1
|
Permain J, Hock B, Eglinton T, Purcell R. Functional links between the microbiome and the molecular pathways of colorectal carcinogenesis. Cancer Metastasis Rev 2024; 43:1463-1474. [PMID: 39340753 PMCID: PMC11554747 DOI: 10.1007/s10555-024-10215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Colorectal cancer (CRC) is a common cancer, with a concerning rise in early-onset CRC cases, signalling a shift in disease epidemiology. Whilst our understanding of the molecular underpinnings of CRC has expanded, the complexities underlying its initiation remain elusive, with emerging evidence implicating the microbiome in CRC pathogenesis. This review synthesizes current knowledge on the intricate interplay between the microbiome, tumour microenvironment (TME), and molecular pathways driving CRC carcinogenesis. Recent studies have reported how the microbiome may modulate the TME and tumour immune responses, consequently influencing cancer progression, and whilst specific bacteria have been linked with CRC, the underlying mechanisms remains poorly understood. By elucidating the functional links between microbial landscapes and carcinogenesis pathways, this review offers insights into how bacteria orchestrate diverse pathways of CRC development, shedding light on potential therapeutic targets and personalized intervention strategies.
Collapse
Affiliation(s)
- Jessica Permain
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Barry Hock
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Timothy Eglinton
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Rachel Purcell
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
2
|
Shang J, Liu L, Yang S, Duan B, Xie S, Meng X. A New Combination of Bifidobacterium bifidum and Lactococcus lactis Strains with Synergistic Effects Alleviates Colitis-Associated Colorectal Cancer. Foods 2024; 13:3054. [PMID: 39410090 PMCID: PMC11475813 DOI: 10.3390/foods13193054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic inflammation is a factor in the development of cancer, and probiotics play a role in preventing or treating inflammation as an adjuvant therapy. To investigate potential probiotics for the prevention of colitis-associated colorectal cancer (CAC), Bifidobacterium bifidum H3-R2 and Lactococcus lactis KLDS4.0325 were used to examine the effects on colon cancer cells and in an inflammation-related cancer animal model. The results revealed that B. bifidum H3-R2 in combination with L. lactis KLDS4.0325 caused apoptosis in colon cancer cells by increasing caspase-3 and caspase-9 protein levels, enhancing Bax expression, and lowering Bcl-2 expression. In addition, the combination of the two strains relieved the tissue damage; reduced proinflammatory cytokines, myeloperoxidase (MPO) activity, and hypoxia-inducible factor 1-alpha (HIF-1α) level; upregulated anti-inflammatory cytokines; increased colonic tight junction protein expression; regulated intestinal homeostasis by inhibiting NLRP3 inflammasome signaling pathway; and improved the imbalance of gut microbiota in animal models. Moreover, the combination of the two strains had a greater preventive impact than each strain alone. These findings are supportive of clinical studies and product development of multi-strain probiotic preparations for diseases associated with colitis.
Collapse
Affiliation(s)
- Jiacui Shang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (J.S.); (L.L.); (S.Y.); (B.D.); (S.X.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Lijun Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (J.S.); (L.L.); (S.Y.); (B.D.); (S.X.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Shuo Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (J.S.); (L.L.); (S.Y.); (B.D.); (S.X.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bofan Duan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (J.S.); (L.L.); (S.Y.); (B.D.); (S.X.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Shuiqi Xie
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (J.S.); (L.L.); (S.Y.); (B.D.); (S.X.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiangchen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (J.S.); (L.L.); (S.Y.); (B.D.); (S.X.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Geistlinger L, Mirzayi C, Zohra F, Azhar R, Elsafoury S, Grieve C, Wokaty J, Gamboa-Tuz SD, Sengupta P, Hecht I, Ravikrishnan A, Gonçalves RS, Franzosa E, Raman K, Carey V, Dowd JB, Jones HE, Davis S, Segata N, Huttenhower C, Waldron L. BugSigDB captures patterns of differential abundance across a broad range of host-associated microbial signatures. Nat Biotechnol 2024; 42:790-802. [PMID: 37697152 PMCID: PMC11098749 DOI: 10.1038/s41587-023-01872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/20/2023] [Indexed: 09/13/2023]
Abstract
The literature of human and other host-associated microbiome studies is expanding rapidly, but systematic comparisons among published results of host-associated microbiome signatures of differential abundance remain difficult. We present BugSigDB, a community-editable database of manually curated microbial signatures from published differential abundance studies accompanied by information on study geography, health outcomes, host body site and experimental, epidemiological and statistical methods using controlled vocabulary. The initial release of the database contains >2,500 manually curated signatures from >600 published studies on three host species, enabling high-throughput analysis of signature similarity, taxon enrichment, co-occurrence and coexclusion and consensus signatures. These data allow assessment of microbiome differential abundance within and across experimental conditions, environments or body sites. Database-wide analysis reveals experimental conditions with the highest level of consistency in signatures reported by independent studies and identifies commonalities among disease-associated signatures, including frequent introgression of oral pathobionts into the gut.
Collapse
Affiliation(s)
- Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Chloe Mirzayi
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Fatima Zohra
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Rimsha Azhar
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Shaimaa Elsafoury
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Clare Grieve
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Jennifer Wokaty
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Samuel David Gamboa-Tuz
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
| | | | - Aarthi Ravikrishnan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Rafael S Gonçalves
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Eric Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Vincent Carey
- Channing Division of Network Medicine, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Jennifer B Dowd
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
| | - Heidi E Jones
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Sean Davis
- Departments of Biomedical Informatics and Medicine, University of Colorado Anschutz School of Medicine, Denver, CO, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- Istituto Europeo di Oncologia (IEO) IRCSS, Milan, Italy
| | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Levi Waldron
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA.
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA.
- Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
4
|
Xiao H, Yin D, Du L, Li G, Lin J, Fang C, Shen S, Xiao G, Fang R. Effects of pork sausage on intestinal microecology and metabolism in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3413-3427. [PMID: 38111159 DOI: 10.1002/jsfa.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/01/2023] [Accepted: 12/16/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Processed meat, as an important part of the human diet, has been recognized as a carcinogen by the International Agency for Research on Cancer (IARC). Although numerous epidemiological reports supported the IARC's view, the relevant evidence of a direct association between processed meat and carcinogenicity has been insufficient and the mechanism has been unclear. This study aims to investigate the effects of pork sausage (as a representative example of processed meat) intake on gut microbial communities and metabolites of mice. Microbial communities and metabolites from all groups were analyzed using 16S rRNA gene sequencing and Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometer (UPLC-Q-TOF/MS), respectively. RESULTS The levels of Bacteroidetes, Bacteroides, Alloprevotella, Lactobacillus, Prevotella_9, Lachnospiraceae_NK4A136_group, Alistipes, Blautia, Proteobacteria, Firmicutes, Allobaculum, Helicobacter, Desulfovibrio, Clostridium_sensu_stricto_1, Ruminococcaceae_UCG-014, Lachnospiraceae_UCG-006 and Streptococcus (P < 0.05) were obviously altered in the mice fed a pork sausage diet. Twenty-seven metabolites from intestinal content samples and fourteen matabolites from whole blood samples were identified as potential biomarkers from multivariate analysis, including Phosphatidic acid (PA), Sphingomyelin (SM), Lysophosphatidylcholine (LysoPC), Diglyceride (DG), D-maltose, N-acylamides and so forth. The significant changes in these biomarkers demonstrate metabonomic variations in pork sausage treated rats, especially carbohydrate metabolism, lipid metabolism, and amino acid metabolism. CONCLUSION The present study provided evidence that a processed meat diet can increase the risk of colorectal cancer and other diseases significantly by altering the microbial community structure and disrupting the body's metabolic pathways. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hailong Xiao
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, China
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Danhan Yin
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Lidan Du
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Gaotian Li
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Jie Lin
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Chenyu Fang
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Shaolin Shen
- Hangzhou Xiaoshan Institute of Measurement for Quality and Technique Supervision, Hangzhou, China
| | - Gongnian Xiao
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ruosi Fang
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
5
|
Chen J, Nie S, Qiu X, Zheng S, Ni C, Yuan Y, Gong Y. Leveraging existing 16S rRNA microbial data to identify diagnostic biomarker in Chinese patients with gastric cancer: a systematic meta-analysis. mSystems 2023; 8:e0074723. [PMID: 37787561 PMCID: PMC10654077 DOI: 10.1128/msystems.00747-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Gastric cancer is a significant and growing health problem in China. Studies have revealed significant differences in gastric microbiota between patients with gastric cancer and non-cancerous patients, suggesting that microbiota may play a role in tumorigenesis. In this meta-analysis, existing 16S rRNA microbial data were analyzed to find combinations consisting of five genera, which had good efficacy in distinguishing gastric cancer from non-cancerous patients in multiple types of samples. These results lend support to the use of microbial markers in detecting gastric cancer. Moreover, these biomarkers are plausible candidates for further mechanistic research into the role of the microbiota in tumorigenesis.
Collapse
Affiliation(s)
- Jijun Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of GI Cancer Etiology and Prevention, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siru Nie
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of GI Cancer Etiology and Prevention, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xunan Qiu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of GI Cancer Etiology and Prevention, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuwen Zheng
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of GI Cancer Etiology and Prevention, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chuxuan Ni
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of GI Cancer Etiology and Prevention, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of GI Cancer Etiology and Prevention, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of GI Cancer Etiology and Prevention, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Maigoro AY, Muhammad M, Bello B, Useh U, Lee S. Exploration of Gut Microbiome Research in Africa: A Scoping Review. J Med Food 2023; 26:616-623. [PMID: 37523293 DOI: 10.1089/jmf.2023.k.0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
The crucial role of the gut microbiome in various diseases has led to increased interest in interventions and therapeutics targeting the human microbiome. Accordingly, the current scoping review analyzed the diseases and interventions involved in gut microbiome research in Africa. The electronic databases of PubMed, Google Scholar, and Scopus were searched from inception to October 2021. This study identified 48 studies involving 7073 study participants. Of the 48 studies, 20 (42%) used interventions to modulate gut microbiota, whereas the remaining 28 (58%) did not. Out of the total African countries, only 13% were involved in intervention-based gut microbiome research, whereas a larger proportion of 67% were not involved in any gut microbiome research. The interventions used in gut microbiome research in Africa include supplements, natural products, educational approaches, associated pathogens, albendazole, fresh daily yogurt, iron-containing lipid-based nutrient supplements, fecal microbiota transplant, and prophylactic cotrimoxazole. This scoping review highlights the current state of gut microbiome research in Africa. The findings of this review can inform the design of future studies and interventions aimed at improving gut health in African populations.
Collapse
Affiliation(s)
- Abdulkadir Yusif Maigoro
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Mubarak Muhammad
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Bashir Bello
- Lifestyle Diseases Research Entity, Faculty of Health Sciences, North-West University, Vanderbijlpark, South Africa
| | - Ushotanefe Useh
- Lifestyle Diseases Research Entity, Faculty of Health Sciences, North-West University, Vanderbijlpark, South Africa
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
7
|
Pheeha SM, Tamuzi JL, Chale-Matsau B, Manda S, Nyasulu PS. A Scoping Review Evaluating the Current State of Gut Microbiota Research in Africa. Microorganisms 2023; 11:2118. [PMID: 37630678 PMCID: PMC10458939 DOI: 10.3390/microorganisms11082118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The gut microbiota has emerged as a key human health and disease determinant. However, there is a significant knowledge gap regarding the composition, diversity, and function of the gut microbiota, specifically in the African population. This scoping review aims to examine the existing literature on gut microbiota research conducted in Africa, providing an overview of the current knowledge and identifying research gaps. A comprehensive search strategy was employed to identify relevant studies. Databases including MEDLINE (PubMed), African Index Medicus (AIM), CINAHL (EBSCOhost), Science Citation index (Web of Science), Embase (Ovid), Scopus (Elsevier), WHO International Clinical Trials Registry Platform (ICTRP), and Google Scholar were searched for relevant articles. Studies investigating the gut microbiota in African populations of all age groups were included. The initial screening included a total of 2136 articles, of which 154 were included in this scoping review. The current scoping review revealed a limited number of studies investigating diseases of public health significance in relation to the gut microbiota. Among these studies, HIV (14.3%), colorectal cancer (5.2%), and diabetes mellitus (3.9%) received the most attention. The top five countries that contributed to gut microbiota research were South Africa (16.2%), Malawi (10.4%), Egypt (9.7%), Kenya (7.1%), and Nigeria (6.5%). The high number (n = 66) of studies that did not study any specific disease in relation to the gut microbiota remains a gap that needs to be filled. This scoping review brings attention to the prevalent utilization of observational study types (38.3%) in the studies analysed and emphasizes the importance of conducting more experimental studies. Furthermore, the findings reflect the need for more disease-focused, comprehensive, and population-specific gut microbiota studies across diverse African regions and ethnic groups to better understand the factors shaping gut microbiota composition and its implications for health and disease. Such knowledge has the potential to inform targeted interventions and personalized approaches for improving health outcomes in African populations.
