
- Haifei Jiang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Coryn Ferguson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
3
|
Mocarski ES. Cytomegalovirus Biology Viewed Through a Cell Death Suppression Lens. Viruses 2024; 16:1820. [PMID: 39772130 PMCID: PMC11680106 DOI: 10.3390/v16121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Cytomegaloviruses, species-specific members of the betaherpesviruses, encode an impressive array of immune evasion strategies committed to the manipulation of the host immune system enabling these viruses to remain for life in a stand-off with host innate and adaptive immune mechanisms. Even though they are species-restricted, cytomegaloviruses are distributed across a wide range of different mammalian species in which they cause systemic infection involving many different cell types. Regulated, or programmed cell death has a recognized potential to eliminate infected cells prior to completion of viral replication and release of progeny. Cell death also naturally terminates replication during the final stages of replication. Over the past two decades, the host defense potential of known programmed cell death pathways (apoptosis, necroptosis, and pyroptosis), as well as a novel mitochondrial serine protease pathway have been defined through studies of cytomegalovirus-encoded cell death suppressors. Such virus-encoded inhibitors prevent virus-induced, cytokine-induced, and stress-induced death of infected cells while also moderating inflammation. By evading cell death and consequent inflammation as well as innate and adaptive immune clearance, cytomegaloviruses represent successful pathogens that become a critical disease threat when the host immune system is compromised. This review will discuss cell death programs acquired for mammalian host defense against cytomegaloviruses and enumerate the range of modulatory strategies this type of virus employs to balance host defense in favor of lifelong persistence.
Collapse
Affiliation(s)
- Edward S. Mocarski
- Department of Microbiology & Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA;
- Department of Microbiology & Immunology, Emory Medical School, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Pinninti SG, Britt WJ, Boppana SB. Auditory and Vestibular Involvement in Congenital Cytomegalovirus Infection. Pathogens 2024; 13:1019. [PMID: 39599572 PMCID: PMC11597862 DOI: 10.3390/pathogens13111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Congenital cytomegalovirus infection (cCMV) is a frequent cause of non-hereditary sensorineural hearing loss (SNHL) and developmental disabilities. The contribution of cCMV to childhood hearing loss has been estimated to be about 25% of all hearing loss in children at 4 years of age. Although the vestibular insufficiency (VI) in cCMV has not been well-characterized and therefore, underestimated, recent studies suggest that VI is also frequent in children with cCMV and can lead to adverse neurodevelopmental outcomes. The pathogenesis of SNHL and VI in children with cCMV has been thought to be from direct viral cytopathic effects as well as local inflammatory responses playing a role. Hearing loss in cCMV can be of varying degrees of severity, unilateral or bilateral, present at birth or develop later (late-onset), and can progress or fluctuate in early childhood. Therefore, newborn hearing screening fails to identify a significant number of children with CMV-related SNHL. Although the natural history of cCMV-associated VI has not been well characterized, recent data suggests that it is likely that VI also varies considerably with respect to the laterality, timing of onset, degree of the deficit, and continued deterioration during early childhood. This article summarizes the current understanding of the natural history and pathogenesis of auditory and vestibular disorders in children with cCMV.
Collapse
Affiliation(s)
- Swetha G. Pinninti
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.G.P.); (W.J.B.)
| | - William J. Britt
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.G.P.); (W.J.B.)
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh B. Boppana
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.G.P.); (W.J.B.)
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
5
|
Al Beloushi M, Saleh H, Ahmed B, Konje JC. Congenital and Perinatal Viral Infections: Consequences for the Mother and Fetus. Viruses 2024; 16:1698. [PMID: 39599813 PMCID: PMC11599085 DOI: 10.3390/v16111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Viruses are the most common congenital infections in humans and an important cause of foetal malformations, neonatal morbidity, and mortality. The effects of these infections, which are transmitted in utero (transplacentally), during childbirth or in the puerperium depend on the timing of the infections. These vary from miscarriages (usually with infections in very early pregnancy), congenital malformations (when the infections occur during organogenesis) and morbidity (with infections occurring late in pregnancy, during childbirth or after delivery). The most common of these viruses are cytomegalovirus, hepatitis, herpes simplex type-2, parvovirus B19, rubella, varicella zoster and zika viruses. There are currently very few efficacious antiviral agents licensed for use in pregnancy. For most of these infections, therefore, prevention is mainly by vaccination (where there is a vaccine). The administration of immunoglobulins to those exposed to the virus to offer passive immunity or appropriate measures to avoid being infected would be options to minimise the infections and their consequences. In this review, we discuss some of the congenital and perinatal infections and their consequences on both the mother and fetus and their management focusing mainly on prevention.
Collapse
Affiliation(s)
- Mariam Al Beloushi
- Women’s Wellness and Research Centre Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (M.A.B.); (H.S.)
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Huda Saleh
- Women’s Wellness and Research Centre Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (M.A.B.); (H.S.)
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Badreldeen Ahmed
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
- Feto Maternal Centre, Al Markhiya Doha, Doha P.O. Box 34181, Qatar
- Department of Obstetrics and Gynaecology Weill Cornell Medicine, Doha P.O. Box 24144, Qatar
| | - Justin C. Konje
- Feto Maternal Centre, Al Markhiya Doha, Doha P.O. Box 34181, Qatar
- Department of Obstetrics and Gynaecology Weill Cornell Medicine, Doha P.O. Box 24144, Qatar
- Department of Health Sciences, University of Leicester, P.O. Box 7717, Leicester LE2 7LX, UK
| |
Collapse
|
6
|
Pesch MH, Mowers J, Huynh A, Schleiss MR. Intrauterine Fetal Demise, Spontaneous Abortion and Congenital Cytomegalovirus: A Systematic Review of the Incidence and Histopathologic Features. Viruses 2024; 16:1552. [PMID: 39459885 PMCID: PMC11512218 DOI: 10.3390/v16101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The objective was to review the existing literature reporting on spontaneous abortion (SA) and intrauterine fetal demise (IUFD) associated with cytomegalovirus (CMV) infection. A review using standardized terminology such as 'intrauterine fetal death', 'congenital cytomegalovirus' and 'CMV' was performed using PubMed and Embase (Medline) using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Twenty-one studies met inclusion criteria. CMV was identified as a potential or likely factor in a median of 7.1% of SA or IUFD in study cohorts. Of the studies, 11 used fetal remains, 18 used placenta, 6 used serum, and 1 used post-mortem dried blood spot as specimens for testing for CMV. Features commonly observed were fetal thrombotic vasculopathy, hydrops fetalis and chronic villitis. CMV is frequently noted in studies evaluating viral etiologies of SA or IUFD. Large population-based studies are needed to estimate the incidence of CMV-associated SA or IUFD. CMV and congenital CMV should be included on the differential diagnosis in all cases of SA or IUFD of unknown etiology.
Collapse
Affiliation(s)
- Megan H. Pesch
- Division of Developmental and Behavioral Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jonathan Mowers
- Division of Pathology, Ascension Hospital Providence, Southfield, MI 48075, USA;
| | - Anh Huynh
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Mark R. Schleiss
- Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
7
|
Sponholtz MR, Byrne PO, Lee AG, Ramamohan AR, Goldsmith JA, McCool RS, Zhou L, Johnson NV, Hsieh CL, Connors M, Karthigeyan KP, Crooks CM, Fuller AS, Campbell JD, Permar SR, Maynard JA, Yu D, Bottomley MJ, McLellan JS. Structure-based design of a soluble human cytomegalovirus glycoprotein B antigen stabilized in a prefusion-like conformation. Proc Natl Acad Sci U S A 2024; 121:e2404250121. [PMID: 39231203 PMCID: PMC11406251 DOI: 10.1073/pnas.2404250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Human cytomegalovirus (HCMV) glycoprotein B (gB) is a class III membrane fusion protein required for viral entry. HCMV vaccine candidates containing gB have demonstrated moderate clinical efficacy, but no HCMV vaccine has been approved. Here, we used structure-based design to identify and characterize amino acid substitutions that stabilize gB in its metastable prefusion conformation. One variant containing two engineered interprotomer disulfide bonds and two cavity-filling substitutions (gB-C7), displayed increased expression and thermostability. A 2.8 Å resolution cryoelectron microscopy structure shows that gB-C7 adopts a prefusion-like conformation, revealing additional structural elements at the membrane-distal apex. Unlike previous observations for several class I viral fusion proteins, mice immunized with postfusion or prefusion-stabilized forms of soluble gB protein displayed similar neutralizing antibody titers, here specifically against an HCMV laboratory strain on fibroblasts. Collectively, these results identify initial strategies to stabilize class III viral fusion proteins and provide tools to probe gB-directed antibody responses.
Collapse
Affiliation(s)
- Madeline R. Sponholtz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Patrick O. Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Alison G. Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ajit R. Ramamohan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Jory A. Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ryan S. McCool
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ling Zhou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Nicole V. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Megan Connors
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Krithika P. Karthigeyan
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Chelsea M. Crooks
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Adelaide S. Fuller
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | | | - Sallie R. Permar
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Jennifer A. Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Dong Yu
- Dynavax Technologies Corporation, Emeryville, CA94608
| | | | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
8
|
Ortigas-Vasquez A, Szpara M. Embracing Complexity: What Novel Sequencing Methods Are Teaching Us About Herpesvirus Genomic Diversity. Annu Rev Virol 2024; 11:67-87. [PMID: 38848592 DOI: 10.1146/annurev-virology-100422-010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The arrival of novel sequencing technologies throughout the past two decades has led to a paradigm shift in our understanding of herpesvirus genomic diversity. Previously, herpesviruses were seen as a family of DNA viruses with low genomic diversity. However, a growing body of evidence now suggests that herpesviruses exist as dynamic populations that possess standing variation and evolve at much faster rates than previously assumed. In this review, we explore how strategies such as deep sequencing, long-read sequencing, and haplotype reconstruction are allowing scientists to dissect the genomic composition of herpesvirus populations. We also discuss the challenges that need to be addressed before a detailed picture of herpesvirus diversity can emerge.
Collapse
Affiliation(s)
- Alejandro Ortigas-Vasquez
- Departments of Biology and of Biochemistry and Molecular Biology; Center for Infectious Disease Dynamics; and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Moriah Szpara
- Departments of Biology and of Biochemistry and Molecular Biology; Center for Infectious Disease Dynamics; and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
9
|
Amratia PS, Kerr-Jones LE, Chapman L, Marsden M, Clement M, Stanton RJ, Humphreys IR. Cytomegalovirus-induced peroxynitrite promotes virus entry and contributes to pathogenesis in a murine model of infection. mBio 2024; 15:e0315223. [PMID: 38953361 PMCID: PMC11323495 DOI: 10.1128/mbio.03152-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
There are no licensed vaccines for human cytomegalovirus (HCMV), and current antiviral drugs that target viral proteins are toxic and prone to resistance. Targeting host pathways essential for virus replication provides an alternate strategy that may reduce opportunities for drug resistance to occur. Oxidative stress is triggered by numerous viruses including HCMV. Peroxynitrite is a reactive nitrogen species that is formed during oxidative stress. Herein, we identified that HCMV rapidly induces the generation of intracellular peroxynitrite upon infection in a manner partially dependent upon xanthine oxidase generation. Peroxynitrite promoted HCMV infection in both cell-free and cell-associated infection systems in multiple cell types. Inhibiting peroxynitrite within the first 24 hours of infection prevented HCMV replication and peroxynitrite promoted cell entry and pp65 translocation into the host cell nuclei. Furthermore, using the murine cytomegalovirus model, we demonstrated that antagonizing peroxynitrite significantly reduces cytomegalovirus replication and pathogenesis in vivo. Overall, our study highlights a proviral role for peroxynitrite in CMV infection and implies that RNS and/or the mechanisms that induce their production could be targeted as a novel strategy to inhibit HCMV infection. IMPORTANCE Human cytomegalovirus (HCMV) causes significant disease in individuals with impaired or immature immune systems, such as transplant patients and after congenital infection. Antiviral drugs that target the virus directly are toxic and are susceptible to antiviral drug resistance due to virus mutations. An alternate strategy is to target processes within host cells that are required by the virus for replication. Herein, we show that HCMV infection triggers a highly reactive molecule, peroxynitrite, during the initial stages of infection. Peroxynitrite was required for the initial entry of the virus into the cell and promotes virus replication in multiple cell types, suggesting a broad pro-viral function. Importantly, targeting peroxynitrite dramatically inhibited cytomegalovirus replication in cells in the laboratory and in mice, suggesting that therapeutic targeting of this molecule and/or the cellular functions it regulates could represent a novel strategy to inhibit HCMV infection.
