1
|
Wang C, Jiang Y, He K, Wāng Y. Eco-friendly synthesis of silver nanoparticles against mosquitoes: Pesticidal impact and indispensable biosafety assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176006. [PMID: 39241875 DOI: 10.1016/j.scitotenv.2024.176006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The emergence of nanotechnology has opened new avenues for enhancing pest control strategies through the development of nanopesticides. Green-fabricated nanoparticles, while promising due to their eco-friendly synthesis methods, may still pose risks to biodiversity and ecosystem stability. The potential toxic effects of nanomaterials on ecosystems and human health raise important questions about their real-world application. Understanding the dose-response relationships of nanopesticides, both in terms of pest control efficacy and non-target organism safety, is crucial for ensuring their sustainable use in agricultural settings. This review delves into the complexities of silver nanopesticides, exploring their interactions with arthropod species, modes of action, and underlying mechanisms of toxicity. It discusses critical issues concerning the emergence of silver nanopesticides, spanning their mosquitocidal efficacy to environmental impact and safety considerations. While nano‑silver has shown promise in targeting insect pests, there is a lack of systematic research comparing its effects on different arthropod subclasses. Moreover, factors influencing nanotoxicity, such as nanoparticle size, charge, and surface chemistry, require further investigation to optimize the design of eco-safe nanoparticles for pest control. By elucidating the mechanisms by which nanoparticles interact with pests and non-target organisms, we can enhance the specificity and effectiveness of nanopesticides while minimizing unintended ecological consequences.
Collapse
Affiliation(s)
- Chunzhi Wang
- Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China
| | - Yang Jiang
- Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China
| | - Keyu He
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yán Wāng
- Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
2
|
Osborne CJ, Norton AE, Whitworth RJ, Silver KS, Cohnstaedt LW. Tiny silver bullets: silver nanoparticles are insecticidal to Culicoides sonorensis (Diptera: Ceratopogonidae) biting midge larvae. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1427-1434. [PMID: 39209797 DOI: 10.1093/jme/tjae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Insecticide formulations with safer environmental profiles and limited off-target effects are desirable to manage medical and veterinary pests. Silver nanoparticles are insecticidal against mosquitos, nonbiting midges, and other insects. The biting midge, Culicoides sonorensis Wirth and Jones, is a vector of agriculturally important pathogens in much of the United States, and this study aimed to examine the insecticidal properties of silver nanoparticles in larvae of this species. Mortality of third-instar larvae was assessed daily for 7 days after exposure to concentrations of silver nanoparticles, sorghum polymer particles, and hybrid silver-sorghum polymer particles. Both silver nanoparticles and silver-sorghum polymer particles were insecticidal, but sorghum polymer particles alone did not significantly contribute to larval mortality. Concentrations of 100 mg/liter of silver nanoparticles achieved >50% mortality at day 7, and 200 mg/liter treatments achieved >75% larval mortality within 24 h. The antimicrobial properties of silver nanoparticles were also examined, and culturable bacteria were recovered from larval-rearing media at 200 mg/liter but not at 400 mg/liter of silver nanoparticles. These data suggest that C. sonorensis larval mortality is primarily caused by silver nanoparticle toxicity and not by the reduction of bacteria (i.e., a larval food source). This work describes the first use of silver nanoparticles in C. sonorensis and shows the potential insecticide applications of these nanoparticles against this agricultural pest. The grain-polymer particles also successfully carried insecticidal silver nanoparticles, and their utility in loading diverse compounds could be a novel toxin delivery system for biting midges and similar pests.
Collapse
Affiliation(s)
- Cameron J Osborne
- Department of Entomology, Kansas State University, Manhattan, KS, USA
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Amie E Norton
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - R Jeff Whitworth
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | | - Lee W Cohnstaedt
- National Bio and Agro-Defense Facility, USDA Agricultural Research Service, Manhattan, KS, USA
| |
Collapse
|
3
|
Lokole PB, Byamungu GG, Mutwale PK, Ngombe NK, Mudogo CN, Krause RWM, Nkanga CI. Plant-based nanoparticles targeting malaria management. Front Pharmacol 2024; 15:1440116. [PMID: 39185312 PMCID: PMC11341498 DOI: 10.3389/fphar.2024.1440116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Malaria is one of the most devastating diseases across the globe, particularly in low-income countries in Sub-Saharan Africa. The increasing incidence of malaria morbidity is mainly due to the shortcomings of preventative measures such as the lack of vaccines and inappropriate control over the parasite vector. Additionally, high mortality rates arise from therapeutic failures due to poor patient adherence and drug resistance development. Although the causative pathogen (Plasmodium spp.) is an intracellular parasite, the recommended antimalarial drugs show large volumes of distribution and low-to no-specificity towards the host cell. This leads to severe side effects that hamper patient compliance and promote the emergence of drug-resistant strains. Recent research efforts are promising to enable the discovery of new antimalarial agents; however, the lack of efficient means to achieve targeted delivery remains a concern, given the risk of further resistance development. New strategies based on green nanotechnologies are a promising avenue for malaria management due to their potential to eliminate malaria vectors (Anopheles sp.) and to encapsulate existing and emerging antimalarial agents and deliver them to different target sites. In this review we summarized studies on the use of plant-derived nanoparticles as cost-effective preventative measures against malaria parasites, starting from the vector stage. We also reviewed plant-based nanoengineering strategies to target malaria parasites, and further discussed the site-specific delivery of natural products using ligand-decorated nanoparticles that act through receptors on the host cells or malaria parasites. The exploration of traditionally established plant medicines, surface-engineered nanoparticles and the molecular targets of parasite/host cells may provide valuable insights for future discovery of antimalarial drugs and open new avenues for advancing science toward the goal of malaria eradication.
Collapse
Affiliation(s)
- Pathy B. Lokole
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Galilée G. Byamungu
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
- Department of Chemistry, Faculty of Sciences and Technology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Paulin K. Mutwale
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Nadège K. Ngombe
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Celestin N. Mudogo
- Unit of Molecular Biology, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Rui W. M. Krause
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Christian I. Nkanga
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
4
|
Moraes-de-Souza I, de Moraes BPT, Silva AR, Ferrarini SR, Gonçalves-de-Albuquerque CF. Tiny Green Army: Fighting Malaria with Plants and Nanotechnology. Pharmaceutics 2024; 16:699. [PMID: 38931823 PMCID: PMC11206820 DOI: 10.3390/pharmaceutics16060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 06/28/2024] Open
Abstract
Malaria poses a global threat to human health, with millions of cases and thousands of deaths each year, mainly affecting developing countries in tropical and subtropical regions. Malaria's causative agent is Plasmodium species, generally transmitted in the hematophagous act of female Anopheles sp. mosquitoes. The main approaches to fighting malaria are eliminating the parasite through drug treatments and preventing transmission with vector control. However, vector and parasite resistance to current strategies set a challenge. In response to the loss of drug efficacy and the environmental impact of pesticides, the focus shifted to the search for biocompatible products that could be antimalarial. Plant derivatives have a millennial application in traditional medicine, including the treatment of malaria, and show toxic effects towards the parasite and the mosquito, aside from being accessible and affordable. Its disadvantage lies in the type of administration because green chemical compounds rapidly degrade. The nanoformulation of these compounds can improve bioavailability, solubility, and efficacy. Thus, the nanotechnology-based development of plant products represents a relevant tool in the fight against malaria. We aim to review the effects of nanoparticles synthesized with plant extracts on Anopheles and Plasmodium while outlining the nanotechnology green synthesis and current malaria prevention strategies.
Collapse
Affiliation(s)
- Isabelle Moraes-de-Souza
- Immunopharmacology Laboratory, Department of Physiological Sciences, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro 20211-010, Brazil; (I.M.-d.-S.); (B.P.T.d.M.)
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-361, Brazil;
| | - Bianca P. T. de Moraes
- Immunopharmacology Laboratory, Department of Physiological Sciences, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro 20211-010, Brazil; (I.M.-d.-S.); (B.P.T.d.M.)
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-361, Brazil;
| | - Adriana R. Silva
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-361, Brazil;
| | - Stela R. Ferrarini
- Pharmaceutical Nanotechnology Laboratory, Federal University of Mato Grosso of Sinop Campus—UFMT, Cuiabá 78550-728, Brazil;
| | - Cassiano F. Gonçalves-de-Albuquerque
- Immunopharmacology Laboratory, Department of Physiological Sciences, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro 20211-010, Brazil; (I.M.-d.-S.); (B.P.T.d.M.)