Collapse
Affiliation(s)
- Sara M. Pheeha
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Department of Chemical Pathology, Faculty of Medicine and Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- National Health Laboratory Service, Dr George Mukhari Academic Hospital, Pretoria 0208, South Africa
| | - Jacques L. Tamuzi
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
| | - Bettina Chale-Matsau
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- National Health Laboratory Service, Steve Biko Academic Hospital, Pretoria 0002, South Africa
| | - Samuel Manda
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter S. Nyasulu
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
8
|
Elkholy A, Avuthu N, Abdalla M, Behring M, Bajpai P, Kim HG, Header D, Abo Elwafa RAH, Saed H, Embaby A, El-Nikhely N, Obuya S, Mohamed M, Badawy AA, Nawar A, Afaq F, Rogers LQ, Bae S, Shikany JM, Bateman LB, Fouad M, Saleh M, Samuel T, Varambally S, Guda C, Arafat W, Manne U. Microbiome diversity in African American, European American, and Egyptian colorectal cancer patients. Heliyon 2023; 9:e18035. [PMID: 37483698 PMCID: PMC10362239 DOI: 10.1016/j.heliyon.2023.e18035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose Although there is an established role for microbiome dysbiosis in the pathobiology of colorectal cancer (CRC), CRC patients of various race/ethnicities demonstrate distinct clinical behaviors. Thus, we investigated microbiome dysbiosis in Egyptian, African American (AA), and European American (EA) CRC patients. Patients and methods CRCs and their corresponding normal tissues from Egyptian (n = 17) patients of the Alexandria University Hospital, Egypt, and tissues from AA (n = 18) and EA (n = 19) patients at the University of Alabama at Birmingham were collected. DNA was isolated from frozen tissues, and the microbiome composition was analyzed by 16S rRNA sequencing. Differential microbial abundance, diversity, and metabolic pathways were identified using linear discriminant analysis (LDA) effect size analyses. Additionally, we compared these profiles with our previously published microbiome data derived from Kenyan CRC patients. Results Differential microbiome analysis of CRCs across all racial/ethnic groups showed dysbiosis. There were high abundances of Herbaspirillum and Staphylococcus in CRCs of Egyptians, Leptotrichia in CRCs of AAs, Flexspiria and Streptococcus in CRCs of EAs, and Akkermansia muciniphila and Prevotella nigrescens in CRCs of Kenyans (LDA score >4, adj. p-value <0.05). Functional analyses showed distinct microbial metabolic pathways in CRCs compared to normal tissues within the racial/ethnic groups. Egyptian CRCs, compared to normal tissues, showed lower l-methionine biosynthesis and higher galactose degradation pathways. Conclusions Our findings showed altered mucosa-associated microbiome profiles of CRCs and their metabolic pathways across racial/ethnic groups. These findings provide a basis for future studies to link racial/ethnic microbiome differences with distinct clinical behaviors in CRC.
Collapse
Affiliation(s)
- Amr Elkholy
- Department of Pathology, University of Alabama at Birmingham, AL, USA
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nagavardhini Avuthu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohammed Abdalla
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Michael Behring
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Doaa Header
- Department of Gastroenterology, Faculty of Medicine, University of Alexandria, Egypt
| | - Reham AH. Abo Elwafa
- Department of Clinical Pathology, Faculty of Medicine, University of Alexandria, Egypt
| | - Hesham Saed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amira Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nefertiti El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sarah Obuya
- Moi Teaching and Referral Hospital, Moi University, Kesses, Kenya
| | - Mostafa Mohamed
- Department of Pathology, University of Alabama at Birmingham, AL, USA
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed Ashour Badawy
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, University of Alexandria, Egypt
| | - Ahmed Nawar
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, University of Alexandria, Egypt
| | - Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Laura Q. Rogers
- Division of Preventive Medicine, University of Alabama at Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sejong Bae
- Division of Preventive Medicine, University of Alabama at Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James M. Shikany
- Division of Preventive Medicine, University of Alabama at Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lori Brand Bateman
- Division of Preventive Medicine, University of Alabama at Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mona Fouad
- Division of Preventive Medicine, University of Alabama at Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mansoor Saleh
- Department of Hematology-Oncology, Aga Khan University, Nairobi, Kenya
| | - Temesgen Samuel
- Tuskegee University College of Veterinary Medicine Tuskegee, AL, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Waleed Arafat
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, University of Alexandria, Egypt
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Liu J, Huang X, Chen C, Wang Z, Huang Z, Qin M, He F, Tang B, Long C, Hu H, Pan S, Wu J, Tang W. Identification of colorectal cancer progression-associated intestinal microbiome and predictive signature construction. J Transl Med 2023; 21:373. [PMID: 37291572 PMCID: PMC10249256 DOI: 10.1186/s12967-023-04119-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/09/2023] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVE The relationship between intestinal microbiome and colorectal cancer (CRC) progression is unclear. This study aims to identify the intestinal microbiome associated with CRC progression and construct predictive labels to support the accurate assessment and treatment of CRC. METHOD The 192 patients included in the study were divided into stage I-II and stage III-IV CRC patients according to the pathological stages, and preoperative stools were collected from both groups for 16S rDNA sequencing of the intestinal microbiota. Pearson correlation and Spearman correlation coefficient analysis were used to analyze the differential intestinal microbiome and the correlation with tumor microenvironment and to predict the functional pathway. XGBoost model (XGB) and Random Forest model (RF) were used to construct the microbiome-based signature. The total RNA extraction from 17 CRC tumor simples was used for transcriptome sequencing. RESULT The Simpson index of intestinal microbiome in stage III-IV CRC were significantly lower than those in stage I-II CRC. Proteus, Parabacteroides, Alistipes and Ruminococcus etc. are significantly enriched genus in feces of CRC patients with stage III-IV. ko00514: Other types of O - glycan biosynthesis pathway is relevant with CRC progression. Alistipes indistinctus was positively correlated with mast cells, immune activators IL-6 and IL6R, and GOBP_PROTEIN_FOLDING_IN_ENDOPLASMIC_RETICULUM dominantly. The Random Forest (RF) model and eXtreme Gradient Boosting (XGBoost) model constructed with 42 CRC progression-associated differential bacteria were effective in distinguishing CRC patients between stage I-II and stage III-IV. CONCLUSIONS The abundance and diversity of intestinal microbiome may increase gradually with the occurrence and progression of CRC. Elevated fetal abundance of Proteus, Parabacteroides, Alistipes and Ruminococcus may contribute to CRC progression. Enhanced synthesis of O - glycans may result in CRC progression. Alistipes indistinctus may play a facilitated role in mast cell maturation by boosting IL-6 production. Alistipes indistinctus may work in the correct folding of endoplasmic reticulum proteins in CRC, reducing ER stress and prompting the survival and deterioration of CRC, which may owe to the enhanced PERK expression and activation of downstream UPR by Alistipes indistinctus. The CRC progression-associated differential intestinal microbiome identified in our study can be served as potential microbial markers for CRC staging prediction.
Collapse
Affiliation(s)
- Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Chuanbin Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zhen Wang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zigui Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Mingjian Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Fuhai He
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Binzhe Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Hong Hu
- School of Public Health, Guangxi Medical University, Nanning, The People's Republic of China
| | - Shuibo Pan
- School of Public Health, Guangxi Medical University, Nanning, The People's Republic of China
| | - Junduan Wu
- School of Public Health, Guangxi Medical University, Nanning, The People's Republic of China.
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| |
Collapse
|
10
|
Han B, Zhai Y, Li X, Zhao H, Sun C, Zeng Y, Zhang W, Lu J, Kai G. Total flavonoids of Tetrastigma hemsleyanum Diels et Gilg inhibits colorectal tumor growth by modulating gut microbiota and metabolites. Food Chem 2023; 410:135361. [PMID: 36610085 DOI: 10.1016/j.foodchem.2022.135361] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/29/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Tetrastigma hemsleyanum Diels et Gilg is a dietary supplement in southern China. The total flavonoids of T. hemsleyanum (THTF) can be used for gastrointestinal disease treatment. Colorectal cancer (CRC) is associated with gut microbiota dysbiosis. This study was designed to investigate the effect of THTF on CRC from gut microbiota and fecal metabolomics. THTF (120 mg/kg) oral gavage reduced tumor growth and protected intestinal function (p-p65/p65, ZO-1) in HCT116 xenografts. THTF increased probiotics Bifidobacteriales, Bifidobacteriaceae, Bifidobacterium, Bifidobacterium pseudolongum, and decreased "harmful" bacteria Bacteroidota, Firmicutes, Bacteroidia, Rikenellaceae, Odoribacter, Alistipes richness. Furthermore, THTF restored abnormal fecal metabolite levels. It showed a strong correlation among gut microbiota, metabolites, and tumor weight. Finally, THTF promoted Bifidobacterium pseudolongum growth in vitro, whose cell-free supernatant further inhibited HCT116 cell proliferation and clonogenicity. Together, THTF delays CRC tumor growth by maintaining microbiota homeostasis, restoring fecal metabolites, and protecting intestinal function.
Collapse
Affiliation(s)
- Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yufei Zhai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xuan Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chengtao Sun
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuqing Zeng
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weiping Zhang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
11
|
Chen C, Chen K, Huang Z, Huang X, Wang Z, He F, Qin M, Long C, Tang B, Mo X, Liu J, Tang W. Identification of intestinal microbiome associated with lymph-vascular invasion in colorectal cancer patients and predictive label construction. Front Cell Infect Microbiol 2023; 13:1098310. [PMID: 37249979 PMCID: PMC10215531 DOI: 10.3389/fcimb.2023.1098310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/04/2023] [Indexed: 05/31/2023] Open
Abstract
Objective To identify differences between the composition, abundance, and biological function of the intestinal microbiome of patients with and without lymph-vascular invasion (LVI) colorectal cancer (CRC) and to construct predictive labels to support accurate assessment of LVI in CRC. Method 134 CRC patients were included, which were divided into two groups according to the presence or absence of LVI, and their intestinal microbiomes were sequenced by 16SrRNA and analyzed for differences. The transcriptome sequencing data of 9 CRC patients were transformed into immune cells abundance matrix by CIBERSORT algorithm, and the correlation among LVI-associated differential intestinal microbiomes, immune cells, immune-related genes and LVI-associated differential GO items and KEGG pathways were analyzed. A random forest (RF) and eXtreme Gradient Boosting (XGB) model were constructed to predict the LVI of CRC patients based on the differential microbiome. Result There was no significant difference in α-diversity and β-diversity of intestinal microbiome between CRC patients with and without LVI (P > 0.05). Linear discriminant analysis Effect Size (LEfSe) analysis showed 34 intestinal microbiomes enriched in CRC patients of the LVI group and 5 intestinal microbiomes were significantly enriched in CRC patients of the non-lymph-vascular invasion (NLVI) group. The RF and XGB prediction models constructed with the top 15% of the LVI-associated differential intestinal microbiomes ranked by feature significance had good efficacy. Conclusions There are 39 intestinal flora with significantly different species abundance between the LVI and NLVI groups. g:Alistipes.s:Alistipes_indistinctus is closely associated with colorectal cancer vascular invasion. LVI-associated differential intestinal flora may be involved in regulating the infiltration of immune cells in CRC and influencing the expression of immune-related genes. LVI-associated differential intestinal flora may influence the process of vascular invasion in CRC through a number of potential biological functions. RF prediction models and XGB prediction models constructed based on microbial markers of gut flora can be used to predict CRC-LVI conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xianwei Mo
- *Correspondence: Weizhong Tang, ; Jungang Liu, ; Xianwei Mo,
| | - Jungang Liu
- *Correspondence: Weizhong Tang, ; Jungang Liu, ; Xianwei Mo,
| | - Weizhong Tang
- *Correspondence: Weizhong Tang, ; Jungang Liu, ; Xianwei Mo,
| |
Collapse
|
12
|
Masood M, Nasser MI. Gut microbial metabolites and colorectal cancer. MICROBIAL BIOMOLECULES 2023:353-373. [DOI: 10.1016/b978-0-323-99476-7.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Islam MZ, Tran M, Xu T, Tierney BT, Patel C, Kostic AD. Reproducible and opposing gut microbiome signatures distinguish autoimmune diseases and cancers: a systematic review and meta-analysis. MICROBIOME 2022; 10:218. [PMID: 36482486 PMCID: PMC9733034 DOI: 10.1186/s40168-022-01373-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/16/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND The gut microbiome promotes specific immune responses, and in turn, the immune system has a hand in shaping the microbiome. Cancer and autoimmune diseases are two major disease families that result from the contrasting manifestations of immune dysfunction. We hypothesized that the opposing immunological profiles between cancer and autoimmunity yield analogously inverted gut microbiome signatures. To test this, we conducted a systematic review and meta-analysis on gut microbiome signatures and their directionality in cancers and autoimmune conditions. METHODOLOGY We searched PubMed, Web of Science, and Embase to identify relevant articles to be included in this study. The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements and PRISMA 2009 checklist. Study estimates were pooled by a generic inverse variance random-effects meta-analysis model. The relative abundance of microbiome features was converted to log fold change, and the standard error was calculated from the p-values, sample size, and fold change. RESULTS We screened 3874 potentially relevant publications. A total of 82 eligible studies comprising 37 autoimmune and 45 cancer studies with 4208 healthy human controls and 5957 disease cases from 27 countries were included in this study. We identified a set of microbiome features that show consistent, opposite directionality between cancers and autoimmune diseases in multiple studies. Fusobacterium and Peptostreptococcus were the most consistently increased genera among the cancer cases which were found to be associated in a remarkable 13 (+0.5 log fold change in 5 studies) and 11 studies (+3.6 log fold change in 5 studies), respectively. Conversely, Bacteroides was the most prominent genus, which was found to be increased in 12 autoimmune studies (+0.2 log fold change in 6 studies) and decreased in six cancer studies (-0.3 log fold change in 4 studies). Sulfur-metabolism pathways were found to be the most frequent pathways among the member of cancer-increased genus and species. CONCLUSIONS The surprising reproducibility of these associations across studies and geographies suggests a shared underlying mechanism shaping the microbiome across cancers and autoimmune diseases. Video Abstract.
