1
|
Panda SK, Robinson N, Desiderio V. Decoding secret role of mesenchymal stem cells in regulating cancer stem cells and drug resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189205. [PMID: 39481663 DOI: 10.1016/j.bbcan.2024.189205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Drug resistance caused by the efflux of chemotherapeutic drugs is one of the most challenging obstacles to successful cancer therapy. Several efflux transporters have been identified since the discovery of the P-gp/ABCB1 transporter in 1976. Over the last four decades, researchers have focused on developing efflux transporter inhibitors to overcome drug resistance. However, even with the third-generation inhibitors available, we are still far from effectively inhibiting the efflux transporters. Additionally, Cancer stem cells (CSCs) pose another significant challenge, contributing to cancer recurrence even after successful treatment. The ability of CSCs to enter dormancy and evade detection makes them almost invulnerable to chemotherapeutic drug treatment. In this review, we discuss how Mesenchymal stem cells (MSCs), one of the key components of the Tumor Microenvironment (TME), regulate both the CSCs and efflux transporters. We propose a new approach focusing on MSCs, which can be crucial to successfully address CSCs and efflux transporters.
Collapse
Affiliation(s)
- Sameer Kumar Panda
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy; Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Nirmal Robinson
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy.
| |
Collapse
|
2
|
Sun F, Ding Z, Shao F, Gao X, Tian H, Zhang X, Chen H, Wang C. Albumin-Based MUC13 Peptide Nanomedicine Suppresses Liver Cancer Stem Cells via JNK-ERK Signaling Pathway-Mediated Autophagy Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38968-38978. [PMID: 39024013 DOI: 10.1021/acsami.4c06034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Targeting liver cancer stem cells (LCSCs) is a promising strategy for hepatocellular carcinoma (HCC) therapy. Target selection and corresponding inhibitor screening are of vital importance for eliminating the stemness of LCSCs. Peptide-based agents are hopeful but have long been hindered for in vivo application. Herein, we selected a clinically significant target MUC13 and screened out a suitable peptide for preparation of an albumin-based MUC13 peptide nanomedicine, P3@HSA, which suppressed liver cancer stem cells via JNK-ERK signaling pathway-mediated autophagy inhibition. The selected target MUC13 was highly expressed in LCSCs and associated with the prognosis of liver cancer patients. Encouraged by this observation, we screened the corresponding peptide-based inhibitor P3 for further evaluation. P3 could interact with albumin through the intrinsic hydrophobic force and formed the nanomedicine P3@HSA. The prepared nanomedicine could inhibit LCSCs through JNK-ERK signaling pathway-mediated autophagy inhibition and exert potent antitumor effect both in vitro and in vivo. Together, this study provides a promising peptide-based nanomedicine for high-performance HCC treatment.
Collapse
Affiliation(s)
- Fen Sun
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zongyao Ding
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Fengying Shao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiaoyang Gao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Haina Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaqing Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Changlong Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
3
|
Sun F, Chen H, Dai X, Hou Y, Li J, Zhang Y, Huang L, Guo B, Yang D. Liposome-lentivirus for miRNA therapy with molecular mechanism study. J Nanobiotechnology 2024; 22:329. [PMID: 38858736 PMCID: PMC11165871 DOI: 10.1186/s12951-024-02534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) play a vital role in the occurrence, maintenance, and recurrence of solid tumors. Although, miR-145-5p can inhibit CSCs survival, poor understanding of the underlying mechanisms hamperes further therapeutic optimization for patients. Lentivirus with remarkable transduction efficiency is the most commonly used RNA carrier in research, but has shown limited tumor-targeting capability. METHODS We have applied liposome to decorate lentivirus surface thereby yielding liposome-lentivirus hybrid-based carriers, termed miR-145-5p-lentivirus nanoliposome (MRL145), and systematically analyzed their potential therapeutic effects on liver CSCs (LCSCs). RESULTS MRL145 exhibited high delivery efficiency and potent anti-tumor efficacy under in vitro and in vivo. Mechanistically, the overexpressed miR-145-5p can significantly suppress the self-renewal, migration, and invasion abilities of LCSCs by targeting Collagen Type IV Alpha 3 Chain (COL4A3). Importantly, COL4A3 can promote phosphorylating GSK-3β at ser 9 (p-GSK-3β S9) to inactivate GSK3β, and facilitate translocation of β-catenin into the nucleus to activate the Wnt/β-catenin pathway, thereby promoting self-renewal, migration, and invasion of LCSCs. Interestingly, COL4A3 could attenuate the cellular autophagy through modulating GSK3β/Gli3/VMP1 axis to promote self-renewal, migration, and invasion of LCSCs. CONCLUSIONS These findings provide new insights in mode of action of miR-145-5p in LCSCs therapy and indicates that liposome-virus hybrid carriers hold great promise in miRNA delivery.
Collapse
Affiliation(s)
- Fen Sun
- Institute of Animal Sciences and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250000, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huaqing Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaoyong Dai
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, Guangdong, China
| | - Yibo Hou
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jing Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yinghe Zhang
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Bing Guo
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Dongye Yang
- Division of Gastroenterology and Hepatology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
4
|
Yan M, Yang R, Li Q, Wang C, Chen J, Wu Z, Li H, Fan J. Anti-angiogenic and antitumor effects of anlotinib combined with bevacizumab for colorectal cancer. Transl Oncol 2024; 41:101887. [PMID: 38262112 PMCID: PMC10832611 DOI: 10.1016/j.tranon.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The progression and metastasis of tumors are typically accompanied by angiogenesis. Crucially, vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) play a significant role in tumor-associated angiogenesis. In this study, the aim was to investigate the antitumor effect of combining bevacizumab (Bev) with anlotinib (An) on colorectal cancer (CRC). METHODS The CCK-8 assay, EdU assay, and Annexin V staining were conducted to evaluate the proliferation and apoptosis of CRC cells in vitro. The migration capability of CRC cells and HUVECs was assessed using the Transwell assay. Additionally, the tube formation capability of HUVECs was investigated. Furthermore, the antitumor and antiangiogenic effects were evaluated in the BALB/c mice model using immunohistochemistry, TUNEL staining, and 18F-FDG PET/CT imaging. Finally, we analyzed the inhibitory effect of Bev and/or An on related signaling effectors through western blotting. RESULTS The in vivo CRC mice model revealed that the combination of Bev + An significantly suppressed tumor formation and angiogenesis. Bev + An inhibited tumor glucose metabolism and increased the median survival period in tumor-bearing mice. Mechanistically, the expressions of VEGF, VEGFR2, PDGFR, and FGFR, as well as the phosphorylation levels of AKT, were inhibited after Bev+An treatment. In conclusion, the dual vertical targeting of VEGF and VEGFR in the CRC mice model strongly inhibited tumor growth and angiogenesis, with the suppression of the AKT signaling pathway playing a partial role.
Collapse
Affiliation(s)
- Min Yan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Ronghao Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Qi Li
- Department of Oncology, the SanTai County People's Hospital, Santai 621100, PR China
| | - Chenjie Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Jiali Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Zhenying Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Han Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China
| | - Juan Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000, PR China.
| |
Collapse
|
5
|
Saito H, Suzuki N. Establishment of a novel experimental system using single cell-derived pleomorphic rhabdomyosarcoma cell lines expressing K-RasG12V and deficient in p53. Exp Anim 2023; 72:446-453. [PMID: 37081671 PMCID: PMC10658087 DOI: 10.1538/expanim.22-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
Pleomorphic rhabdomyosarcoma (PRMS) predominantly arises in adult skeletal musculature and is usually associated with poor prognosis. Thus, effective treatments must be developed. PRMS is a rare tumor; therefore, it is critical to develop an experimental system to understand the cellular and molecular mechanisms of PRMS. We previously demonstrated that PRMS develops after p53 gene deletion and oncogenic K-Ras expression in the skeletal muscle tissue. In that study, oncogenic K-Ras-expressing cells were diverse and the period until disease onset was difficult to control. In this study, we developed an experimental system to address this problem. Single cell-derived murine cell lines, designated as RMS310 and RMSg2, were established by limiting the dilution of cells from a lung metastatic tumor colony that were positive for various cancer stem cells and activated skeletal muscle-resident stem/progenitor cell marker genes by RT-PCR. All cell lines stably recapitulated the histological characteristics of human PRMS as bizarre giant cells, desmin-positive cells, and lung metastases in C57BL/6 mice. All subclones of the RMSg2 cells by the limiting dilution in vitro could seed PRMS subcutaneously, and as few as 500 RMSg2 cells were sufficient to form tumors. These results suggest that the RMSg2 cells are multipotent cancer cells that partially combine the properties of skeletal muscle-resident stem/progenitor cells and high tumorigenicity. Thus, our model system's capacity to regenerate tumor tissue in vivo and maintain stable cells in vitro makes it useful for developing therapeutics to treat PRMS.
Collapse
Affiliation(s)
- Hiromitsu Saito
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Organization for Research Initiative and Promotion at Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Noboru Suzuki
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Organization for Research Initiative and Promotion at Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| |
Collapse
|
6
|
Chamandi G, El-Hajjar L, El Kurdi A, Le Bras M, Nasr R, Lehmann-Che J. ER Negative Breast Cancer and miRNA: There Is More to Decipher Than What the Pathologist Can See! Biomedicines 2023; 11:2300. [PMID: 37626796 PMCID: PMC10452617 DOI: 10.3390/biomedicines11082300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC), the most prevalent cancer in women, is a heterogenous disease. Despite advancements in BC diagnosis, prognosis, and therapeutics, survival rates have drastically decreased in the metastatic setting. Therefore, BC still remains a medical challenge. The evolution of high-throughput technology has highlighted gaps in the classification system of BCs. Of particular interest is the notorious triple negative BC, which was recounted as being heterogenous itself and it overlaps with distinct subtypes, namely molecular apocrine (MA) and luminal androgen (LAR) BCs. These subtypes are, even today, still misdiagnosed and poorly treated. As such, researchers and clinicians have been looking for ways through which to refine BC classification in order to properly understand the initiation, development, progression, and the responses to the treatment of BCs. One tool is biomarkers and, specifically, microRNA (miRNA), which are highly reported as associated with BC carcinogenesis. In this review, the diverse roles of miRNA in estrogen receptor negative (ER-) and androgen receptor positive (AR+) BC are depicted. While highlighting their oncogenic and tumor suppressor functions in tumor progression, we will discuss their diagnostic, prognostic, and predictive biomarker potentials, as well as their drug sensitivity/resistance activity. The association of several miRNAs in the KEGG-reported pathways that are related to ER-BC carcinogenesis is presented. The identification and verification of accurate miRNA panels is a cornerstone for tackling BC classification setbacks, as is also the deciphering of the carcinogenesis regulators of ER - AR + BC.