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-361, Brazil;
| |
Collapse
|
5
|
Fol MF, Hamdi SAH, Abdel-Rahman HA, Mostafa NA. In vivo efficacy of silver nanoparticles against Syphacia muris infected laboratory Wistar rats. J Parasit Dis 2023; 47:744-756. [PMID: 38009151 PMCID: PMC10667209 DOI: 10.1007/s12639-023-01607-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/06/2023] [Indexed: 11/28/2023] Open
Abstract
Helminth infections are a worldwide problem that affects both humans and animals in developing countries. The common pinworm Syphacia muris frequently infects lab rats and can obstruct the creation of unrelated biological experiments. The objective of this study was to examine the in vivo efficacy of silver nanoparticles against S. muris infected Wistar rats. Transmission electron microscopy and X-ray diffraction examinations of silver nanoparticles revealed highly pure polycrystals with a mean size of 4 nm. Rats were divided into group I, the control: received distilled water; groups II and III, the treated: received 2, 4 mg/kg b.w. of Ag NPs, respectively. At the end of the experimental period, all rats were euthanized and dissected for collecting worms. The surface topography of the recovered worms was displayed using light and scanning electron microscopy, and their physiological status was determined using oxidative stress biomarkers. The histological changes in the rat liver, kidney, and spleen were also examined. In the current study, Ag NPs administration revealed substantial alterations in worms collected from treated rats, including shrinkage of lips, peeling and rupture of body cuticles, and disruption of surface annulations. Also, induced a significant increase in malondialdehyde and nitric oxide levels, as well as a decrease in reduced glutathione, glutathione peroxidase and catalase levels compared to control group. Moreover, sections of treated rats' liver, kidney and spleen displayed normal cellular appearance. In conclusion, this is the first in vivo study to evaluate Ag NPs efficacy against S. muris in laboratory rats without significant toxicity.
Collapse
Affiliation(s)
- Mona Fathi Fol
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | | |
Collapse
|
6
|
Deshmukh R. Exploring the potential of antimalarial nanocarriers as a novel therapeutic approach. J Mol Graph Model 2023; 122:108497. [PMID: 37149980 DOI: 10.1016/j.jmgm.2023.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
Malaria is a life-threatening parasitic disease that affects millions of people worldwide, especially in developing countries. Despite advances in conventional therapies, drug resistance in malaria parasites has become a significant concern. Hence, there is a need for a new therapeutic approach. To combat the disease effectively means eliminating vectors and discovering potent treatments. The nanotechnology research efforts in nanomedicine show promise by exploring the potential use of nanomaterials that can surmount these limitations occurring with antimalarial drugs, which include multidrug resistance or lack of specificity when targeting parasites directly. Utilizing nanomaterials would possess unique advantages over conventional chemotherapy systems by increasing the efficacy levels while reducing side effects significantly by delivering medications precisely within the diseased area. It also provides cheap yet safe measures against Malaria infections worldwide-ultimately improving treatment efficiency holistically without reinventing new methods therapeutically. This review is an effort to provide an overview of the various stages of malaria parasites, pathogenesis, and conventional therapies, as well as the treatment gap existing with available formulations. It explores different types of nanocarriers, such as liposomes, ethosomal cataplasm, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanocarriers, and metallic nanoparticles, which are frequently employed to boost the efficiency of antimalarial drugs to overcome the challenges and develop effective and safe therapies. The study also highlights the improved pharmacokinetics, enhanced drug bioavailability, and reduced toxicity associated with nanocarriers, making them a promising therapeutic approach for treating malaria.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India.
| |
Collapse
|
7
|
Onen H, Luzala MM, Kigozi S, Sikumbili RM, Muanga CJK, Zola EN, Wendji SN, Buya AB, Balciunaitiene A, Viškelis J, Kaddumukasa MA, Memvanga PB. Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. INSECTS 2023; 14:221. [PMID: 36975906 PMCID: PMC10059804 DOI: 10.3390/insects14030221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Mosquitoes act as vectors of pathogens that cause most life-threatening diseases, such as malaria, Dengue, Chikungunya, Yellow fever, Zika, West Nile, Lymphatic filariasis, etc. To reduce the transmission of these mosquito-borne diseases in humans, several chemical, biological, mechanical, and pharmaceutical methods of control are used. However, these different strategies are facing important and timely challenges that include the rapid spread of highly invasive mosquitoes worldwide, the development of resistance in several mosquito species, and the recent outbreaks of novel arthropod-borne viruses (e.g., Dengue, Rift Valley fever, tick-borne encephalitis, West Nile, yellow fever, etc.). Therefore, the development of novel and effective methods of control is urgently needed to manage mosquito vectors. Adapting the principles of nanobiotechnology to mosquito vector control is one of the current approaches. As a single-step, eco-friendly, and biodegradable method that does not require the use of toxic chemicals, the green synthesis of nanoparticles using active toxic agents from plant extracts available since ancient times exhibits antagonistic responses and broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on the different mosquito control strategies in general, and on repellent and mosquitocidal plant-mediated synthesis of nanoparticles in particular, has been reviewed. By doing so, this review may open new doors for research on mosquito-borne diseases.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Entomology, Uganda Virus Research Institute, Plot 51/59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Stephen Kigozi
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Rebecca M. Sikumbili
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Department of Chemistry, Faculty of Science, University of Kinshasa, Kinshasa B.P. 190, Democratic Republic of the Congo
| | - Claude-Josué K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Sébastien N. Wendji
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aristote B. Buya
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Jonas Viškelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Martha A. Kaddumukasa
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
8
|
Nie D, Li J, Xie Q, Ai L, Zhu C, Wu Y, Gui Q, Zhang L, Tan W. Nanoparticles: A Potential and Effective Method to Control Insect-Borne Diseases. Bioinorg Chem Appl 2023; 2023:5898160. [PMID: 37213220 PMCID: PMC10195175 DOI: 10.1155/2023/5898160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Insects act as vectors to carry a wide range of bacteria and viruses that can cause multiple vector-borne diseases in humans. Diseases such as dengue fever, epidemic encephalitis B, and epidemic typhus, which pose serious risks to humans, can be transmitted by insects. Due to the absence of effective vaccines for most arbovirus, insect control was the main strategy for vector-borne diseases control. However, the rise of drug resistance in the vectors brings a great challenge to the prevention and control of vector-borne diseases. Therefore, finding an eco-friendly method for vector control is essential to combat vector-borne diseases. Nanomaterials with the ability to resist insects and deliver drugs offer new opportunities to increase agent efficacy compared with traditional agents, and the application of nanoagents has expanded the field of vector-borne disease control. Up to now, the reviews of nanomaterials mainly focus on biomedicines, and the control of insect-borne diseases has always been a neglected field. In this study, we analyzed 425 works of the literature about different nanoparticles applied on vectors in PubMed around keywords, such as"nanoparticles against insect," "NPs against insect," and "metal nanoparticles against insect." Through these articles, we focus on the application and development of nanoparticles (NPs) for vector control, discussing the lethal mechanism of NPs to vectors, which can explore the prospect of applying nanotechnology in the prevention and control of vectors.
Collapse
Affiliation(s)
- Danyue Nie
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Jiaqiao Li
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinghua Xie
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lele Ai
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Changqiang Zhu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Yifan Wu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Qiyuan Gui
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Lingling Zhang
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weilong Tan
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| |
Collapse
|
9
|
Bio-fabricated zinc oxide and cry protein nanocomposites: Synthesis, characterization, potentiality against Zika, malaria and West Nile virus vector's larvae and their impact on non-target organisms. Int J Biol Macromol 2022; 224:699-712. [DOI: 10.1016/j.ijbiomac.2022.10.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
10
|
Kulkarni C, Mohanty H, Bhagit A, Rathod P, Yadav RP. Anti-plasmodial and mosquitocidal potential of metallic nanoparticles: a perspective. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Insecticidal efficacy of nanomaterials used to control mosquito, Culex quinquefasciatus Say, 1823 with special reference to their hepatotoxicity in rats. Biosci Rep 2022; 42:231561. [PMID: 35822445 PMCID: PMC9334753 DOI: 10.1042/bsr20220630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to develop a novel methodology for controlling the mosquito larvae using different nanoparticles, with special reference to their effect on rats (a non-target mammalian model). The mosquito species of Culex quinquefasciatus was reared in the laboratory. Chitosan, silver nanoparticles and their combination as well as lavender (Lavandula officinalis) nanoemulsion with different concentrations were tested as biological insecticides against the mosquito larvae. Mammalian toxicity of the used nanoparticles were evaluated using 27 adult male rats, experimental rats were divided into 9 equal groups (n=3). The nanoparticles were added to the drinking water for 30 days. At the end of the study, blood and tissue samples were collected to assess the levels of the serum alanine aminotransferase and aspartate aminotransferase, different genes expression as interleukin 6 (IL-6) and IL-1β activity. Histopathological and immunohistochemical studies using two markers (TNF-α and BAX expression) were also applied. The LC50 and LC90 were recorded for each tested nanoparticles, and also the changes of the treated mosquito larvae cuticle were assessed using the scanning electron microscopy. Green nanoemulsion (Lavandula officinalis) was more effective than metal (silver) or even biodegradable (chitosan) nanoparticles in controlling of Culex quiquefasciatus mosquito larvae, and also it proved its safety by evaluation of the mammalian hepatotoxicity of the tested nanoparticles.
