1
|
Fukuda Y, Ishiyama C, Kawai-Yamada M, Hashida SN. Adjustment of light-responsive NADP dynamics in chloroplasts by stromal pH. Nat Commun 2023; 14:7148. [PMID: 37932304 PMCID: PMC10628217 DOI: 10.1038/s41467-023-42995-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Cyclic electron transfer (CET) predominates when NADP+ is at basal levels, early in photosynthetic induction; however, the mechanism underlying the subsequent supply of NADP+ to fully drive steady-state linear electron transfer remains unclear. Here, we investigated whether CET is involved in de novo NADP+ supply in Arabidopsis thaliana and measured chloroplastic NADP dynamics to evaluate responsiveness to variable light, photochemical inhibitors, darkness, and CET activity. The sum of oxidized and reduced forms shows that levels of NADP and NAD increase and decrease, respectively, in response to light; levels of NADP and NAD decrease and increase in the dark, respectively. Moreover, consistent with the pH change in the stroma, the pH preference of chloroplast NAD+ phosphorylation and NADP+ dephosphorylation is alkaline and weakly acidic, respectively. Furthermore, CET is correlated with upregulation of light-responsive NADP level increases and downregulation of dark-responsive NADP level reductions. These findings are consistent with CET helping to regulate NADP pool size via stromal pH regulation under fluctuating light conditions.
Collapse
Affiliation(s)
- Yusuke Fukuda
- Civil Engineering Research & Environmental Studies (CERES), Inc., 1646, Abiko, Chiba, 270-1194, Japan
| | - Chinami Ishiyama
- Civil Engineering Research & Environmental Studies (CERES), Inc., 1646, Abiko, Chiba, 270-1194, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Shin-Nosuke Hashida
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646, Abiko, Chiba, 270-1194, Japan.
| |
Collapse
|
2
|
Stephan OOH. Effects of environmental stress factors on the actin cytoskeleton of fungi and plants: Ionizing radiation and ROS. Cytoskeleton (Hoboken) 2023; 80:330-355. [PMID: 37066976 DOI: 10.1002/cm.21758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Actin is an abundant and multifaceted protein in eukaryotic cells that has been detected in the cytoplasm as well as in the nucleus. In cooperation with numerous interacting accessory-proteins, monomeric actin (G-actin) polymerizes into microfilaments (F-actin) which constitute ubiquitous subcellular higher order structures. Considering the extensive spatial dimensions and multifunctionality of actin superarrays, the present study analyses the issue if and to what extent environmental stress factors, specifically ionizing radiation (IR) and reactive oxygen species (ROS), affect the cellular actin-entity. In that context, this review particularly surveys IR-response of fungi and plants. It examines in detail which actin-related cellular constituents and molecular pathways are influenced by IR and related ROS. This comprehensive survey concludes that the general integrity of the total cellular actin cytoskeleton is a requirement for IR-tolerance. Actin's functions in genome organization and nuclear events like chromatin remodeling, DNA-repair, and transcription play a key role. Beyond that, it is highly significant that the macromolecular cytoplasmic and cortical actin-frameworks are affected by IR as well. In response to IR, actin-filament bundling proteins (fimbrins) are required to stabilize cables or patches. In addition, the actin-associated factors mediating cellular polarity are essential for IR-survivability. Moreover, it is concluded that a cellular homeostasis system comprising ROS, ROS-scavengers, NADPH-oxidases, and the actin cytoskeleton plays an essential role here. Consequently, besides the actin-fraction which controls crucial genome-integrity, also the portion which facilitates orderly cellular transport and polarized growth has to be maintained in order to survive IR.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, 91058, Germany
| |
Collapse
|
3
|
da Fonseca-Pereira P, Monteiro-Batista RDC, Araújo WL, Nunes-Nesi A. Harnessing enzyme cofactors and plant metabolism: an essential partnership. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1014-1036. [PMID: 36861364 DOI: 10.1111/tpj.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 05/31/2023]
Abstract
Cofactors are fundamental to the catalytic activity of enzymes. Additionally, because plants are a critical source of several cofactors (i.e., including their vitamin precursors) within the context of human nutrition, there have been several studies aiming to understand the metabolism of coenzymes and vitamins in plants in detail. For example, compelling evidence has been brought forth regarding the role of cofactors in plants; specifically, it is becoming increasingly clear that an adequate supply of cofactors in plants directly affects their development, metabolism, and stress responses. Here, we review the state-of-the-art knowledge on the significance of coenzymes and their precursors with regard to general plant physiology and discuss the emerging functions attributed to them. Furthermore, we discuss how our understanding of the complex relationship between cofactors and plant metabolism can be used for crop improvement.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rita de Cássia Monteiro-Batista
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
4
|
Suzuki S, Tanaka D, Miyagi A, Takahara K, Kono M, Noguchi K, Ishikawa T, Nagano M, Yamaguchi M, Kawai-Yamada M. Loss of peroxisomal NAD kinase 3 (NADK3) affects photorespiration metabolism in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 283:153950. [PMID: 36889102 DOI: 10.1016/j.jplph.2023.153950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Nicotinamide adenine dinucleotides (NAD+ and NADP+) are electron mediators involved in various metabolic pathways. NADP(H) are produced by NAD kinase (NADK) through the phosphorylation of NAD(H). The Arabidopsis NADK3 (AtNADK3) is reported to preferentially phosphorylate NADH to NADPH and is localized in the peroxisome. To elucidate the biological function of AtNADK3 in Arabidopsis, we compared metabolites of nadk1, nadk2 and nadk3 Arabidopsis T-DNA inserted mutants. Metabolome analysis revealed that glycine and serine, which are intermediate metabolites of photorespiration, both increased in the nadk3 mutants. Plants grown for 6 weeks under short-day conditions showed increased NAD(H), indicating a decrease in the phosphorylation ratio in the NAD(P)(H) equilibrium. Furthermore, high CO2 (0.15%) treatment induced a decrease in glycine and serine in nadk3 mutants. The nadk3 showed a significant decrease in post-illumination CO2 burst, suggesting that the photorespiratory flux was disrupted in the nadk3 mutant. In addition, an increase in CO2 compensation points and a decrease in CO2 assimilation rate were observed in the nadk3 mutants. These results indicate that the lack of AtNADK3 causes a disruption in the intracellular metabolism, such as in amino acid synthesis and photorespiration.