Collapse
Affiliation(s)
- Ghada Chamandi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon
| | - Abdallah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon;
| | - Morgane Le Bras
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
| | - Jacqueline Lehmann-Che
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| |
Collapse
|
7
|
Guo XJ, Huang XY, Yang X, Lu JC, Wei CY, Gao C, Pei YZ, Chen Y, Sun QM, Cai JB, Zhou J, Fan J, Ke AW, Shi YG, Shen YH, Zhang PF, Shi GM, Yang GH. Loss of 5-hydroxymethylcytosine induces chemotherapy resistance in hepatocellular carcinoma via the 5-hmC/PCAF/AKT axis. Cell Death Dis 2023; 14:79. [PMID: 36732324 PMCID: PMC9895048 DOI: 10.1038/s41419-022-05406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 02/04/2023]
Abstract
Multidrug resistance is a major challenge in treating advanced hepatocellular carcinoma (HCC). Although recent studies have reported that the multidrug resistance phenotype is associated with abnormal DNA methylation in cancer cells, the epigenetic mechanism underlying multidrug resistance remains unknown. Here, we reported that the level of 5-hydroxymethylcytosine (5-hmC) in human HCC tissues was significantly lower than that in adjacent liver tissues, and reduced 5-hmC significantly correlated with malignant phenotypes, including poor differentiation and microvascular invasion; additionally, loss of 5-hmC was related to chemotherapy resistance in post-transplantation HCC patients. Further, the 5-hmC level was regulated by ten-eleven translocation 2 (TET2), and the reduction of TET2 in HCC contributes to chemotherapy resistance through histone acetyltransferase P300/CBP-associated factor (PCAF) inhibition and AKT signaling hyperactivation. In conclusion, loss of 5-hmC induces chemotherapy resistance through PCAF/AKT axis and is a promising chemosensitivity prediction biomarker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Xiao-Jun Guo
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Xiao-Yong Huang
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
- Department of General Surgery, Peking University Third Hospital, Beijing, PR China
| | - Jia-Cheng Lu
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Chuan-Yuan Wei
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Chao Gao
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Yan-Zi Pei
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Yi Chen
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Qi-Man Sun
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Jia-Bin Cai
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Jian Zhou
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Jia Fan
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Ai-Wu Ke
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Yujiang G Shi
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China.
| | - Ying-Hao Shen
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.
| | - Peng-Fei Zhang
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China.
- Department of Medical Oncology, Zhongshan Hospital of Fudan University, Shanghai, 200032, PR China.
- Cancer Center, Zhongshan Hospital of Fudan University, Shanghai, 200032, PR China.
| | - Guo-Ming Shi
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China.
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, Shanghai, 200032, PR China.
| | - Guo-Huan Yang
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China.
| |
Collapse
|
8
|
Martin J, Islam F. Detection and Isolation of Cancer Stem Cells. CANCER STEM CELLS: BASIC CONCEPT AND THERAPEUTIC IMPLICATIONS 2023:45-69. [DOI: 10.1007/978-981-99-3185-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Zhang M, Li X, Wu W, Gao J, Han Q, Sun Z, Zhao RC. Regorafenib induces the apoptosis of gastrointestinal cancer-associated fibroblasts by inhibiting AKT phosphorylation. Stem Cells Dev 2022; 31:383-394. [PMID: 35502476 DOI: 10.1089/scd.2022.0088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of tumor microenvironment and are essential for tumorigenesis and development. Regorafenib is a multikinase inhibitor that targets CAFs and suppresses tumor growth. Here, we investigated the effects of regorafenib on gastrointestinal CAFs and the underlying molecular mechanisms. First, we established two in vivo tumor models, the cancer cell line HCT116 with or without mesenchymal stem cells (MSCs) and treated them with regorafenib. We found that the application of regorafenib potently impaired tumor growth, an effect that was more pronounced in tumors with a high stromal ratio, thus demonstrating that regorafenib can inhibit CAFs proliferation and induce CAFs apoptosis in vivo. Moreover, we showed that regorafenib affected macrophage infiltration by reducing the proportion of CAFs in tumors. Afterward, we induced MSCs into CAFs with exosomes to establish an in vitro model. Then, we used MTS and flow cytometry to detect the effects of regorafenib on the proliferation and apoptosis of CAFs, and Western blot to determine the expression level of apoptosis-related proteins. We found that regorafenib inhibited the proliferation of CAFs and induced the apoptosis of CAFs in vitro. Furthermore, Western blot results showed that regorafenib down-regulated the expression of B-cell lymphoma-2 (Bcl-2) and concurrently up-regulated the expression of Bcl-2-associated X (Bax), and regorafenib inhibited the phosphorylation pathway of AKT in CAFs. In conclusion, our results provide a model in which regorafenib induces CAFs apoptosis by inhibiting the phosphorylation of AKT, and regorafenib affects macrophage infiltration by reducing the proportion of CAFs in tumor tissues.
Collapse
Affiliation(s)
- Mingjia Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Xuechun Li
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Wenjing Wu
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Jingxi Gao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Qin Han
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, Beijing, China;
| | - Zhao Sun
- Peking Union Medical College Hospital, 34732, Department of oncology, Dongcheng-qu, Beijing, China;
| | - Robert Chunhua Zhao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China.,Shanghai University, 34747, School of Life Sciences, Shanghai, Shanghai, China;
| |
Collapse
|
10
|
Chao HM, Wang TW, Chern E, Hsu SH. Regulatory RNAs, microRNA, long-non coding RNA and circular RNA roles in colorectal cancer stem cells. World J Gastrointest Oncol 2022; 14:748-764. [PMID: 35582099 PMCID: PMC9048531 DOI: 10.4251/wjgo.v14.i4.748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/18/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
The properties of cancer stem cells (CSCs), such as self-renewal, drug resistance, and metastasis, have been indicated to be responsible for the poor prognosis of patients with colon cancers. The epigenetic regulatory network plays a crucial role in CSC properties. Regulatory non-coding RNA (ncRNA), including microRNAs, long noncoding RNAs, and circular RNAs, have an important influence on cell physiopathology. They modulate cells by regulating gene expression in different ways. This review discusses the basic characteristics and the physiological functions of colorectal cancer (CRC) stem cells. Elucidation of these ncRNAs will help us understand the pathological mechanism of CRC progression, and they could become a new target for cancer treatment.
Collapse
Affiliation(s)
- Hsiao-Mei Chao
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Teh-Wei Wang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Shrestha R, Bridle KR, Cao L, Crawford DHG, Jayachandran A. Dual Targeting of Sorafenib-Resistant HCC-Derived Cancer Stem Cells. ACTA ACUST UNITED AC 2021; 28:2150-2172. [PMID: 34208001 PMCID: PMC8293268 DOI: 10.3390/curroncol28030200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Sorafenib, an oral multi-tyrosine kinase inhibitor, has been the first-line therapy for the treatment of patients with advanced HCC, providing a survival benefit of only three months in approximately 30% of patients. Cancer stem cells (CSCs) are a rare tumour subpopulation with self-renewal and differentiation capabilities, and have been implicated in tumour growth, recurrence and drug resistance. The process of epithelial-to-mesenchymal transition (EMT) contributes to the generation and maintenance of the CSC population, resulting in immune evasion and therapy resistance in several cancers, including HCC. The aim of this study is to target the chemoresistant CSC population in HCC by assessing the effectiveness of a combination treatment approach with Sorafenib, an EMT inhibitor and an immune checkpoint inhibitor (ICI). A stem-cell-conditioned serum-free medium was utilised to enrich the CSC population from the human HCC cell lines Hep3B, PLC/PRF/5 and HepG2. The anchorage independent spheres were characterised for CSC features. The human HCC-derived spheres were assessed for EMT status and expression of immune checkpoint molecules. The effect of combination treatment with SB431542, an EMT inhibitor, and siRNA-mediated knockdown of programmed cell death protein ligand-1 (PD-L1) or CD73 along with Sorafenib on human HCC-derived CSCs was examined with cell viability and apoptosis assays. The three-dimensional spheres enriched from human HCC cell lines demonstrated CSC-like features. The human HCC-derived CSCs also exhibited the EMT phenotype along with the upregulation of immune checkpoint molecules. The combined treatment with SB431542 and siRNA-mediated PD-L1 or CD73 knockdown effectively enhanced the cytotoxicity of Sorafenib against the CSC population compared to Sorafenib alone, as evidenced by the reduced size and proliferation of spheres. Furthermore, the combination treatment of Sorafenib with SB431542 and PD-L1 or CD73 siRNA resulted in an increased proportion of an apoptotic population, as evidenced by flow cytometry analysis. In conclusion, the combined targeting of EMT and immune checkpoint molecules with Sorafenib can effectively target the CSC tumour subpopulation.