Collapse
|
13
|
Martínez Rodríguez EJ, Evans P, Kalsi M, Rosenblatt N, Stanley M, Piermarini PM. Larvicidal Activity of Carbon Black against the Yellow Fever Mosquito Aedes aegypti. INSECTS 2022; 13:insects13030307. [PMID: 35323605 PMCID: PMC8954748 DOI: 10.3390/insects13030307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Nanoparticles have previously shown potential to control mosquito vectors. The present study examined whether carbon black, an industrial source of carbon-based nanoparticles (CNPs), was toxic to larvae of the yellow fever mosquito (Aedes aegypti). We found that exposing the first developmental stages of mosquito larvae to a modified form of carbon black EMPEROR® 1800 (E1800), caused concentration-dependent mortality within 48 h of exposure; however, the development of larvae exposed to sub-lethal concentrations of E1800 was not disrupted. Analyses of E1800 suspensions suggest this carbon black forms CNPs that coalesce into larger aggregations. Microscopic observations of dead larvae showed the presence of CNP aggregations in the digestive tract and on external structures associated with swimming, breathing, and food uptake. Our results suggest carbon black is a source of CNPs that may have potential use for treating sources of standing water that mosquitoes use as breeding sites. Abstract The yellow fever mosquito Aedes aegypti is one of the deadliest animals on the planet because it transmits several medically important arboviruses, including Zika, chikungunya, dengue, and yellow fever. Carbon-based nanoparticles (CNPs) derived from natural sources have previously been shown to have toxic effects on mosquito larvae and offer a potential alternative to chemical insecticides such as pyrethroids, for which mosquitoes have evolved resistance. However, CNPs derived from industrial sources, such as carbon black, have not previously been evaluated as larvicides. Here, we evaluate the effects of a commercially-available carbon black, EMPEROR® 1800 (E1800), on mortality and development of pyrethroid-susceptible (PS) and pyrethroid-resistant (PR) strains of Ae. aegypti. We found that E1800 exhibited concentration-dependent mortality against 1st instar larvae of both strains within the first 120 h after exposure, but after this period, surviving larvae did not show delays in their development to adults. Physical characterization of E1800 suspensions suggests that they form primary particles of ~30 nm in diameter that fuse into fundamental aggregates of ~170 nm in diameter. Notably, larvae treated with E1800 showed internal accumulation of E1800 in the gut and external accumulation on the respiratory siphon, anal papillae, and setae, suggesting a physical mode of toxic action. Taken together, our results suggest that E1800 has potential use as a larvicide with a novel mode of action for controlling PS and PR mosquitoes.
Collapse
Affiliation(s)
- Erick J. Martínez Rodríguez
- Ohio Agricultural Research and Development Center, Department of Entomology, The Ohio State University, Wooster, OH 44691, USA;
| | - Parker Evans
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | | | | | | | - Peter M. Piermarini
- Ohio Agricultural Research and Development Center, Department of Entomology, The Ohio State University, Wooster, OH 44691, USA;
- Correspondence: ; Tel.: +1-330-263-3641
| |
Collapse
|
14
|
Sadeghi-Kiakhani M, Tehrani-Bagha AR, Miri FS, Hashemi E, Safi M. Eco-Friendly Procedure for Rendering the Antibacterial and Antioxidant of Cotton Fabrics via Phyto-Synthesized AgNPs With Malva sylvestris (MS) Natural Colorant. Front Bioeng Biotechnol 2022; 9:814374. [PMID: 35096798 PMCID: PMC8790022 DOI: 10.3389/fbioe.2021.814374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
There is a growing interest for producing multifunctional cellulose fabrics using green and sustainable technology. In this study, we explored an eco-friendly procedure for dyeing cotton fabrics with Malva sylvestris (MS) as a natural colorant and rendering antibacterial cotton fabric by the silver nanoparticles. MS colorants were extracted from dried petals in water using the ultrasound technique, cotton fabrics were dyed with the extracted MS colorant at 100°C for 90 min. The colorimetric data and colorfastness properties were investigated in the absence and presence of tannic acid (TA) as a bio-mordant. Results indicated that MS dye had a high potential for reducing the silver nitrate, so that the silver particle size distribution on cotton fabric was obtained 50-80 nm, and TA had a positive effect on the MS extract and reduced Ag on the cotton. Furthermore, the reduction of bacterial growth of the dyed cotton considerably (up to 99%) improved by AgNPs. The wash-, and light-fastness properties of samples dyed with MS were enhanced from moderate to good-very good by mordanting.
Collapse
Affiliation(s)
- Mousa Sadeghi-Kiakhani
- Department of Organic Colorants, Institute for Color Science and Technology, Tehran, Iran
| | | | - Fateme Sadat Miri
- Department of Organic Colorants, Institute for Color Science and Technology, Tehran, Iran
| | - Elaheh Hashemi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mahdi Safi
- Department of Color Physics, Institute for Color, Science and Technology, Tehran, Iran
| |
Collapse
|
15
|
Biogenic Synthesis of Silver Nanoparticles, Characterization and Their Applications—A Review. SURFACES 2021. [DOI: 10.3390/surfaces5010003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the growing awareness for the need of sustainable environment, the importance of synthesizing and the application of green nanoparticles has gained special focus. Among various metal nanoparticles, silver nanoparticles (AgNPs) have gain significant attention. AgNPs are synthesized conventionally by physical and chemical methods using chemicals such as reducing agents, which are hazardous to environment due to their toxic properties, provoking a serious concern to create and develop environment friendly methods. Thus, biological alternatives are emerging to fill gaps, such as green syntheses that use biological molecules taken from plant sources in the form of extracts, which have shown to be superior to chemical and physical approaches. These biological molecules derived from plants are assembled in a highly regulated manner to make them suitable for metal nanoparticle synthesis. The current review outlines the wide plant diversity that may be used to prepare a rapid and single-step procedure with a green path over the traditional ones, as well as their antifungal activity.
Collapse
|
16
|
Gangaram S, Naidoo Y, Dewir YH, El-Hendawy S. Phytochemicals and Biological Activities of Barleria (Acanthaceae). PLANTS 2021; 11:plants11010082. [PMID: 35009086 PMCID: PMC8747396 DOI: 10.3390/plants11010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022]
Abstract
Plant species belonging to the family Acanthaceae are globally known to possess various medicinal properties and have cultural and economic importance in both traditional medicine and horticulture. They are important to both animals and humans and are used as food or for ornamental purposes worldwide. Barleria is the third largest genus in the family Acanthaceae. A few of the highly important and reported species of Barleria include B. prionitis, B. cristata, B. grandiflora, and B. lupulina. The flowers, leaves, stems, roots, and seed extracts of plants belonging to this genus are rich in bioactive compounds and have exhibited significant medicinal potential for the treatment of various ailments and infections. Evidence derived from several studies has demonstrated the antioxidant, antibacterial, antifungal, anti-inflammatory, anticancer, antidiabetic, antiulcer, hepatoprotective, analgesic, antiamoebic, antihelminthic, antiarthritic, antihypertensive, antiviral properties and toxicity of extracts, in addition inhibition of acetylcholinesterase activity and biosynthesis of nanoparticles, of the plant and seed extracts of species belonging to Barleria. Studies have reported that bioactive compounds such as flavonoids, quinones, iridoids, phenylethanoid glycosides, the immunostimulant protein “Sankaranin”, and antibiotics isolated from Barleria species are resposnsible for the above biological activities. Traditionally, the genus Barleria has significant medicinal potential; however, there is a scarcity of information on various species that are yet to be evaluated. This review provides a comprehensive report on existing literature, concerning the phytochemistry and biological activities of the genus Barleria.
Collapse
Affiliation(s)
- Serisha Gangaram
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (S.G.); (Y.N.)
| | - Yougasphree Naidoo
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (S.G.); (Y.N.)
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Department of Horticulture, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Correspondence: author:
| | - Salah El-Hendawy
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Department of Agronomy, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
17
|
Jin L, Niu G, Guan L, Ramelow J, Zhan Z, Zhou X, Li J. Discovery of mosquitocides from fungal extracts through a high-throughput cytotoxicity-screening approach. Parasit Vectors 2021; 14:595. [PMID: 34863250 PMCID: PMC8643003 DOI: 10.1186/s13071-021-05089-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquitoes transmit a variety of diseases. Due to widespread insecticide resistance, new effective pesticides are urgently needed. Entomopathogenic fungi are widely utilized to control pest insects in agriculture. We hypothesized that certain fungal metabolites may be effective insecticides against mosquitoes. METHODS A high-throughput cytotoxicity-based screening approach was developed to search for insecticidal compounds in our newly established global fungal extract library. We first determined cell survival rates after adding various fungal extracts. Candidate insecticides were further analyzed using traditional larval and adult survival bioassays. RESULTS Twelve ethyl acetate extracts from a total of 192 fungal extracts displayed > 85% inhibition of cabbage looper ovary cell proliferation. Ten of these 12 candidates were confirmed to be toxic to Anopheles gambiae Sua5B cell line, and six showed > 85% inhibition of Anopheles mosquito cell growth. Further bioassays determined a LC50, the lethal concentration that kills 50% of larval or adult mosquitoes, of 122 µg/mL and 1.7 µg/mosquito, respectively, after 24 h for extract 76F6 from Penicillium toxicarium. CONCLUSIONS We established a high-throughput MTT-based cytotoxicity screening approach for the discovery of new mosquitocides from fungal extracts. We discovered a candidate extract from P. toxicarium that exhibited high toxicity to mosquito larvae and adults, and thus were able to demonstrate the value of our recently developed approach. The active fungal extracts discovered here are ideal candidates for further development as mosquitocides.