Collapse
Affiliation(s)
- Md Zohorul Islam
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Melissa Tran
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Tao Xu
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Braden T Tierney
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Chirag Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Aleksandar David Kostic
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA.
| |
Collapse
|
14
|
Morales C, Rojas G, Rebolledo C, Rojas-Herrera M, Arias-Carrasco R, Cuadros-Orellana S, Maracaja-Coutinho V, Saavedra K, Leal P, Lanas F, Salazar LA, Saavedra N. Characterization of microbial communities from gut microbiota of hypercholesterolemic and control subjects. Front Cell Infect Microbiol 2022; 12:943609. [PMID: 36523636 PMCID: PMC9745040 DOI: 10.3389/fcimb.2022.943609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction In recent years, several studies have evidenced the importance of the microbiome to host physiology as metabolism regulator, along with its potential role in triggering various diseases. In this study, we analyzed the gut microbiota in hypercholesterolemic (cases) and normocholesterolemic (controls) individuals to identify characteristic microbial signature for each condition. Methods Stool samples were obtained from 57 adult volunteers (27 hypercholesterolemic and 30 controls). The taxonomic profiling of microbial communities was performed using high-throughput sequencing of 16S rRNA V3-V4 amplicons, followed by data analysis using Quantitative Insights Into Microbial Ecology 2 (QIIME2) and linear discriminant analysis (LDA) effect size (LEfSe). Results Significant differences were observed in weight, height, body mass index (BMI) and serum levels of triglycerides, total cholesterol and low-density lipoprotein cholesterol (LDL-C) between the groups (p<0.05). LEfSe showed differentially abundant prokaryotic taxa (α=0.05, LDA score > 2.0) in the group of hypercholesterolemic individuals (Methanosphaera, Rothia, Chromatiales, Clostridiales, Bacillaceae and Coriobacteriaceae) and controls (Faecalibacterium, Victivallis and Selenomonas) at various taxonomic levels. In addition, through the application of Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2), the predominance of pathways related to biosynthesis in hypercholesterolemic patients was established, compared to controls in which degradation pathways were predominant. Finally, in the analysis of co-occurrence networks, it was possible to identify associations between the microorganisms present in both studied groups. Conclusion Our results point out to unique microbial signatures, which likely play a role on the cholesterol metabolism in the studied population.
Collapse
Affiliation(s)
- Cristian Morales
- Centro de Biología Molecular y Farmacogenética, Núcleo Científico-Tecnológico en Biorecursos BIOREN, Universidad de La Frontera, Temuco, Chile,Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Temuco, Chile
| | - Gabriel Rojas
- Centro de Biología Molecular y Farmacogenética, Núcleo Científico-Tecnológico en Biorecursos BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Camilo Rebolledo
- Centro de Biología Molecular y Farmacogenética, Núcleo Científico-Tecnológico en Biorecursos BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Marcelo Rojas-Herrera
- Centro de Genética y Genómica, Facultad de Medicina, Universidad del Desarrollo, Santiago, Chile,Subdepartamento de Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Raúl Arias-Carrasco
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Sara Cuadros-Orellana
- Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases - ACCDiS, Facultad de Química y Ciencias Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Kathleen Saavedra
- Centro de Biología Molecular y Farmacogenética, Núcleo Científico-Tecnológico en Biorecursos BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Pamela Leal
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Temuco, Chile
| | - Fernando Lanas
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Luis A. Salazar
- Centro de Biología Molecular y Farmacogenética, Núcleo Científico-Tecnológico en Biorecursos BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Nicolás Saavedra
- Centro de Biología Molecular y Farmacogenética, Núcleo Científico-Tecnológico en Biorecursos BIOREN, Universidad de La Frontera, Temuco, Chile,*Correspondence: Nicolás Saavedra,
| |
Collapse
|
15
|
Obuya S, Elkholy A, Avuthu N, Behring M, Bajpai P, Agarwal S, Kim HG, El-Nikhely N, Akinyi P, Orwa J, Afaq F, Abdalla M, Michael A, Farouk M, Bateman LB, Fouad M, Saleh M, Guda C, Manne U, Arafat W. A signature of Prevotella copri and Faecalibacterium prausnitzii depletion, and a link with bacterial glutamate degradation in the Kenyan colorectal cancer patients. J Gastrointest Oncol 2022; 13:2282-2292. [PMID: 36388691 PMCID: PMC9660062 DOI: 10.21037/jgo-22-116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/16/2022] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the fifth most diagnosed cancer in Sub-Saharan Africa. In Kenya, CRC incidence rates tripled from 1997 to 2017. In the Moi Teaching and Referral Hospital, Moi University, there has been an increase in CRC cases, notably for younger patients. A suggested pathobiology for this increase is gut microbiome dysbiosis. Since, for the Kenyan CRC patient population, microbiome studies are rare, there is a need for a better understanding of how microbiome dysbiosis influences CRC epidemiology in Kenya. In this single-center study, the focus was on profiling the gut microbiome of Kenyan CRC patients and healthy volunteers and evaluating associations between microbiome profiles and the age of CRC patients. METHODS The gut mucosa-associated microbiome of 18 CRC patients and 18 healthy controls were determined by 16S rRNA sequencing and analyzed for alpha and beta diversity, differential abundance, and microbial metabolic profiling. RESULTS Alpha diversity metrics showed no significant differences, but beta diversity metrics showed dissimilarities in the microbial communities between CRC patients and healthy controls. The most underrepresented species in the CRC group were Prevotella copri (P. copri) and Faecalibacterium prausnitzii (F. prausnitzii), although Bacteroides fragilis (B. fragilis) and Prevotella nigrescens were overrepresented (linear discriminant analysis, LDA score >2, P<0.05). Also, for CRC patients, significant metagenomic functional alterations were evident in microbial glutamate metabolic pathways (L-glutamate degradation VIII was enriched, and L-glutamate and L-glutamine biosynthesis were diminished) (P<0.05, log2 Fold Change >1). Moreover, the microbiome composition was different for patients under 40 years of age compared to older patients (LDA score >2, P<0.05). CONCLUSIONS Microbiome and microbial metabolic profiles of CRC patients are different from those of healthy individuals. CRC microbiome dysbiosis, particularly P. copri and F. prausnitzii depletion and glutamate metabolic alterations, are evident in Kenyan CRC patients.
Collapse
Affiliation(s)
- Sarah Obuya
- Moi Teaching and Referral Hospital, Moi University, Kesses, Kenya
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Amr Elkholy
- Department of Pathology, University of Alabama at Birmingham, AL, USA
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nagavardhini Avuthu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael Behring
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Nefertiti El-Nikhely
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - James Orwa
- Department of Population Health, Aga Khan University, Nairobi, Kenya
| | - Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Mohammed Abdalla
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anwar Michael
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mohamed Farouk
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Lori Brand Bateman
- Division of Preventive Medicine, University of Alabama at Birmingham, AL, USA
- Department of Hematology-Oncology, Aga Khan University, Nairobi, Kenya
| | - Mona Fouad
- Division of Preventive Medicine, University of Alabama at Birmingham, AL, USA
- Department of Hematology-Oncology, Aga Khan University, Nairobi, Kenya
| | - Mansoor Saleh
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, AL, USA
- Department of Hematology-Oncology, Aga Khan University, Nairobi, Kenya
| | - Waleed Arafat
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
16
|
Suga D, Mizutani H, Fukui S, Kobayashi M, Shimada Y, Nakazawa Y, Nishiura Y, Kawasaki Y, Moritani I, Yamanaka Y, Inoue H, Ojima E, Mohri Y, Nakagawa H, Dohi K, Takaba K, Wada H, Shiraki K. The gut microbiota composition in patients with right- and left-sided colorectal cancer and after curative colectomy, as analyzed by 16S rRNA gene amplicon sequencing. BMC Gastroenterol 2022; 22:313. [PMID: 35752764 PMCID: PMC9233765 DOI: 10.1186/s12876-022-02382-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/06/2022] [Indexed: 02/02/2023] Open
Abstract
Background Gut pathological microbial imbalance or dysbiosis is closely associated with colorectal cancer. Although there are observable differences in molecular and clinical characteristics between patients with right- and left-sided colon cancer, differences in their gut microbiomes have not been thoroughly investigated. Furthermore, subsequent changes in microbiota status after partial colectomy remain unknown. We examined the human gut microbiota composition to determine its relationship with colon cancer and partial colon resection according to location. Methods Stool samples from forty-one subjects (10 in the control group, 10 in the right-sided colon cancer [RCC] group, 6 in the sigmoid colon cancer [SCC] group, 9 in the right colon resection [RCR] group and 6 in the sigmoid colon resection [SCR] group) were collected, and DNA was extracted. After terminal restriction fragment length polymorphism (T-RFLP) analysis, the samples were subjected to 16S rRNA gene amplicon sequencing, and the metabolic function of the microbiota was predicted using PICRUSt2. Results T-RFLP analysis showed a reduced ratio of clostridial cluster XIVa in the SCC patients and clostridial cluster IX in the RCC patients, although these changes were not evident in the RCR or SCR patients. 16S rRNA gene amplicon sequencing demonstrated that the diversity of the gut microbiota in the RCC group was higher than that in the control group, and the diversity in the SCR group was significantly higher than that in the RCR group. Principal coordinate analysis (PCoA) revealed significant differences according to the group. Analyses of the microbiota revealed that Firmicutes was significantly dominant in the RCC group and that the SCC group had a higher abundance of Verrucomicrobia. At the genus level, linear discriminant analysis effect size (LEfSe) revealed several bacteria, such as Ruminococcaceae, Streptococcaceae, Clostridiaceae, Gemellaceae, and Desulfovibrio, in the RCC group and several oral microbiomes in the SCC group. Metabolic function prediction revealed that cholesterol transport- and metabolism-related enzymes were specifically upregulated in the RCC group and that cobalamin metabolism-related enzymes were downregulated in the SCC group. Conclusion Gut microbial properties differ between RCC and SCC patients and between right hemicolectomy and sigmoidectomy patients and may contribute to clinical manifestations.
Collapse
Affiliation(s)
- Daisuke Suga
- Department of Gastroenterology, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Hiroki Mizutani
- Department of Gastroenterology, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Shunsuke Fukui
- Department of Gastroenterology, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Mayu Kobayashi
- Department of Gastroenterology, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Yasuaki Shimada
- Department of Gastroenterology, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Yuuichi Nakazawa
- Department of Gastroenterology, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Yuuki Nishiura
- Department of Gastroenterology, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Yuuya Kawasaki
- Department of Gastroenterology, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Isao Moritani
- Department of Gastroenterology, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Yutaka Yamanaka
- Department of Gastroenterology, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Hidekazu Inoue
- Department of Gastroenterology, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Eiki Ojima
- Department of Surgery, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Yasuhiko Mohri
- Department of Surgery, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Kei Takaba
- Department of Research Center, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Hideo Wada
- Department of Research Center, Mie General Medical Center, Yokkaichi, 510-8561, Japan
| | - Katsuya Shiraki
- Department of Gastroenterology, Mie General Medical Center, Yokkaichi, 510-8561, Japan. .,Department of Research Center, Mie General Medical Center, Yokkaichi, 510-8561, Japan. .,Department of Clinical Medicine, Mie Graduate School of Medicine, Mie General Medical Center, Yokkaichi, 510-8561, Japan.
| |
Collapse
|
17
|
Microbiome Analysis in Patients with Colorectal Cancer by 16S Ribosomal RNA Sequencing in the Southeast of Iran. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-121119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Colorectal cancer (CRC) is the third most common malignant tumor worldwide. Emerging evidence suggests that dysbiosis of the colon microbiome may be involved in CRC development. Objectives: The present study aimed to compare the composition and diversity of the colon microbiome by high-throughput 16S ribosomal RNA (rRNA) sequencing between CRC patients and healthy controls. Microbiome composition and diversity were also examined based on gender. Methods: The colon microbiome richness and diversity of samples from 17 CRC patients and 13 healthy controls were analyzed by 16S rRNA sequencing. Alpha and beta diversity were calculated to determine the differences in colon microbiome diversity. Results: Alpha and beta diversity showed significant differences between the CRC and healthy control groups regarding the microbiome. Our results showed that CRC samples had the highest richness and diversity. The total number (P ≤ 0.01), phylogenetic diversity (P ≤ 0.01), Chao1 (P ≤ 0.01), Shannon (P ≤ 0.05), and Simpson (P ≤ 0.01) indices were significantly higher in the CRC group than in the healthy control group. In addition, the comparison between females and males showed that the microbiome diversity was higher in the CRC female (CRC-F) group than in other groups. Prevotella, Fusobacterium, Akkermansia, Leptotrichia, Streptococcus, and ParaBacteroides were more commonly observed in the CRC group, while Bacteroides, Enterobacteriaceae (unknown genus), Ruminococcus, and Campylobacter were more commonly observed in the healthy control group. Conclusions: This study showed differences between the CRC and healthy control groups regarding the diversity and composition of the colon microbiome, suggesting a contribution of the microbiome in the development and progression of CRC.