Collapse
Affiliation(s)
- Pragati S. Amratia
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Lauren E. Kerr-Jones
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Lucy Chapman
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Morgan Marsden
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Mathew Clement
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ian R. Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
10
|
Stevens A, Cruz-Cosme R, Armstrong N, Tang Q, Zhou ZH. Structure-guided mutagenesis targeting interactions between pp150 tegument protein and small capsid protein identify five lethal and two live-attenuated HCMV mutants. Virology 2024; 596:110115. [PMID: 38805802 PMCID: PMC11260070 DOI: 10.1016/j.virol.2024.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Human cytomegalovirus (HCMV) replication relies on a nucleocapsid coat of the 150 kDa, subfamily-specific tegument phosphoprotein (pp150) to regulate cytoplasmic virion maturation. While recent structural studies revealed pp150-capsid interactions, the role of specific amino-acids involved in these interactions have not been established experimentally. In this study, pp150 and the small capsid protein (SCP), one of pp150's binding partners found atop the major capsid protein (MCP), were subjected to mutational and structural analyses. Mutations to clusters of polar or hydrophobic residues along the pp150-SCP interface abolished viral replication, with no replication detected in mutant virus-infected cells. Notably, a single amino acid mutation (pp150 K255E) at the pp150-MCP interface significantly attenuated viral replication, unlike in pp150-deletion mutants where capsids degraded outside host nuclei. These functionally significant mutations targeting pp150-capsid interactions, particularly the pp150 K255E replication-attenuated mutant, can be explored to overcome the historical challenges of developing effective antivirals and vaccines against HCMV infection.
Collapse
Affiliation(s)
- Alexander Stevens
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Najealicka Armstrong
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Cimato G, Zhou X, Brune W, Frascaroli G. Human cytomegalovirus glycoprotein variants governing viral tropism and syncytium formation in epithelial cells and macrophages. J Virol 2024; 98:e0029324. [PMID: 38837351 PMCID: PMC11265420 DOI: 10.1128/jvi.00293-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Human cytomegalovirus (HCMV) displays a broad cell tropism, and the infection of biologically relevant cells such as epithelial, endothelial, and hematopoietic cells supports viral transmission, systemic spread, and pathogenesis in the human host. HCMV strains differ in their ability to infect and replicate in these cell types, but the genetic basis of these differences has remained incompletely understood. In this study, we investigated HCMV strain VR1814, which is highly infectious for epithelial cells and macrophages and induces cell-cell fusion in both cell types. A VR1814-derived bacterial artificial chromosome (BAC) clone, FIX-BAC, was generated many years ago but has fallen out of favor because of its modest infectivity. By sequence comparison and genetic engineering of FIX, we demonstrate that the high infectivity of VR1814 and its ability to induce syncytium formation in epithelial cells and macrophages depends on VR1814-specific variants of the envelope glycoproteins gB, UL128, and UL130. We also show that UL130-neutralizing antibodies inhibit syncytium formation, and a FIX-specific mutation in UL130 is responsible for its low infectivity by reducing the amount of the pentameric glycoprotein complex in viral particles. Moreover, we found that a VR1814-specific mutation in US28 further increases viral infectivity in macrophages, possibly by promoting lytic rather than latent infection of these cells. Our findings show that variants of gB and the pentameric complex are major determinants of infectivity and syncytium formation in epithelial cells and macrophages. Furthermore, the VR1814-adjusted FIX strains can serve as valuable tools to study HCMV infection of myeloid cells.IMPORTANCEHuman cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and the leading cause of congenital infections. HCMV infects various cell types, including epithelial cells and macrophages, and some strains induce the fusion of neighboring cells, leading to the formation of large multinucleated cells called syncytia. This process may limit the exposure of the virus to host immune factors and affect pathogenicity. However, the reason why some HCMV strains exhibit a broader cell tropism and why some induce cell fusion more than others is not well understood. We compared two closely related HCMV strains and provided evidence that small differences in viral envelope glycoproteins can massively increase or decrease the virus infectivity and its ability to induce syncytium formation. The results of the study suggest that natural strain variations may influence HCMV infection and pathogenesis in humans.
Collapse
Affiliation(s)
| | - Xuan Zhou
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Wolfram Brune
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | |
Collapse
|
12
|
Atanasoff KE, Parsons AJ, Ophir SI, Lurain N, Kraus T, Moran T, Duty JA, Tortorella D. A broadly neutralizing human monoclonal antibody generated from transgenic mice immunized with HCMV particles limits virus infection and proliferation. J Virol 2024; 98:e0021324. [PMID: 38832789 PMCID: PMC11264687 DOI: 10.1128/jvi.00213-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that poses severe disease risk for immunocompromised patients who experience primary infection or reactivation. Development and optimization of safe and effective anti-HCMV therapeutics is of urgent necessity for the prevention and treatment of HCMV-associated diseases in diverse populations. The use of neutralizing monoclonal antibodies (mAbs) to limit HCMV infection poses a promising therapeutic strategy, as anti-HCMV mAbs largely inhibit infection by targeting virion glycoprotein complexes. In contrast, the small-molecule compounds currently approved for patients (e.g., ganciclovir, letermovir, and maribavir) target later stages of the HCMV life cycle. Here, we present a broadly neutralizing human mAb, designated 1C10, elicited from a VelocImmune mouse immunized with infectious HCMV particles. Clone 1C10 neutralizes infection after virion binding to cells by targeting gH/gL envelope complexes and potently reduces infection of diverse HCMV strains in fibroblast, trophoblast, and epithelial cells. Antibody competition assays found that 1C10 recognizes a region of gH associated with broad neutralization and binds to soluble pentamer in the low nanomolar range. Importantly, 1C10 treatment significantly reduced virus proliferation in both fibroblast and epithelial cells. Further, the combination treatment of mAb 1C10 with ganciclovir reduced HCMV infection and proliferation in a synergistic manner. This work characterizes a neutralizing human mAb for potential use as a HCMV treatment, as well as a possible therapeutic strategy utilizing combination-based treatments targeting disparate steps of the viral life cycle. Collectively, the findings support an antibody-based therapy to effectively treat patients at risk for HCMV-associated diseases. IMPORTANCE Human cytomegalovirus is a herpesvirus that infects a large proportion of the population and can cause significant disease in diverse patient populations whose immune systems are suppressed or compromised. The development and optimization of safe anti-HCMV therapeutics, especially those that have viral targets and inhibition mechanisms different from current HCMV treatments, are of urgent necessity to better public health. Human monoclonal antibodies (mAbs) that prevent HCMV entry of cells were identified by immunizing transgenic mice and screened for broad and effective neutralization capability. Here, we describe one such mAb, which was found to target gH/gL envelope complexes and effectively limit HCMV infection and dissemination. Further, administration of the antibody in combination with the antiviral drug ganciclovir inhibited HCMV in a synergistic manner, highlighting this approach and the use of anti-HCMV mAbs more broadly, as a potential therapeutic strategy for the treatment of diverse patient populations.
Collapse
Affiliation(s)
- Kristina E. Atanasoff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea J. Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sabrina I. Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nell Lurain
- Department of Immunology-Microbiology, Rush University, Chicago, Illinois, USA
| | - Thomas Kraus
- Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - J. Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
Herbein G. Cellular Transformation by Human Cytomegalovirus. Cancers (Basel) 2024; 16:1970. [PMID: 38893091 PMCID: PMC11171319 DOI: 10.3390/cancers16111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Epstein-Barr virus (EBV), Kaposi sarcoma human virus (KSHV), human papillomavirus (HPV), hepatitis B and C viruses (HBV, HCV), human T-lymphotropic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV) are the seven human oncoviruses reported so far. While traditionally viewed as a benign virus causing mild symptoms in healthy individuals, human cytomegalovirus (HCMV) has been recently implicated in the pathogenesis of various cancers, spanning a wide range of tissue types and malignancies. This perspective article defines the biological criteria that characterize the oncogenic role of HCMV and based on new findings underlines a critical role for HCMV in cellular transformation and modeling the tumor microenvironment as already reported for the other human oncoviruses.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté (UFC), 25000 Besançon, France;
- Department of Virology, CHU Besançon, 25000 Besançon, France
| |
Collapse
|
14
|
Rollman TB, Berkebile ZW, Okae H, Bardwell VJ, Gearhart MD, Bierle CJ. Human trophoblast stem cells restrict human cytomegalovirus replication. J Virol 2024; 98:e0193523. [PMID: 38451085 PMCID: PMC11019952 DOI: 10.1128/jvi.01935-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024] Open
Abstract
Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first-trimester placenta. HCMV was found to non-productively infect TSCs, EVTs, and STBs. Immunofluorescence assays and flow cytometry experiments further revealed that infected TSCs frequently only express immediate early viral gene products. Similarly, RNA sequencing found that viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and Wingless/Integrated signaling. Thus, while HCMV does not replicate in TSCs, infection may perturb trophoblast differentiation in ways that could interfere with placental function. IMPORTANCE Placental infection plays a central role in human cytomegalovirus (HCMV) pathogenesis during pregnancy, but the species specificity of HCMV and the limited availability and lifespan of primary trophoblasts have been persistent barriers to understanding how infection impacts this vital organ. Human trophoblast stem cells (TSCs) represent a new approach to modeling viral infection early in placental development. This study reveals that TSCs, like other stem cell types, restrict HCMV replication. However, infection perturbs the expression of genes involved in differentiation and cell fate determination, pointing to a mechanism by which HCMV could cause placental injury.
Collapse
Affiliation(s)
- Tyler B. Rollman
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zachary W. Berkebile
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hiroaki Okae
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Vivian J. Bardwell
- Developmental Biology Center, Department of Genetics, Cell Biology and Development and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Micah D. Gearhart
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Craig J. Bierle
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Li H, Fletcher-Etherington A, Hunter LM, Keshri S, Fielding CA, Nightingale K, Ravenhill B, Nobre L, Potts M, Antrobus R, Crump CM, Rubinsztein DC, Stanton RJ, Weekes MP. Human cytomegalovirus degrades DMXL1 to inhibit autophagy, lysosomal acidification, and viral assembly. Cell Host Microbe 2024; 32:466-478.e11. [PMID: 38479395 DOI: 10.1016/j.chom.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 04/13/2024]
Abstract
Human cytomegalovirus (HCMV) is an important human pathogen that regulates host immunity and hijacks host compartments, including lysosomes, to assemble virions. We combined a quantitative proteomic analysis of HCMV infection with a database of proteins involved in vacuolar acidification, revealing Dmx-like protein-1 (DMXL1) as the only protein that acidifies vacuoles yet is degraded by HCMV. Systematic comparison of viral deletion mutants reveals the uncharacterized 7 kDa US33A protein as necessary and sufficient for DMXL1 degradation, which occurs via recruitment of the E3 ubiquitin ligase Kip1 ubiquitination-promoting complex (KPC). US33A-mediated DMXL1 degradation inhibits lysosome acidification and autophagic cargo degradation. Formation of the virion assembly compartment, which requires lysosomes, occurs significantly later with US33A-expressing virus infection, with reduced viral replication. These data thus identify a viral strategy for cellular remodeling, with the potential to employ US33A in therapies for viral infection or rheumatic conditions, in which inhibition of lysosome acidification can attenuate disease.