Collapse
Affiliation(s)
- Liang Jin
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China.
| | - Guodong Niu
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Limei Guan
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Julian Ramelow
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Zhigao Zhan
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Xi Zhou
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
18
|
Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti SL, Mehlhorn H, Barnard DR, Benelli G. Retraction Note to: Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol Res 2021; 120:3631. [PMID: 34480203 DOI: 10.1007/s00436-021-07295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - Mohan Rajeswary
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Kaliyan Veerakumar
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Udaiyan Muthukumaran
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - S L Hoti
- Regional Medical Research Centre, Nehru Nagar, Belgaum, 590010, Karnataka, India
| | - Heinz Mehlhorn
- Department of Parasitology, Heinrich Heine University, Düsseldorf, Germany
| | - Donald R Barnard
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, 1600 SW23rd Drive, Gainesville, FL, 32608, USA
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
19
|
Kojom Foko LP, Eya'ane Meva F, Eboumbou Moukoko CE, Ntoumba AA, Ekoko WE, Ebanda Kedi Belle P, Ndjouondo GP, Bunda GW, Lehman LG. Green-synthesized metal nanoparticles for mosquito control: A systematic review about their toxicity on non-target organisms. Acta Trop 2021; 214:105792. [PMID: 33310077 DOI: 10.1016/j.actatropica.2020.105792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 01/14/2023]
Abstract
Studies capturing the high efficiency of green-synthesized metal nanoparticles (NPs) in targeting mosquito vectors of the world's main infectious diseases suggest the NPs' possible utilization as bio-insecticides. However, it is necessary to confirm that these potential bio-insecticides are not harmful to non-target organisms that are often sympatric and natural enemies of the vectors of these diseases. In this systematic review, we comprehensively analyse the content of 56 publications focused on the potentially deleterious effects of NPs on these non-target organisms. Current research on biosynthesised NPs, characterization, and impact on mosquito vectors and non-target larvivorous organisms is reviewed and critically discussed. Finally, we pinpoint some major challenges that merit future investigation. Plants (87.5%) were mainly used for synthesizing NPs in the studies. NPs were found to be spherical or mainly spherical in shape with a large distribution size. In most of the included studies, NPs showed interesting mosquitocidal activity (LC50 < 50 ppm). Some plant families (e.g., Meliaceae, Poaceae, Lamiaceae) have produced NPs with a particularly high larvicidal and pupicidal activity (LC50 < 10 ppm). Regarding non-target organisms, most of the studies concluded that NPs were safe to them, with boosted predatory activity in NP-treated milieu. In contrast, some studies reported NP-elicited adverse effects (i.e., genotoxic, nuclear, and enzymatic effects) on these non-target organisms. This review outlines the promising mosquitocidal effects of biosynthesized NPs, recognizing that NPs' potential usage is currently limited by the harm NPs are thought pose to non-target organism. It is of utmost importance to investigate green NPs to determine whether laboratory findings have applications in the real world.
Collapse
|
20
|
Baranitharan M, Alarifi S, Alkahtani S, Ali D, Elumalai K, Pandiyan J, Krishnappa K, Rajeswary M, Govindarajan M. Phytochemical analysis and fabrication of silver nanoparticles using Acacia catechu: An efficacious and ecofriendly control tool against selected polyphagous insect pests. Saudi J Biol Sci 2021; 28:148-156. [PMID: 33424291 PMCID: PMC7785431 DOI: 10.1016/j.sjbs.2020.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Globally, the farmers are struggling with polyphagous insect pest, and it is the number one enemy of agri-products, which made plenty of economic deterioration. Spodoptera litura and Helicoverpa armigera are the agronomically important polyphagous pests. Most of the farmers are predominately dependent on synthetic chemical insecticides (SCIs) for battle against polyphagous pets. As a result, the broad spectrum usage of SCIs led a lot of detrimental outcomes only inconsequently the researchers search the former-friendly phyto-pesticidal approach. In the present investigation, leaf ethanol extract (LEE) and silver nanoparticles (AgNPs) of A. catechu (Ac) were subjected to various spectral (TLC, CC, UV, FTIR, XRD and SEM) analyses. Larval and pupal toxicity of A. catechu Ac-LEE and Ac-AgNPs were tested against selected polyphagous insect pests. The significant larval and pupal toxicity were experimentally proven, and the highest toxicity noticed in AgNPs than Ac-LEE. The larval and pupal toxicity of Ac-AgNPs tested against S. litura and H. armigera LC50/LC90 values were 71.04/ 74.78, 85.33/ 88.91 µg/mL and 92.57/ 96.21 and 124.43/ 129.95 µg/mL respectively. Ac-AgNPs could be potential phyto-pesticidal effectiveness against selected polyphagous insect pests. In globally, it is significantly sufficient ratification giving towards the prevention of many unauthorized SCPs.
Collapse
Affiliation(s)
- Mathalaimuthu Baranitharan
- Department of Advanced Zoology & Biotechnology, Government Arts College for Men (Autonomous), Chennai 600035, Tamil Nadu, India
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kuppusamy Elumalai
- Department of Advanced Zoology & Biotechnology, Government Arts College for Men (Autonomous), Chennai 600035, Tamil Nadu, India
| | - Jeganathan Pandiyan
- Department of Zoology and Wildlife Biology A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai 609305, Tamil Nadu, India
| | - Kaliyamoorthy Krishnappa
- Department of Zoology and Wildlife Biology A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai 609305, Tamil Nadu, India
| | - Mohan Rajeswary
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
- Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| |
Collapse
|
21
|
Elumalai K, Mahboob S, Al-Ghanim KA, Al-Misned F, Pandiyan J, Baabu PMK, Krishnappa K, Govindarajan M. Entomofaunal survey and larvicidal activity of greener silver nanoparticles: A perspective for novel eco-friendly mosquito control. Saudi J Biol Sci 2020; 27:2917-2928. [PMID: 33100847 PMCID: PMC7569148 DOI: 10.1016/j.sjbs.2020.08.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/22/2020] [Accepted: 08/30/2020] [Indexed: 11/19/2022] Open
Abstract
The entomofaunal survey and its toxicity of Blumea mollis (Asteraceae) leaf aqueous extract-mediated (Bm-LAE) silver nanoparticles (AgNPs) were assessed against selected human vector mosquitoes (HVMs). A total of 1800 individuals of 29 species belongs to 7 genera were identified. Month-wise and Genus-wise abundance of HVMs larval diversity were calculated and one-way ANOVA statistically analyzed the average physico-chemical characteristics. The relationship between physicochemical characteristics and HVMs larvae in KWS was interpreted. The total larval density and container index were 23530.18 and 1961.85 examined against 10 different containers. Various spectroscopic and microscopic investigation characterized Bm-AgNPs. The Bm- AgNPs tested against HVMs larvae, the predominant LC50/LC90 values of 18.17/39.56, 23.45/42.49 and 21.82/40.43 μg/mL were observed on An. subpictus Cx. vishnui and Ae. vittatus, respectively. The findings of this investigation, improperly maintained drainages, containers and unused things in study sites, are engaged to HVMs development. This will be essential for designing and implementing HVMs control. The larval toxic potentiality of Bm- AgNPs had a prompt, inexpensive and compelling synthesis of multi-disperse action against HVMs.
Collapse
Affiliation(s)
- Kuppusamy Elumalai
- Department of Advanced Zoology & Biotechnology, Government Arts College for Men (Autonomous), Chennai 600035, Tamil Nadu, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jeganathan Pandiyan
- Department of Zoology and Wildlife Biology, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai 609305, India
| | | | - Kaliyamoorthy Krishnappa
- Department of Zoology and Wildlife Biology, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai 609305, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, 608 002 Tamil Nadu, India
- Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| |
Collapse
|
22
|
Sundaramahalingam B, Mahboob S, Jain C, Marimuthu N, Manickaraj P, Al-Ghanim KA, Al-Misned F, Ahmed Z. Design and development of porous terracotta disc: An eco-friendly novel control agent for mosquito larvae. Exp Parasitol 2020; 218:107988. [PMID: 32890471 DOI: 10.1016/j.exppara.2020.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/23/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
In the present work, we synthesized silver nanoparticles supported by rice husk by hydrothermal treatment, as-synthesized silver nanoparticles rice husk (AgNPs-RH) bio-composite mixed with potter clay thoroughly, molded, dried into a disc-shaped before firing and applying as a point of use larvicidal agent. As designed, porous terracotta disc (PTD) infused with AgNPs-RH-biocomposite were characterized by UV spectrophotometer, Fourier-transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction analysis and energy-dispersive X-ray spectroscopy. The amount of silver ions released from the PTD was also found to be within the prescribed limit of 0.1 ppm-level. Later we dropped the PTD and tested its larvicidal activity against the IVth instar larva stage of Aedes, Anopheles and Culex species. We found 100% larvicidal mortality in 24 h of exposure to the designed PTD and the amount of silver released from the porous disc was found to be 0.0343 ppm. Further from the histopathological studies of dead larvae revealed that the silver ions from the PTD have substantially damaged the exoskeleton of larvae.