Collapse
Affiliation(s)
- Ritu Shrestha
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Lu Cao
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Aparna Jayachandran
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Correspondence: ; Tel.: +61-4-2424-8058
| |
Collapse
|
12
|
Liu L, Borlak J. Advances in Liver Cancer Stem Cell Isolation and their Characterization. Stem Cell Rev Rep 2021; 17:1215-1238. [PMID: 33432485 DOI: 10.1007/s12015-020-10114-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Over the last decade research on cancer stem cells (CSC) significantly contributed to a better understanding of tumor biology. Given their similarity to normal stem cells, i.e. self-renewal and pluripotency the need arises to develop robust protocols for the isolation and characterization of CSCs. As with other malignancies, hepatic tumors are composed of a heterogeneous population of cells including liver cancer stem cells (LCSC). Yet, a precise understanding of why stem cells become cancerous is still lacking. There is unmet need to develop robust protocols for the successful isolation of LCSCs from human tissue resection material as to assist in the development of molecular targeted therapies. Here we review the research progress made in the isolation and characterization of LCSCs by considering a wide range of cell surface markers and sorting methods, as applied to side populations, microsphere cultures and the gradient centrifugation method. We emphasize the different fluorescence activated cell sorting methods and the possibility to enrich LCSCs by immunomagnetic beads. We review the specificity of functional assays by considering ABCG transporter and ALDH1 enzyme activities and evaluate the in vivo tumorigenicity of LCSCs in highly sensitive bioassays. Finally, we evaluate different LCSC markers in association with viral and non-viral liver disease and explore the potential of novel drug delivery systems targeting CD133, EpCAM, CD13 and CD90 for the development of molecular targeted therapies. Graphical Abstract.
Collapse
Affiliation(s)
- Lu Liu
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
13
|
Al-Othman N, Alhendi A, Ihbaisha M, Barahmeh M, Alqaraleh M, Al-Momany BZ. Role of CD44 in breast cancer. Breast Dis 2020; 39:1-13. [PMID: 31839599 DOI: 10.3233/bd-190409] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is among the most prevalent type of malignancy affecting females worldwide. BC is classified into different types according to the status of the expression of receptors such as estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), and progesterone receptor (PR). Androgen receptor (AR) appears to be a promising therapeutic target of BC. Binding of 5α-dihydrotestosterone (DHT) to AR controls the expression of microRNA (miRNA) molecules in BC, consequently, affecting protein expression. One of these proteins is the transmembrane glycoprotein cluster of differentiation 44 (CD44). Remarkably, CD44 is a common marker of cancer stem cells in BC. It functions as a co-receptor for a broad diversity of extracellular matrix ligands. Several ligands, primarily hyaluronic acid (HA), can interact with CD44 and mediate its functions. CD44 promotes a variety of functions independently or in cooperation with other cell-surface receptors through activation of varied signaling pathways like Rho GTPases, Ras-MAPK, and PI3K/AKT pathways to regulate cell adhesion, migration, survival, invasion, and epithelial-mesenchymal transition. In this review, we present the relations between AR, miRNA, and CD44 and their roles in BC.
Collapse
Affiliation(s)
- Nihad Al-Othman
- Division of Anatomy, Biochemistry, and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ala' Alhendi
- Division of Anatomy, Biochemistry, and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Manal Ihbaisha
- Division of Anatomy, Biochemistry, and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Myassar Barahmeh
- Division of Anatomy, Biochemistry, and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | | |
Collapse
|
14
|
Lee SH, Reed-Newman T, Anant S, Ramasamy TS. Regulatory Role of Quiescence in the Biological Function of Cancer Stem Cells. Stem Cell Rev Rep 2020; 16:1185-1207. [DOI: 10.1007/s12015-020-10031-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells 2020; 9:E1896. [PMID: 32823711 PMCID: PMC7464860 DOI: 10.3390/cells9081896] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Despite great strides being achieved in improving cancer patients' outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem cell theory posits that tumors are driven by specialized cancer cells called cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. Whilst the debate on whether CSCs are the origins of the primary tumor rages on, CSCs have been further characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting. In this updated review we revisit CSCs within the tumor microenvironment (TME) and present novel treatment strategies targeting CSCs. These promising strategies include targeting CSCs-specific properties using small molecule inhibitors, immunotherapy, microRNA mediated inhibitors, epigenetic methods as well as targeting CSC niche-microenvironmental factors and differentiation. Lastly, we present recent clinical trials undertaken to try to turn the tide against cancer by targeting CSC-associated drug resistance and metastasis.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Chelene Ganz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
- Department of Medical Biochemistry, School of Medical Sciences, College of Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| |
Collapse
|
16
|
Liu G, Luo Q, Li H, Liu Q, Ju Y, Song G. Increased Oxidative Phosphorylation Is Required for Stemness Maintenance in Liver Cancer Stem Cells from Hepatocellular Carcinoma Cell Line HCCLM3 Cells. Int J Mol Sci 2020; 21:ijms21155276. [PMID: 32722385 PMCID: PMC7432880 DOI: 10.3390/ijms21155276] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are considered to be the main cause of tumor recurrence, metastasis, and an unfavorable prognosis. Energy metabolism is closely associated with cell stemness. However, how the stemness of liver cancer stem cells (LCSCs) is regulated by metabolic/oxidative stress remains poorly understood. In this study, we compare the metabolic differences between LCSCs and the hepatocellular carcinoma cell line HCCLM3, and explore the relationship between metabolism and LCSC stemness. We found that LCSCs from the hepatocellular carcinoma cell HCCLM3 exhibited more robust glucose metabolism than HCCLM3, including glycolysis, oxidative phosphorylation (OXPHOS), and pyruvate produced by glycolysis entering mitochondria for OXPHOS. Moreover, 2-deoxy-D-glucose (2-DG) enhanced the LCSC stemness by upregulating OXPHOS. In contrast, Mdivi-1 reduced the levels of OXPHOS and weakened the stemness by inhibiting mitochondrial fission. Together, our findings clarify the relationship between energy metabolism and LCSC stemness and may provide theoretical guidance and potential therapeutic approaches for liver cancer.
Collapse
Affiliation(s)
- Ge Liu
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
| | - Qing Luo
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
| | - Hong Li
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
| | - Qiuping Liu
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan;
| | - Guanbin Song
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (G.L.); (Q.L.); (H.L.); (Q.L.)
- Correspondence: ; Tel.: +86-23-65102507
| |
Collapse
|
17
|
Anlotinib suppresses tumor progression via blocking the VEGFR2/PI3K/AKT cascade in intrahepatic cholangiocarcinoma. Cell Death Dis 2020; 11:573. [PMID: 32709873 PMCID: PMC7381674 DOI: 10.1038/s41419-020-02749-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor derived from bile duct epithelium. Its characteristics include an insidious onset and frequent recurrence or metastasis after surgery. Current chemotherapies and molecular target therapies provide only modest survival benefits to patients with ICC. Anlotinib is a novel multi-target tyrosine kinase inhibitor that has good antitumor effects in a variety of solid tumors. However, there are few studies of anlotinib-associated mechanisms and use as a treatment in ICC. In this study using in vitro experiments, we found that anlotinib had significant effects on proliferation inhibition, migration and invasion restraint, and cell-cycle arrestment. Anlotinib treatment affected induction of apoptosis and the mesenchymal–epithelial transition. Patient-derived xenograft models generated directly from patients with ICC revealed that anlotinib treatment dramatically hindered in vivo tumor growth. We also examined anlotinib’s mechanism of action using transcriptional profiling. We found that anlotinib treatment might mainly inhibit tumor cell proliferation and invasion and promote apoptosis via cell-cycle arrestment by inactivating the VEGF/PI3K/AKT signaling pathway, as evidenced by significantly decreased phosphorylation levels of these kinases. The activation of vascular endothelial growth factor receptor 2 (VEGFR2) can subsequently activate PI3K/AKT signaling. We identified VEGRF2 as the main target of anlotinib. High VEGFR2 expression might serve as a promising indicator when used to predict a favorable therapeutic response. Taken together, these results indicated that anlotinib had excellent antitumor activity in ICC, mainly via inhibiting the phosphorylation level of VEGFR2 and subsequent inactivation of PIK3/AKT signaling. This work provides evidence and a rationale for using anlotinib to treat patients with ICC in the future.
Collapse
|
18
|
Li S, Li L, Wu J, Song F, Qin Z, Hou L, Xiao C, Weng J, Qin X, Xu J. TDO Promotes Hepatocellular Carcinoma Progression. Onco Targets Ther 2020; 13:5845-5855. [PMID: 32606795 PMCID: PMC7311207 DOI: 10.2147/ott.s252929] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Tryptophan 2,3-dioxygenase (TDO), encoded by the gene TDO2, is an enzyme that catalyses the first and rate-limiting step of tryptophan (Try) degradation in the kynurenine (Kyn) pathway in the liver. Recently, TDO has been demonstrated to be expressed in various human tumours, especially hepatocellular carcinoma (HCC). However, the role of TDO in HCC is still not very clear. Here, we studied the role of TDO in HCC. Methods We demonstrated that TDO is overexpressed in human HCC tissues and is significantly correlated with malignant phenotype characteristics, including tumour size, tumour differentiation, vascular invasion, etc. Kaplan–Meier analysis showed a poor overall survival rate in patients with TDO-overexpressing tumours. In addition, the effects of TDO on HCC tumour growth and metastasis were detected both in vivo and in vitro. TDO overexpression facilitated HCC cell growth, invasion and migration. Conclusion Our results suggest that TDO positively regulates HCC proliferation and invasion and acts as a new prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Shanbao Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.,Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Lei Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Junyi Wu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Fangbin Song
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Zhiwei Qin
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Lei Hou
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Chao Xiao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Junyong Weng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Xuebin Qin
- Division of Pathology, Tulane National Primate Research Center, Health Sciences Campus, Covington, LA 70433, USA
| | - Junming Xu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| |
Collapse
|
19
|
Circular RNA circZNF566 promotes hepatocellular carcinoma progression by sponging miR-4738-3p and regulating TDO2 expression. Cell Death Dis 2020; 11:452. [PMID: 32532962 PMCID: PMC7293356 DOI: 10.1038/s41419-020-2616-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
As a recently discovered noncoding RNA, circular RNAs (circRNAs) have been identified to play key roles in cancer biology; however, the detailed functions and mechanisms of circRNAs in hepatocellular carcinoma (HCC) remain largely unclarified. RNA-seq analysis was used to screen the expression profiles of circRNAs in HCC. CircZNF566 expression in HCC tissues and cell lines was detected by qRT-PCR. In vitro CCK-8, colony formation, wound healing, transwell migration, and invasion assays and in vivo tumorigenesis and metastasis assays were conducted to determine the functions of circZNF566. Luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays were also performed to confirm the relationship between circZNF566 and miR-4738-3p. Bioinformatics analysis and luciferase reporter assays were employed to determine whether miR-4738-3p regulates tryptophan 2,3-dioxygenase (TDO2) expression. Finally, immunohistochemistry (IHC) was used to detect the level of TDO2 and determine its prognostic value. CircZNF566 was significantly upregulated in HCC tissues and cell lines. High circZNF566 expression in HCC tissues was positively correlated with clinicopathological features and poor prognosis. Functionally, in vitro experiments showed that circZNF566 promoted HCC cell migration, invasion, and proliferation, whereas in vivo experiments showed that circZNF566 promoted tumorigenesis and metastasis. Mechanistically, circZNF566 acted as a miR-4738-3p sponge to relieve the repressive effect of miR-4738-3p on its target TDO2. In addition, miR-4738-3p suppressed HCC cell migration, invasion, and proliferation, while TDO2 was positively correlated with pathological features and poor prognosis and promoted cell migration, invasion, and proliferation in HCC. CircZNF566 is a novel tumor promoter in HCC and functions through the circZNF566/ miR-4738-3p /TDO2 axis; in addition, circZNF566 may serve as a novel diagnostic marker, prognostic indicator, and target for the treatment of HCC.