Collapse
|
18
|
Allali I, Abotsi RE, Tow LA, Thabane L, Zar HJ, Mulder NM, Nicol MP. Human microbiota research in Africa: a systematic review reveals gaps and priorities for future research. MICROBIOME 2021; 9:241. [PMID: 34911583 PMCID: PMC8672519 DOI: 10.1186/s40168-021-01195-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/14/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND The role of the human microbiome in health and disease is an emerging and important area of research; however, there is a concern that African populations are under-represented in human microbiome studies. We, therefore, conducted a systematic survey of African human microbiome studies to provide an overview and identify research gaps. Our secondary objectives were: (i) to determine the number of peer-reviewed publications; (ii) to identify the extent to which the researches focused on diseases identified by the World Health Organization [WHO] State of Health in the African Region Report as being the leading causes of morbidity and mortality in 2018; (iii) to describe the extent and pattern of collaborations between researchers in Africa and the rest of the world; and (iv) to identify leadership and funders of the studies. METHODOLOGY We systematically searched Medline via PubMed, Scopus, CINAHL, Academic Search Premier, Africa-Wide Information through EBSCOhost, and Web of Science from inception through to 1st April 2020. We included studies that characterized samples from African populations using next-generation sequencing approaches. Two reviewers independently conducted the literature search, title and abstract, and full-text screening, as well as data extraction. RESULTS We included 168 studies out of 5515 records retrieved. Most studies were published in PLoS One (13%; 22/168), and samples were collected from 33 of the 54 African countries. The country where most studies were conducted was South Africa (27/168), followed by Kenya (23/168) and Uganda (18/168). 26.8% (45/168) focused on diseases of significant public health concern in Africa. Collaboration between scientists from the United States of America and Africa was most common (96/168). The first and/or last authors of 79.8% of studies were not affiliated with institutions in Africa. Major funders were the United States of America National Institutes of Health (45.2%; 76/168), Bill and Melinda Gates Foundation (17.8%; 30/168), and the European Union (11.9%; 20/168). CONCLUSIONS There are significant gaps in microbiome research in Africa, especially those focusing on diseases of public health importance. There is a need for local leadership, capacity building, intra-continental collaboration, and national government investment in microbiome research within Africa. Video Abstract.
Collapse
Affiliation(s)
- Imane Allali
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Centre of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Regina E Abotsi
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Lemese Ah Tow
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lehana Thabane
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Biostatistics Unit, Father Sean O'Sullivan Research Centre, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, Ontario, Canada
- Centre for Evaluation of Medicine, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Centre for Evidence-based Health Care, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nicola M Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark P Nicol
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- School of Biomedical Sciences, University of Western Australia, M504, Perth, WA, 6009, Australia.
| |
Collapse
|
19
|
Cai C, Zhang X, Liu Y, Shen E, Feng Z, Guo C, Han Y, Ouyang Y, Shen H. Gut microbiota imbalance in colorectal cancer patients, the risk factor of COVID-19 mortality. Gut Pathog 2021; 13:70. [PMID: 34863291 PMCID: PMC8643189 DOI: 10.1186/s13099-021-00466-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background COVID-19 pandemic is sweeping across the world. Previous studies have shown that gut microbiota is associated with COVID-19, and operational taxonomic unit (OTU) composed of Blautia genus, Lactobacillus genus, and Ruminococcus genus of Firmicutes is correlated with the severity of COVID-19. Gut microbiota imbalance in colorectal cancer patients may lead to the variation of OTU. Results Based on the GMrepo database, the gut microbiota of 1374 patients with colorectal neoplasms and 27,329 healthy people was analyzed to investigate the differences in the abundance of microbes between colorectal neoplasms patients and healthy people. Furthermore, We collected feces samples from 12 patients with colorectal cancer and 8 healthy people in Xiangya hospital for metabolomic analysis to investigate the potential mechanisms. Our study showed that the abundance of Blautia and Ruminococcus was significantly increased in colorectal neoplasms, which may increase the severity of COVID-19. The gender and age of patients may affect the severity of COVID-19 by shaping the gut microbiota, but the BMI of patients does not. Conclusions Our work draws an initial point that gut microbiota imbalance is a risk factor of COVID-19 mortality and gut microbiota may provide a new therapeutic avenue for colorectal cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00466-w.
Collapse
Affiliation(s)
- Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyang Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Edward Shen
- Department of Life Science, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cao Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanhong Ouyang
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 19 Xiuhua Road, Haikou, 570311, Hainan, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
20
|
Abstract
Colorectal cancer (CRC) is one of the most prevalent, most lethal cancers in the world. Increasing evidence suggests that the intestinal microbiota is closely related to the pathogenesis and prognosis of CRC. The normal microbiota plays an essential role in maintaining gut barrier function and the immune microenvironment. Recent studies have identified carcinogenic bacteria such as enterotoxigenic Bacteroides fragilis (ETBF) and Streptococcus gallolyticus (S. gallolyticus), as well as protective bacterial such as Akkermansia muciniphila (A. muciniphila), as potential targets of CRC treatment. Gut microbiota modulation aims to restore gut dysbiosis, regulate the intestinal immune system and prevent from pathogen invasion, all of which are beneficial for CRC prevention and prognosis. The utility of probiotics, prebiotics, postbiotics, fecal microbiota transplantation and dietary inventions to treat CRC makes them novel microbe-based management tools. In this review, we describe the mechanisms involved in bacteria-derived colorectal carcinogenesis and summarized novel bacteria-related therapies for CRC. In summary, we hope to facilitate clinical applications of intestinal bacteria for preventing and treating CRC.
Collapse
|
21
|
Choi S, Chung J, Cho ML, Park D, Choi SS. Analysis of changes in microbiome compositions related to the prognosis of colorectal cancer patients based on tissue-derived 16S rRNA sequences. J Transl Med 2021; 19:485. [PMID: 34844611 PMCID: PMC8628381 DOI: 10.1186/s12967-021-03154-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/18/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Comparing the microbiome compositions obtained under different physiological conditions has frequently been attempted in recent years to understand the functional influence of microbiomes in the occurrence of various human diseases. METHODS In the present work, we analyzed 102 microbiome datasets containing tumor- and normal tissue-derived microbiomes obtained from a total of 51 Korean colorectal cancer (CRC) patients using 16S rRNA amplicon sequencing. Two types of comparisons were used: 'normal versus (vs.) tumor' comparison and 'recurrent vs. nonrecurrent' comparison, for which the prognosis of patients was retrospectively determined. RESULTS As a result, we observed that in the 'normal vs. tumor' comparison, three phyla, Firmicutes, Actinobacteria, and Bacteroidetes, were more abundant in normal tissues, whereas some pathogenic bacteria, including Fusobacterium nucleatum and Bacteroides fragilis, were more abundant in tumor tissues. We also found that bacteria with metabolic pathways related to the production of bacterial motility proteins or bile acid secretion were more enriched in tumor tissues. In addition, the amount of these two pathogenic bacteria was positively correlated with the expression levels of host genes involved in the cell cycle and cell proliferation, confirming the association of microbiomes with tumorigenic pathway genes in the host. Surprisingly, in the 'recurrent vs. nonrecurrent' comparison, we observed that these two pathogenic bacteria were more abundant in the patients without recurrence than in the patients with recurrence. The same conclusion was drawn in the analysis of both normal and tumor-derived microbiomes. CONCLUSIONS Taken together, it seems that understanding the composition of tissue microbiomes is useful for predicting the prognosis of CRC patients.
Collapse
Affiliation(s)
- Sukjung Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | | | - Mi-La Cho
- Department of Medical Life Science, College of Medicine, Catholic University of Korea, Seoul, 06591, Republic of Korea
| | | | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
22
|
Wang D, Cheng J, Zhang J, Zhou F, He X, Shi Y, Tao Y. The Role of Respiratory Microbiota in Lung Cancer. Int J Biol Sci 2021; 17:3646-3658. [PMID: 34512172 PMCID: PMC8416743 DOI: 10.7150/ijbs.51376] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Recently, the impact of microorganisms on tumor growth and metastasis has attracted great attention. The pathogenesis and progression of lung cancer are related to an increase in respiratory bacterial load as well as changes in the bacterial community because the microbiota affects tumors in many ways, including canceration, metastasis, angiogenesis, and treatment. The microbiota may increase tumor susceptibility by altering metabolism and immune responses, promoting inflammation, and increasing toxic effects. The microbiota can regulate tumor metastasis by altering multiple cell signaling pathways and participate in tumor angiogenesis through vascular endothelial growth factors (VEGF), endothelial cells (ECs), inflammatory factors and inflammatory cells. Tumor angiogenesis not only maintains tumor growth at the primary site but also promotes tumor metastasis and invasion. Therefore, angiogenesis is an important mediator of the interaction between microorganisms and tumors. The microbiota also plays a part in antitumor therapy. Alteration of the microbiota caused by antibiotics can regulate tumor growth and metastasis. Moreover, the microbiota also influences the efficacy and toxicity of tumor immunotherapy and chemotherapy. Finally, the effects of air pollution, a risk factor for lung cancer, on microorganisms and the possible role of respiratory microorganisms in the effects of air pollution on lung cancer are discussed.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Jingyi Cheng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Jia Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Fangyu Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Xiao He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Ying Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011 China
| |
Collapse
|
23
|
Altered fecal microbiota composition in individuals who abuse methamphetamine. Sci Rep 2021; 11:18178. [PMID: 34518605 PMCID: PMC8437956 DOI: 10.1038/s41598-021-97548-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
As a severe public health problem, methamphetamine (METH) abuse places a heavy burden on families and society. A growing amount of evidence has indicated communication between gut microbiota and the CNS in drug addiction, with associations to neural, endocrine and immune pathways. Thus, we searched for alterations in the gut microbiota and their potential effects in METH users through 16S rRNA gene sequencing. A decreased Shannon index indicated lower bacterial diversity in the METH users than in the age-matched control group. The gut microbial community composition in the METH users was also altered, including reductions in Deltaproteobacteria and Bacteroidaceae abundances and increases in Sphingomonadales, Xanthomonadales, Romboutsia and Lachnospiraceae abundances. Moreover, the Fusobacteria abundance was correlated with the duration of METH use. Enterobacteriaceae, Ruminococcaceae, Bacteroides, and Faecalibacterium had statistically significant correlations with items related to the positive and negative symptoms of schizophrenia and to general psychopathology in the METH users, and all have previously been reported to be altered in individuals with psychotic syndromes, especially depression. Abstraction, one of the items of the cognitive assessment, was positively related to Blautia. These findings revealed alterations in the gut microbiota of METH users, and these alterations may play a role in psychotic syndrome and cognitive impairment. Although the mechanisms behind the links between these disorders and METH abuse are unknown, the relationships may indicate similarities in the pathogenesis of psychosis induced by METH abuse and other causes, providing a new paradigm for addiction and METH use disorder treatment.