Collapse
Affiliation(s)
- Balaji Sundaramahalingam
- Department of Zoology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, 626 124, Tamil Nadu, India.
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Chandan Jain
- Nanocera Enviro India Pvt. Ltd., Sivakasi, 626 189, Tamil Nadu, India
| | - Narayanan Marimuthu
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, 626124, Tamil Nadu, India
| | - Praisy Manickaraj
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, 626124, Tamil Nadu, India
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zubair Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
23
|
Rizvi SAH, Ling S, Zeng X. Seriphidium brevifolium essential oil: a novel alternative to synthetic insecticides against the dengue vector Aedes albopictus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31863-31871. [PMID: 32504436 DOI: 10.1007/s11356-020-09108-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The Aedes albopictus mosquito is a vector of several deadly diseases of humans and domesticated animals. Usually, synthetic insecticides are used for mosquito control. The excessive use of synthetic insecticides is hazardous for humans and the environment. Therefore, there is a need to develop environment-friendly and novel mosquito larvicides. In the current study, we evaluated larvicidal and bite protection properties of Seriphidium brevifolium essential oil (SBEO) and its active constituents against this mosquito. SBEO and its active constituents, α, β-thujone, and limonene, were toxic to A. albopictus, with LC50 values of 21.43, 45.99, 47.38, and 49.46 μg/mL. The cream formulation of EO at 5 % (w/v) provided complete protection against mosquito bites until 70 min after application. Among the EO constituents tested, α and β-thujone showed considerable protections against mosquito bites but lower as compared with the whole oil. Furthermore, 1:1 combinations of active constituent α-thujone and β-thujone and 1:1:1 combinations of α-thujone, β-thujone, and limonene displayed a synergistic effect against the larvae. Particularly, the EO and its active constituents were safer to Poecilia reticulata a mosquito predator, with LC50 ranging from 3934.33 to 14,432.11 μg/mL. Our current study indicated that SBEO and some of its constituents can be used for the control of A. albopictus mosquito, as a novel alternative to hazardous synthetic insecticides and to overcome the problem of increasing insecticides resistance.
Collapse
Affiliation(s)
- Syed Arif Hussain Rizvi
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Siquan Ling
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinnian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Novel Biogenic Synthesis of Silver Nanoparticles Using Alstonia venenata Leaf Extract: An Enhanced Mosquito Larvicidal Agent with Negligible Impact on Important Eco-biological Fish and Insects. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01808-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Renu S, Shivashangari KS, Ravikumar V. Incorporated plant extract fabricated silver/poly-D,l-lactide-co-glycolide nanocomposites for antimicrobial based wound healing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117673. [PMID: 31735599 DOI: 10.1016/j.saa.2019.117673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Polymeric nanocomposites have gained extensive attention in modern nanotechnology by reason of its design, flexibility, sole applications and lower life cycle costs. Preparation of composites using spreading of inorganic metal nanoparticles in organic polymeric matrices has plenty of scope and applications in the biomedical field. Poly-D,l-lactide-co-glycolide (PLGA) is an appreciated polymer for composites preparation because of its non-toxic and promising biodistribution. The consideration of metal nanoparticles has extended rapidly with the presence of new nanocomposites into a range of products and technologies. Compared to bulk materials the synthesized metal nanoparticles have unique character and biomedical uses due to its shape, size, and huge surface to volume ratio. Among different inorganic metal nanoparticles, silver nanoparticles (Ag NPs) have dominated in the biomedical field owing to its diverse potential applications including imaging, sensor, diagnosis and disease treatment. Further, medicinal plant extract mediated Ag NPs shown superior advantages and its antimicrobial based wound healing prospective has been established. However, not much information on plant extract mediated Ag NPs integrated PLGA nanocomposites wound healing applications. In the present review, we discussed necessity, preparation, characterization and antimicrobial based wound healing mechanism of incorporated plant extract mediated silver/PLGA nanocomposites.
Collapse
Affiliation(s)
- Sankar Renu
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, United States.
| | | | - Vilwanathan Ravikumar
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
26
|
Rekha R, Divya M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-Anbr MN, Pavela R, Vaseeharan B. Synthesis and characterization of crustin capped titanium dioxide nanoparticles: Photocatalytic, antibacterial, antifungal and insecticidal activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111620. [PMID: 31522113 DOI: 10.1016/j.jphotobiol.2019.111620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 11/25/2022]
Abstract
Current scenario of bio-nanotechnology, successfully fabrication of ultrafine titanium dioxide nanoparticles (TiO2NPs) using various biological protein sources for the multipurpose targets. The present research report involves synthesis of TiO2NPs using antimicrobial peptide (AMP) crustin (Cr). Crustin previously purified from the blue crab, Portunus pelagicus haemolymph, by blue Sepharose CL-6B matrix assisted affinity column chromatography. Synthesized Cr-TiO2NPs was physico-chemically characterized by UV-Visible spectroscopy (UV-Visible), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High-resolution transmission electron microscopy (HR-TEM) and zeta potential examination. X-ray diffraction analysis for crystalline nature and phase identification of titanium dioxide nanoparticles was absorbed. Functional groups were found through FTIR ranges between 1620 and 1700 cm-1. HR-TEM analysis showed that the synthesized Cr-TiO2NPs tetragonal shape and sizes ranging from 10 to 50 nm. Finally, the surface charge of the Cr-TiO2NPs was confirmed through zeta potential analysis. Furthermore, the characterized Cr-TiO2NPs exhibited good biofilm inhibition against GPB - S. mutans (Gram Positive Bacteria- Streptococcus mutans), GNB - P. vulgaris (Gram Negative Bacteria- Proteus vulgaris) and fungal Candida albicans. Moreover, photocatalysis demonstrated that the Cr-TiO2NPs was effectively explored the degradation of dyes. The results suggest that Cr-TiO2NPs is an excellent bactericidal, fungicidal and photocatalytic agent that can be supportively used for biomedical and industrial applications.
Collapse
Affiliation(s)
- Ravichandran Rekha
- Biomaterials and Biotechnology in Animal Health Lab, Nanobiosciences and Nanopharmacology Division, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Mani Divya
- Biomaterials and Biotechnology in Animal Health Lab, Nanobiosciences and Nanopharmacology Division, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India; Department of Zoology, Government College for Women, Kumbakonam 612 001, Tamil Nadu, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed N Al-Anbr
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06 Prague, Czech Republic
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Nanobiosciences and Nanopharmacology Division, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
27
|
Bharali P, Das S, Bhandari N, Das AK, Kalta MC. Sunlight induced biosynthesis of silver nanoparticle from the bark extract of Amentotaxus assamica D.K. Ferguson and its antibacterial activity against Escherichia coli and Staphylococcus aureus. IET Nanobiotechnol 2019; 13:18-22. [PMID: 30964032 DOI: 10.1049/iet-nbt.2018.5036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Green synthesis of nanoparticles has gained importance due to its eco-friendly, low toxicity and cost effective nature. This study deals with the biosynthesis of silver nanoparticles (AgNPs) from the bark extract of Amentotaxus assamica. The AgNPs have been synthesised by reducing the silver ions into stable AgNPs using the bark extract of Amentotaxus assamica under the influence of sunlight irradiation. The characterisation of the biosynthesised AgNPs was carried out by UV-vis spectroscopy, X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis. The UV-vis spectrum showed a broad peak at 472 nm. Also, the XRD confirmed the crystalline structure of the AgNPs. Moreover, the SEM analysis revealed that the biosynthesised AgNPs were spherical in shape. Also, dynamic light scattering techniques were used to evaluate the size distribution profile of the biosynthesised AgNPs. Furthermore, the biosynthesised AgNPs showed a prominent inhibitory effect against both Escherichia coli (MTCC 111) and Staphylococcus aureus (MTCC 97). Thus the biosynthesis of AgNPs from the bark extract of Amentotaxus assamica is found to eco-friendly way of producing AgNPs compared to chemical method.
Collapse
Affiliation(s)
- Pankaj Bharali
- Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India.
| | - Subhankar Das
- Department of Biotechnology, Amity University, Sector 125, Noida, UP 201301, India
| | - Nikita Bhandari
- Department of Biotechnology, Amity University, Sector 125, Noida, UP 201301, India
| | - Arup K Das
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, India
| | - Mohan Chandra Kalta
- Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India
| |
Collapse
|
28
|
Efficacy of silver nanoparticles against the adults and eggs of monogenean parasites of fish. Parasitol Res 2019; 118:1741-1749. [PMID: 31049694 DOI: 10.1007/s00436-019-06315-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/03/2019] [Indexed: 10/26/2022]
Abstract
Monogeneans are a diverse group of parasites that are commonly found on fish. Some monogenean species are highly pathogenic to cultured fish. The present study aimed to determine the in vitro anthelmintic effect of silver nanoparticles (AgNPs) against adults and eggs of monogeneans in freshwater using Cichlidogyrus spp. as a model organism. We tested two types of AgNPs with different synthesis methodologies and size diameters: ARGOVIT (35 nm) and UTSA (1-3 nm) nanoparticles. Damage to the parasite tegument was observed by scanning electron microscopy. UTSA AgNPs were more effective than ARGOVIT; in both cases, there was a concentration-dependent effect. A concentration of 36 μg/L UTSA AgNPs for 1 h was 100% effective against eggs and adult parasites, causing swelling, loss of corrugations, and disruption of the parasite's tegument. This is an interesting result considering that monogenean eggs are typically tolerant to antiparasite drugs and chemical agents. To the best of our knowledge, no previous reports have assessed the effect of AgNPs on any metazoan parasites of fish. Therefore, the present work provides a basis for future research on the control of fish parasite diseases.