Collapse
Affiliation(s)
- Hanqi Li
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Alice Fletcher-Etherington
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Leah M Hunter
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Swati Keshri
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Institute, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Ceri A Fielding
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Benjamin Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Martin Potts
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | - Colin M Crump
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Institute, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Richard J Stanton
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
16
|
Chesnokova LS, Mosher BS, Fulkerson HL, Nam HW, Shakya AK, Yurochko AD. Distinct early role of PTEN regulation during HCMV infection of monocytes. Proc Natl Acad Sci U S A 2024; 121:e2312290121. [PMID: 38483999 PMCID: PMC10962971 DOI: 10.1073/pnas.2312290121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/01/2023] [Indexed: 03/19/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection of monocytes is essential for viral dissemination and persistence. We previously identified that HCMV entry/internalization and subsequent productive infection of this clinically relevant cell type is distinct when compared to other infected cells. We showed that internalization and productive infection required activation of epidermal growth factor receptor (EGFR) and integrin/c-Src, via binding of viral glycoprotein B to EGFR, and the pentamer complex to β1/β3 integrins. To understand how virus attachment drives entry, we compared infection of monocytes with viruses containing the pentamer vs. those without the pentamer and then used a phosphoproteomic screen to identify potential phosphorylated proteins that influence HCMV entry and trafficking. The screen revealed that the most prominent pentamer-biased phosphorylated protein was the lipid- and protein-phosphatase phosphatase and tensin homolog (PTEN). PTEN knockdown with siRNA or PTEN inhibition with a PTEN inhibitor decreased pentamer-mediated HCMV entry, without affecting trimer-mediated entry. Inhibition of PTEN activity affected lipid metabolism and interfered with the onset of the endocytic processes required for HCMV entry. PTEN inactivation was sufficient to rescue pentamer-null HCMV from lysosomal degradation. We next examined dephosphorylation of a PTEN substrate Rab7, a regulator of endosomal maturation. Inhibition of PTEN activity prevented dephosphorylation of Rab7. Phosphorylated Rab7, in turn, blocked early endosome to late endosome maturation and promoted nuclear localization of the virus and productive infection.
Collapse
Affiliation(s)
- Liudmila S. Chesnokova
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Bailey S. Mosher
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Heather L. Fulkerson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Hyung W. Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Akhalesh K. Shakya
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Andrew D. Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Feist-Weller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, Shreveport, LA71103
- Center for Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| |
Collapse
|
17
|
Abstract
Most enveloped viruses encode viral fusion proteins to penetrate host cell by membrane fusion. Interestingly, many enveloped viruses can also use viral fusion proteins to induce cell-cell fusion, both in vitro and in vivo, leading to the formation of syncytia or multinucleated giant cells (MGCs). In addition, some non-enveloped viruses encode specialized viral proteins that induce cell-cell fusion to facilitate viral spread. Overall, viruses that can induce cell-cell fusion are nearly ubiquitous in mammals. Virus cell-to-cell spread by inducing cell-cell fusion may overcome entry and post-entry blocks in target cells and allow evasion of neutralizing antibodies. However, molecular mechanisms of virus-induced cell-cell fusion remain largely unknown. Here, I summarize the current understanding of virus-induced cell fusion and syncytia formation.
Collapse
Affiliation(s)
- Maorong Xie
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
18
|
Rollman TB, Berkebile ZW, Okae H, Bardwell VJ, Gearhart MD, Bierle CJ. Human Trophoblast Stem Cells Restrict Human Cytomegalovirus Replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571456. [PMID: 38168202 PMCID: PMC10760179 DOI: 10.1101/2023.12.13.571456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first trimester placenta. HCMV was found to non-productively infect TSCs, EVTs, and STBs. Immunofluorescence assays and flow cytometry experiments further revealed that infected TSCs frequently only express immediate early viral gene products. Similarly, RNA-sequencing found that viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and WNT signaling. Thus, while HCMV does not replicate in TSCs, infection may perturb trophoblast differentiation in ways that could interfere with placental function. Importance Placental infection plays a central role in HCMV pathogenesis during pregnancy, but the species-specificity of HCMV and the limited availability and lifespan of primary trophoblasts have been persistent barriers to understanding how infection impacts this vital organ. Human TSCs represent a new approach to modeling viral infection early in placental development. This study reveals that TSCs, like other stem cell types, restrict HCMV replication. However, infection perturbs the expression of genes involved in differentiation and cell fate determination, pointing to a mechanism by which HCMV could cause placental injury.
Collapse
|
19
|
Burgess HM, Grande R, Riccio S, Dinesh I, Winkler GS, Depledge DP, Mohr I. CCR4-NOT differentially controls host versus virus poly(a)-tail length and regulates HCMV infection. EMBO Rep 2023; 24:e56327. [PMID: 37846490 PMCID: PMC10702830 DOI: 10.15252/embr.202256327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
Unlike most RNA and DNA viruses that broadly stimulate mRNA decay and interfere with host gene expression, human cytomegalovirus (HCMV) extensively remodels the host translatome without producing an mRNA decay enzyme. By performing a targeted loss-of-function screen in primary human fibroblasts, we here identify the host CCR4-NOT deadenylase complex members CNOT1 and CNOT3 as unexpected pro-viral host factors that selectively regulate HCMV reproduction. We find that the scaffold subunit CNOT1 is specifically required for late viral gene expression and genome-wide host responses in CCR4-NOT-disrupted cells. By profiling poly(A)-tail lengths of individual HCMV and host mRNAs using nanopore direct RNA sequencing, we reveal poly(A)-tails of viral messages to be markedly longer than those of cellular mRNAs and significantly less sensitive to CCR4-NOT disruption. Our data establish that mRNA deadenylation by host CCR4-NOT is critical for productive HCMV replication and define a new mechanism whereby herpesvirus infection subverts cellular mRNA metabolism to remodel the gene expression landscape of the infected cell. Moreover, we expose an unanticipated host factor with potential to become a therapeutic anti-HCMV target.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial SciencesUniversity of SurreyGuildfordUK
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
| | - Rebecca Grande
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
| | - Sofia Riccio
- Department of Microbial SciencesUniversity of SurreyGuildfordUK
| | - Ikshitaa Dinesh
- Department of Microbial SciencesUniversity of SurreyGuildfordUK
| | | | - Daniel P Depledge
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
- Institute of VirologyHannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF), partner site Hannover‐BraunschweigHannoverGermany
| | - Ian Mohr
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
- Laura and Isaac Perlmutter Cancer Institute, School of MedicineNew York UniversityNew YorkNYUSA
| |
Collapse
|
20
|
Zehner M, Alt M, Ashurov A, Goldsmith JA, Spies R, Weiler N, Lerma J, Gieselmann L, Stöhr D, Gruell H, Schultz EP, Kreer C, Schlachter L, Janicki H, Laib Sampaio K, Stegmann C, Nemetchek MD, Dähling S, Ullrich L, Dittmer U, Witzke O, Koch M, Ryckman BJ, Lotfi R, McLellan JS, Krawczyk A, Sinzger C, Klein F. Single-cell analysis of memory B cells from top neutralizers reveals multiple sites of vulnerability within HCMV Trimer and Pentamer. Immunity 2023; 56:2602-2620.e10. [PMID: 37967532 DOI: 10.1016/j.immuni.2023.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/02/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023]
Abstract
Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals. By single-cell analyses of memory B cells targeting the pentameric and trimeric HCMV surface complexes, we identified vulnerable sites on the shared gH/gL subunits as well as complex-specific subunits UL128/130/131A and gO. Using high-resolution cryogenic electron microscopy, we revealed the structural basis of the neutralization mechanisms of antibodies targeting various binding sites. Moreover, we identified highly potent antibodies that neutralized a broad spectrum of HCMV strains, including primary clinical isolates, that outperform known antibodies used in clinical trials. Our study provides a deep understanding of the mechanisms of HCMV neutralization and identifies promising antibody candidates to prevent and treat HCMV infection.
Collapse
Affiliation(s)
- Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Mira Alt
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Artem Ashurov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jory A Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rebecca Spies
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nina Weiler
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Justin Lerma
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Dagmar Stöhr
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Eric P Schultz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Linda Schlachter
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | | | - Cora Stegmann
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Michelle D Nemetchek
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Sabrina Dähling
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Leon Ullrich
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brent J Ryckman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Ramin Lotfi
- Institute for Transfusion Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christian Sinzger
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
21
|
Holtappels R, Becker S, Hamdan S, Freitag K, Podlech J, Lemmermann NA, Reddehase MJ. Immunotherapy of cytomegalovirus infection by low-dose adoptive transfer of antiviral CD8 T cells relies on substantial post-transfer expansion of central memory cells but not effector-memory cells. PLoS Pathog 2023; 19:e1011643. [PMID: 37972198 PMCID: PMC10688903 DOI: 10.1371/journal.ppat.1011643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Cytomegaloviruses (CMVs) are host species-specific in their replication. It is a hallmark of all CMVs that productive primary infection is controlled by concerted innate and adaptive immune responses in the immunocompetent host. As a result, the infection usually passes without overt clinical symptoms and develops into latent infection, referred to as "latency". During latency, the virus is maintained in a non-replicative state from which it can reactivate to productive infection under conditions of waning immune surveillance. In contrast, infection of an immunocompromised host causes CMV disease with viral multiple-organ histopathology resulting in organ failure. Primary or reactivated CMV infection of hematopoietic cell transplantation (HCT) recipients in a "window of risk" between therapeutic hemato-ablative leukemia therapy and immune system reconstitution remains a clinical challenge. Studies in the mouse model of experimental HCT and infection with murine CMV (mCMV), followed by clinical trials in HCT patients with human CMV (hCMV) reactivation, have revealed a protective function of virus-specific CD8 T cells upon adoptive cell transfer (AT). Memory CD8 T cells derived from latently infected hosts are a favored source for immunotherapy by AT. Strikingly low numbers of these cells were found to prevent CMV disease, suggesting either an immediate effector function of few transferred cells or a clonal expansion generating high numbers of effector cells. In the murine model, the memory population consists of resting central memory T cells (TCM), as well as of conventional effector-memory T cells (cTEM) and inflationary effector-memory T cells (iTEM). iTEM increase in numbers over time in the latently infected host, a phenomenon known as 'memory inflation' (MI). They thus appeared to be a promising source for use in immunotherapy. However, we show here that iTEM contribute little to the control of infection after AT, which relies almost entirely on superior proliferative potential of TCM.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sara Becker
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sara Hamdan
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matthias J. Reddehase
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
22
|
Singh S, Maheshwari A, Boppana S. CMV-induced Hearing Loss. NEWBORN (CLARKSVILLE, MD.) 2023; 2:249-262. [PMID: 38348106 PMCID: PMC10860330 DOI: 10.5005/jp-journals-11002-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Congenital cytomegalovirus (cCMV) infection is the most common fetal viral infection and contributes to about 25% of childhood hearing loss by the age of 4 years. It is the leading nongenetic cause of sensorineural hearing loss (SNHL). Infants born to seroimmune mothers are not completely protected from SNHL, although the severity of their hearing loss may be milder than that seen in those whose mothers had a primary infection. Both direct cytopathic effects and localized inflammatory responses contribute to the pathogenesis of cytomegalovirus (CMV)-induced hearing loss. Hearing loss may be delayed onset, progressive or fluctuating in nature, and therefore, a significant proportion will be missed by universal newborn hearing screening (NHS) and warrants close monitoring of hearing function at least until 5-6 years of age. A multidisciplinary approach is required for the management of hearing loss. These children may need assistive hearing devices or cochlear implantation depending on the severity of their hearing loss. In addition, early intervention services such as speech or occupational therapy could help better communication, language, and social skill outcomes. Preventive measures to decrease intrauterine CMV transmission that have been evaluated include personal protective measures, passive immunoprophylaxis and valacyclovir treatment during pregnancy in mothers with primary CMV infection. Several vaccine candidates are currently in testing and one candidate vaccine in phase 3 trials. Until a CMV vaccine becomes available, behavioral and educational interventions may be the most effective strategy to prevent maternal CMV infection.