Collapse
|
20
|
Liu YC, Yeh CT, Lin KH. Cancer Stem Cell Functions in Hepatocellular Carcinoma and Comprehensive Therapeutic Strategies. Cells 2020; 9:cells9061331. [PMID: 32466488 PMCID: PMC7349579 DOI: 10.3390/cells9061331] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant cause of cancer-related mortality owing to resistance to traditional treatments and tumor recurrence after therapy, which leads to poor therapeutic outcomes. Cancer stem cells (CSC) are a small subset of tumor cells with the capability to influence self-renewal, differentiation, and tumorigenesis. A number of surface markers for liver cancer stem cell (LCSC) subpopulations (EpCAM, CD133, CD44, CD13, CD90, OV-6, CD47, and side populations) in HCC have been identified. LCSCs play critical roles in regulating HCC stemness, self-renewal, tumorigenicity, metastasis, recurrence, and therapeutic resistance via genetic mutations, epigenetic disruption, signaling pathway dysregulation, or alterations microenvironment. Accumulating studies have shown that biomarkers for LCSCs contribute to diagnosis and prognosis prediction of HCC, supporting their utility in clinical management and development of therapeutic strategies. Preclinical and clinical analyses of therapeutic approaches for HCC using small molecule inhibitors, oncolytic measles viruses, and anti-surface marker antibodies have demonstrated selective, efficient, and safe targeting of LCSC populations. The current review focuses on recent reports on the influence of LCSCs on HCC stemness, tumorigenesis, and multiple drug resistance (MDR), along with LCSC-targeted therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan;
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan;
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Correspondence: ; Tel./Fax: +886-3-211-8263
| |
Collapse
|
21
|
ROS and oncogenesis with special reference to EMT and stemness. Eur J Cell Biol 2020; 99:151073. [PMID: 32201025 DOI: 10.1016/j.ejcb.2020.151073] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
Elevation of the level of intracellular reactive oxygen species (ROS) has immense implication in the biological system. On the one hand, ROS promote the signaling cascades for the maintenance of normal physiological functions, the phenomenon referred to as redox biology, and on the other hand increased ROS can cause damages to the cellular macromolecules as well as genetic material, the process known as oxidative stress. Oxidative stress acts as an etiological factor for wide varieties of pathologies, cancer being one of them. ROS is regarded as a "double-edged sword" with respect to oncogenesis. It can suppress as well as promote the malignant progression depending on the type of signaling pathway it uses. Moreover, the attribution of ROS in promoting phenotypic plasticity as well as acquisition of stemness during neoplasia has become a wide area of research. The current review discussed all the aspects of ROS in the perspective of tumor biology with special reference to epithelial-mesenchymal transition (EMT) and cancer stem cells.
Collapse
|
22
|
Zhou Y, Li Y, Xu S, Lu J, Zhu Z, Chen S, Tan Y, He P, Xu J, Proud CG, Xie J, Shen K. Eukaryotic elongation factor 2 kinase promotes angiogenesis in hepatocellular carcinoma via PI3K/Akt and STAT3. Int J Cancer 2019; 146:1383-1395. [PMID: 31286509 DOI: 10.1002/ijc.32560] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/31/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy with increasing mortality in China. Angiogenesis is crucial for tumor formation, development and metastasis in HCC. Previous studies indicated that high expression levels of elongation factor 2 kinase (eEF2K), a protein kinase that negatively regulates the elongation stage of translation, were associated with poor prognosis of HCC. Here, we show that pharmacological inhibition or knockdown of eEF2K in highly metastatic liver cancer cells inhibits their colony forming and migratory capacities, as well as reducing their invasiveness. Importantly, knocking down eEF2K by lentiviral directed shRNA prevented tumor growth and angiogenesis of HCC in mice. Silencing of eEF2K in endothelial cells (HUVECs) led to a reduction in vascularization, evidenced by a decrease in capillary-like structures in the matrigel. Notably, knocking down eEF2K reduced the expression of angiogenesis-related growth factors in liver cancer cells and the expression of growth factor receptors on HUVECs, and thus restricted signaling crosstalk that promotes angiogenesis between HCC cells and endothelial cells. We also showed that silencing of eEF2K effectively reduced protein levels of SP1/KLF5 transcription factors and hence decreased the levels of bound SP1/KLF5 to the VEGF promoter, resulted in a decrease in VEGF mRNA expression. Knocking down eEF2K also led to a striking decrease in the phosphorylation of PI3K/Akt and STAT3, indicating inactivation of these tumorigenic pathways. Taken together, our data suggest that eEF2K contributes to angiogenesis and tumor progression in HCC via SP1/KLF5-mediated VEGF expression, as well as the subsequent stimulation of PI3K/Akt and STAT3 signaling.
Collapse
Affiliation(s)
- Ying Zhou
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yaoting Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shihao Xu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ziyi Zhu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoli Chen
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Tan
- Department of Integrated TCM & Western Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Peng He
- Department of Nephrology, Huabeishiyou Hospital of Traditional Chinese Medicine, Hebei, China
| | - Jin Xu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia
| | - Kaikai Shen
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Medical Research Council Toxicology Unit, University of Cambridge, Leicester, United Kingdom
| |
Collapse
|
23
|
MicroRNA-192-5p Promote the Proliferation and Metastasis of Hepatocellular Carcinoma Cell by Targeting SEMA3A. Appl Immunohistochem Mol Morphol 2019; 25:251-260. [PMID: 26580097 DOI: 10.1097/pai.0000000000000296] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Side population (SP) cells are a small subset of cells isolated from a cultured cancer cell line with characteristics similar to those of cancer stem cells, such as high metastatic and tumorigenic potentials. However, the molecular mechanisms remain unclear for the malignant properties of SP cells. In this study, SP cells were isolated by staining cultured HCCLM3 cells with fluorescent DNA-binding dye Hoechst 33342 and sorted by flow cytometry. The proportion of SP cells was 2.79%±0.19% in the HCCLM3 cell line. Compared with non-SP cells, SP cells possessed stronger capability of sphere formation and tumorigenicity, and expressed higher levels of CD133 and CD90. Then, we found that SP cells possessed 25 upregulated and 34 downregulated microRNAs with differences of >3-fold. As one of the upregulated microRNAs, miR-192-5p was computationally predicted to target semaphorin 3A (SEMA3A), a potent suppressor of tumor angiogenesis in various cancer models. Luciferase reporter assay showed that SEMA3A was a direct target of miR-192-5p. Overexpression of miR-192-5p promoted cell proliferation and metastasis targeting SEMA3A in HCCLM3 cells. Immunohistochemical staining revealed that SEMA3A expression was significantly reverse associated with metastasis in hepatocellular carcinoma tissues. The results indicate that miR-192-5p contributes to targeting SEMA3A in HCCLM3 cells, and this may be used as a target in targeted therapy and a marker for cancer behavior and prognosis.
Collapse
|
24
|
Ceballos MP, Rigalli JP, Ceré LI, Semeniuk M, Catania VA, Ruiz ML. ABC Transporters: Regulation and Association with Multidrug Resistance in Hepatocellular Carcinoma and Colorectal Carcinoma. Curr Med Chem 2019; 26:1224-1250. [PMID: 29303075 DOI: 10.2174/0929867325666180105103637] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
For most cancers, the treatment of choice is still chemotherapy despite its severe adverse effects, systemic toxicity and limited efficacy due to the development of multidrug resistance (MDR). MDR leads to chemotherapy failure generally associated with a decrease in drug concentration inside cancer cells, frequently due to the overexpression of ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2), which limits the efficacy of chemotherapeutic drugs. The aim of this review is to compile information about transcriptional and post-transcriptional regulation of ABC transporters and discuss their role in mediating MDR in cancer cells. This review also focuses on drug resistance by ABC efflux transporters in cancer cells, particularly hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) cells. Some aspects of the chemotherapy failure and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- María Paula Ceballos
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Juan Pablo Rigalli
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Lucila Inés Ceré
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Mariana Semeniuk
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| |
Collapse
|
25
|
Turdo A, Veschi V, Gaggianesi M, Chinnici A, Bianca P, Todaro M, Stassi G. Meeting the Challenge of Targeting Cancer Stem Cells. Front Cell Dev Biol 2019; 7:16. [PMID: 30834247 PMCID: PMC6387961 DOI: 10.3389/fcell.2019.00016] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Notwithstanding cancer patients benefit from a plethora of therapeutic alternatives, drug resistance remains a critical hurdle. Indeed, the high mortality rate is associated with metastatic disease, which is mostly incurable due to the refractoriness of metastatic cells to current treatments. Increasing data demonstrate that tumors contain a small subpopulation of cancer stem cells (CSCs) able to establish primary tumor and metastasis. CSCs are endowed with multiple treatment resistance capabilities comprising a highly efficient DNA damage repair machinery, the activation of survival pathways, enhanced cellular plasticity, immune evasion and the adaptation to a hostile microenvironment. Due to the presence of distinct cell populations within a tumor, cancer research has to face the major challenge of targeting the intra-tumoral as well as inter-tumoral heterogeneity. Thus, targeting molecular drivers operating in CSCs, in combination with standard treatments, may improve cancer patients’ outcomes, yielding long-lasting responses. Here, we report a comprehensive overview on the most significant therapeutic advances that have changed the known paradigms of cancer treatment with a particular emphasis on newly developed compounds that selectively affect the CSC population. Specifically, we are focusing on innovative therapeutic approaches including differentiation therapy, anti-angiogenic compounds, immunotherapy and inhibition of epigenetic enzymes and microenvironmental cues.