Collapse
|
29
|
Pavela R, Maggi F, Iannarelli R, Benelli G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop 2019; 193:236-271. [PMID: 30711422 DOI: 10.1016/j.actatropica.2019.01.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/27/2023]
Abstract
In the last decades, major research efforts have been done to investigate the insecticidal activity of plant-based products against mosquitoes. This is a modern and timely challenge in parasitology, aimed to reduce the frequent overuse of synthetic pesticides boosting resistance development in mosquitoes and causing serious threats to human health and environment. This review covers the huge amount of literature available on plant extracts tested as mosquito larvicides, particularly aqueous and alcoholic ones, due to their easy formulation in water without using surfactants. We analysed results obtained on more than 400 plant species, outlining that 29 of them have outstanding larvicidal activity (i.e., LC50 values below 10 ppm) against major vectors belonging to the genera Anopheles, Aedes and Culex, among others. Furthermore, synergistic and antagonistic effects between plant extracts and conventional pesticides, as well as among selected plant extracts are discussed. The efficacy of pure compounds isolated from the most effective plant extracts and - when available - their mechanism of action, as well as the impact on non-target species, is also covered. These belong to the following class of secondary metabolites: alkaloids, alkamides, sesquiterpenes, triterpenes, sterols, flavonoids, coumarins, anthraquinones, xanthones, acetogenonins and aliphatics. Their mode of action on mosquito larvae ranges from neurotoxic effects to inhibition of detoxificant enzymes and larval development and/or midugut damages. In the final section, current drawbacks as well as key challenges for future research, including technologies to synergize efficacy and improve stability - thus field performances - of the selected plant extracts, are outlined. Unfortunately, despite the huge amount of laboratory evidences about their efficacy, only a limited number of studies was aimed to validate their efficacy in the field, nor the epidemiological impact potentially arising from these vector control operations has been assessed. This strongly limits the development of commercial mosquito larvicides of botanical origin, at variance with plant-borne products developed in the latest decades to kill or repel other key arthropod species of medical and veterinary importance (e.g., ticks and lice), as well as mosquito adults. Further research on these issues is urgently needed.
Collapse
Affiliation(s)
- Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06, Prague 6, Ruzyne, Czech Republic
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via Sant'Agostino, 62032 Camerino, Italy.
| | - Romilde Iannarelli
- School of Pharmacy, University of Camerino, via Sant'Agostino, 62032 Camerino, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
30
|
Pratheeba T, Vivekanandhan P, Faeza AN, Natarajan D. Chemical constituents and larvicidal efficacy of Naringi crenulata (Rutaceae) plant extracts and bioassay guided fractions against Culex quinquefasciatus mosquito (Diptera: Culicidae). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Parthiban E, Manivannan N, Ramanibai R, Mathivanan N. Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 21:e00297. [PMID: 30581768 PMCID: PMC6297187 DOI: 10.1016/j.btre.2018.e00297] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/06/2018] [Indexed: 01/03/2023]
Abstract
Silver nanoparticles play a important role in controlling mosquito population as well as multi drug resistant pathogens without causing much harm to humans. In the present study was focused on green synthesis of silver nanoparticles against dengue causing vector (Aedes aegypti) and pathogens affecting humans. The synthesized silver nanoparticle was confirmed using UV- absorption spectrum range obtained at 416 nm, XRD, FTIR and HR-TEM analysis were used to determine the silver nanoparticle morphology and size with ∼6.48 ± 1.2-8.13 ± 0.18 nm and face centered cubic structure. The synthesized silver nanoparticles were exposed to fourth instar larvae of A. aegypti with different concentration (3-20 μg/mL) for 24 h and its elicit maximum mortality (100%) at their final concentration of 20 μg/mL and it's LC50 value was 4.43 μg/mL and LC90 value was 13.96 μg/mL, respectively. The minimum inhibitory activities of the tested pathogens were 125, 31.25, 62.5, 62.6 and 62.5 μg/mL for the Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans respectively. Further, the synthesized silver nanoparticle shows a potent antimicrobial activity against all tested pathogens. Moreover the effect of silver nanoparticle against Red Blood Cells belonging to 'O' positive blood group were tested and does not cause higher hemolysis to the cells even at the highest concentration. Based on these finding, we strongly suggested that face centered cubic structured A. reticulata AgNPs is an eco-friendly and potent bio-medical agent and can be apply in wide range of application an alternative chemically synthesized metal nanoparticle.
Collapse
Affiliation(s)
- Ezhumalai Parthiban
- Department of Zoology, Unit of Aquatic Biodiversity, University of Madras, Guindy Campus, 600025, Chennai, India
| | - Nandhagopal Manivannan
- Centre for Advanced Studies in Botany, Unit of Bio control and Metabolites, University of Madras, Guindy Campus, 600025, Chennai, India
| | - Ravichandran Ramanibai
- Department of Zoology, Unit of Aquatic Biodiversity, University of Madras, Guindy Campus, 600025, Chennai, India
| | - Narayanasamy Mathivanan
- Centre for Advanced Studies in Botany, Unit of Bio control and Metabolites, University of Madras, Guindy Campus, 600025, Chennai, India
| |
Collapse
|
32
|
Rekha R, Vaseeharan B, Vijayakumar S, Abinaya M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-Anbr MN. Crustin-capped selenium nanowires against microbial pathogens and Japanese encephalitis mosquito vectors - Insights on their toxicity and internalization. J Trace Elem Med Biol 2019; 51:191-203. [PMID: 30466931 DOI: 10.1016/j.jtemb.2018.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022]
Abstract
Herein, we reported a method to synthesize selenium nanowires (Cr-SeNWs) relying to purified cysteine-rich antimicrobial peptide crustin in presence of ascorbic acid. Cr-SeNWs were characterized by UV-vis, XRD, FTIR and Raman spectroscopy, as well as SEM, HR-TEM and EDAX. The UV-vis spectroscopy peak was noted at 350 nm. XRD showed the crystalline nature of Cr-SeNWs through diffraction peaks observed 2θ at 12° and 28° corresponding to (020), and (241) lattice planes, respectively. HR-TEM results shed light on the size of Cr-SeNWs, ranging from 17 to 47 nm. Raman spectroscopy and EDAX analysis of Cr-SeNWs showed presence of 57% selenium element. Furthermore, Cr-SeNWs showed higher antimicrobial activity on Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) over Gram-negative ones (Pseudomonas aeruginosa, Escherichia coli). The zone of inhibition was larger on S. aureus (50 μg/ml = 4.0 mm, 75 μg/ml = 7.2 mm) and E. faecalis (50 μg/ml = 3.1 mm, 75 μg/ml = 5.1 mm), over P. aeruginosa (50 μg/ml = 2.1 mm, 75 μg/ml = 4.8 mm), E. coli (50 μg/ml = 1.3 mm, 75 μg/ml = 4.3 mm) bacteria. The antibiofilm activity of Cr-SeNWs was also investigated and biofilm reduction was observed at 75 μg/ml. In addition, Cr-SeNWs were highly effective as larvicides against Zika virus and Japanese encephalitis mosquito vectors, i.e., Culex quinquefasciatus and Culex tritaeniorhynchus, with LC50 values of 4.15 and 4.85 mg/l, respectively. The nanowire toxicity and internalization was investigated through confocal laser scanning microscopy and histological studies. To investigate the potential of Cr-SeNWs for real-world applications, we also evaluated Cr-SeNWs in hemolytic assays, showing no cytotoxicity till 5 mg/ml. Besides, higher antioxidant activity at the concentration at 100 μg/ml was noted, if compared with purified crustin. The strong antioxidant potential of this nanomaterial can be helpful to boost the shelf-life potential of Cr-SeNWs-based pesticides and antimicrobials.
Collapse
Affiliation(s)
- Ravichandran Rekha
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India.
| | - Sekar Vijayakumar
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Muthukumar Abinaya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India; Department of Zoology, Government College for Women, Kumbakonam, 612 001, Tamil Nadu, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed N Al-Anbr
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
33
|
Lee MY. Essential Oils as Repellents against Arthropods. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6860271. [PMID: 30386794 PMCID: PMC6189689 DOI: 10.1155/2018/6860271] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 12/31/2022]
Abstract
The development of effective and safe repellents against arthropods is very important, because there are no effective vaccines against arthropod-borne viruses (arboviruses) and parasites. Arboviruses and parasites are transmitted to humans from arthropods, and mosquitoes are the most common arthropods associated with dengue, malaria, and yellow fever. Enormous efforts have been made to develop effective repellents against arthropods, and thus far synthetic repellents have been widely used. However, the use of synthetic repellents has raised several concerns in terms of environmental and human health risks and safety. Thus, plant essential oils (EOs) have been widely used as an alternative to synthetic repellents. In this review, we briefly introduce and summarize recent studies that have investigated EOs as insect repellents. Current technology and research trends to develop effective and safe repellents from plant EOs are also described in this review.