Collapse
Affiliation(s)
- Srijan Singh
- Department of Neonatology, Kailash Hospital, Noida, Uttar Pradesh, India
- Global Newborn Society (https://www.globalnewbornsociety.org/), Clarksville, Maryland, United States of America
| | - Akhil Maheshwari
- Global Newborn Society (https://www.globalnewbornsociety.org/), Clarksville, Maryland, United States of America
- Department of Pediatrics, Louisiana State University, Shreveport, Louisiana, United States of America
| | - Suresh Boppana
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
23
|
Yu C, He S, Zhu W, Ru P, Ge X, Govindasamy K. Human cytomegalovirus in cancer: the mechanism of HCMV-induced carcinogenesis and its therapeutic potential. Front Cell Infect Microbiol 2023; 13:1202138. [PMID: 37424781 PMCID: PMC10327488 DOI: 10.3389/fcimb.2023.1202138] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Human cytomegalovirus (HCMV), a well-studied herpesvirus, has been implicated in malignancies derived from breast, colorectal muscle, brain, and other cancers. Intricate host-virus interactions are responsible for the cascade of events that have the potential to result in the transformed phenotype of normal cells. The HCMV genome contains oncogenes that may initiate these types of cancers, and although the primary HCMV infection is usually asymptomatic, the virus remains in the body in a latent or persistent form. Viral reactivation causes severe health issues in immune-compromised individuals, including cancer patients, organ transplants, and AIDS patients. This review focuses on the immunologic mechanisms and molecular mechanisms of HCMV-induced carcinogenesis, methods of HCMV treatment, and other studies. Studies show that HCMV DNA and virus-specific antibodies are present in many types of cancers, implicating HCMV as an important player in cancer progression. Importantly, many clinical trials have been initiated to exploit HCMV as a therapeutic target for the treatment of cancer, particularly in immunotherapy strategies in the treatment of breast cancer and glioblastoma patients. Taken together, these findings support a link between HCMV infections and cellular growth that develops into cancer. More importantly, HCMV is the leading cause of birth defects in newborns, and infection with HCMV is responsible for abortions in pregnant women.
Collapse
Affiliation(s)
- Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Suna He
- Department of Pharmaceutical Sciences, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Penghui Ru
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kavitha Govindasamy
- School of Arts and Science, Rutgers, the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
24
|
Bošnjak B, Lueder Y, Messerle M, Förster R. Imaging cytomegalovirus infection and ensuing immune responses. Curr Opin Immunol 2023; 82:102307. [PMID: 36996701 DOI: 10.1016/j.coi.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023]
Abstract
Cytomegaloviruses (CMVs) possess exquisite mechanisms enabling colonization, replication, and release allowing spread to new hosts. Moreover, they developed ways to escape the control of the host immune responses and hide latently within the host cells. Here, we outline studies that visualized individual CMV-infected cells using reporter viruses. These investigations provided crucial insights into all steps of CMV infection and mechanisms the host's immune response struggles to control it. Uncovering complex viral and cellular interactions and underlying molecular as well as immunological mechanisms are a prerequisite for the development of novel therapeutic interventions for successful treatment of CMV-related pathologies in neonates and transplant patients.
Collapse
|
25
|
Lista MJ, Witney AA, Nichols J, Davison AJ, Wilson H, Latham KA, Ravenhill BJ, Nightingale K, Stanton RJ, Weekes MP, Neil SJD, Swanson CM, Strang BL. Strain-Dependent Restriction of Human Cytomegalovirus by Zinc Finger Antiviral Proteins. J Virol 2023; 97:e0184622. [PMID: 36916924 PMCID: PMC10062169 DOI: 10.1128/jvi.01846-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
Cellular antiviral factors that recognize viral nucleic acid can inhibit virus replication. These include the zinc finger antiviral protein (ZAP), which recognizes high CpG dinucleotide content in viral RNA. Here, we investigated the ability of ZAP to inhibit the replication of human cytomegalovirus (HCMV). Depletion of ZAP or its cofactor KHNYN increased the titer of the high-passage HCMV strain AD169 but had little effect on the titer of the low-passage strain Merlin. We found no obvious difference in expression of several viral proteins between AD169 and Merlin in ZAP knockdown cells, but observed a larger increase in infectious virus in AD169 compared to Merlin in the absence of ZAP, suggesting that ZAP inhibited events late in AD169 replication. In addition, there was no clear difference in the CpG abundance of AD169 and Merlin RNAs, indicating that genomic content of the two virus strains was unlikely to be responsible for differences in their sensitivity to ZAP. Instead, we observed less ZAP expression in Merlin-infected cells late in replication compared to AD169-infected cells, which may be related to different abilities of the two virus strains to regulate interferon signaling. Therefore, there are strain-dependent differences in the sensitivity of HCMV to ZAP, and the ability of low-passage HCMV strain Merlin to evade inhibition by ZAP is likely related to its ability to regulate interferon signaling, not the CpG content of RNAs produced from its genome. IMPORTANCE Determining the function of cellular antiviral factors can inform our understanding of virus replication. The zinc finger antiviral protein (ZAP) can inhibit the replication of diverse viruses. Here, we examined ZAP interaction with the DNA virus human cytomegalovirus (HCMV). We found HCMV strain-dependent differences in the ability of ZAP to influence HCMV replication, which may be related to the interaction of HCMV strains with the type I interferon system. These observations affect our current understanding of how ZAP restricts HCMV and how HCMV interacts with the type I interferon system.
Collapse
Affiliation(s)
- Maria Jose Lista
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Adam A. Witney
- Institute of Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - Jenna Nichols
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Andrew J. Davison
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Katie A. Latham
- Institute of Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - Benjamin J. Ravenhill
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Katie Nightingale
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Chad M. Swanson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Blair L. Strang
- Institute of Infection & Immunity, St George’s, University of London, London, United Kingdom
| |
Collapse
|
26
|
Kicuntod J, Häge S, Lösing J, Kopar S, Muller YA, Marschall M. An antiviral targeting strategy based on the inducible interference with cytomegalovirus nuclear egress complex. Antiviral Res 2023; 212:105557. [PMID: 36796541 DOI: 10.1016/j.antiviral.2023.105557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The nucleocytoplasmic capsid egress of herpesviruses like the human cytomegalovirus (HCMV) is based on a uniquely regulated process. The core nuclear egress complex (NEC) of HCMV, represented by the pUL50-pUL53 heterodimer, is able to oligomerize and thus to build hexameric lattices. Recently, we and others validated the NEC as a novel target for antiviral strategies. So far, the experimental targeting approaches included the development of NEC-directed small molecules, cell-penetrating peptides and NEC-directed mutagenesis. Our postulate states that an interference with the hook-into-groove interaction of pUL50-pUL53 prevents NEC formation and strictly limits viral replication efficiency. Here, we provide an experimental proof-of-concept of the antiviral strategy: the inducible intracellular expression of a NLS-Hook-GFP construct exerted a pronounced level of antiviral activity. The data provide evidence for the following points: (i) generation of a primary fibroblast population with inducible NLS-Hook-GFP expression showed nuclear localization of the construct, (ii) interaction between NLS-Hook-GFP and the viral core NEC was found specific for cytomegaloviruses but not for other herpesviruses, (iii) construct overexpression exerted a strong antiviral activity against three strains of HCMV, (iv) confocal imaging demonstrated the interference with NEC nuclear rim formation in HCMV-infected cells, and (v) quantitative nuclear egress assay confirmed the block of viral nucleocytoplasmic transition and, consequently, an inhibitory effect onto viral cytoplasmic virion assembly complex (cVAC). Combined, data confirmed that the specific interference with protein-protein interaction of the HCMV core NEC represents an efficient antiviral targeting strategy.
Collapse
Affiliation(s)
- Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Serli Kopar
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, FAU, Erlangen, Germany.
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
27
|
Camiolo S, Hughes J, Baldanti F, Furione M, Lilleri D, Lombardi G, Angelini M, Gerna G, Zavattoni M, Davison AJ, Suárez NM. Identifying high-confidence variants in human cytomegalovirus genomes sequenced from clinical samples. Virus Evol 2022; 8:veac114. [PMID: 37091479 PMCID: PMC10120596 DOI: 10.1093/ve/veac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding the intrahost evolution of viral populations has implications in pathogenesis, diagnosis, and treatment and has recently made impressive advances from developments in high-throughput sequencing. However, the underlying analyses are very sensitive to sources of bias, error, and artefact in the data, and it is important that these are addressed adequately if robust conclusions are to be drawn. The key factors include (1) determining the number of viral strains present in the sample analysed; (2) monitoring the extent to which the data represent these strains and assessing the quality of these data; (3) dealing with the effects of cross-contamination; and (4) ensuring that the results are reproducible. We investigated these factors by generating sequence datasets, including biological and technical replicates, directly from clinical samples obtained from a small cohort of patients who had been infected congenitally with the herpesvirus human cytomegalovirus, with the aim of developing a strategy for identifying high-confidence intrahost variants. We found that such variants were few in number and typically present in low proportions and concluded that human cytomegalovirus exhibits a very low level of intrahost variability. In addition to clarifying the situation regarding human cytomegalovirus, our strategy has wider applicability to understanding the intrahost variability of other viruses.