Collapse
Affiliation(s)
- Alice Turdo
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Aurora Chinnici
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Paola Bianca
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of PROMISE, University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
26
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with high mortality rate. It is a heterogeneous cancer with diverse inter- and intra-heterogeneity, also in terms of histology, prognosis, and molecular profiles. A rapidly growing evidence has demonstrated that some HCCs, if not all, were caused by the activation of the cancer stem cells (CSC), a small population within the cancer that is responsible for the initiation and maintenance of cancer growth. Until now, various populations of hepatic CSC with more than ten different phenotypical protein markers, such as CD133, CD90, EpCAM, CD24, and CD13, have been identified and validated in xenotransplantation models. They are associated with risk factors, prognosis, chemo-resistance, and metastasis. This chapter summarizes available data on different hepatic CSC markers for the development of potential future therapy.
Collapse
|
27
|
Wei CY, Zhu MX, Lu NH, Peng R, Yang X, Zhang PF, Wang L, Gu JY. Bioinformatics-based analysis reveals elevated MFSD12 as a key promoter of cell proliferation and a potential therapeutic target in melanoma. Oncogene 2018; 38:1876-1891. [PMID: 30385854 PMCID: PMC6462865 DOI: 10.1038/s41388-018-0531-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/30/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022]
Abstract
Although recent therapeutic advances based on our understanding of molecular phenomena have prolonged the survival of melanoma patients, the prognosis of melanoma remains dismal and further understanding of the underlying mechanism of melanoma progression is needed. In this study, differential expression analyses revealed that many genes, including AKT1 and CDK2, play important roles in melanoma. Functional analyses of differentially expressed genes (DEGs), obtained from the GEO (Gene Expression Omnibus) database, indicated that high proliferative and metastatic abilities are the main characteristics of melanoma and that the PI3K and MAPK pathways play essential roles in melanoma progression. Among these DEGs, major facilitator superfamily domain-containing 12 (MFSD12) was found to have significantly and specifically upregulated expression in melanoma, and elevated MFSD12 level promoted cell proliferation by promoting cell cycle progression. Mechanistically, MFSD12 upregulation was found to activate PI3K signaling, and a PI3K inhibitor reversed the increase in cell proliferation endowed by MFSD12 upregulation. Clinically, high MFSD12 expression was positively associated with shorter overall survival (OS) and disease-free survival (DFS) in melanoma patients, and MFSD12 was an independent prognostic factor for OS and DFS in melanoma patients. Therapeutically, in vivo assays further confirmed that MFSD12 interference inhibited tumor growth and lung metastasis in melanoma. In conclusion, elevated MFSD12 expression promotes melanoma cell proliferation, and MFSD12 is a valuable prognostic biomarker and promising therapeutic target in melanoma.
Collapse
Affiliation(s)
- Chuan-Yuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Meng-Xuan Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Nan-Hang Lu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Rui Peng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Xuan Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Peng-Fei Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian-Ying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
28
|
Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Oncogenic Signaling Induced by HCV Infection. Viruses 2018; 10:v10100538. [PMID: 30279347 PMCID: PMC6212953 DOI: 10.3390/v10100538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
The liver is frequently exposed to toxins, metabolites, and oxidative stress, which can challenge organ function and genomic stability. Liver regeneration is therefore a highly regulated process involving several sequential signaling events. It is thus not surprising that individual oncogenic mutations in hepatocytes do not necessarily lead to cancer and that the genetic profiles of hepatocellular carcinomas (HCCs) are highly heterogeneous. Long-term infection with hepatitis C virus (HCV) creates an oncogenic environment by a combination of viral protein expression, persistent liver inflammation, oxidative stress, and chronically deregulated signaling events that cumulate as a tipping point for genetic stability. Although novel direct-acting antivirals (DAA)-based treatments efficiently eradicate HCV, the associated HCC risk cannot be fully eliminated by viral cure in patients with advanced liver disease. This suggests that HCV may persistently deregulate signaling pathways beyond viral cure and thereby continue to perturb cancer-relevant gene function. In this review, we summarize the current knowledge about oncogenic signaling pathways derailed by chronic HCV infection. This will not only help to understand the mechanisms of hepatocarcinogenesis but will also highlight potential chemopreventive strategies to help patients with a high-risk profile of developing HCC.
Collapse
Affiliation(s)
- Alessia Virzì
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
29
|
Liu H, Wang Y, Xing X, Sun Y, Wei D, Chen G, Liu Q, Chen S, Liu X, Liu J. Comparative proteomics of side population cells derived from human hepatocellular carcinoma cell lines with varying metastatic potentials. Oncol Lett 2018; 16:335-345. [PMID: 29928419 PMCID: PMC6006459 DOI: 10.3892/ol.2018.8666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/16/2018] [Indexed: 02/07/2023] Open
Abstract
Metastasis and recurrence following surgery are major reasons for the high mortality rate and poor prognosis associated with hepatocellular carcinoma (HCC). Cancer stem cells (CSCs) are thought to be able to cause cancer, and to be the primary cause of tumor recurrence and metastasis. The underlying mechanisms of the metastatic potential of CSCs is poorly understood. In the present study, side population (SP) cells were isolated from 4 HCC cell lines, and their self-renewal and migratory abilities were compared. The results demonstrate that SP cells from different cell lines exhibited similar self-renewal abilities but different metastatic potentials. Furthermore, the overall proteomes of the SP cells were systematically quantified. This revealed 11 and 19 differentially expressed proteins (DEPs), upregulated and downregulated, respectively, associated with increased metastatic potential. These proteins were involved in the ‘regulation of mRNA processing’ and ‘cytoskeleton organization’ biological processes. The majority of the proteins were involved in ‘cell proliferation’, ‘migration’ and ‘invasion of cancer’, and may promote HCC metastasis in a synergistic manner. The AKT and nuclear factor-κB signaling pathways may contribute to the regulation of HCC metastasis through regulating the DEPs in SP cells. To the best of our knowledge, the present study is the first to demonstrate the overall proteome difference among SP cells from the different HCC cell lines with different metastatic potentials. The present study provides novel information regarding the metastatic potential of CSCs, which will facilitate further investigation of the topic.
Collapse
Affiliation(s)
- Hongzhi Liu
- Liver Disease Center, The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Ying Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Dahai Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Teaching Hospital of Fujian Medical University, Fujian Provincial Tumor Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Shanshan Chen
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Teaching Hospital of Fujian Medical University, Fujian Provincial Tumor Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Jingfeng Liu
- Liver Disease Center, The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350007; P.R. China
| |
Collapse
|
30
|
Characterization of a Cancer Stem Cell-Like Side Population Derived from Human Pancreatic Adenocarcinoma Cells. TUMORI JOURNAL 2018. [DOI: 10.1177/548.6520] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aims and background To identify and partially characterize the side population cells derived from three human pancreatic adenocarcinoma cell lines. Methods Side population cells were sorted from the human pancreatic adenocarcinoma cell lines SW1990, Capan-2, and BxPC-3 using flow cytometry and then analyzed for cell proliferation, clone formation, differentiation, chemoresistance, invasive potential, and tumorigenicity in a mouse model. Results Human pancreatic carcinoma cell lines SW1990, Capan-2, and BxPC-3 contain 2.7% ±0.35%, 3.6%± 1.2%, and 2.8%± 0.8% side population cells, respectively. We further investigated cancer stem cell characteristics with the moderately differentiated human pancreatic adenocarcinoma cell line SW1990. Flow cytometry analysis revealed that side population cells could differentiate into side population and non-side population cells and could exhibit differentiation potential. Using a clone formation assay, side population cells were shown to have a higher proliferation than non-side population cells. Compared to non-side population cells, side population cells were also more resistant to gemcitabine, a commonly used anti-cancer agent against pancreatic carcinoma, and were more invasive. Importantly, the CD133 level in side population cells was significantly higher than that in non-side population cells. The enhanced tumorigenecity was further confirmed in a male diabetic/severe combined immunodeficiency mouse model. As few as 3 × 103 side population cells were sufficient to induce tumor formation in the mouse model, compared to 107 non-side population or unsorted cells. Conclusions Side population cells isolated from human pancreatic adenocarcinoma cell lines harbor cancer stem cell-like properties that may be related to the invasive potential and therapeutic-resistance of pancreatic adenocarcinoma. Free full text available at www.tumorionline.it
Collapse
|
31
|
|
32
|
Li T, Yan B, Ma Y, Weng J, Yang S, Zhao N, Wang X, Sun X. Ubiquitin-specific protease 4 promotes hepatocellular carcinoma progression via cyclophilin A stabilization and deubiquitination. Cell Death Dis 2018; 9:148. [PMID: 29396555 PMCID: PMC5833721 DOI: 10.1038/s41419-017-0182-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022]
Abstract
Ubiquitin-specific protease 4 (USP4) is a member of the deubiquitinating enzyme family, which plays an important role in human tumor diseases. However, the mechanisms by which USP4 facilitates tumor development, especially in hepatocellular carcinoma (HCC), remain unclear. Clinically, we found that USP4 is overexpressed in human HCC tissues compared with adjacent non-tumoral tissues and is significantly correlated with malignant phenotype characteristics, including tumor size, tumor number, differentiation, serum alpha-fetoprotein level, and vascular invasion. Moreover, Kaplan-Meier survival analysis showed a poor overall survival rate in patients with USP4-overexpressing tumors. Analyses of univariate and multivariate Cox proportional hazard models indicated that USP4 is a prognostic biomarker for poor outcome. Using in vitro and in vivo assays, we demonstrated that USP4 overexpression enhanced HCC cell growth, migration, and invasion. Mechanistically, cyclophilin A (CypA) was identified as an important molecule for USP4-mediated oncogenic activity in HCC. We observed that USP4 interacted with CypA and inhibited CypA degradation via deubiquitination in HCC cells. Subsequently, the USP4/CypA complex activated the MAPK signaling pathway and prevented CrkII phosphorylation. These data suggest that USP4 acts as a novel prognostic marker, offering potential therapeutic opportunities for HCC.