Collapse
|
24
|
Hamdi Y, Zass L, Othman H, Radouani F, Allali I, Hanachi M, Okeke CJ, Chaouch M, Tendwa MB, Samtal C, Mohamed Sallam R, Alsayed N, Turkson M, Ahmed S, Benkahla A, Romdhane L, Souiai O, Tastan Bishop Ö, Ghedira K, Mohamed Fadlelmola F, Mulder N, Kamal Kassim S. Human OMICs and Computational Biology Research in Africa: Current Challenges and Prospects. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:213-233. [PMID: 33794662 PMCID: PMC8060717 DOI: 10.1089/omi.2021.0004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Following the publication of the first human genome, OMICs research, including genomics, transcriptomics, proteomics, and metagenomics, has been on the rise. OMICs studies revealed the complex genetic diversity among human populations and challenged our understandings of genotype-phenotype correlations. Africa, being the cradle of the first modern humans, is distinguished by a large genetic diversity within its populations and rich ethnolinguistic history. However, the available human OMICs tools and databases are not representative of this diversity, therefore creating significant gaps in biomedical research. African scientists, students, and publics are among the key contributors to OMICs systems science. This expert review examines the pressing issues in human OMICs research, education, and development in Africa, as seen through a lens of computational biology, public health relevant technology innovation, critically-informed science governance, and how best to harness OMICs data to benefit health and societies in Africa and beyond. We underscore the disparities between North and Sub-Saharan Africa at different levels. A harmonized African ethnolinguistic classification would help address annotation challenges associated with population diversity. Finally, building on the existing strategic research initiatives, such as the H3Africa and H3ABioNet Consortia, we highly recommend addressing large-scale multidisciplinary research challenges, strengthening research collaborations and knowledge transfer, and enhancing the ability of African researchers to influence and shape national and international research, policy, and funding agendas. This article and analysis contribute to a deeper understanding of past and current challenges in the African OMICs innovation ecosystem, while also offering foresight on future innovation trajectories.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Lyndon Zass
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI Africa Wellcome Trust Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Fouzia Radouani
- Chlamydiae and Mycoplasmas Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Imane Allali
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI Africa Wellcome Trust Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mariem Hanachi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Faculty of Science of Bizerte, Zarzouna, University of Carthage, Tunis, Tunisia
| | - Chiamaka Jessica Okeke
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Melek Chaouch
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Maureen Bilinga Tendwa
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Chaimae Samtal
- Laboratory of Biotechnology, Environment, Agri-food and Health, Faculty of Sciences Dhar El Mahraz–Sidi Mohammed Ben Abdellah University, Fez, Morocco
- University of Mohamed Premier, Oujda, Morocco
| | - Reem Mohamed Sallam
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt
| | - Nihad Alsayed
- Centre for Bioinformatics and Systems Biology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Michael Turkson
- The National Institute for Mathematical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samah Ahmed
- Centre for Bioinformatics and Systems Biology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Lilia Romdhane
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Faculty of Science of Bizerte, Zarzouna, University of Carthage, Tunis, Tunisia
| | - Oussema Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Faisal Mohamed Fadlelmola
- Centre for Bioinformatics and Systems Biology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI Africa Wellcome Trust Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Samar Kamal Kassim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
25
|
Sehli S, Allali I, Chahboune R, Bakri Y, Al Idrissi N, Hamdi S, Nejjari C, Amzazi S, Ghazal H. Metagenomics Approaches to Investigate the Gut Microbiome of COVID-19 Patients. Bioinform Biol Insights 2021; 15:1177932221999428. [PMID: 33786001 PMCID: PMC7961713 DOI: 10.1177/1177932221999428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Over the last decade, it has become increasingly apparent that the microbiome is a central component in human well-being and illness. However, to establish innovative therapeutic methods, it is crucial to learn more about the microbiota. Thereby, the area of metagenomics and associated bioinformatics methods and tools has become considerable in the study of the human microbiome biodiversity. The application of these metagenomics approaches to studying the gut microbiome in COVID-19 patients could be one of the promising areas of research in the fight against the SARS-CoV-2 infection and disparity. Therefore, understanding how the gut microbiome is affected by or could affect the SARS-CoV-2 is very important. Herein, we present an overview of approaches and methods used in the current published studies on COVID-19 patients and the gut microbiome. The accuracy of these researches depends on the appropriate choice and the optimal use of the metagenomics bioinformatics platforms and tools. Interestingly, most studies reported that COVID-19 patients' microbiota are enriched with opportunistic microorganisms. The choice and use of appropriate computational tools and techniques to accurately investigate the gut microbiota is therefore critical in determining the appropriate microbiome profile for diagnosis and the most reliable antiviral or preventive microbial composition.
Collapse
Affiliation(s)
- Sofia Sehli
- Department of fundamental sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Imane Allali
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Rajaa Chahboune
- School of Medicine and Pharmacy, University Abdelmalek Essaâdi, Tangier, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Najib Al Idrissi
- Department of Surgery, School of medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Salsabil Hamdi
- Environmental Health Laboratory, Department of Research, Institut Pasteur Du Maroc, Casablanca, Morocco
| | - Chakib Nejjari
- Department of Epidemiology and Biostatistics, International School of Public Health, Mohammed VI University of Health Sciences, Casablanca, Morocco
- Department of Epidemiology and Public Health, Faculty of Medicine, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Saaïd Amzazi
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Hassan Ghazal
- Department of fundamental sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
- Scientific Department, National Centre for Scientific and Technical Research, Rabat, Morocco
| |
Collapse
|
26
|
Gut-Lung Axis in COVID-19. Interdiscip Perspect Infect Dis 2021; 2021:6655380. [PMID: 33777139 PMCID: PMC7979298 DOI: 10.1155/2021/6655380] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is a pandemic infection of the respiratory system caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The viral ribonucleic acid (RNA) was found in many parts of the COVID-19 patients including the stool, suggesting a potential interaction with the host's gut microbiome. The gut microbiome also plays major roles in immunity and inflammation. It also impacts pulmonary functions through the gut-lung axis. There have been recent reports of the importance of the host microbiome in infection and pathogenicity. The understanding of the gut and lung microbiomes would open the gate to new therapeutic approaches.
Collapse
|
27
|
Young C, Wood HM, Seshadri RA, Van Nang P, Vaccaro C, Melendez LC, Bose M, Van Doi M, Piñero TA, Valladares CT, Arguero J, Balaguer AF, Thompson KN, Yan Y, Huttenhower C, Quirke P. The colorectal cancer-associated faecal microbiome of developing countries resembles that of developed countries. Genome Med 2021; 13:27. [PMID: 33593386 PMCID: PMC7887780 DOI: 10.1186/s13073-021-00844-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The incidence of colorectal cancer (CRC) is increasing in developing countries, yet limited research on the CRC- associated microbiota has been conducted in these areas, in part due to scarce resources, facilities, and the difficulty of fresh or frozen stool storage/transport. Here, we aimed (1) to establish a broad representation of diverse developing countries (Argentina, Chile, India, and Vietnam); (2) to validate a 'resource-light' sample-collection protocol translatable in these settings using guaiac faecal occult blood test (gFOBT) cards stored and, importantly, shipped internationally at room temperature; (3) to perform initial profiling of the collective CRC-associated microbiome of these developing countries; and (4) to compare this quantitatively with established CRC biomarkers from developed countries. METHODS We assessed the effect of international storage and transport at room temperature by replicating gFOBT from five UK volunteers, storing two in the UK, and sending replicates to institutes in the four countries. Next, to determine the effect of prolonged UK storage, DNA extraction replicates for a subset of samples were performed up to 252 days apart. To profile the CRC-associated microbiome of developing countries, gFOBT were collected from 41 treatment-naïve CRC patients and 40 non-CRC controls from across the four institutes, and V4 16S rRNA gene sequencing was performed. Finally, we constructed a random forest (RF) model that was trained and tested against existing datasets from developed countries. RESULTS The microbiome was stably assayed when samples were stored/transported at room temperature and after prolonged UK storage. Large-scale microbiome structure was separated by country and continent, with a smaller effect from CRC. Importantly, the RF model performed similarly to models trained using external datasets and identified similar taxa of importance (Parvimonas, Peptostreptococcus, Fusobacterium, Alistipes, and Escherichia). CONCLUSIONS This study demonstrates that gFOBT, stored and transported at room temperature, represents a suitable method of faecal sample collection for amplicon-based microbiome biomarkers in developing countries and suggests a CRC-faecal microbiome association that is consistent between developed and developing countries.
Collapse
Affiliation(s)
- Caroline Young
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Level 4 Wellcome Trust Brenner Building, Leeds, LS9 7TF, UK.
| | - Henry M Wood
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Level 4 Wellcome Trust Brenner Building, Leeds, LS9 7TF, UK
| | | | - Pham Van Nang
- Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Carlos Vaccaro
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Instituto Universitario del Hospital Italiano (IUHI), Hospital Italiano de buenos Aires (HIBA), Buenos Aires, Argentina
| | | | | | - Mai Van Doi
- Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Tamara Alejandra Piñero
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Instituto Universitario del Hospital Italiano (IUHI), Hospital Italiano de buenos Aires (HIBA), Buenos Aires, Argentina
| | | | - Julieta Arguero
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Instituto Universitario del Hospital Italiano (IUHI), Hospital Italiano de buenos Aires (HIBA), Buenos Aires, Argentina
| | - Alba Fuentes Balaguer
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Level 4 Wellcome Trust Brenner Building, Leeds, LS9 7TF, UK
| | - Kelsey N Thompson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Philip Quirke
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Level 4 Wellcome Trust Brenner Building, Leeds, LS9 7TF, UK
| |
Collapse
|
28
|
El Jaddaoui I, Allali I, Sehli S, Ouldim K, Hamdi S, Al Idrissi N, Nejjari C, Amzazi S, Bakri Y, Ghazal H. Cancer Omics in Africa: Present and Prospects. Front Oncol 2020; 10:606428. [PMID: 33425763 PMCID: PMC7793679 DOI: 10.3389/fonc.2020.606428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
During the last century, cancer biology has been arguably one of the most investigated research fields. To gain deeper insight into cancer mechanisms, scientists have been attempting to integrate multi omics data in cancer research. Cancer genomics, transcriptomics, metabolomics, proteomics, and metagenomics are the main multi omics strategies used currently in the diagnosis, prognosis, treatment, and biomarker discovery in cancer. In this review, we describe the use of different multi omics strategies in cancer research in the African continent and discuss the main challenges facing the implementation of these approaches in African countries such as the lack of training programs in bioinformatics in general and omics strategies in particular and suggest paths to address deficiencies. As a way forward, we advocate for the establishment of an "African Cancer Genomics Consortium" to promote intracontinental collaborative projects and enhance engagement in research activities that address indigenous aspects for cancer precision medicine.
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Imane Allali
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Sofia Sehli
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | | | - Salsabil Hamdi
- Environmental Health Laboratory, Pasteur Institute, Casablanca, Morocco
| | - Najib Al Idrissi
- Department of Surgery, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Chakib Nejjari
- Department of Medicine, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Saaïd Amzazi
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Hassan Ghazal
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
- National Center for Scientific and Technical Research, Rabat, Morocco
| |
Collapse
|
29
|
Jin Y, Geng R, Liu Y, Liu L, Jin X, Zhao F, Feng J, Wei Y. Prediction of Postoperative Ileus in Patients With Colorectal Cancer by Preoperative Gut Microbiota. Front Oncol 2020; 10:526009. [PMID: 33324541 PMCID: PMC7724052 DOI: 10.3389/fonc.2020.526009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Background Ileus and postoperative ileus (POI) are common complications of colorectal cancer (CRC). However, little is known about the gut microbiota associated with ileus. Method Differences in gut microbiota were evaluated by 16S rRNA gene sequencing. We characterized the gut microbiota in 85 CRC patients (cohort 1) and detected differences, and an independent cohort composed of 38 CRC patients (cohort 2) was used to evaluate the results. Results The gut microbiota of CRC patients with and without ileus exhibited large differences in alpha- and beta-diversities and bacterial taxa. The Firmicutes-to-Bacteroidetes ratio and microbial dysbiosis index (MDI) showed greater dysbiosis among ileus patients than among those without ileus. According to the location of CRC, the difference in gut microbiota between patients with and without ileus was more obvious in those with distal CRC than in those with proximal CRC. Finally, Faecalibacterium was significantly reduced in the postoperative perioperative period in patients with ileus. Thus, we used Faecalibacterium as a biomarker for predicting perioperative or POI: the AUC value was 0.74 for perioperative ileus and 0.67 for POI that appeared at 6 months after hospital discharge. The predictive power was evaluated in Cohort 2, with an AUC value of 0.79. Conclusion These findings regarding difference of gut microbiota in postoperative CRC patients may provide a theoretical basis for the use of microbiota as biomarkers for the prediction of POI.