Collapse
Affiliation(s)
- Salvatore Camiolo
- School of Infection and Immunity, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Joseph Hughes
- School of Infection and Immunity, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, School of Infection and Immunity, University of Pavia, Pavia 27100, Italy
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia 27100, Italy
| | - Milena Furione
- Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia 27100, Italy
| | - Daniele Lilleri
- Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia 27100, Italy
| | - Giuseppina Lombardi
- Neonatal and Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Micol Angelini
- Neonatal and Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Giuseppe Gerna
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Maurizio Zavattoni
- Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia 27100, Italy
| | - Andrew J Davison
- School of Infection and Immunity, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Nicolás M Suárez
- School of Infection and Immunity, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
28
|
Pantaleão SQ, Camillo LDMB, Neves TC, Menezes IDG, Stangherlin LM, Batista HBDCR, Poole E, Nevels M, Philot EA, Scott AL, Carlan da Silva MC. Molecular modelling of the HCMV IL-10 protein isoforms and analysis of their interaction with the human IL-10 receptor. PLoS One 2022; 17:e0277953. [PMID: 36441804 PMCID: PMC9704672 DOI: 10.1371/journal.pone.0277953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL111A gene encodes several homologs of the cellular interleukin 10 (cIL-10). Alternative splicing in the UL111A region produces two relatively well-characterized transcripts designated cmvIL-10 (isoform A) and LAcmvIL-10 (isoform B). The cmvIL-10 protein is the best characterized, both structurally and functionally, and has many immunosuppressive activities similar to cIL-10, while LAcmvIL-10 has more restricted biological activities. Alternative splicing also results in five less studied UL111A transcripts encoding additional proteins homologous to cIL-10 (isoforms C to G). These transcripts were identified during productive HCMV infection of MRC-5 cells with the high passage laboratory adapted AD169 strain, and the structure and properties of the corresponding proteins are largely unknown. Moreover, it is unclear whether these protein isoforms are able to bind the cellular IL-10 receptor and induce signalling. In the present study, we investigated the expression spectrum of UL111A transcripts in fully permissive MRC-5 cells and semi permissive U251 cells infected with the low passage HCMV strain TB40E. We identified a new spliced transcript (H) expressed during productive infection. Using computational methods, we carried out molecular modelling studies on the three-dimensional structures of the HCMV IL-10 proteins encoded by the transcripts detected in our work (cmvIL-10 (A), LAcmvIL-10 (B), E, F and H) and on their interaction with the human IL-10 receptor (IL-10R1). The modelling predicts clear differences between the isoform structures. Furthermore, the in silico simulations (molecular dynamics simulation and normal-mode analyses) allowed us to evaluate regions that contain potential receptor binding sites in each isoform. The analyses demonstrate that the complexes between the isoforms and IL-10R1 present different types of molecular interactions and consequently different affinities and stabilities. The knowledge about structure and expression of specific viral IL-10 isoforms has implications for understanding of their properties and role in HCMV immune evasion and pathogenesis.
Collapse
Affiliation(s)
| | | | - Tainan Cerqueira Neves
- Center for Natural and Humanities Sciences, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Isabela de Godoy Menezes
- Center for Natural and Humanities Sciences, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Lucas Matheus Stangherlin
- Center for Natural and Humanities Sciences, Federal University of ABC, São Bernardo do Campo, Brazil
| | | | - Emma Poole
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael Nevels
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Eric Alisson Philot
- Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo André, Brazil
| | - Ana Ligia Scott
- Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo André, Brazil
| | | |
Collapse
|
29
|
High-Risk Oncogenic Human Cytomegalovirus. Viruses 2022; 14:v14112462. [PMID: 36366560 PMCID: PMC9695668 DOI: 10.3390/v14112462] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that infects between 40% and 95% of the population worldwide, usually without symptoms. The host immune response keeps the virus in a latent stage, although HCMV can reactivate in an inflammatory context, which could result in sequential lytic/latent viral cycles during the lifetime and thereby participate in HCMV genomic diversity in humans. The high level of HCMV intra-host genomic variability could participate in the oncomodulatory role of HCMV where the virus will favor the development and spread of cancerous cells. Recently, an oncogenic role of HCMV has been highlighted in which the virus will directly transform primary cells; such HCMV strains are named high-risk (HR) HCMV strains. In light of these new findings, this review defines the criteria that characterize HR-HCMV strains and their molecular as well as the phenotypic impact on the infected cell and its tumor microenvironment.
Collapse
|
30
|
LaNoce E, Dumeng-Rodriguez J, Christian KM. Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. FRONTIERS IN VIROLOGY 2022; 2:869657. [PMID: 36325520 PMCID: PMC9624474 DOI: 10.3389/fviro.2022.869657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the impact of viral pathogens on the human central nervous system (CNS) has been challenging due to the lack of viable human CNS models for controlled experiments to determine the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional (3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis and evaluating effective therapeutics. Here we review the current state of technology in stem cell-based modeling of the CNS and how these models can be used to determine viral tropism and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus (HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus (WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic drugs by generating data that are complementary to existing preclinical models. Ultimately, these efforts could facilitate the movement towards personalized medicine and provide patients and physicians with an additional source of information to consider when evaluating available treatment strategies.
Collapse
Affiliation(s)
- Emma LaNoce
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeriel Dumeng-Rodriguez
- Developmental, Stem Cell and Regenerative Biology Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly M. Christian
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
31
|
An eIF3d-dependent switch regulates HCMV replication by remodeling the infected cell translation landscape to mimic chronic ER stress. Cell Rep 2022; 39:110767. [PMID: 35508137 PMCID: PMC9127984 DOI: 10.1016/j.celrep.2022.110767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Regulated loading of eIF3-bound 40S ribosomes on capped mRNA is generally dependent upon the translation initiation factor eIF4E; however, mRNA translation often proceeds during physiological stress, such as virus infection, when eIF4E availability and activity are limiting. It remains poorly understood how translation of virus and host mRNAs are regulated during infection stress. While initially sensitive to mTOR inhibition, which limits eIF4E-dependent translation, we show that protein synthesis in human cytomegalovirus (HCMV)-infected cells unexpectedly becomes progressively reliant upon eIF3d. Targeting eIF3d selectively inhibits HCMV replication, reduces polyribosome abundance, and interferes with expression of essential virus genes and a host gene expression signature indicative of chronic ER stress that fosters HCMV reproduction. This reveals a strategy whereby cellular eIF3d-dependent protein production is hijacked to exploit virus-induced ER stress. Moreover, it establishes how switching between eIF4E and eIF3d-responsive cap-dependent translation can differentially tune virus and host gene expression in infected cells. Instead of eIF4E-regulated ribosome loading, Thompson et al. show capped mRNA translation in HCMV-infected cells becomes reliant upon eIF3d. Depleting eIF3d inhibits HCMV replication, reduces polyribosomes, and restricts virus late gene and host chronic ER stress-induced gene expression. Thus, switching to eIF3d-responsive translation tunes gene expression to support virus replication.
Collapse
|
32
|
Tumors and Cytomegalovirus: An Intimate Interplay. Viruses 2022; 14:v14040812. [PMID: 35458542 PMCID: PMC9028007 DOI: 10.3390/v14040812] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that alternates lytic and latent infection, infecting between 40 and 95% of the population worldwide, usually without symptoms. During its lytic cycle, HCMV can result in fever, asthenia, and, in some cases, can lead to severe symptoms such as hepatitis, pneumonitis, meningitis, retinitis, and severe cytomegalovirus disease, especially in immunocompromised individuals. Usually, the host immune response keeps the virus in a latent stage, although HCMV can reactivate in an inflammatory context, which could result in sequential lytic/latent viral cycles during the lifetime and thereby participate in the HCMV genomic diversity in humans and the high level of HCMV intrahost genomic variability. The oncomodulatory role of HCMV has been reported, where the virus will favor the development and spread of cancerous cells. Recently, an oncogenic role of HCMV has been highlighted in which the virus will directly transform primary cells and might therefore be defined as the eighth human oncovirus. In light of these new findings, it is critical to understand the role of the immune landscape, including the tumor microenvironment present in HCMV-harboring tumors. Finally, the oncomodulatory/oncogenic potential of HCMV could lead to the development of novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies and new therapeutic approaches are actively needed, particularly to fight tumors of poor prognosis.
Collapse
|
33
|
Deciphering the Potential Coding of Human Cytomegalovirus: New Predicted Transmembrane Proteome. Int J Mol Sci 2022; 23:ijms23052768. [PMID: 35269907 PMCID: PMC8911422 DOI: 10.3390/ijms23052768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
CMV is a major cause of morbidity and mortality in immunocompromised individuals that will benefit from the availability of a vaccine. Despite the efforts made during the last decade, no CMV vaccine is available. An ideal CMV vaccine should elicit a broad immune response against multiple viral antigens including proteins involved in virus-cell interaction and entry. However, the therapeutic use of neutralizing antibodies targeting glycoproteins involved in viral entry achieved only partial protection against infection. In this scenario, a better understanding of the CMV proteome potentially involved in viral entry may provide novel candidates to include in new potential vaccine design. In this study, we aimed to explore the CMV genome to identify proteins with putative transmembrane domains to identify new potential viral envelope proteins. We have performed in silico analysis using the genome sequences of nine different CMV strains to predict the transmembrane domains of the encoded proteins. We have identified 77 proteins with transmembrane domains, 39 of which were present in all the strains and were highly conserved. Among the core proteins, 17 of them such as UL10, UL139 or US33A have no ascribed function and may be good candidates for further mechanistic studies.
Collapse
|
34
|
Haidar Ahmad S, Pasquereau S, El Baba R, Nehme Z, Lewandowski C, Herbein G. Distinct Oncogenic Transcriptomes in Human Mammary Epithelial Cells Infected With Cytomegalovirus. Front Immunol 2022; 12:772160. [PMID: 35003089 PMCID: PMC8727587 DOI: 10.3389/fimmu.2021.772160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus is being recognized as a potential oncovirus beside its oncomodulation role. We previously isolated two clinical isolates, HCMV-DB (KT959235) and HCMV-BL (MW980585), which in primary human mammary epithelial cells promoted oncogenic molecular pathways, established anchorage-independent growth in vitro, and produced tumorigenicity in mice models, therefore named high-risk oncogenic strains. In contrast, other clinical HCMV strains such as HCMV-FS, KM, and SC did not trigger such traits, therefore named low-risk oncogenic strains. In this study, we compared high-risk oncogenic HCMV-DB and BL strains (high-risk) with low-risk oncogenic strains HCMV-FS, KM, and SC (low-risk) additionally to the prototypic HCMV-TB40/E, knowing that all strains infect HMECs in vitro. Numerous pro-oncogenic features including enhanced expression of oncogenes, cell survival, proliferation, and epithelial-mesenchymal transition genes were observed with HCMV-BL. In vitro, mammosphere formation was observed only in high-risk strains. HCMV-TB40/E showed an intermediate transcriptome landscape with limited mammosphere formation. Since we observed that Ki67 gene expression allows us to discriminate between high and low-risk HCMV strains in vitro, we further tested its expression in vivo. Among HCMV-positive breast cancer biopsies, we only detected high expression of the Ki67 gene in basal tumors which may correspond to the presence of high-risk HCMV strains within tumors. Altogether, the transcriptome of HMECs infected with HCMV clinical isolates displays an “oncogenic gradient” where high-risk strains specifically induce a prooncogenic environment which might participate in breast cancer development.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Ranim El Baba
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Clara Lewandowski
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Department of Virology, Centre Hospitalier Universitaire (CHU) Besançon, Besançon, France
| |
Collapse
|
35
|
Brait N, Külekçi B, Goerzer I. Long range PCR-based deep sequencing for haplotype determination in mixed HCMV infections. BMC Genomics 2022; 23:31. [PMID: 34991471 PMCID: PMC8735729 DOI: 10.1186/s12864-021-08272-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Short read sequencing has been used extensively to decipher the genome diversity of human cytomegalovirus (HCMV) strains, but falls short to reveal individual genomes in mixed HCMV strain populations. Novel third-generation sequencing platforms offer an extended read length and promise to resolve how distant polymorphic sites along individual genomes are linked. In the present study, we established a long amplicon PacBio sequencing workflow to identify the absolute and relative quantities of unique HCMV haplotypes spanning over multiple hypervariable sites in mixtures. Initial validation of this approach was performed with defined HCMV DNA templates derived from cell-culture enriched viruses and was further tested for its suitability on patient samples carrying mixed HCMV infections. RESULTS Total substitution and indel error rate of mapped reads ranged from 0.17 to 0.43% depending on the stringency of quality trimming. Artificial HCMV DNA mixtures were correctly determined down to 1% abundance of the minor DNA source when the total HCMV DNA input was 4 × 104 copies/ml. PCR products of up to 7.7 kb and a GC content < 55% were efficiently generated when DNA was directly isolated from patient samples. In a single sample, up to three distinct haplotypes were identified showing varying relative frequencies. Alignments of distinct haplotype sequences within patient samples showed uneven distribution of sequence diversity, interspersed by long identical stretches. Moreover, diversity estimation at single polymorphic regions as assessed by short amplicon sequencing may markedly underestimate the overall diversity of mixed haplotype populations. CONCLUSIONS Quantitative haplotype determination by long amplicon sequencing provides a novel approach for HCMV strain characterisation in mixed infected samples which can be scaled up to cover the majority of the genome by multi-amplicon panels. This will substantially improve our understanding of intra-host HCMV strain diversity and its dynamic behaviour.