Collapse
Affiliation(s)
- Tianyi Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bin Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yang Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Junyong Weng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shouwen Yang
- Department of Gynaecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Nan Zhao
- Department of General Surgery, Shanghai General Hospital, Nanjing Medical University, Shanghai, China
| | - Xiaoliang Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Singh AK, Sharma N, Ghosh M, Park YH, Jeong DK. Emerging importance of dietary phytochemicals in fight against cancer: Role in targeting cancer stem cells. Crit Rev Food Sci Nutr 2017; 57:3449-3463. [DOI: 10.1080/10408398.2015.1129310] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amit Kumar Singh
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, R. S. Pura, Jammu, India
| | - Mrinmoy Ghosh
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | | | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
34
|
Ke AW, Zhang PF, Shen YH, Gao PT, Dong ZR, Zhang C, Cai JB, Huang XY, Wu C, Zhang L, Kang Q, Liu LX, Xie N, Shen ZZ, Hu MY, Cao Y, Qiu SJ, Sun HC, Zhou J, Fan J, Shi GM. Generation and characterization of a tetraspanin CD151/integrin α6β1-binding domain competitively binding monoclonal antibody for inhibition of tumor progression in HCC. Oncotarget 2017; 7:6314-22. [PMID: 26756217 PMCID: PMC4868758 DOI: 10.18632/oncotarget.6833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/29/2015] [Indexed: 01/17/2023] Open
Abstract
Our previous studies revealed that tetraspanin CD151 plays multiple roles in the progression of hepatocellular carcinoma (HCC) by forming a functional complex with integrin α6β1. Herein, we generated a monoclonal antibody (mAb) that dissociates the CD151/integrin α6β1 complex, and we evaluated its bioactivity in HCCs. A murine mAb, tetraspanin CD151 (IgG1, called CD151 mAb 9B), was successfully generated against the CD151-integrin α6β1 binding site of CD151 extracellular domains. Co-immunoprecipitation using CD151 mAb 9B followed by Western blotting detected a 28 kDa protein. Both immunofluorescent and immunohistochemical staining showed a good reactivity of CD151 mAb 9B in the plasma membrane and cytoplasm of HCC cells, as well as in liver cells. In vitro assays demonstrated that CD151 mAb 9B could inhibit neoangiogenesis and both the mobility and the invasiveness of HCC cells. An in vivo assay showed that CD151 mAb 9B inhibited tumor growth potential and HCC cells metastasis. We successfully produced a CD151 mAb 9B targeting the CD151/integrin α6β1-binding domain, which not only can displayed good reactivity to the CD151 antigen but also prevented tumor progression in HCC.
Collapse
Affiliation(s)
- Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Peng-Fei Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Ying-Hao Shen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Ping-Ting Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Zhao-Ru Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Chi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Jia-Bin Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Xiao-Yong Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Chao Wu
- Department of Hepatobiliary Surgery, Subei People's Hospital, Yangzhou University, Yangzhou 225000, China
| | - Lu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Qiang Kang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Li-Xin Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Nan Xie
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Zao-Zhuo Shen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Mei-Yu Hu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan 410008, China
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Hui-Chuan Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| |
Collapse
|
35
|
Nong YX, Huang JL, Huang ZS, Zhou XH. Characteristics and experimental applications of human hepatocellular carcinoma cell lines. Shijie Huaren Xiaohua Zazhi 2017; 25:159-165. [DOI: 10.11569/wcjd.v25.i2.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
At present, primary hepatocellular carcinoma (HCC), a malignant tumor with a high incidence rate in China, is associated with a high mortality rate as well as a treatment dilemma. The research on HCC is always a hot topic. However, due to ethical considerations, research on HCC cannot directly be done in humans. The establishment of human HCC cell line model has overcome this obstacle. Derived from the tissue of human HCC, HCC cell lines have a complete set of human genes and relatively stable passages. This paper introduces the origins and characteristics of cell lines commonly used in experiments, such as SMMC7721, Bel-7402, MHCC97, HepG2, Hep3B, Huh-7, and PLC/PRF/5, as well as their roles and applications in HCC research.
Collapse
|
36
|
Deshmukh A, Deshpande K, Arfuso F, Newsholme P, Dharmarajan A. Cancer stem cell metabolism: a potential target for cancer therapy. Mol Cancer 2016; 15:69. [PMID: 27825361 PMCID: PMC5101698 DOI: 10.1186/s12943-016-0555-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer Stem cells (CSCs) are a unipotent cell population present within the tumour cell mass. CSCs are known to be highly chemo-resistant, and in recent years, they have gained intense interest as key tumour initiating cells that may also play an integral role in tumour recurrence following chemotherapy. Cancer cells have the ability to alter their metabolism in order to fulfil bio-energetic and biosynthetic requirements. They are largely dependent on aerobic glycolysis for their energy production and also are associated with increased fatty acid synthesis and increased rates of glutamine utilisation. Emerging evidence has shown that therapeutic resistance to cancer treatment may arise due to dysregulation in glucose metabolism, fatty acid synthesis, and glutaminolysis. To propagate their lethal effects and maintain survival, tumour cells alter their metabolic requirements to ensure optimal nutrient use for their survival, evasion from host immune attack, and proliferation. It is now evident that cancer cells metabolise glutamine to grow rapidly because it provides the metabolic stimulus for required energy and precursors for synthesis of proteins, lipids, and nucleic acids. It can also regulate the activities of some of the signalling pathways that control the proliferation of cancer cells. This review describes the key metabolic pathways required by CSCs to maintain a survival advantage and highlights how a combined approach of targeting cellular metabolism in conjunction with the use of chemotherapeutic drugs may provide a promising strategy to overcome therapeutic resistance and therefore aid in cancer therapy.
Collapse
Affiliation(s)
- Abhijeet Deshmukh
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Kedar Deshpande
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia.
| |
Collapse
|
37
|
Osteopontin induces autophagy to promote chemo-resistance in human hepatocellular carcinoma cells. Cancer Lett 2016; 383:171-182. [PMID: 27702661 DOI: 10.1016/j.canlet.2016.09.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major health burden worldwide for its high incidence and mortality. Osteopontin (OPN) is a chemokine-like, matricellular phosphoglycoprotein whose expression is elevated in various types of cancer including HCC. OPN has been shown to be involved in tumorigenesis, chemo-resistance, metastasis and sustaining stem-like properties of cancer cells. Autophagy is a cellular process by which cytoplasmic components are degraded and recycled for maintaining cellular homeostasis. There is increasing evidence supports that autophagy plays a critical role for stem-like properties and chemo-resistance of cancer cells. However, the relationship between OPN and autophagy in maintaining cancer stem-like properties and chemo-resistance is yet to be clarified. Herein, we found that secreted OPN induced autophagy via binding with its receptor integrin αvβ3 and sustaining FoxO3a stability. OPN-elicited autophagy could promote cancer cell survival and resistance to chemotherapy drugs, as well as stem-like properties. Our findings indicated that OPN was capable of promoting chemo-resistance of HCCs via autophagy, which might provide a new strategy for the treatment of HCC.
Collapse
|
38
|
López-Gómez M, Casado E, Muñoz M, Alcalá S, Moreno-Rubio J, D'Errico G, Jiménez-Gordo AM, Salinas S, Sainz B. Current evidence for cancer stem cells in gastrointestinal tumors and future research perspectives. Crit Rev Oncol Hematol 2016; 107:54-71. [PMID: 27823652 DOI: 10.1016/j.critrevonc.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/22/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a very heterogeneous subpopulation of "stem-like" cancer cells that have been identified in many cancers, including leukemias and solid tumors. It is believed that CSCs drive tumor growth, malignant behavior and are responsible for the initiation of metastatic spread. In addition, CSCs have been implicated in chemotherapy and radiotherapy resistance. Current evidence supports the theory that CSCs share at least two main features of normal stem cells: self-renewal and differentiation, properties that contribute to tumor survival even in the presence of aggressive chemotherapy; however, the mechanism(s) governing the unique biology of CSCs remain unclear. In the field of gastrointestinal cancer, where we face very low survival rates across different tumor types, unraveling the role of CSCs in gastrointestinal tumors should improve our knowledge of cancer biology and chemoresistance, ultimately benefiting patient survival. Towards this end, much effort is being invested in the characterization of CSCs as a means of overcoming drug resistance and controlling metastatic spread. In this review we will cover the concept of CSCs, the current evidence for CSCs in gastrointestinal tumors and future research directions.
Collapse
Affiliation(s)
- Miriam López-Gómez
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain.