Collapse
Affiliation(s)
- Mi Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, 22 Soonchunhyang–ro, Asan, Chungnam 31537, Republic of Korea
| |
Collapse
|
34
|
López-García GP, Buteler M, Stadler T. Testing the Insecticidal Activity of Nanostructured Alumina on Sitophilus oryzae (L.) (Coleoptera: Curculionidae) Under Laboratory Conditions Using Galvanized Steel Containers. INSECTS 2018; 9:insects9030087. [PMID: 30041400 PMCID: PMC6164248 DOI: 10.3390/insects9030087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/07/2023]
Abstract
Most stored-grain pest insects increase their population within a relatively short time, causing serious damage to stored products. Sitophilus oryzae (L.) is one of the world’s major stored-grain pest insects and was chosen as the model insect for our studies. This study compared the efficacy of three different dusts under laboratory conditions: aluminum dust (nanostructured alumina), DiatomiD®, and Protect-It® (commercial diatomaceous earth). Parental survival, grain damage, and progeny production were measured at 250 and 500 ppm in treated wheat. The tests were conducted in 400 mL galvanized steel jars, an experimental model used for the first time to measure the effectiveness of nanostructured alumina, since most studies have been typically performed in small petri dishes. Parental survival obtained was highest in the untreated controls, followed in decreasing order by DiatomiD®, Protect-It®, and nanostructured alumina (NSA). NSA caused the greatest mortality. All treatments significantly reduced grain weight loss and frass production in wheat infested by S. oryzae. The degree of progeny (F1) suppression was directly related to the product and treatment rate, progeny being significantly suppressed by NSA in wheat followed by Protect-It® and DiatomiD®. Therefore, NSA had a greater impact on insect population dynamics.
Collapse
Affiliation(s)
- Guillermo Pablo López-García
- Laboratorio de Entomología, Instituto Argentino de Investigaciones de Zonas Áridas (IADIZA), CONICET Mendoza, Mendoza 5500, Argentina.
| | - Micaela Buteler
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-Universidad Nacional del Comahue, Bariloche 8400, Argentina.
| | - Teodoro Stadler
- Laboratorio de Toxicología Ambiental, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET Mendoza, Mendoza 5500, Argentina.
| |
Collapse
|
35
|
Mishra P, Tyagi BK, Chandrasekaran N, Mukherjee A. Biological nanopesticides: a greener approach towards the mosquito vector control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10151-10163. [PMID: 28721618 DOI: 10.1007/s11356-017-9640-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Mosquitoes, being a vector for some potentially dreadful diseases, pose a considerable threat to people all around the world. The control over the growth and propagation of mosquitoes comprises conventional pesticides, insect growth regulators and other microbial control agents. However, the usage of these common chemicals and conventional pesticides eventually has a negative impact on human health as well as the environment, which therefore becomes a major concern. The lacuna allows nanotechnology to come into action and exploit nanopesticides. Nanopesticides are majorly divided into two categories-synthetic and biological. Several nanoformulations serve as a promising nanopesticide viz. nanoparticles, e.g. biologically synthesised nanoparticles through plant extracts, nanoemulsions prepared using the essential oils like neem oil and citronella oil and nanoemulsion of conventional pesticides like pyrethroids. These green approaches of synthesising nanopesticides make use of non-toxic and biologically derived compounds and hence are eco-friendly with a better target specificity. Even though there are numerous evidences to show the effectiveness of these nanopesticides, very few efforts have been made to study the possible non-target effects on other organisms prevalent in the aquatic ecosystem. This study focuses on the role of these nanopesticides towards the vector control and its eco-safe property against the other non-target species.
Collapse
Affiliation(s)
- Prabhakar Mishra
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Brij Kishore Tyagi
- Department of Zoology & Environment Science, Punjabi University, Patiala, Punjab, 147002, India
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
36
|
Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, Petrelli R, Cappellacci L, Kumar S, Hofer A, Youssefi MR, Alarfaj AA, Hwang JS, Higuchi A. Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10184-10206. [PMID: 28755145 DOI: 10.1007/s11356-017-9752-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/10/2017] [Indexed: 05/27/2023]
Abstract
The rapid spread of highly aggressive arboviruses, parasites, and bacteria along with the development of resistance in the pathogens and parasites, as well as in their arthropod vectors, represents a huge challenge in modern parasitology and tropical medicine. Eco-friendly vector control programs are crucial to fight, besides malaria, the spread of dengue, West Nile, chikungunya, and Zika virus, as well as other arboviruses such as St. Louis encephalitis and Japanese encephalitis. However, research efforts on the control of mosquito vectors are experiencing a serious lack of eco-friendly and highly effective pesticides, as well as the limited success of most biocontrol tools currently applied. Most importantly, a cooperative interface between the two disciplines is still lacking. To face this challenge, we have reviewed a wide number of promising results in the field of green-fabricated pesticides tested against mosquito vectors, outlining several examples of synergy with classic biological control tools. The non-target effects of green-fabricated nanopesticides, including acute toxicity, genotoxicity, and impact on behavioral traits of mosquito predators, have been critically discussed. In the final section, we have identified several key challenges at the interface between "green" nanotechnology and classic biological control, which deserve further research attention.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 16106, Prague 6, Czech Republic
| | - Kadarkarai Murugan
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Baskaralingam Vaseeharan
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| | - Riccardo Petrelli
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| | - Loredana Cappellacci
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, 43400, Serdang, Malaysia
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Mohammad Reza Youssefi
- Department of Veterinary Parasitology, Babol-Branch, Islamic Azad University, Babol, Iran
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 32001, Taiwan
| |
Collapse
|
37
|
Benelli G, Kadaikunnan S, Alharbi NS, Govindarajan M. Biophysical characterization of Acacia caesia-fabricated silver nanoparticles: effectiveness on mosquito vectors of public health relevance and impact on non-target aquatic biocontrol agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10228-10242. [PMID: 28161865 DOI: 10.1007/s11356-017-8482-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Mosquito-borne diseases lead to serious public health concerns in tropical and sub-tropical countries worldwide, due to development of mosquito resistance to synthetic pesticides, non-target effects of pesticides, and socioeconomic reasons. Currently, green nanotechnology is a promising research field, showing a wide range of potential applications in vector control programs. The employ of natural products as reducing agents to fabricate insecticidal nanocomposites is gaining research attention worldwide, due to low costs and high effectiveness. Interestingly, biophysical features of green-synthesized nanoparticles strongly differ when different botanicals are employed for nanosynthesis. In this study, a cheap Acacia caesia leaf extract was employed to fabricate silver nanoparticles (Ag NPs) with ovicidal, larvicidal, and adulticidal toxicity against three mosquito vectors, Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Ag NPs were analyzed by various biophysical methods, including spectroscopy (UV-visible spectrophotometry, XRD, FTIR, EDX) and microscopy (SEM, TEM, AFM) techniques. High acute larvicidal potential was observed against larvae of An. subpictus (LC50 = 10.33 μg/ml), Ae. albopictus (LC50 = 11.32 μg/ml), and Cx. tritaeniorhynchus (LC50 = 12.35 μg/ml). Ag NPs completely inhibited egg hatchability on three vectors at 60, 75, and 90 μg/ml, respectively. In adulticidal assays, LD50 values were 18.66, 20.94, and 22.63 μg/ml. If compared to mosquito larvae, Ag NPs were safer to three non-target aquatic biocontrol agents, with LC50 ranging from 684 to 2245 μg/ml. Overall, our study highlights the potential of A. caesia as an abundant and cheap bioresource to fabricate biogenic Ag NPs effective against mosquito young instars and adults, with moderate impact on non-target aquatic biocontrol agents.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalai Nagar, Tamil Nadu, 608 002, India.