Collapse
Affiliation(s)
- Nadja Brait
- Center for Virology, Medical University of Vienna, Vienna, Austria
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Büşra Külekçi
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Irene Goerzer
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
36
|
Phan QV, Bogdanow B, Wyler E, Landthaler M, Liu F, Hagemeier C, Wiebusch L. Engineering, decoding and systems-level characterization of chimpanzee cytomegalovirus. PLoS Pathog 2022; 18:e1010193. [PMID: 34982803 PMCID: PMC8759705 DOI: 10.1371/journal.ppat.1010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/14/2022] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
The chimpanzee cytomegalovirus (CCMV) is the closest relative of human CMV (HCMV). Because of the high conservation between these two species and the ability of human cells to fully support CCMV replication, CCMV holds great potential as a model system for HCMV. To make the CCMV genome available for precise and rapid gene manipulation techniques, we captured the genomic DNA of CCMV strain Heberling as a bacterial artificial chromosome (BAC). Selected BAC clones were reconstituted to infectious viruses, growing to similar high titers as parental CCMV. DNA sequencing confirmed the integrity of our clones and led to the identification of two polymorphic loci and a deletion-prone region within the CCMV genome. To re-evaluate the CCMV coding potential, we analyzed the viral transcriptome and proteome and identified several novel ORFs, splice variants, and regulatory RNAs. We further characterized the dynamics of CCMV gene expression and found that viral proteins cluster into five distinct temporal classes. In addition, our datasets revealed that the host response to CCMV infection and the de-regulation of cellular pathways are in line with known hallmarks of HCMV infection. In a first functional experiment, we investigated a proposed frameshift mutation in UL128 that was suspected to restrict CCMV's cell tropism. In fact, repair of this frameshift re-established productive CCMV infection in endothelial and epithelial cells, expanding the options of CCMV as an infection model. Thus, BAC-cloned CCMV can serve as a powerful tool for systematic approaches in comparative functional genomics, exploiting the close phylogenetic relationship between CCMV and HCMV.
Collapse
Affiliation(s)
- Quang Vinh Phan
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Boris Bogdanow
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Fan Liu
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Christian Hagemeier
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Lüder Wiebusch
- Department of Pediatric Oncology/Hematology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
37
|
Mimura N, Nagamatsu T, Morita K, Taguchi A, Toya T, Kumasawa K, Iriyama T, Kawana K, Inoue N, Fujii T, Osuga Y. Suppression of human trophoblast syncytialization by human cytomegalovirus infection. Placenta 2021; 117:200-208. [PMID: 34933151 DOI: 10.1016/j.placenta.2021.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Placental dysfunction triggers fetal growth restriction in congenital human cytomegalovirus (HCMV) infection. Studies suggest that HCMV infection interferes with the differentiation of human trophoblasts. However, the underlying mechanisms have not been clarified. This study investigated the impact of HCMV infection on gene transcriptomes in cytotrophoblasts (CTBs) associated with placental dysfunction. METHODS CTBs were isolated from human term placentas, and spontaneous syncytialization was observed in vitro. The transcriptome profiles were compared between CTB groups with and without HCMV infection by cap analysis gene expression sequencing. The effect of HCMV infection on trophoblast differentiation was evaluated by examining cell fusion status using immunocytochemical staining for desmoplakin and assessing the production of cell differentiation markers, including hCG, PlGF, and soluble Flt-1, using ELISA. RESULTS The expression of the genes categorized in the signaling pathways related to the cell cycle was significantly enhanced in CTBs with HCMV infection compared with uninfected CTBs. HCMV infection hindered the alteration of the gene expression profile associated with syncytialization. This suppressive effect under HCMV infection was concurrent with the reduction in hCG and PlGF secretion. Immunostaining for desmoplakin revealed that HCMV infection reduced the cell fusion of cultured CTBs. These findings imply that HCMV infection has a negative impact on syncytialization, which is indispensable for the maintenance of villous function. DISCUSSION HCMV infection interferes with gene expression profiles and functional differentiation of trophoblasts. Suppression of syncytialization may be a survival strategy for HCMV to expand infection and could be associated with placental dysfunction.
Collapse
Affiliation(s)
- Nobuko Mimura
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan.
| | - Kazuki Morita
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Takashi Toya
- Hematology Division, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Keiichi Kumasawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, Nihon University, Japan
| | - Naoki Inoue
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| |
Collapse
|
38
|
Falci Finardi N, Kim H, Hernandez LZ, Russell MRG, Ho CMK, Sreenu VB, Wenham HA, Merritt A, Strang BL. Identification and characterization of bisbenzimide compounds that inhibit human cytomegalovirus replication. J Gen Virol 2021; 102. [PMID: 34882533 PMCID: PMC8744270 DOI: 10.1099/jgv.0.001702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The shortcomings of current anti-human cytomegalovirus (HCMV) drugs has stimulated a search for anti-HCMV compounds with novel targets. We screened collections of bioactive compounds and identified a range of compounds with the potential to inhibit HCMV replication. Of these compounds, we selected bisbenzimide compound RO-90-7501 for further study. We generated analogues of RO-90-7501 and found that one compound, MRT00210423, had increased anti-HCMV activity compared to RO-90-7501. Using a combination of compound analogues, microscopy and biochemical assays we found RO-90-7501 and MRT00210423 interacted with DNA. In single molecule microscopy experiments we found RO-90-7501, but not MRT00210423, was able to compact DNA, suggesting that compaction of DNA was non-obligatory for anti-HCMV effects. Using bioinformatics analysis, we found that there were many putative bisbenzimide binding sites in the HCMV DNA genome. However, using western blotting, quantitative PCR and electron microscopy, we found that at a concentration able to inhibit HCMV replication our compounds had little or no effect on production of certain HCMV proteins or DNA synthesis, but did have a notable inhibitory effect on HCMV capsid production. We reasoned that these effects may have involved binding of our compounds to the HCMV genome and/or host cell chromatin. Therefore, our data expand our understanding of compounds with anti-HCMV activity and suggest targeting of DNA with bisbenzimide compounds may be a useful anti-HCMV strategy.
Collapse
Affiliation(s)
- Nicole Falci Finardi
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - HyeongJun Kim
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Lee Z Hernandez
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | - Catherine M-K Ho
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Vattipally B Sreenu
- MRC - University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Hannah A Wenham
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Andy Merritt
- Centre for Therapeutic Discovery, LifeArc, Stevenage, UK
| | - Blair L Strang
- Institute of Infection & Immunity, St George's, University of London, London, UK.,Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Hancock TJ, Hetzel ML, Ramirez A, Sparer TE. MCMV Centrifugal Enhancement: A New Spin on an Old Topic. Pathogens 2021; 10:1577. [PMID: 34959531 PMCID: PMC8705575 DOI: 10.3390/pathogens10121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen infecting a majority of people worldwide, with diseases ranging from mild to life-threatening. Its clinical relevance in immunocompromised people and congenital infections have made treatment and vaccine development a top priority. Because of cytomegaloviruses' species specificity, murine cytomegalovirus (MCMV) models have historically informed and advanced translational CMV therapies. Using the phenomenon of centrifugal enhancement, we explored differences between MCMVs derived in vitro and in vivo. We found centrifugal enhancement on tissue culture-derived virus (TCV) was ~3× greater compared with salivary gland derived virus (SGV). Using novel "flow virometry", we found that TCV contained a distinct submicron particle composition compared to SGV. Using an inhibitor of exosome production, we show these submicron particles are not extracellular vesicles that contribute to centrifugal enhancement. We examined how these differences in submicron particles potentially contribute to differing centrifugal enhancement phenotypes, as well as broader in vivo vs. in vitro MCMV differences.
Collapse
Affiliation(s)
| | | | | | - Tim E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA; (T.J.H.); (M.L.H.); (A.R.)
| |
Collapse
|
40
|
Hyde K, Sultana N, Tran AC, Bileckaja N, Donald CL, Kohl A, Stanton RJ, Strang BL. Limited replication of human cytomegalovirus in a trophoblast cell line. J Gen Virol 2021; 102. [PMID: 34816792 PMCID: PMC8742992 DOI: 10.1099/jgv.0.001683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several viruses, including human cytomegalovirus (HCMV), are thought to replicate in the placenta. However, there is little understanding of the molecular mechanisms involved in HCMV replication in this tissue. We investigated replication of HCMV in the extravillous trophoblast cell line SGHPL-4, a commonly used model of HCMV replication in the placenta. We found limited HCMV protein expression and virus replication in SGHPL-4 cells. This was associated with a lack of trophoblast progenitor cell protein markers in SGHPL-4 cells, suggesting a relationship between trophoblast differentiation and limited HCMV replication. We proposed that limited HCMV replication in trophoblast cells is advantageous to vertical transmission of HCMV, as there is a greater opportunity for vertical transmission when the placenta is intact and functional. Furthermore, when we investigated the replication of other vertically transmitted viruses in SGHPL-4 cells we found some limitation to replication of Zika virus, but not herpes simplex virus. Thus, limited replication of some, but not all, vertically transmitted viruses may be a feature of trophoblast cells.
Collapse
Affiliation(s)
- Kadeem Hyde
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Nowshin Sultana
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Andy C Tran
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Narina Bileckaja
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard J Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Blair L Strang
- Institute for Infection and Immunity, St George's, University of London, London, UK
| |
Collapse
|
41
|
Kite J, Russell T, Jones J, Elliott G. Cell-to-cell transmission of HSV1 in human keratinocytes in the absence of the major entry receptor, nectin1. PLoS Pathog 2021; 17:e1009631. [PMID: 34587223 PMCID: PMC8505007 DOI: 10.1371/journal.ppat.1009631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/11/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Herpes simplex virus 1 (HSV1) infects the stratified epithelia of the epidermis, oral or genital mucosa, where the main cell type is the keratinocyte. Here we have used nTERT human keratinocytes to generate a CRISPR-Cas9 knockout (KO) of the primary candidate HSV1 receptor, nectin1, resulting in a cell line that is refractory to HSV1 entry. Nonetheless, a small population of KO cells was able to support infection which was not blocked by a nectin1 antibody and hence was not a consequence of residual nectin1 expression. Strikingly at later times, the population of cells originally resistant to HSV1 infection had also become infected. Appearance of this later population was blocked by inhibition of virus genome replication, or infection with a ΔUL34 virus defective in capsid export to the cytoplasm. Moreover, newly formed GFP-tagged capsids were detected in cells surrounding the initial infected cell, suggesting that virus was spreading following replication in the original susceptible cells. Additional siRNA depletion of the second major HSV1 receptor HVEM, or PTP1B, a cellular factor shown elsewhere to be involved in cell-to-cell transmission, had no effect on virus spread in the absence of nectin1. Neutralizing human serum also failed to block virus transmission in nectin1 KO cells, which was dependent on the receptor binding protein glycoprotein D and the cell-to-cell spread glycoproteins gI and gE, indicating that virus was spreading by direct cell-to-cell transmission. In line with these results, both HSV1 and HSV2 formed plaques on nectin1 KO cells, albeit at a reduced titre, confirming that once the original cell population was infected, the virus could spread into all other cells in the monolayer. We conclude that although nectin1 is required for extracellular entry in to the majority of human keratinocytes, it is dispensable for direct cell-to-cell transmission. Herpes simplex virus 1 (HSV1) infects the epithelia of the epidermis, oral or genital mucosa to cause cold sores, genital herpes, or more serious outcomes such as keratitis and neonatal herpes. Like many viruses, HSV1 can spread through the extracellular environment or by direct cell-to-cell transmission, with the latter mechanism being important for avoiding antibody responses in the host. Here we have studied HSV1 entry and transmission in the human keratinocyte, the main cell type in the target epithelia, by generating a CRISPR-Cas9 knockout of the primary candidate virus receptor, nectin1. While HSV1 was unable to infect the majority of nectin1 knockout keratinocytes, a small population of these nectin1 KO cells remained susceptible to virus entry, and once infected, the virus was able to spread into the rest of the monolayer. This spread continued in the presence of neutralising serum which blocks extracellular virus, and required glycoprotein D, the main virus receptor-binding protein, and glycoproteins gE and gI which are known to be involved in cell-to-cell spread. Hence, while nectin1 is required for virus entry into the majority of human keratinocyte cells, it is dispensable for cell-to-cell transmission of the virus. These data have implications for the mechanism of HSV1 epithelial spread and pathogenesis.