Collapse
Affiliation(s)
- Ye Jin
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Geng
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yang Liu
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lujia Liu
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangren Jin
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fuya Zhao
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Feng
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Department of Oncological and Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Sui X, Chen Y, Liu B, Li L, Huang X, Wang M, Wang G, Gao X, Zhang L, Bao X, Yang D, Wang X, Zhong C. The relationship between KRAS gene mutation and intestinal flora in tumor tissues of colorectal cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1085. [PMID: 33145304 PMCID: PMC7575961 DOI: 10.21037/atm-20-5622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Colorectal cancer is among the most prominent malignant tumors endangering human health, with affected populations exhibiting an increasingly younger trend. The Kirsten ras (KRAS) gene acts as a crucial regulator in this disease and influences multiple signaling pathways. In the present study, the KRAS gene mutation-induced alteration of intestinal flora in colorectal cancer patients was explored, and the intestinal microbes that may be affected by the KRAS gene were examined to provide new insights into the diagnosis and treatment of colorectal cancer. Methods Deoxyribonucleic acid (DNA) was extracted from 177 colorectal cancer patients in our hospital. The mutation of the KRAS gene was subsequently detected using real-time fluorescence quantitative polymerase chain reaction (qPCR), and survival analysis was performed. Moreover, genomic DNA was extracted from the fecal microbes in 30 of these patients, and the differences in the intestinal flora between mutation and non-mutation groups were evaluated using linear discriminant analysis (LDA) Effect size (LEfSe) analysis. Results KRAS gene mutation substantially affected the distant metastasis of colorectal cancer, and the survival prognosis in the non-mutation group was significantly superior compared to the mutation group. The mutation group had a notably higher prevalence of microbes including Roseburia, Parabacteroides, Metascardovia, Staphylococcus, Staphylococcaceae, and Bacillales than the non-mutation group. The presence of microbes in the non-mutation group, such as Clostridiales, Bacteroidetes, Lachnospiraceae, Coprococcus, and Ruminococcaceae was markedly higher than in the mutation group. Firmicutes were negatively correlated with the presence of Actinomyces and Bacteroidetes, while Bacteroidetes were positively associated with the level of Actinomyces. Conclusions In colorectal cancer, KRAS gene mutation can remarkably affect the survival prognosis and change the composition and abundance of intestinal flora, such as Roseburia, Parabacteroides, Metascardovia, Staphylococcus, and Bacillales, thereby influencing tumor development.
Collapse
Affiliation(s)
- Xinke Sui
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Yan Chen
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Baojun Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Lianyong Li
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Xin Huang
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Min Wang
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Guodong Wang
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Xiaopei Gao
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Lu Zhang
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Xinwei Bao
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Dengfeng Yang
- Laboratory department, Mian County Hospital, Mian, China
| | - Xiaoying Wang
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Changqing Zhong
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
31
|
Huybrechts I, Zouiouich S, Loobuyck A, Vandenbulcke Z, Vogtmann E, Pisanu S, Iguacel I, Scalbert A, Indave I, Smelov V, Gunter MJ, Michels N. The Human Microbiome in Relation to Cancer Risk: A Systematic Review of Epidemiologic Studies. Cancer Epidemiol Biomarkers Prev 2020; 29:1856-1868. [PMID: 32727720 PMCID: PMC7541789 DOI: 10.1158/1055-9965.epi-20-0288] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/06/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The microbiome has been hypothesized to play a role in cancer development. Because of the diversity of published data, an overview of available epidemiologic evidence linking the microbiome with cancer is now needed. We conducted a systematic review using a tailored search strategy in Medline and EMBASE databases to identify and summarize the current epidemiologic literature on the relationship between the microbiome and different cancer outcomes published until December 2019. We identified 124 eligible articles. The large diversity of parameters used to describe microbial composition made it impossible to harmonize the different studies in a way that would allow meta-analysis, therefore only a qualitative description of results could be performed. Fifty studies reported differences in the gut microbiome between patients with colorectal cancer and various control groups. The most consistent findings were for Fusobacterium, Porphyromonas, and Peptostreptococcus being significantly enriched in fecal and mucosal samples from patients with colorectal cancer. For the oral microbiome, significantly increased and decreased abundance was reported for Fusobacterium and Streptococcus, respectively, in patients with oral cancer compared with controls. Overall, although there was a large amount of evidence for some of these alterations, most require validation in high-quality, preferably prospective, epidemiologic studies.
Collapse
Affiliation(s)
| | - Semi Zouiouich
- International Agency for Research on Cancer, Lyon, France
| | - Astrid Loobuyck
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Zeger Vandenbulcke
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Emily Vogtmann
- Division of Cancer Epidemiology & Genetics, NCI, Bethesda, Maryland
| | - Silvia Pisanu
- International Agency for Research on Cancer, Lyon, France
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cagliari, Italy
| | - Isabel Iguacel
- International Agency for Research on Cancer, Lyon, France
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health Sciences, University of Zaragoza, Zaragoza, Spain
| | | | - Iciar Indave
- International Agency for Research on Cancer, Lyon, France
| | - Vitaly Smelov
- International Agency for Research on Cancer, Lyon, France
- Division of Noncommunicable Diseases and Promoting Health through the Life-course, WHO Regional Office for Europe, Copenhagen, Denmark
| | - Marc J Gunter
- International Agency for Research on Cancer, Lyon, France
| | - Nathalie Michels
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Guilloux CA, Lamoureux C, Beauruelle C, Héry-Arnaud G. Porphyromonas: A neglected potential key genus in human microbiomes. Anaerobe 2020; 68:102230. [PMID: 32615270 DOI: 10.1016/j.anaerobe.2020.102230] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 01/16/2023]
Abstract
Anaerobes form a large part of microbial communities, and have begun to be specifically studied in both healthy and pathologic contexts. Porphyromonas is one of the top ten anaerobic taxa in the microbiome (anaerobiome) in healthy subjects. However, to date, most studies focused on the deleterious role of P. gingivalis, the most widely described species. Interestingly, targeted metagenomics reveals Porphyromonas other than gingivalis (POTG), highlighting other species such as P. catoniae or P. pasteri as potential biomarkers in disease progression or pathogen colonization susceptibility. From the sparse data, it appears that the Porphyromonas genus may also be a relevant target of investigation in several pulmonary diseases. Moreover, deciphering cutaneous, gastric and oral microbiomes hint that Porphyromonas may be a genus of interest in non-pulmonary diseases. This review aims to summarize the major data on POTG and to report their impact on the various human microbiomes in different clinical states.
Collapse
Affiliation(s)
| | - Claudie Lamoureux
- Unité de Bactériologie, Pôle de Biologie-Pathologie, Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Boulevard Tanguy Prigent, Brest, France.
| | - Clémence Beauruelle
- Univ Brest, Inserm, EFS, UMR, 1078, GGB, F-29200, Brest, France; Unité de Bactériologie, Pôle de Biologie-Pathologie, Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Boulevard Tanguy Prigent, Brest, France.
| | - Geneviève Héry-Arnaud
- Univ Brest, Inserm, EFS, UMR, 1078, GGB, F-29200, Brest, France; Unité de Bactériologie, Pôle de Biologie-Pathologie, Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Boulevard Tanguy Prigent, Brest, France.
| |
Collapse
|
33
|
Shuwen H, Xi Y, Yuefen P, Jiamin X, Quan Q, Haihong L, Yizhen J, Wei W. Effects of postoperative adjuvant chemotherapy and palliative chemotherapy on the gut microbiome in colorectal cancer. Microb Pathog 2020; 149:104343. [PMID: 32562813 DOI: 10.1016/j.micpath.2020.104343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The gut microbiome changes are related to the colorectal cancer (CRC). Chemotherapy is one of the main treatment methods for CRC. PURPOSE To explore the effect of chemotherapy on the gut bacteria and fungi in CRC. METHODS Total of 11 advanced CRC patients treated with the FOLFIRI regimen, 15 postoperative CRC patients treated with the XELOX regimen, and corresponding CRC patients without surgery and chemotherapy were recruited. The 16S ribosomal RNA and ITS sequences were sequenced, and bioinformatics analysis was executed to screen for the distinctive gut microbiome. RESULTS The abundances of Veillonella, Humicola, Tremellomycetes and Malassezia were increased in postoperative CRC patients treated with the XELOX regimen. The abundances of Faecalibacterium, Clostridiales, phascolarctobacterium, Humicola and Rhodotorula were decreased, and the abundances of Candida, Magnusiomyces, Tremellomycetes, Dipodascaceae, Saccharomycetales, Malassezia and Lentinula were increased in advanced CRC patients treated with the FOLFIRI regimen. The abundances of Humicola, Rhodotorula, and Magnusiomyces were decreased, and the abundances of Candida, Tremellomycetes, Dipodascaceae, Saccharomycetales, Malassezia and Lentinula were increased in advanced CRC patients treated with the FOLFIRI regimen combined with cetuximab compared with those treated with the FOLFIRI regimen alone. CONCLUSIONS The community structure of gut bacteria and fungi changes in chemotherapy on CRCs.
Collapse
Affiliation(s)
- Han Shuwen
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China
| | - Yang Xi
- Department of Intervention and Radiotherapy, Huzhou Central Hospital, Address: No. 198 Hongqi Road, Huzhou, Zhejiang Province, 313000, China.
| | - Pan Yuefen
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China.
| | - Xu Jiamin
- Graduate School of Nursing, Huzhou University, Address: No. 1 Bachelor Road, Huzhou, Zhejiang Province, 313000, China.
| | - Qi Quan
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China.
| | - Liao Haihong
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China.
| | - Jiang Yizhen
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China.
| | - Wu Wei
- Department of Gastroenterology, Huzhou Central Hospital, Address: No. 198 Hongqi Road, Huzhou, Zhejiang Province, 313000, China.
| |
Collapse
|
34
|
Nazmul Huda M, Winnike JH, Crowell JM, O'Connor A, Bennett BJ. Microbial modulation of host body composition and plasma metabolic profile. Sci Rep 2020; 10:6545. [PMID: 32300219 PMCID: PMC7162933 DOI: 10.1038/s41598-020-63214-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/26/2020] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota is a critical mediator of nutrition and disease risk. Like most complex traits, the microbiome is under genetic regulation and differs between inbred strains of mice. We tested the effect of fecal microbiota transplantation (FMT) on obesity, and plasma glucose. For this study, we collected microbiota from 2 inbred strains of mice which differ in adiposity and glucose tolerance, C57BL/6J and WSB/EiJ. C57BL/6J female mice (n = 18) were first treated with antibiotics for 4 weeks to ablate the microbiota. Following ablation, the mice were transplanted with microbiota from a C57BL/6J or a WSB/EiJ mouse and clinical traits and plasma metabolomic profiles were interrogated at 2- and 4-weeks post-transplantation. Unexpectedly, the mice receiving WSB/EiJ microbiota increased adiposity but decreased plasma glucose. Metabolomic and 16S microbiota profiling indicated broad metabolic changes occurred during and after FMT. Detailed analysis of these interactions demonstrated specific microbiota-host metabolite interactions which may alter disease susceptibility.
Collapse
Affiliation(s)
- M Nazmul Huda
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, USA
- Department of Nutrition, University of California Davis, Davis, California, USA
| | - Jason H Winnike
- David H. Murdock Research Institute (DHRMI), Kannapolis, NC, USA
| | - Jocelyn M Crowell
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, USA
- Department of Nutrition, University of California Davis, Davis, California, USA
| | - Annalouise O'Connor
- Nutrition Research Institute, University of North Carolina, Chapel Hill, Kannapolis, NC, USA
| | - Brian J Bennett
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, USA.
- Department of Nutrition, University of California Davis, Davis, California, USA.
- Nutrition Research Institute, University of North Carolina, Chapel Hill, Kannapolis, NC, USA.
| |
Collapse
|
35
|
Yang R, Shan S, Zhang C, Shi J, Li H, Li Z. Inhibitory Effects of Bound Polyphenol from Foxtail Millet Bran on Colitis-Associated Carcinogenesis by the Restoration of Gut Microbiota in a Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3506-3517. [PMID: 32100999 DOI: 10.1021/acs.jafc.0c00370] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor occurring in the colon. It has been known that the gut microbiota is a complex ecosystem and plays an important role in the pathogenesis of colorectal cancer. Our previous study showed that bound polyphenol of the inner shell (BPIS) from foxtail millet bran exhibited significant antitumor activities in cancer cells and nude mice models. In the present study, the anticancer potential of BPIS is evaluated in the azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced mouse CRC model. Results showed that BPIS could decrease the number and volume of tumors and protect the epithelial architecture from damage. Certain biomarkers associated with CRC formation, such as COX-2, EMR1, PCNA, and caspase-3, were strongly changed by BPIS. Moreover, by 16S rRNA gene sequence analysis, it was found that BPIS could remodel the overall structure of the gut microbiota from tumor-bearing mice toward that of the normal counterparts, including two phyla and eight genera, together with regulations on several genes that are responsible for 17 signaling pathways.
Collapse
Affiliation(s)
- Ruipeng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Chen Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hanqing Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
36
|
Zhang Z, Cao H, Song N, Zhang L, Cao Y, Tai J. Long-term hexavalent chromium exposure facilitates colorectal cancer in mice associated with changes in gut microbiota composition. Food Chem Toxicol 2020; 138:111237. [PMID: 32145354 DOI: 10.1016/j.fct.2020.111237] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer-related mortality worldwide. Hexavalent chromium [Cr(VI)] is often present in groundwater. Chronic Cr(VI) exposure is suggested to be one of the main factors inducing cancer. However, the correlation between Cr(VI) and CRC remains unclear. In this study, we investigated the role of Cr(VI) in CRC by establishing a mouse CRC model induced by 1, 2-dimethylhydrazine (DMH). The results showed that Cr(VI) increased weight loss in DMH-induced mice and promoted the formation of tumors. Cr(VI) also increased DMH-induced proliferating cell nuclear antigen (PCNA) levels. Investigation of the underlying mechanisms found that Cr(VI) significantly decreased DMH-induced SOD, GSH and CAT levels, while, the MDA level increased. Metagenomic analyses found that the abundance of Firmicutes and Bacteroidetes in the DMH + Cr group was down-regulated. Interestingly, the combination of Cr(VI) and DMH significantly increased the abundance of Verrucomicrobia. At the family and genus levels, families Akkermansiaceae and Saccharimonadaceae and genus Akkermansia were more abundant in the DMH + Cr group, whereas the abundance of short-chain fatty acid (SCFA)-producing bacteria (family Muribaculaceae, family Lachnosipiraceae, genus Lachnospiraceae_NK4A136_group, and genus Roseburia) decreased. These results indicate that Cr(VI) might aggravate CRC by altering the composition of the gut microflora.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China; Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, People's Republic of China
| | - Hongyang Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Ning Song
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Lixiao Zhang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, People's Republic of China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China; Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, People's Republic of China.