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Marta Muñoz
- Pathological Anatomy Department, Infanta Sofía University Hospital, S.S Reyes, Madrid, Spain
| | - Sonia Alcalá
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain; Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan Moreno-Rubio
- Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Gabriele D'Errico
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain
| | - Ana María Jiménez-Gordo
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Silvia Salinas
- Pathological Anatomy Department, Infanta Sofía University Hospital, S.S Reyes, Madrid, Spain
| | - Bruno Sainz
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain; Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
39
|
The Progress and Prospects of Putative Biomarkers for Liver Cancer Stem Cells in Hepatocellular Carcinoma. Stem Cells Int 2016; 2016:7614971. [PMID: 27610139 PMCID: PMC5005617 DOI: 10.1155/2016/7614971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/06/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence suggests that hepatocellular carcinoma (HCC) is organized by liver cancer stem cells (LCSCs), which are a subset of cells with “stem-like” characteristics. Identification of the LCSCs is a fundamental and important problem in HCC research. LCSCs have been investigated by various stem cell biomarkers. There is still lack of consensus regarding the existence of a “global” marker for LCSCs in HCC. In this review article, we summarize the progress and prospects of putative biomarkers for LCSCs in the past decades, which is essential to develop future therapies targeting CSCs and to predict prognosis and curative effect of these therapies.
Collapse
|
40
|
Yang XJ. Liver cancer stem cells and new strategies for targeted therapy of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:3337-3346. [DOI: 10.11569/wcjd.v24.i22.3337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past ten years, increasing studies show that liver cancer stem cells (LCSCs) are responsible not only for hepatocellular carcinoma (HCC) initiation and development but also for the generation of distant metastasis and relapse after therapy. Therefore, further research for LCSCs is considered a new avenue to explore the cause of HCC invasion and metastasis in order to formulate prevention and control strategies. Current traditional cancer therapies including chemotherapy and radiotherapy which primarily target rapidly dividing and most likely well differentiated tumor cells, would fail to eliminate LCSCs. After surgical removal of HCC mass, the remaining LCSCs still have the ability to differentiate, proliferate and even migrate to other places to form metastatic tumors. Therefore, to explore various kinds of targeted therapies for LCSCs is the only way to break through the "bottleneck" of HCC treatment. Strategies for targeted therapy of HCC include inhibiting LCSCs proliferation, inducing apoptosis and differentiation, increasing chemotherapy sensitivity and disrupting the tumor niche essential for CSC homeostasis.
Collapse
|
41
|
Guo Z, Jiang JH, Zhang J, Yang HJ, Zhong YP, Su J, Yang RR, Li LEQ, Xiang BDE. Side population in hepatocellular carcinoma HCCLM3 cells is enriched with stem-like cancer cells. Oncol Lett 2016; 11:3145-3151. [PMID: 27123080 DOI: 10.3892/ol.2016.4343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/12/2016] [Indexed: 12/18/2022] Open
Abstract
Substantial evidence implicates that low-abundance cancer stem cells (CSCs) are responsible for tumor metastasis and recurrence in hepatocellular carcinoma (HCC). Side population (SP) cells possess typical CSCs-like features, and are frequently considered as a special subpopulation in which CSCs are enriched and in studies may be considered as a substitute for CSCs. The aim of the present study was to examine the abundance of SP cells in human HCC cell lines with different metastatic potentials and compare their CSC-like, tumorigenic and invasive properties with those of the main population (MP) cells. An experimental system is described for identifying SP cells and analyzing their CSC-like properties. The relative abundance of SP cells correlated directly with the metastatic potential of the HCC cell line: HCCLM3, 16.3±2.2%; MHCC97-H, 8.4±0.7%; MHCC97-L, 4.7±0.5%; and Huh7, 1.0±0.3% (P<0.05). SP cells isolated from HCCLM3 cultures showed significantly higher proliferation rates and clonogenicity than the corresponding MP cells, in addition to higher migration and invasive abilities in vitro and greater tumorigenicity in mice. Expression levels of all CSC-associated genes tested, except EpCAM and Oct4, were significantly higher in SP cells. The findings revealed that the proportion of SP cells correlates with metastatic potential, and SP cells demonstrated the characteristics expected of CSCs, implicating them in HCC metastasis. Further studies on the identification and characterization of SP cells using clinical HCC specimens will contribute to the understanding of how SP cells are involved in these disease processes.
Collapse
Affiliation(s)
- Zhe Guo
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China; Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Wuhan, Hubei 430000, P.R. China
| | - Jing-Hang Jiang
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China
| | - Jun Zhang
- Department of Ultrasound, Wuhan No. 1 Hospital, Wuhan, Hubei 430000, P.R. China
| | - Hao-Jie Yang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yan-Ping Zhong
- Medical Science Experimental Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Su
- Medical Science Experimental Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ri-Rong Yang
- Department of Immunology, School of Preclinical Medicine, Biological Targeting Diagnosis and Therapy, Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - LE-Qun Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Bang-DE Xiang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
42
|
Buonaguro L, Tagliamonte M, Petrizzo A, Damiano E, Tornesello ML, Buonaguro FM. Cellular prognostic markers in hepatocellular carcinoma. Future Oncol 2016; 11:1591-8. [PMID: 26043213 DOI: 10.2217/fon.15.39] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the five big killers worldwide and is frequently associated with chronic hepatitis B and C virus (HBV and HCV) infections. Tumor microenvironment consists of a complex network of cells and factors that plays a key role in the tumor progression and prognosis. This is true also for HCC. Several studies have shown strikingly strong correlation between HCC clinical prognosis and intratumoral infiltration of cells affecting tumor growth, invasion, angiogenesis and metastasis. None of such cells is yet validated for routine diagnostic and prognostic assessment. The present review aims at providing a state-of-the-art of such studies.
Collapse
|
43
|
Osteopontin promotes a cancer stem cell-like phenotype in hepatocellular carcinoma cells via an integrin-NF-κB-HIF-1α pathway. Oncotarget 2016; 6:6627-40. [PMID: 25749383 PMCID: PMC4466639 DOI: 10.18632/oncotarget.3113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022] Open
Abstract
There is increasing evidence to suggest that hepatocellular carcinomas (HCCs) are sustained by a distinct subpopulation of self-renewing cells known as cancer stem cells. However, the precise signals required for maintenance of stemness-like properties of these cells are yet to be elucidated. Here, we demonstrated that the level of oncoprotein osteopontin (OPN) in tumor cells of the edge of bulk tumors was significantly correlated with the clinical prognosis of patients with HCC. OPN was highly expressed in side population fractions of HCC cell lines, as well as in dormant cells, spheroids and chemo-resistant cancer cells, all of which are considered as having stemness-like cellular features. Depletion of OPN in HCC cell lines resulted in a reduction in the proportion of side population fractions, formation of hepato-spheroids, expression of stem-cell-associated genes and decreased tumorigenecity in immunodeficient mice. Mechanistically, OPN was demonstrated to bind to integrin αvβ3 and activate the transcription factor NF-κB, which resulted in upregulation of HIF-1α transcription and its downstream gene, BMI1, to mediate maintenance of the stemness-like phenotype. Suppression of the αvβ3–NF-κB–HIF-1α pathway decreased OPN-mediated self-renewal capabilities. Levels of OPN protein expression were significantly correlated with HIF-1α protein levels in HCC tumor tissue samples. OPN might promote a cancer stem cell-like phenotype via the αvβ3–NF-κB–HIF-1α pathway. Our findings offer strong support for OPN requirement in maintaining stem-like properties in HCC cells.
Collapse
|
44
|
Leon G, MacDonagh L, Finn SP, Cuffe S, Barr MP. Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signaling pathways. Pharmacol Ther 2015; 158:71-90. [PMID: 26706243 DOI: 10.1016/j.pharmthera.2015.12.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Despite advances in anti-cancer therapies such as chemotherapy, radiotherapy and targeted therapies, five-year survival rates remain poor (<15%). Inherent and acquired resistance has been identified as a key factor in reducing the efficacy of current cytotoxic therapies in the management of non-small cell lung cancer (NSCLC). There is growing evidence suggesting that cancer stem cells (CSCs) play a critical role in tumor progression, metastasis and drug resistance. Similar to normal tissue stem cells, CSCs exhibit significant phenotypic and functional heterogeneity. While CSCs have been reported in a wide spectrum of human tumors, the biology of CSCs in NSCLC remain elusive. Current anti-cancer therapies fail to eradicate CSC clones and instead, favor the expansion of the CSC pool and select for resistant CSC clones thereby resulting in treatment resistance and subsequent relapse in these patients. The identification of CSC-specific marker subsets and the targeted therapeutic destruction of CSCs remains a significant challenge. Strategies aimed at efficient targeting of CSCs are becoming increasingly important for monitoring the progress of cancer therapy and for evaluating new therapeutic approaches. This review focuses on the current knowledge of cancer stem cell markers in treatment-resistant lung cancer cells and the signaling cascades activated by these cells to maintain their stem-like properties. Recent progress in CSC-targeted drug development and the current status of novel agents in clinical trials are also reviewed.
Collapse
Affiliation(s)
- Gemma Leon
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Lauren MacDonagh
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland; Department of Histopathology, St James's Hospital, Dublin 8, Ireland
| | - Sinead Cuffe
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Martin P Barr
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
45
|
Guo Z, Jiang JH, Zhang J, Yang HJ, Yang FQ, Qi YP, Zhong YP, Su J, Yang RR, Li LQ, Xiang BD. COX-2 Promotes Migration and Invasion by the Side Population of Cancer Stem Cell-Like Hepatocellular Carcinoma Cells. Medicine (Baltimore) 2015; 94:e1806. [PMID: 26554780 PMCID: PMC4915881 DOI: 10.1097/md.0000000000001806] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are thought to be responsible for tumor relapse and metastasis due to their abilities to self-renew, differentiate, and give rise to new tumors. Cyclooxygenase-2 (COX-2) is highly expressed in several kinds of CSCs, and it helps promote stem cell renewal, proliferation, and radioresistance. Whether and how COX-2 contributes to CSC migration and invasion is unclear. In this study, COX-2 was overexpressed in the CSC-like side population (SP) of the human hepatocellular carcinoma (HCC) cell line HCCLM3. COX-2 overexpression significantly enhanced migration and invasion of SP cells, while reducing expression of metastasis-related proteins PDCD4 and PTEN. Treating SP cells with the selective COX-2 inhibitor celecoxib down-regulated COX-2 and caused a dose-dependent reduction in cell migration and invasion, which was associated with up-regulation of PDCD4 and PTEN. These results suggest that COX-2 exerts pro-metastatic effects on SP cells, and that these effects are mediated at least partly through regulation of PDCD4 and PTEN expression. These results further suggest that celecoxib may be a promising anti-metastatic agent to reduce migration and invasion by hepatic CSCs.