Collapse
Affiliation(s)
- Joanne Kite
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Tiffany Russell
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Juliet Jones
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Optimization of a Lambda-RED Recombination Method for Rapid Gene Deletion in Human Cytomegalovirus. Int J Mol Sci 2021; 22:ijms221910558. [PMID: 34638896 PMCID: PMC8508972 DOI: 10.3390/ijms221910558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) continues to be a major cause of morbidity in transplant patients and newborns. However, the functions of many of the more than 282 genes encoded in the HCMV genome remain unknown. The development of bacterial artificial chromosome (BAC) technology contributes to the genetic manipulation of several organisms including HCMV. The maintenance of the HCMV BAC in E. coli cells permits the rapid generation of recombinant viral genomes that can be used to produce viral progeny in cell cultures for the study of gene function. We optimized the Lambda-Red Recombination system to construct HCMV gene deletion mutants rapidly in the complete set of tested genes. This method constitutes a useful tool that allows for the quick generation of a high number of gene deletion mutants, allowing for the analysis of the whole genome to improve our understanding of HCMV gene function. This may also facilitate the development of novel vaccines and therapeutics.
Collapse
|
43
|
Lau B, Kerr K, Camiolo S, Nightingale K, Gu Q, Antrobus R, Suárez NM, Loney C, Stanton RJ, Weekes MP, Davison AJ. Human Cytomegalovirus RNA2.7 Is Required for Upregulating Multiple Cellular Genes To Promote Cell Motility and Viral Spread Late in Lytic Infection. J Virol 2021; 95:e0069821. [PMID: 34346763 PMCID: PMC8475523 DOI: 10.1128/jvi.00698-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are frequently associated with broad modulation of gene expression and thus provide the cell with the ability to synchronize entire metabolic processes. We used transcriptomic approaches to investigate whether the most abundant human cytomegalovirus-encoded lncRNA, RNA2.7, has this characteristic. By comparing cells infected with wild-type virus (WT) to cells infected with RNA2.7 deletion mutants, RNA2.7 was implicated in regulating a large number of cellular genes late in lytic infection. Pathway analysis indicated that >100 of these genes are associated with promoting cell movement, and the 10 most highly regulated of these were validated in further experiments. Morphological analysis and live cell tracking of WT- and RNA2.7 mutant-infected cells indicated that RNA2.7 is involved in promoting the movement and detachment of infected cells late in infection, and plaque assays using sparse cell monolayers indicated that RNA2.7 is also involved in promoting cell-to-cell spread of virus. Consistent with the observation that upregulated mRNAs are relatively A+U-rich, which is a trait associated with transcript instability, and that they are also enriched in motifs associated with mRNA instability, transcriptional inhibition experiments on WT- and RNA2.7 mutant-infected cells showed that four upregulated transcripts lived longer in the presence of RNA2.7. These findings demonstrate that RNA2.7 is required for promoting cell movement and viral spread late in infection and suggest that this may be due to general stabilization of A+U-rich transcripts. IMPORTANCE In addition to messenger RNAs (mRNAs), the human genome encodes a large number of long noncoding RNAs (lncRNAs). Many lncRNAs that have been studied in detail are associated with broad modulation of gene expression and have important biological roles. Human cytomegalovirus, which is a large, clinically important DNA virus, specifies four lncRNAs, one of which (RNA2.7) is expressed at remarkably high levels during lytic infection. Our studies show that RNA2.7 is required for upregulating a large number of human genes, about 100 of which are associated with cell movement, and for promoting the movement of infected cells and the spread of virus from one cell to another. Further bioinformatic and experimental analyses indicated that RNA2.7 may exert these effects by stabilizing mRNAs that are relatively rich in A and U nucleotides. These findings increase our knowledge of how human cytomegalovirus regulates the infected cell to promote its own success.
Collapse
Affiliation(s)
- Betty Lau
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Salvatore Camiolo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
44
|
López-Muñoz AD, Rastrojo A, Martín R, Alcamí A. Herpes simplex virus 2 (HSV-2) evolves faster in cell culture than HSV-1 by generating greater genetic diversity. PLoS Pathog 2021; 17:e1009541. [PMID: 34437654 PMCID: PMC8389525 DOI: 10.1371/journal.ppat.1009541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 and 2 (HSV-1 and HSV-2, respectively) are prevalent human pathogens of clinical relevance that establish long-life latency in the nervous system. They have been considered, along with the Herpesviridae family, to exhibit a low level of genetic diversity during viral replication. However, the high ability shown by these viruses to rapidly evolve under different selective pressures does not correlates with that presumed genetic stability. High-throughput sequencing has revealed that heterogeneous or plaque-purified populations of both serotypes contain a broad range of genetic diversity, in terms of number and frequency of minor genetic variants, both in vivo and in vitro. This is reminiscent of the quasispecies phenomenon traditionally associated with RNA viruses. Here, by plaque-purification of two selected viral clones of each viral subtype, we reduced the high level of genetic variability found in the original viral stocks, to more genetically homogeneous populations. After having deeply characterized the genetic diversity present in the purified viral clones as a high confidence baseline, we examined the generation of de novo genetic diversity under culture conditions. We found that both serotypes gradually increased the number of de novo minor variants, as well as their frequency, in two different cell types after just five and ten passages. Remarkably, HSV-2 populations displayed a much higher raise of nonconservative de novo minor variants than the HSV-1 counterparts. Most of these minor variants exhibited a very low frequency in the population, increasing their frequency over sequential passages. These new appeared minor variants largely impacted the coding diversity of HSV-2, and we found some genes more prone to harbor higher variability. These data show that herpesviruses generate de novo genetic diversity differentially under equal in vitro culture conditions. This might have contributed to the evolutionary divergence of HSV-1 and HSV-2 adapting to different anatomical niche, boosted by selective pressures found at each epithelial and neuronal tissue. Herpesviruses are highly human pathogens that establish latency in neurons of the peripheral nervous system. Colonization of nerve endings is required for herpes simplex virus (HSV) persistence and pathogenesis. HSV-1 global prevalence is much higher than HSV-2, in addition to their preferential tendency to infect the oronasal and genital areas, respectively. How these closely related viruses have been adapting and evolving to replicate and colonize these two different anatomical areas remains unclear. Herpesviruses were presumed to mutate much less than viruses with RNA genomes, due to the higher fidelity of the DNA polymerase and proofreading mechanisms when replicating. However, the worldwide accessibility and development of high-throughput sequencing technologies have revealed the heterogenicity and high diversity present in viral populations clinically isolated. Here we show that HSV-2 mutates much faster than HSV-1, when compared under similar and controlled cell culture conditions. This high mutation rate is translated into an increase in coding diversity, since the great majority of these new mutations lead to nonconservative changes in viral proteins. Understanding how herpesviruses differentially mutate under similar selective pressures is critical to prevent resistance to anti-viral drugs.
Collapse
Affiliation(s)
- Alberto Domingo López-Muñoz
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
45
|
Gergely KM, Podlech J, Becker S, Freitag K, Krauter S, Büscher N, Holtappels R, Plachter B, Reddehase MJ, Lemmermann NAW. Therapeutic Vaccination of Hematopoietic Cell Transplantation Recipients Improves Protective CD8 T-Cell Immunotherapy of Cytomegalovirus Infection. Front Immunol 2021; 12:694588. [PMID: 34489940 PMCID: PMC8416627 DOI: 10.3389/fimmu.2021.694588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Reactivation of latent cytomegalovirus (CMV) endangers the therapeutic success of hematopoietic cell transplantation (HCT) in tumor patients due to cytopathogenic virus spread that leads to organ manifestations of CMV disease, to interstitial pneumonia in particular. In cases of virus variants that are refractory to standard antiviral pharmacotherapy, immunotherapy by adoptive cell transfer (ACT) of virus-specific CD8+ T cells is the last resort to bridge the "protection gap" between hematoablative conditioning for HCT and endogenous reconstitution of antiviral immunity. We have used the well-established mouse model of CD8+ T-cell immunotherapy by ACT in a setting of experimental HCT and murine CMV (mCMV) infection to pursue the concept of improving the efficacy of ACT by therapeutic vaccination (TherVac) post-HCT. TherVac aims at restimulation and expansion of limited numbers of transferred antiviral CD8+ T cells within the recipient. Syngeneic HCT was performed with C57BL/6 mice as donors and recipients. Recipients were infected with recombinant mCMV (mCMV-SIINFEKL) that expresses antigenic peptide SIINFEKL presented to CD8+ T cells by the MHC class-I molecule Kb. ACT was performed with transgenic OT-I CD8+ T cells expressing a T-cell receptor specific for SIINFEKL-Kb. Recombinant human CMV dense bodies (DB-SIINFEKL), engineered to contain SIINFEKL within tegument protein pUL83/pp65, served for vaccination. DBs were chosen as they represent non-infectious, enveloped, and thus fusion-competent subviral particles capable of activating dendritic cells and delivering antigens directly into the cytosol for processing and presentation in the MHC class-I pathway. One set of our experiments documents the power of vaccination with DBs in protecting the immunocompetent host against a challenge infection. A further set of experiments revealed a significant improvement of antiviral control in HCT recipients by combining ACT with TherVac. In both settings, the benefit from vaccination with DBs proved to be strictly epitope-specific. The capacity to protect was lost when DBs included the peptide sequence SIINFEKA lacking immunogenicity and antigenicity due to C-terminal residue point mutation L8A, which prevents efficient proteasomal peptide processing and binding to Kb. Our preclinical research data thus provide an argument for using pre-emptive TherVac to enhance antiviral protection by ACT in HCT recipients with diagnosed CMV reactivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
46
|
Schultz EP, Yu Q, Stegmann C, Day LZ, Lanchy JM, Ryckman BJ. Mutagenesis of Human Cytomegalovirus Glycoprotein L Disproportionately Disrupts gH/gL/gO over gH/gL/pUL128-131. J Virol 2021; 95:e0061221. [PMID: 34132577 PMCID: PMC8354327 DOI: 10.1128/jvi.00612-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Cell-free and cell-to-cell spread of herpesviruses involves a core fusion apparatus comprised of the fusion protein glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL/gO and gH/gL/pUL128-131 facilitate spread in different cell types. The gO and pUL128-131 components bind distinct receptors, but how the gH/gL portions of the complexes functionally compare is not understood. We previously characterized a panel of gL mutants by transient expression and showed that many were impaired for gH/gL-gB-dependent cell-cell fusion but were still able to form gH/gL/pUL128-131 and induce receptor interference. Here, the gL mutants were engineered into the HCMV BAC clones TB40/e-BAC4 (TB), TR, and Merlin (ME), which differ in their utilization of the two complexes for entry and spread. Several of the gL mutations disproportionately impacted gH/gL/gO-dependent entry and spread over gH/gL/pUL128-131 processes. The effects of some mutants could be explained by impaired gH/gL/gO assembly, but other mutants impacted gH/gL/gO function. Soluble gH/gL/gO containing the L201 mutant failed to block HCMV infection despite unimpaired binding to PDGFRα, indicating the existence of other important gH/gL/gO receptors. Another mutant (L139) enhanced the gH/gL/gO-dependent cell-free spread of TR, suggesting a "hyperactive" gH/gL/gO. Recently published crystallography and cryo-electron microscopy studies suggest structural conservation of the gH/gL underlying gH/gL/gO and gH/gL/pUL128-131. However, our data suggest important differences in the gH/gL of the two complexes and support a model in which gH/gL/gO can provide an activation signal for gB. IMPORTANCE The endemic betaherpesvirus HCMV circulates in human populations as a complex mixture of genetically distinct variants, establishes lifelong persistent infections, and causes significant disease in neonates and immunocompromised adults. This study capitalizes on our recent characterizations of three genetically distinct HCMV BAC clones to discern the functions of the envelope glycoprotein complexes gH/gL/gO and gH/gL/pUL128-13, which are promising vaccine targets that share the herpesvirus core fusion apparatus component, gH/gL. Mutations in the shared gL subunit disproportionally affected gH/gL/gO, demonstrating mechanistic differences between the two complexes, and may provide a basis for more refined evaluations of neutralizing antibodies.