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
37
|
Seesaha PK, Chen X, Wu X, Xu H, Li C, Jheengut Y, Zhao F, Liu L, Zhang D. The interplay between dietary factors, gut microbiome and colorectal cancer: a new era of colorectal cancer prevention. Future Oncol 2020; 16:293-306. [PMID: 32067473 DOI: 10.2217/fon-2019-0552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer is the third most common cancer in the world and its incidence is on the rise. Dietary intervention has emerged as an attractive strategy to curtail its occurrence and progression. Diet is known to influence the gut microbiome, as dietary factors and gut bacteria can act in concert to cause or protect from colorectal cancer. Several studies have presented evidence for such interactions and have pointed out the different ways by which the diet and gut microbiome can be altered to produce beneficial effects. This review article aims to summarize the interrelationship between diet, gut flora and colorectal cancer so that a better preventive approach can be applied.
Collapse
Affiliation(s)
- Poshita Kumari Seesaha
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Xiaofeng Chen
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Xiaofeng Wu
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Hongxia Xu
- Department of Nutrition, Third Military Medical University Daping Hospital & Research Institute of Surgery, Chongqing 400042, Sichuan, PR China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Yogesh Jheengut
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Fengjiao Zhao
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Li Liu
- School of Public Health, Guizhou Medical University, Guiyang, PR China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| |
Collapse
|
38
|
Ternes D, Karta J, Tsenkova M, Wilmes P, Haan S, Letellier E. Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism? Trends Microbiol 2020; 28:401-423. [PMID: 32298617 DOI: 10.1016/j.tim.2020.01.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Mounting evidence from metagenomic analyses suggests that a state of pathological microbial imbalance or dysbiosis is prevalent in the gut of patients with colorectal cancer. Several bacterial taxa have been identified of which representative isolate cultures interact with human cancer cells in vitro and trigger disease pathways in animal models. However, how the complex interrelationships in dysbiotic communities may be involved in cancer pathogenesis remains a crucial question. Here, we provide a survey of current knowledge of the gut microbiome in colorectal cancer. Moving beyond observational studies, we outline new experimental approaches for gaining ecosystem-level mechanistic understanding of the gut microbiome's role in cancer pathogenesis.
Collapse
Affiliation(s)
- Dominik Ternes
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jessica Karta
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mina Tsenkova
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Eco-Systems Biology group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Serge Haan
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
39
|
Xu S, Yin W, Zhang Y, Lv Q, Yang Y, He J. Foes or Friends? Bacteria Enriched in the Tumor Microenvironment of Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12020372. [PMID: 32041122 PMCID: PMC7072156 DOI: 10.3390/cancers12020372] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the second most commonly diagnosed cancer and the third cause of cancer death in the world, while intestinal microbiota is a community of microbes living in human intestine that can potentially impact human health in many ways. Accumulating evidence suggests that intestinal microbiota, especially that from the intestinal bacteria, play a key role in the CRC development; therefore, identification of bacteria involved in CRC development can provide new targets for the CRC diagnosis, prevention, and treatment. Over the past decade, there have been considerable advances in applying 16S rDNA sequencing data to verify associated intestinal bacteria in CRC patients; however, due to variations of individual and environment factors, these results seem to be inconsistent. In this review, we scrutinized the previous 16S rDNA sequencing data of intestinal bacteria from CRC patients, and identified twelve genera that are specifically enriched in the tumor microenvironment. We have focused on their relationship with the CRC development, and shown that some bacteria could promote CRC development, acting as foes, while others could inhibit CRC development, serving as friends, for human health. Finally, we highlighted their potential applications for the CRC diagnosis, prevention, and treatment.
Collapse
|
40
|
Yang J, Zhang J, Zhao C, Gai Z, Mu X, Wang Y, Zhang C, Su Z, Gao L, Zhu D, Zuo Z, Heng X, Zhang L. Blood Loss Leads to Increase in Relative Abundance of Opportunistic Pathogens in the Gut Microbiome of Rabbits. Curr Microbiol 2020; 77:415-424. [PMID: 31894374 DOI: 10.1007/s00284-019-01825-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/25/2019] [Indexed: 01/26/2023]
Abstract
Massive blood loss, a common pathological complication in the clinic, is often accompanied by altered gut integrity and intestinal wall damage. Little is known to what extent the gut microbiome could be correlated with this process. The gut microbiome plays a crucial role in human health, especially in immune and inflammatory responses. This study aims to determine whether acute blood loss affects the gut microbiome and the dynamic variation of the gut microbiome following the loss of blood. We used New Zealand rabbits to mimic the blood loss complication and designed a five-time-point fecal sampling strategy including 24-h pre-blood loss procedure, 24 h, 36 h, 48 h, and 1-week post-blood loss procedure. Gut microbiome composition and diversity were analyzed using 16S rRNA gene sequencing and downstream α-diversity, β-diversity, and taxonomy analysis. The gut microbiome changed dramatically after blood loss procedure. There was a significant increase in diversity and richness of the gut microbiome at 24-h post-procedure (P = 0.038). Based on an analysis of similarities, the composition of gut microbiome in the samples collected at 24-h post-procedure was significantly different from that of pre-procedure samples (r = 0.79, P = 0.004 weighted unifrac distance; r = 0.99, P = 0.002, unweighted unifrac distance). The relative abundance of Lactobacillus was significantly decreased in the post-procedure samples (P = 0.0006), while the relative abundance of Clostridiales (P = 0.018) and Bacteroidales (P = 0.015) was significantly increased after procedure. We also found the relative abundance of Bacilli, Lactobacillus, Myroides, and Prevotella decreased gradually at different time points after blood loss. The relative abundance of the Clostridia, Alphaproteobacteria, and Sporosarcina increased at 24-h post-procedure and decreased thereafter. This preliminary study discovered potential connections between blood loss and dysbiosis of gut microbiome. The diversity and abundance of the gut microbiome was affected to various extents after acute blood loss and unable to be restored to the original microbiome profile even after one week. The increase in relative abundance of opportunistic pathogens after blood loss could be an important indication to reconsider immune and inflammatory responses after acute blood loss from the perspective of gut microbiome.
Collapse
Affiliation(s)
- Junjie Yang
- Microbiological Laboratory, Department of Infection Management, Department of Neurosurgery, Lin Yi People's Hospital, Linyi, 276000, Shandong, China.,College of Life Science, Qilu Normal University, Jinan, 250200, Shandong, China
| | - Jiaming Zhang
- Microbiome-X Group, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Chemistry and Environment, Beihang University, Beijing, 100191, China.,Shandong Institutes for Food and Drug Control, Jinan, 250101, Shandong, China
| | - Changying Zhao
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, 250022, Shandong, China.,Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan, 250100, Shandong, China
| | - Zhongtao Gai
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, 250022, Shandong, China.,Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan, 250100, Shandong, China
| | - Xiaofeng Mu
- Clinical Laboratory and Core Research Laboratory, Qingdao Human Microbiome Center, The Affiliated Central Hospital of QingdaoUniversity, Qingdao, 266042, Shandong, China
| | - Ye Wang
- Clinical Laboratory and Core Research Laboratory, Qingdao Human Microbiome Center, The Affiliated Central Hospital of QingdaoUniversity, Qingdao, 266042, Shandong, China
| | - Chunling Zhang
- Department of Respiratory Medicine, The Affiliated Central Hospital of Qingdao University, Qingdao, 266042, Shandong, China
| | - Zhenzhen Su
- Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan, 250100, Shandong, China
| | - Lihe Gao
- Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan, 250100, Shandong, China
| | - Dequan Zhu
- Microbiological Laboratory, Department of Infection Management, Department of Neurosurgery, Lin Yi People's Hospital, Linyi, 276000, Shandong, China
| | - Zhiwen Zuo
- Microbiological Laboratory, Department of Infection Management, Department of Neurosurgery, Lin Yi People's Hospital, Linyi, 276000, Shandong, China
| | - Xueyuan Heng
- Microbiological Laboratory, Department of Infection Management, Department of Neurosurgery, Lin Yi People's Hospital, Linyi, 276000, Shandong, China.
| | - Lei Zhang
- Microbiome-X Group, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Chemistry and Environment, Beihang University, Beijing, 100191, China. .,Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, Jinan, 250100, Shandong, China.
| |
Collapse
|
41
|
Sun Q, Xu X, Zhang J, Sun M, Tian Q, Li Q, Cao W, Zhang X, Wang H, Liu J, Zhang J, Meng X, Wu L, Song M, Liu H, Wang W, Wang Y. Association of suboptimal health status with intestinal microbiota in Chinese youths. J Cell Mol Med 2020; 24:1837-1847. [PMID: 31808612 PMCID: PMC6991644 DOI: 10.1111/jcmm.14880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/21/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Suboptimal health status (SHS), a physical state between health and disease, is a subclinical and reversible stage of chronic disease. Previous studies have shown alterations in the intestinal microbiota in patients with some chronic diseases. This study aimed to investigate the association between SHS and intestinal microbiota in a case-control study with 50 SHS individuals and 50 matched healthy controls. Intestinal microbiota was analysed by MiSeq 250PE. Alpha diversity of intestinal microbiota in SHS individuals was higher compared with that of healthy controls (Simpson index, W = 2238, P = .048). Beta diversity was different between SHS and healthy controls (P = .018). At the phylum level, the relative abundance of Verrucomicrobia was higher in the SHS group than that in the controls (W = 2201, P = .049). Compared with that of the control group, nine genera were significantly higher and five genera were lower in abundance in the SHS group (all P < .05). The intestinal microbiota, analysed by a random forest model, was able to distinguish individuals with SHS from the controls, with an area under the curve of 0.79 (95% confidence interval: 0.77-0.81). We demonstrated that the alteration of intestinal microbiota occurs with SHS, an early stage of disease, which might shed light on the importance of intestinal microbiota in the primary prevention of noncommunicable chronic diseases.
Collapse
Affiliation(s)
- Qi Sun
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
- National Research Institute for Family PlanningBeijingChina
- Graduate School of Peking Union Medical CollegeBeijingChina
| | - Xizhu Xu
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Jie Zhang
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Ming Sun
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Qiuyue Tian
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Qihuan Li
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Weijie Cao
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Xiaoyu Zhang
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Hao Wang
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Jiaonan Liu
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Jinxia Zhang
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Xiaoni Meng
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Lijuan Wu
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Manshu Song
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Hongqi Liu
- University HospitalWeifang UniversityWeifangChina
| | - Wei Wang
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesTaianChina
- School of Medical and Health SciencesEdith Cowan UniversityPerthWAAustralia
| | - Youxin Wang
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| |
Collapse
|
42
|
Akhtar M, Haleem A, Anvari S, Nazli A, Sager M. An analysis of gut dysbiosis in obesity, diabetes, and chronic gut conditions. IBNOSINA JOURNAL OF MEDICINE AND BIOMEDICAL SCIENCES 2020. [DOI: 10.4103/ijmbs.ijmbs_102_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
43
|
Tarashi S, Siadat SD, Ahmadi Badi S, Zali M, Biassoni R, Ponzoni M, Moshiri A. Gut Bacteria and their Metabolites: Which One Is the Defendant for Colorectal Cancer? Microorganisms 2019; 7:E561. [PMID: 31766208 PMCID: PMC6920974 DOI: 10.3390/microorganisms7110561] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a worldwide health concern which requires efficient therapeutic strategies. The mechanisms underlying CRC remain an essential subject of investigations in the cancer biology field. The evaluation of human microbiota can be critical in this regard, since the disruption of the normal community of gut bacteria is an important issue in the development of CRC. However, several studies have already evaluated the different aspects of the association between microbiota and CRC. The current study aimed at reviewing and summarizing most of the studies on the modifications of gut bacteria detected in stool and tissue samples of CRC cases. In addition, the importance of metabolites derived from gut bacteria, their relationship with the microbiota, and epigenetic modifications have been evaluated.
Collapse
Affiliation(s)
- Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; (S.T.); (S.D.S.); (S.A.B.)
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; (S.T.); (S.D.S.); (S.A.B.)
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; (S.T.); (S.D.S.); (S.A.B.)