| |
Collapse
|
38
|
Benelli G, Govindarajan M, Senthilmurugan S, Vijayan P, Kadaikunnan S, Alharbi NS, Khaled JM. Fabrication of highly effective mosquito nanolarvicides using an Asian plant of ethno-pharmacological interest, Priyangu (Aglaia elaeagnoidea): toxicity on non-target mosquito natural enemies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10283-10293. [PMID: 28390026 DOI: 10.1007/s11356-017-8898-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
Mosquitoes threaten the lives of humans, livestock, pets and wildlife around the globe, due to their ability to vector devastating diseases. Aglaia elaeagnoidea, commonly known as Priyangu, is widely employed in Asian traditional medicine and pest control. Medicinal activities include anti-inflammatory, analgesic, anticancer, and anesthetic actions. Flavaglines, six cyclopenta[b]benzofurans, a cyclopenta[bc]benzopyran, a benzo[b]oxepine, and an aromatic butyrolactone showed antifungal properties, and aglaroxin A and rocaglamide were effective to control moth pests. Here, we determined the larvicidal action of A. elaeagnoidea leaf aqueous extract. Furthermore, we focused on Priyangu-mediated synthesis of Ag nanoparticles toxic to Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi. The plant extract and the nanolarvicide were tested on three mosquito vectors, following the WHO protocol, as well as on three non-target mosquito predators. Priyangu-synthesized Ag nanoparticles were characterized by spectroscopic (UV, FTIR, XRD, and EDX) and microscopic (AFM, SEM, and TEM) analyses. Priyangu extract toxicity was moderate on Cx. quinquefasciatus (LC50 246.43; LC90 462.09 μg/mL), Ae. aegypti (LC50 229.79; LC90 442.71 μg/mL), and An. stephensi (LC50 207.06; LC90 408.46 μg/mL), respectively, while Priyangu-synthesized Ag nanoparticles were highly toxic to Cx. quinquefasciatus (LC50 24.91; LC90 45.96 μg/mL), Ae. aegypti (LC50 22.80; LC90 43.23 μg/mL), and An. stephensi (LC50 20.66; LC90 39.94 μg/mL), respectively. Priyangu extract and Ag nanoparticles were found safer to non-target larvivorous fishes, backswimmers, and waterbugs, with LC50 ranging from 1247 to 37,254.45 μg/mL, if compared to target pests. Overall, the current research represents a modern approach integrating traditional botanical pesticides and nanotechnology to the control of larval populations of mosquito vectors, with negligible toxicity against non-target including larvivorous fishes, backswimmers, and waterbugs.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India.
| | - Sengamalai Senthilmurugan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Periasamy Vijayan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
39
|
Thamilarasan V, Sethuraman V, Gopinath K, Balalakshmi C, Govindarajan M, Mothana RA, Siddiqui NA, Khaled JM, Benelli G. Single Step Fabrication of Chitosan Nanocrystals Using Penaeus semisulcatus: Potential as New Insecticides, Antimicrobials and Plant Growth Promoters. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1342-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Green Synthesized Silver Nanoparticles and Their Impact on the Antioxidant Response and Histology of Indian Major Carp Labeo rohita, with Combined Response Surface Methodology Analysis. J CLUST SCI 2018. [DOI: 10.1007/s10876-017-1328-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Gnankiné O, Bassolé IHN. Essential Oils as an Alternative to Pyrethroids' Resistance against Anopheles Species Complex Giles (Diptera: Culicidae). Molecules 2017; 22:E1321. [PMID: 28937642 PMCID: PMC6151604 DOI: 10.3390/molecules22101321] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022] Open
Abstract
Widespread resistance of Anopheles sp. populations to pyrethroid insecticides has led to the search for sustainable alternatives in the plant kingdom. Among many botanicals, there is great interest in essential oils and their constituents. Many researchers have explored essential oils (EOs) to determine their toxicity and identify repellent molecules that are effective against Anopheles populations. Essential oils are volatile and fragrant substances with an oily consistency typically produced by plants. They contain a variety of volatile molecules such as terpenes and terpenoids, phenol-derived aromatic components and aliphatic components at quite different concentrations with a significant insecticide potential, essentially as ovicidal, larvicidal, adulticidal, repellency, antifeedant, growth and reproduction inhibitors. The current review provides a summary of chemical composition of EOs, their toxicity at different developmental stages (eggs, larvae and adults), their repellent effects against Anopheles populations, for which there is little information available until now. An overview of antagonist and synergistic phenomena between secondary metabolites, the mode of action as well as microencapsulation technologies are also given in this review. Finally, the potential use of EOs as an alternative to current insecticides has been discussed.
Collapse
Affiliation(s)
- Olivier Gnankiné
- Laboratoire d'entomologie fondamentale et appliquée (Lefa), Université Ouaga I Pr Joseph KI-ZERBO, 03 P.O. 7021 Ouagadougou, Burkina Faso.
| | - Imaël Henri Nestor Bassolé
- Laboratoire de biologie moléculaire, d'épidémiologie et de surveillance des bactéries et virus transmis par les aliments (Labesta), Université Ouaga I Pr Joseph KI-ZERBO, 03 P.O. 7021 Ouagadougou, Burkina Faso.
| |
Collapse
|
42
|
Green Synthesis of Ag Nanoparticles with Anti-bacterial Activity Using the Leaf Extract of an African Medicinal Plant, Ipomoea asarifolia (Convolvulaceae). J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1271-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Soni N, Dhiman RC. Phytochemical, Anti-oxidant, Larvicidal, and Antimicrobial Activities of Castor ( Ricinus communis ) Synthesized Silver Nanoparticles. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60106-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
44
|
Kumar VA, Ammani K, Jobina R, Subhaswaraj P, Siddhardha B. Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 171:1-8. [DOI: 10.1016/j.jphotobiol.2017.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
|
45
|
One-pot and eco-friendly synthesis of silver nanocrystals using Adiantum raddianum: Toxicity against mosquito vectors of medical and veterinary importance. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2016.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
46
|
Recent advances in use of silver nanoparticles as antimalarial agents. Int J Pharm 2017; 526:254-270. [PMID: 28450172 DOI: 10.1016/j.ijpharm.2017.04.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022]
Abstract
Malaria is one of the most common infectious diseases, which has become a great public health problem all over the world. Ineffectiveness of available antimalarial treatment is the main reason behind its menace. The failure of current treatment strategies is due to emergence of drug resistance in Plasmodium falciparum and drug toxicity in human beings. Therefore, the development of novel and effective antimalarial drugs is the need of the hour. Considering the huge biomedical applications of nanotechnology, it can be potentially used for the malarial treatment. Silver nanoparticles (AgNPs) have demonstrated significant activity against malarial parasite (P. falciparum) and vector (female Anopheles mosquito). It is believed that AgNPs will be a solution for the control of malaria. This review emphasizes the pros- and cons of existing antimalarial treatments and in depth discussion on application of AgNPs for treatment of malaria. The role of nanoparticles for site specific drug delivery and toxicological issues have also been discussed.
Collapse
|
47
|
Banumathi B, Vaseeharan B, Ishwarya R, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G. Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol Res 2017; 116:1637-1651. [DOI: 10.1007/s00436-017-5438-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 03/28/2017] [Indexed: 01/28/2023]
|
48
|
AlShebly MM, AlQahtani FS, Govindarajan M, Gopinath K, Vijayan P, Benelli G. Toxicity of ar-curcumene and epi-β-bisabolol from Hedychium larsenii (Zingiberaceae) essential oil on malaria, chikungunya and St. Louis encephalitis mosquito vectors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:149-157. [PMID: 27918946 DOI: 10.1016/j.ecoenv.2016.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/14/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Mosquitoes act as vectors of key pathogens and parasites. Plant essential oils have been recognized as important sources of biopesticides, which do not induce resistance and have limited toxic effects on human health and non-target organisms. In this research, we evaluated the larvicidal and oviposition deterrence activity of Hedychium larsenii essential oil (EO) and its major compounds ar-curcumene and epi-β-bisabolol. Both molecules showed high toxicity against early third instars of Anopheles stephensi (LC50=10.45 and 14.68µg/ml), Aedes aegypti (LC50=11.24 and 15.83µg/ml) and Culex quinquefasciatus (LC50=12.24 and 17.27µg/ml). In addition, low doses of ar-curcumene and epi-β-bisabolol were effective as oviposition deterrents against the three tested mosquito species. Notably, the acute toxicity of H. larsenii oil and its major compounds against the mosquito biocontrol agent Poecilia reticulata was low, with LC50 higher than 1500ppm. Overall, the results from this study revealed that ar-curcumene and epi-β-bisabolol from the H. larsenii oil can be considered for the development of novel and effective mosquito larvicides.
Collapse
Affiliation(s)
- Mashael Marzouq AlShebly
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University and King Saud University Medical City, Riyadh, Saudi Arabia
| | - Fatma Saeed AlQahtani
- Hematology Unit, Department of Pathology, College of Medicine, King Saud University and King Saud University Medical City, Riyadh, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India.
| | - Kasi Gopinath
- Department of Botany, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Periasamy Vijayan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
49
|
Benelli G, Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Kadaikunnan S, Khaled JM. Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: the promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate. Parasitol Res 2017; 116:1175-1188. [DOI: 10.1007/s00436-017-5395-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
|
50
|
Ragavendran C, Dubey NK, Natarajan D. Beauveria bassiana (Clavicipitaceae): a potent fungal agent for controlling mosquito vectors of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). RSC Adv 2017. [DOI: 10.1039/c6ra25859j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The efficacy of bioactive compounds identified from Beauveria bassiana extracts as effective larvicidal and pupicidal agents against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti mosquito vectors under laboratory conditions are studied.
Collapse
Affiliation(s)
- Chinnasamy Ragavendran
- Natural Drug Research Laboratory
- Department of Biotechnology
- School of Biosciences
- Periyar University
- Salem – 636 011
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany
- Banaras Hindu University
- Varanasi-221005
- India
| | - Devarajan Natarajan
- Natural Drug Research Laboratory
- Department of Biotechnology
- School of Biosciences
- Periyar University
- Salem – 636 011
| |
Collapse
|