Collapse
Affiliation(s)
- Eric P. Schultz
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| | - Qin Yu
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Cora Stegmann
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Le Zhang Day
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biochemistry and Biophysics Program, University of Montana, Missoula, Montana, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brent J. Ryckman
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
- Biochemistry and Biophysics Program, University of Montana, Missoula, Montana, USA
| |
Collapse
|
47
|
Consequence of Histoincompatibility beyond GvH-Reaction in Cytomegalovirus Disease Associated with Allogeneic Hematopoietic Cell Transplantation: Change of Paradigm. Viruses 2021; 13:v13081530. [PMID: 34452395 PMCID: PMC8402734 DOI: 10.3390/v13081530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic cell (HC) transplantation (HCT) is the last resort to cure hematopoietic malignancies that are refractory to standard therapies. Hematoablative treatment aims at wiping out tumor cells as completely as possible to avoid leukemia/lymphoma relapse. This treatment inevitably co-depletes cells of hematopoietic cell lineages, including differentiated cells that constitute the immune system. HCT reconstitutes hematopoiesis and thus, eventually, also antiviral effector cells. In cases of an unrelated donor, that is, in allogeneic HCT, HLA-matching is performed to minimize the risk of graft-versus-host reaction and disease (GvHR/D), but a mismatch in minor histocompatibility antigens (minor HAg) is unavoidable. The transient immunodeficiency in the period between hematoablative treatment and reconstitution by HCT gives latent cytomegalovirus (CMV) the chance to reactivate from latently infected donor HC or from latently infected organs of the recipient, or from both. Clinical experience shows that HLA and/or minor-HAg mismatches increase the risk of complications from CMV. Recent results challenge the widespread, though never proven, view of a mechanistic link between GvHR/D and CMV. Instead, new evidence suggests that histoincompatibility promotes CMV disease by inducing non-cognate transplantation tolerance that inhibits an efficient reconstitution of high-avidity CD8+ T cells capable of recognizing and resolving cytopathogenic tissue infection.
Collapse
|
48
|
Targeting Conserved Sequences Circumvents the Evolution of Resistance in a Viral Gene Drive against Human Cytomegalovirus. J Virol 2021; 95:e0080221. [PMID: 34011551 DOI: 10.1128/jvi.00802-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene drives are genetic systems designed to efficiently spread a modification through a population. They have been designed almost exclusively in eukaryotic species, especially in insects. We recently developed a CRISPR-based gene drive system in herpesviruses that relies on similar mechanisms and could efficiently spread into a population of wild-type viruses. A common consequence of gene drives in insects is the appearance and selection of drive-resistant sequences that are no longer recognized by CRISPR-Cas9. In this study, we analyzed in cell culture experiments the evolution of resistance in a viral gene drive against human cytomegalovirus. We report that after an initial invasion of the wild-type population, a drive-resistant population is positively selected over time and outcompetes gene drive viruses. However, we show that targeting evolutionarily conserved sequences ensures that drive-resistant viruses acquire long-lasting mutations and are durably attenuated. As a consequence, and even though engineered viruses do not stably persist in the viral population, remaining viruses have a replication defect, leading to a long-term reduction of viral levels. This marks an important step toward developing effective gene drives in herpesviruses, especially for therapeutic applications. IMPORTANCE The use of defective viruses that interfere with the replication of their infectious parent after coinfecting the same cells-a therapeutic strategy known as viral interference-has recently generated a lot of interest. The CRISPR-based system that we recently reported for herpesviruses represents a novel interfering strategy that causes the conversion of wild-type viruses into new recombinant viruses and drives the native viral population to extinction. In this study, we analyzed how targeted viruses evolved resistance against the technology. Through numerical simulations and cell culture experiments with human cytomegalovirus, we showed that after the initial propagation, a resistant viral population is positively selected and outcompetes engineered viruses over time. We show, however, that targeting evolutionarily conserved sequences ensures that resistant viruses are mutated and attenuated, which leads to a long-term reduction of viral levels. This marks an important step toward the development of novel therapeutic strategies against herpesviruses.
Collapse
|
49
|
Seidel E, Dassa L, Schuler C, Oiknine-Djian E, Wolf DG, Le-Trilling VTK, Mandelboim O. The human cytomegalovirus protein UL147A downregulates the most prevalent MICA allele: MICA*008, to evade NK cell-mediated killing. PLoS Pathog 2021; 17:e1008807. [PMID: 33939764 PMCID: PMC8118558 DOI: 10.1371/journal.ppat.1008807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/13/2021] [Accepted: 04/15/2021] [Indexed: 02/04/2023] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells without prior sensitization. One pivotal activating NK receptor is NKG2D, which binds a family of eight ligands, including the major histocompatibility complex (MHC) class I-related chain A (MICA). Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus causing morbidity and mortality in immunosuppressed patients and congenitally infected infants. HCMV encodes multiple antagonists of NK cell activation, including many mechanisms targeting MICA. However, only one of these mechanisms, the HCMV protein US9, counters the most prevalent MICA allele, MICA*008. Here, we discover that a hitherto uncharacterized HCMV protein, UL147A, specifically downregulates MICA*008. UL147A primarily induces MICA*008 maturation arrest, and additionally targets it to proteasomal degradation, acting additively with US9 during HCMV infection. Thus, UL147A hinders NKG2D-mediated elimination of HCMV-infected cells by NK cells. Mechanistic analyses disclose that the non-canonical GPI anchoring pathway of immature MICA*008 constitutes the determinant of UL147A specificity for this MICA allele. These findings advance our understanding of the complex and rapidly evolving HCMV immune evasion mechanisms, which may facilitate the development of antiviral drugs and vaccines. Human cytomegalovirus (HCMV) is a common pathogen that usually causes asymptomatic infection in the immunocompetent population, but the immunosuppressed and fetuses infected in utero suffer mortality and disability due to HCMV disease. Current HCMV treatments are limited and no vaccine has been approved, despite significant efforts. HCMV encodes many genes of unknown function, and virus-host interactions are only partially understood. Here, we discovered that a hitherto uncharacterized HCMV protein, UL147A, downregulates the expression of an activating immune ligand allele named MICA*008, thus hindering the elimination of HCMV-infected cells. Elucidating HCMV immune evasion mechanisms could aid in the development of novel HCMV treatments and vaccines. Furthermore, MICA*008 is a highly prevalent allele implicated in cancer immune evasion, autoimmunity and graft rejection. In this work we have shown that UL147A interferes with MICA*008’s poorly understood, nonstandard maturation pathway, and acts additively with a functionally homologous HCMV protein, US9. Study of UL147A may enable manipulation of its expression as a therapeutic measure against HCMV.
Collapse
Affiliation(s)
- Einat Seidel
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, The Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Liat Dassa
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, The Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Corinna Schuler
- Institute for Virology of the University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Department of Biochemistry, IMRIC, Jerusalem, Israel
- The Chanock Center for Virology, IMRIC, Jerusalem, Israel
| | - Dana G. Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Department of Biochemistry, IMRIC, Jerusalem, Israel
- The Chanock Center for Virology, IMRIC, Jerusalem, Israel
| | - Vu Thuy Khanh Le-Trilling
- Institute for Virology of the University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail: (VTKL-T); (OM)
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, The Hebrew University Medical School, IMRIC, Jerusalem, Israel
- * E-mail: (VTKL-T); (OM)
| |
Collapse
|
50
|
Contributions of the Human Cytomegalovirus U L30-Associated Open Reading Frames to Infection. J Virol 2021; 95:JVI.02417-20. [PMID: 33568511 DOI: 10.1128/jvi.02417-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 11/20/2022] Open
Abstract
Transposon-based insertional mutagenesis screens have assessed how disruption of numerous human cytomegalovirus (HCMV) open reading frames (ORFs) impacts in vitro viral replication. Insertional mutagenesis of the HCMV UL30 gene was previously found to substantially inhibit production of viral progeny. However, there are a number of putative UL30-associated ORFs, and it is unclear how they impact viral replication. Here, we report on the contributions of the eight UL30-associated ORFs to infection. We find that deletion of the canonically annotated UL30 ORF substantially reduces production of infectious virus at both high and low multiplicities of infection (MOI). This deletion likely has complex effects on viral replication, as we find that it reduces the expression of neighboring non-UL30-associated ORFs. Mutation of the initiating methionine of the canonical UL30 ORF indicated that it is dispensable for high- and low-MOI infection in the highly passaged AD169 strain, although it is important for low-MOI infection in the less-passaged TB40/E strain. Comutation of eight methionines in the UL30 region results in a low-MOI viral replication defect, as does mutation of the TATA box responsible for the most abundant UL30 transcript, which is found to be necessary for the accumulation of multiple UL30-associated protein isoforms during infection. In total, our data indicate the importance of the UL30-associated ORFs during low-MOI HCMV infection and further highlight the difficulty associated with the functional interrogation of broadly disruptive mutations: e.g., large deletions or transposon insertions.IMPORTANCE Viral genes and their products are the critical determinants of viral infection. Human cytomegalovirus (HCMV) encodes many gene products whose roles during viral infection have not been assessed. Elucidation of the contributions that various HCMV gene products make to infection provides insight into the infectious program, which could potentially be used to limit HCMV-associated morbidity, a major issue during congenital infection and in immunosuppressed populations. Here, we explored the role of HCMV's UL30-associated gene products and found that they are important for HCMV replication. Future work elucidating the mechanisms through which they contribute to viral infection could highlight novel avenues for therapeutic intervention.
Collapse
|