Collapse
Affiliation(s)
- Zhe Guo
- From the Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, P.R. China (ZG, H-JY, F-QY, Y-PQ, L-QL, B-DX); Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Wuhan, P.R. China (ZG); Department of General Surgery, The Second People's Hospital of The Second People's Hospital of Jingmen, Jingmen, P.R. China (J-HJ); Department of Ultrasound, Wuhan No. 1 Hospital, Wuhan, P.R. China (JZ); Medical Science Experimental Center, Guangxi Medical University, Nanning, P.R. China (Y-PZ, JS); Department of Immunology, School of Preclinical Medicine, Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning, P.R. China (R-RY)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ruan Z, Liu J, Kuang Y. Isolation and characterization of side population cells from the human ovarian cancer cell line SK-OV-3. Exp Ther Med 2015; 10:2071-2078. [PMID: 26668597 PMCID: PMC4665172 DOI: 10.3892/etm.2015.2836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OC) is the most malignant type of gynecological tumor due to its high recurrence rate following initial treatment. Previous studies have indicated that cancer stem cells (CSCs) may be a potential cause underlying the high proportion of recurrence. Side population (SP) cells isolated from cancer cell lines have been shown to exhibit characteristics associated with CSCs, but studies on SP cells in human ovarian SK-OV-3 cell line are limited. In the present study, the SP cell fraction (4.83% of the total cell population) was isolated using flow cytometry, and analyzed by immunocytochemical analysis and reverse transcription-quantitative polymerase chain reaction. The results showed that SP cells exhibited a high mean fluorescence intensity for CD44, a CSC marker, in addition to elevated expression of the CSCs-associated genes, ATP-binding cassette sub-family G member 2 and Nestin. These findings indicated the stem cell-like features of the SP cells. Furthermore, a colony formation test showed that the isolated SP cells possessed a marked capacity for self-regeneration and proliferation. In addition, a cell cycle assay involving cisplatin indicated that the SP cells were strongly resistant to chemotherapy. In conclusion, the present results suggested that SP cells isolated from the SK-OV-3 cell line exhibited properties typically associated with CSCs. Therefore, the isolated SP cells may be used to provide novel insight into potential therapies against OC.
Collapse
Affiliation(s)
- Zhengyi Ruan
- Department of Gynecology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jianhua Liu
- Department of Gynecology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
47
|
A splicing variant of Merlin promotes metastasis in hepatocellular carcinoma. Nat Commun 2015; 6:8457. [PMID: 26443326 PMCID: PMC4633634 DOI: 10.1038/ncomms9457] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 12/13/2022] Open
Abstract
Merlin, which is encoded by the tumour suppressor gene Nf2, plays a crucial role in tumorigenesis and metastasis. However, little is known about the functional importance of Merlin splicing forms. In this study, we show that Merlin is present at low levels in human hepatocellular carcinoma (HCC), particularly in metastatic tumours, where it is associated with a poor prognosis. Surprisingly, a splicing variant of Merlin that lacks exons 2, 3 and 4 (Δ2–4Merlin) is amplified in HCC and portal vein tumour thrombus (PVTT) specimens and in the CSQT2 cell line derived from PVTT. Our studies show that Δ2–4Merlin interferes with the capacity of wild-type Merlin to bind β-catenin and ERM, and it is expressed in the cytoplasm rather than at the cell surface. Furthermore, Δ2–4Merlin overexpression increases the expression levels of β-catenin and stemness-related genes, induces the epithelium–mesenchymal-transition phenotype promoting cell migration in vitro and the formation of lung metastasis in vivo. Our results indicate that the Δ2–4Merlin variant disrupts the normal function of Merlin and promotes tumour metastasis. Merlin plays a crucial role as a tumour suppressor in liver tumorigenesis. Here, the authors show that a splicing variant of Merlin that lacks exons 2,3 and 4 (Δ2–4Merlin) is highly expressed in hepatocarcinoma and promotes tumour metastasis by interfering with the binding of wild-type Merlin to ß-catenin.
Collapse
|
48
|
Ho D, Wang CHK, Chow EKH. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. SCIENCE ADVANCES 2015; 1:e1500439. [PMID: 26601235 PMCID: PMC4643796 DOI: 10.1126/sciadv.1500439] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/20/2015] [Indexed: 05/07/2023]
Abstract
The implementation of nanomedicine in cellular, preclinical, and clinical studies has led to exciting advances ranging from fundamental to translational, particularly in the field of cancer. Many of the current barriers in cancer treatment are being successfully addressed using nanotechnology-modified compounds. These barriers include drug resistance leading to suboptimal intratumoral retention, poor circulation times resulting in decreased efficacy, and off-target toxicity, among others. The first clinical nanomedicine advances to overcome these issues were based on monotherapy, where small-molecule and nucleic acid delivery demonstrated substantial improvements over unmodified drug administration. Recent preclinical studies have shown that combination nanotherapies, composed of either multiple classes of nanomaterials or a single nanoplatform functionalized with several therapeutic agents, can image and treat tumors with improved efficacy over single-compound delivery. Among the many promising nanomaterials that are being developed, nanodiamonds have received increasing attention because of the unique chemical-mechanical properties on their faceted surfaces. More recently, nanodiamond-based drug delivery has been included in the rational and systematic design of optimal therapeutic combinations using an implicitly de-risked drug development platform technology, termed Phenotypic Personalized Medicine-Drug Development (PPM-DD). The application of PPM-DD to rapidly identify globally optimized drug combinations successfully addressed a pervasive challenge confronting all aspects of drug development, both nano and non-nano. This review will examine various nanomaterials and the use of PPM-DD to optimize the efficacy and safety of current and future cancer treatment. How this platform can accelerate combinatorial nanomedicine and the broader pharmaceutical industry toward unprecedented clinical impact will also be discussed.
Collapse
Affiliation(s)
- Dean Ho
- Division of Oral Biology and Medicine, University of California, Los Angeles (UCLA) School of Dentistry, Los Angeles, CA 90095, USA
- Department of Bioengineering, UCLA School of Engineering and Applied Science, Los Angeles, CA 90095, USA
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
- Corresponding author. E-mail: (D. H.); (E. K.-H. C.)
| | | | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 177599, Singapore
- National University Cancer Institute, Singapore, Singapore 119082, Singapore
- Corresponding author. E-mail: (D. H.); (E. K.-H. C.)
| |
Collapse
|
49
|
Wei P, Niu M, Pan S, Zhou Y, Shuai C, Wang J, Peng S, Li G. Cancer stem-like cell: a novel target for nasopharyngeal carcinoma therapy. Stem Cell Res Ther 2015; 5:44. [PMID: 25158069 PMCID: PMC4055123 DOI: 10.1186/scrt433] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx, and is extremely common in southern regions of China. Although the standard combination of radiotherapy and chemotherapy has improved the efficiency in patients with NPC, relapse and early metastasis are still the common causes of mortality. Cancer stem-like cells (CSCs) or tumor initial cells are hypothesized to be involved in cancer metastasis and recurrence. Over the past decade, increasing numbers of studies have been carried out to identify CSCs from human NPC cells and tissues. The present paper will summarize the investigations on nasopharyngeal CSCs, including isolation, characteristics, and therapeutic approaches. Although there are still numerous challenges to translate basic research into clinical applications, understanding the molecular details of CSCs is essential for developing effective strategies to prevent the recurrence and metastasis of NPC.
Collapse
|
50
|
Romano M, De Francesco F, Pirozzi G, Gringeri E, Boetto R, Di Domenico M, Zavan B, Ferraro GA, Cillo U. Expression of cancer stem cell biomarkers as a tool for a correct therapeutic approach to hepatocellular carcinoma. Oncoscience 2015; 2:443-456. [PMID: 26097877 PMCID: PMC4468330 DOI: 10.18632/oncoscience.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the fifth most commonly diagnosed malignancy and the second most frequent cause of cancer death in men worldwide. Amongst liver cancers, hepatocellular carcinoma (HCC) represents the major histological subtype and it is one of the most common malignant human tumors worldwide. Research into the molecular biology of hepatocarcinogenesis has identified several biomarkers, which could provide additional informations in order to better understand the biology of HCC. A large number of biomarkers have been shown to have potential predictive significance and a wide variety of molecular markers have been proven to be excellent diagnostic tools for HCC but it is difficult to characterize HCC with a single biomarker. Thus, signatures of a combination of biomarkers may be more valuable for the diagnosis, staging and prognosis of HCC. Specifically, a correlation of HCC-CSCs phenotype to specific hepatic cancer subtypes and to specific clinical and pathological features has not yet been reported in human liver tumors. In this view we will first discuss the possible sources of liver stem cells and their relation with liver cancer development and we will secondly focus on the prognostic significance of clinical and pathological features of HCC.
Collapse
Affiliation(s)
- Maurizio Romano
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua (Italy)
| | - Francesco De Francesco
- Multidisciplinary department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples (Italy)
| | - Giuseppe Pirozzi
- Department of Experimental Oncology, National Cancer Institute, G.Pascale, Naples (Italy)
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua (Italy)
| | - Riccardo Boetto
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua (Italy)
| | - Marina Di Domenico
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples (Italy)
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padua, Padua (Italy)
| | - Giuseppe A Ferraro
- Multidisciplinary department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples (Italy)
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua (Italy)
| |
Collapse
|