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Mohammadreza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19857-17411 Tehran, Iran;
| | - Roberto Biassoni
- Laboratory of Molecular Medicine, IRCCS Instituto Giannina Gaslini, 16147 Genova, Italy;
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Arfa Moshiri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19857-17411 Tehran, Iran;
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| |
Collapse
|
44
|
Reis SAD, da Conceição LL, Peluzio MDCG. Intestinal microbiota and colorectal cancer: changes in the intestinal microenvironment and their relation to the disease. J Med Microbiol 2019; 68:1391-1407. [PMID: 31424382 DOI: 10.1099/jmm.0.001049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tools that predict the risk of colorectal cancer are important for early diagnosis, given the high mortality rate for this cancer. The composition of the intestinal microbiota is now considered to be a risk factor for the development of colorectal cancer. This discovery has motivated a growing number of studies to identify the micro-organisms responsible for the onset and/or progression of colorectal cancer. With this in mind, this review discusses the relationship between the composition of the intestinal microbiota and colorectal cancer risk. Prospective and case-control studies indicate that the intestinal microbiota of individuals with colorectal cancer usually contains a greater proportion of bacteria responsible for gastrointestinal tract inflammatory diseases, as well as bacteria that produce toxins and carcinogenic metabolites. In contrast, there tends to be a reduced presence of butyric acid-producing bacteria, probiotic bacteria and potentially probiotic bacteria. Despite these differences, the onset and development of colorectal cancer cannot be attributed to a specific micro-organism. Thus, studies focused on the formation of the intestinal microbiota and factors that modulate its composition are important for the development of approaches for colorectal cancer prevention.
Collapse
Affiliation(s)
- Sandra Aparecida Dos Reis
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Lisiane Lopes da Conceição
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | | |
Collapse
|
45
|
Brewster R, Tamburini FB, Asiimwe E, Oduaran O, Hazelhurst S, Bhatt AS. Surveying Gut Microbiome Research in Africans: Toward Improved Diversity and Representation. Trends Microbiol 2019; 27:824-835. [PMID: 31178123 DOI: 10.1016/j.tim.2019.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022]
Abstract
Descriptive and translational investigations into the human gut microbiome (GM) are rapidly expanding; however, studies are largely restricted to industrialized populations in the USA and Europe. Little is known about microbial variability and its implications for health and disease in other parts of the world. Populations in Africa are particularly underrepresented. What limited research has been performed has focused on a few subject domains, including the impact of long-term lifestyle and dietary factors on GM ecology, its maturation during infancy, and the interrelationships between the microbiome, infectious disease, and undernutrition. Recently, international consortia have laid the groundwork for large-scale genomics and microbiome studies on the continent, with a particular interest in the epidemiologic transition to noncommunicable disease. Here, we survey the current landscape of GM scholarship in Africa and propose actionable recommendations to improve research capacity and output.
Collapse
Affiliation(s)
- Ryan Brewster
- School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Edgar Asiimwe
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Ovokeraye Oduaran
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa; School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa.
| | - Ami S Bhatt
- School of Medicine, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA; Department of Medicine (Hematology), Stanford University, Stanford, CA, USA.
| |
Collapse
|
46
|
Qi YF, Sun JN, Ren LF, Cao XL, Dong JH, Tao K, Guan XM, Cui YN, Su W. Intestinal Microbiota Is Altered in Patients with Gastric Cancer from Shanxi Province, China. Dig Dis Sci 2019; 64:1193-1203. [PMID: 30535886 DOI: 10.1007/s10620-018-5411-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/01/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many diseases have been associated with intestinal microbial dysbiosis. Host-microbial interactions regulate immune function, which influences the development of gastric cancer. AIMS The aims were to investigate the characteristics of intestinal microbiota composition in gastric cancer patients and correlations between the intestinal microbiota and cellular immunity. METHODS Fecal samples were collected from 116 gastric cancer patients and 88 healthy controls from Shanxi Province, China. The intestinal microbiota was investigated by 16S rRNA gene sequencing. Peripheral blood samples were also collected from the 66 gastric cancer patients and 46 healthy controls. The populations of peripheral T lymphocyte subpopulations and NK cells were analyzed by flow cytometry. RESULTS The intestinal microbiota in gastric cancer patients was characterized by increased species richness, decreased butyrate-producing bacteria, and the enrichment of other symbiotic bacteria, especially Lactobacillus, Escherichia, and Klebsiella. Lactobacillus and Lachnospira were key species in the network of gastric cancer-associated bacterial genera. The combination of the genera Lachnospira, Lactobacillus, Streptococcus, Veillonella, and Tyzzerella_3 showed good performance in distinguishing gastric cancer patients from healthy controls. There was no significant difference in enterotype distribution between healthy controls and gastric cancer patients. The percentage of CD3+ T cells was positively correlated with the abundance of Lactobacillus and Streptococcus, and CD3+ T cells, CD4+ T cells, and NK cells were associated with Lachnospiraceae taxa. CONCLUSIONS Our study revealed a dysbiotic intestinal microbiota in gastric cancer patients. The abundance of some intestinal bacterial genera was correlated with the population of peripheral immune cells.
Collapse
Affiliation(s)
- Yu-Feng Qi
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Immunology Department, Shanxi Cancer Hospital, No. 3 Zhigong New Street, Taiyuan, 030013, Shanxi, China
| | - Jun-Ning Sun
- Immunology Department, Shanxi Cancer Hospital, No. 3 Zhigong New Street, Taiyuan, 030013, Shanxi, China
| | - Lai-Feng Ren
- Immunology Department, Shanxi Cancer Hospital, No. 3 Zhigong New Street, Taiyuan, 030013, Shanxi, China
| | - Xue-Ling Cao
- Department of Health Examination Center, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Jian-Hong Dong
- Center of Minimally Invasive Gastrointestinal Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Kai Tao
- Center of Minimally Invasive Gastrointestinal Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Xue-Mei Guan
- Department of Health Examination Center, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Ya-Ni Cui
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Immunology Department, Shanxi Cancer Hospital, No. 3 Zhigong New Street, Taiyuan, 030013, Shanxi, China
| | - Wen Su
- Immunology Department, Shanxi Cancer Hospital, No. 3 Zhigong New Street, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
47
|
Zhuang H, Cheng L, Wang Y, Zhang YK, Zhao MF, Liang GD, Zhang MC, Li YG, Zhao JB, Gao YN, Zhou YJ, Liu SL. Dysbiosis of the Gut Microbiome in Lung Cancer. Front Cell Infect Microbiol 2019; 9:112. [PMID: 31065547 PMCID: PMC6489541 DOI: 10.3389/fcimb.2019.00112] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/01/2019] [Indexed: 12/21/2022] Open
Abstract
Lung cancer (LC) is one of the most serious malignant tumors, which has the fastest growing morbidity and mortality worldwide. A role of the lung microbiota in LC pathogenesis has been analyzed, but a comparable role of the gut microbiota has not yet been investigated. In this study, the gut microbiota of 30 LC patients and 30 healthy controls were examined via next-generation sequencing of 16S rRNA and analyzed for diversity and biomarkers. We found that there was no decrease in significant microbial diversity (alpha diversity) in LC patients compared to controls (P observed = 0.1422), while the composition (beta diversity) differed significantly between patients and controls (phylum [stress = 0.153], class [stress = 0.16], order [stress = 0.146], family [stress = 0.153]). Controls had a higher abundance of the bacterial phylum Actinobacteria and genus Bifidobacterium, while patients with LC showed elevated levels of Enterococcus. These bacteria were found as possible biomarkers for LC. A decline of normal function of the gut microbiome in LC patients was also observed. These results provide the basic guidance for a systematic, multilayered assessment of the role of the gut microbiome in LC, which has a promising potential for early prevention and targeted intervention.
Collapse
Affiliation(s)
- He Zhuang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Liang Cheng
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yao Wang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yu-Kun Zhang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Colorectal Cancer, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Man-Fei Zhao
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - Gong-Da Liang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - Meng-Chun Zhang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yong-Guo Li
- Department of Infectious Diseases, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing-Bo Zhao
- Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - Yi-Na Gao
- Department of Respiration, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu-Jie Zhou
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
48
|
Awany D, Allali I, Dalvie S, Hemmings S, Mwaikono KS, Thomford NE, Gomez A, Mulder N, Chimusa ER. Host and Microbiome Genome-Wide Association Studies: Current State and Challenges. Front Genet 2019; 9:637. [PMID: 30723493 PMCID: PMC6349833 DOI: 10.3389/fgene.2018.00637] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
The involvement of the microbiome in health and disease is well established. Microbiome genome-wide association studies (mGWAS) are used to elucidate the interaction of host genetic variation with the microbiome. The emergence of this relatively new field has been facilitated by the advent of next generation sequencing technologies that enable the investigation of the complex interaction between host genetics and microbial communities. In this paper, we review recent studies investigating host-microbiome interactions using mGWAS. Additionally, we highlight the marked disparity in the sampling population of mGWAS carried out to date and draw attention to the critical need for inclusion of diverse populations.
Collapse
Affiliation(s)
- Denis Awany
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Imane Allali
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shareefa Dalvie
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Sian Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kilaza S Mwaikono
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicholas E Thomford
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andres Gomez
- Department of Animal Science, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
49
|
The Impact of Cholecystectomy on the Gut Microbiota: A Case-Control Study. J Clin Med 2019; 8:jcm8010079. [PMID: 30641967 PMCID: PMC6352247 DOI: 10.3390/jcm8010079] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Cholecystectomy alters the bile flow into the intestine and the enterohepatic circulation of the bile acids; this may affect the gut microbiota. We assessed the gut microbiota composition of patients who had undergone cholecystectomy and compared with those who had not. From a cohort of 1463 adult participants who underwent comprehensive health screening examinations, 27 subjects who had undergone cholecystectomy (cholecystectomy group) and 81 age- and sex-matched subjects who had not (control group) were selected. Clinical parameters were collected and compared. Microbial composition was determined by 16S rRNA gene sequencing of DNA extracted from fecal samples. We evaluated differences in the overall microbial composition and in the abundance of taxa. The two groups were comparable with respect to clinical characteristics and laboratory results. The actual number of taxa observed in a sample (observed features) was significantly lower in the cholecystectomy group than in the control group (p = 0.042). The beta diversity of Jaccard distance index was significantly different between the two groups (p = 0.027). Blautia obeum and Veillonella parvula were more abundant in the cholecystectomy group. The difference in the diversity of the gut microbiota between the cholecystectomy and control groups was subtle. However, B. obeum and V. parvula, which have azoreductase activity, were more abundant in the cholecystectomy group. The impact of such changes in the gut microbiota on health remains to be determined.
Collapse
|
50
|
Xu J, Xiang C, Zhang C, Xu B, Wu J, Wang R, Yang Y, Shi L, Zhang J, Zhan Z. Microbial biomarkers of common tongue coatings in patients with gastric cancer. Microb Pathog 2018; 127:97-105. [PMID: 30508628 DOI: 10.1016/j.micpath.2018.11.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/29/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE The study aims to explore the characteristic microorganisms of the common tongue coatings in patients with gastric cancer (GC). METHODS A total of 115 GC patients were assigned to four groups: White-thin coating (W-thin) group, White-thick coating (W-thick) group, Yellow-thin coating (Y-thin) group and Yellow-thick coating (Y-thick) group. Thirty-five healthy volunteers with White-thin coating were recruit as controls. High-throughput sequencing was used to describe the microbial community of the tongue coatings based on 16S rRNA and 18S rRNA genes. Multi-factors statistical analysis was carried out to present the microbial biomarkers of the tongue coating in GC patients. RESULTS At bacterial phylum level, Saccharibacteria had higher relative abundance in W-thick group than W-thin group, Proteobacteria was more abundant in W-thin group than Y-thick group and less abundant in Y-thick group than Y-thin group. At fungal genus level, Guehomyces and Aspergillus presented to be significantly different among the common tongue coatings. Forteen significantly increased taxa were sorted out as the microbial biomarkers of common tongue coatings by LEfSe and ROC analysis. At species level, bacterial Capnocytophaga leadbetteri and fungal Ampelomyces_sp_IRAN_1 may be the potential biomarkers of W-thin coating, four bacterial species (Megasphaera micronuciformis, Selenomonas sputigena ATCC 35185, Acinetobacter ursingii, Prevotella maculosa) may be the potential biomarkers of W-thick coating. In general, the white coatings held more complex commensal relationship than the yellow coatings. CONCLUSION The common tongue coating owned characteristic microorganisms and special commensal relationship in the GC patients.
Collapse
MESH Headings
- Aged
- Bacteria/classification
- Bacteria/genetics
- Cluster Analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Female
- Fungi/classification
- Fungi/genetics
- Humans
- Male
- Microbiota
- Middle Aged
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/genetics
- ROC Curve
- Sequence Analysis, DNA
- Stomach Neoplasms/microbiology
- Stomach Neoplasms/pathology
- Tongue/microbiology
Collapse
Affiliation(s)
- Jing Xu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunjie Xiang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cong Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Boqi Xu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Wu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruiping Wang
- Department of Oncology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, 210029, China
| | - Yaping Yang
- School of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liyun Shi
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junfeng Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhen Zhan
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|