Collapse
Affiliation(s)
- Shota Suzuki
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Daimu Tanaka
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan; Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Kentaro Takahara
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masaru Kono
- Graduate School of Science, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Minoru Nagano
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| |
Collapse
|
5
|
Zu Y, Miyagi A, Hashida SN, Ishikawa T, Yamaguchi M, Kawai-Yamada M. Loss of chloroplast-localized NAD kinase causes ROS stress in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2023; 136:97-106. [PMID: 36367584 DOI: 10.1007/s10265-022-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Chloroplast-localized NAD kinase (NADK2) is responsible for the production of NADP+, which is an electron acceptor in the linear electron flow of photosynthesis. The Arabidopsis T-DNA-inserted mutant of NADK2 (nadk2) showed delayed growth and pale-green leaves under continuous light conditions. Under short-day conditions (8 h light / 16 h dark), the nadk2 mutant showed more severe growth inhibition.The genomic fragment containing the promoter and coding region of NADK2 complemented the phenotypes of nadk2 obtained under continuous light and short-day conditions. The nadk2 mutant produced higher amounts of H2O2 and O2-, which were reduced in the complementary line. Under short-day conditions, the nadk2 mutant accumulated more H2O2 than under continuous light conditions. The accumulation of ascorbate and up-regulation of the PDF1.2 and PR1 genes indicated that the nadk2 mutant is under ROS stress and responding to keep its living activities.
Collapse
Affiliation(s)
- Yanhui Zu
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama, 338-8570, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama, 338-8570, Japan
- Graduate School of Faculty of Agriculture, Yamagata University, 1-23, Wakaba-Machi, , Tsuruoka-Shi, Yamagata, 997-8555, Japan
| | - Shin-Nosuke Hashida
- Sustainable Systems Research Laboratory, Biological and Environmental Chemistry Research Division, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba, 270-1194, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama, 338-8570, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama, 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama, 338-8570, Japan.
| |
Collapse
|
6
|
Zuo JF, Chen Y, Ge C, Liu JY, Zhang YM. Identification of QTN-by-environment interactions and their candidate genes for soybean seed oil-related traits using 3VmrMLM. FRONTIERS IN PLANT SCIENCE 2022; 13:1096457. [PMID: 36578334 PMCID: PMC9792120 DOI: 10.3389/fpls.2022.1096457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Introduction Although seed oil content and its fatty acid compositions in soybean were affected by environment, QTN-by-environment (QEIs) and gene-by-environment interactions (GEIs) were rarely reported in genome-wide association studies. Methods The 3VmrMLM method was used to associate the trait phenotypes, measured in five to seven environments, of 286 soybean accessions with 106,013 SNPs for detecting QTNs and QEIs. Results Seven oil metabolism genes (GmSACPD-A, GmSACPD-B, GmbZIP123, GmSWEET39, GmFATB1A, GmDGAT2D, and GmDGAT1B) around 598 QTNs and one oil metabolism gene GmFATB2B around 54 QEIs were verified in previous studies; 76 candidate genes and 66 candidate GEIs were predicted to be associated with these traits, in which 5 genes around QEIs were verified in other species to participate in oil metabolism, and had differential expression across environments. These genes were found to be related to soybean seed oil content in haplotype analysis. In addition, most candidate GEIs were co-expressed with drought response genes in co-expression network, and three KEGG pathways which respond to drought were enriched under drought stress rather than control condition; six candidate genes were hub genes in the co-expression networks under drought stress. Discussion The above results indicated that GEIs, together with drought response genes in co-expression network, may respond to drought, and play important roles in regulating seed oil-related traits together with oil metabolism genes. These results provide important information for genetic basis, molecular mechanisms, and soybean breeding for seed oil-related traits.
Collapse
Affiliation(s)
- Jian-Fang Zuo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Ge
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin-Yang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Singh L, Coronejo S, Pruthi R, Chapagain S, Bhattarai U, Subudhi PK. Genetic Dissection of Alkalinity Tolerance at the Seedling Stage in Rice ( Oryza sativa) Using a High-Resolution Linkage Map. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233347. [PMID: 36501386 PMCID: PMC9738157 DOI: 10.3390/plants11233347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/12/2023]
Abstract
Although both salinity and alkalinity result from accumulation of soluble salts in soil, high pH and ionic imbalance make alkaline stress more harmful to plants. This study aimed to provide molecular insights into the alkalinity tolerance using a recombinant inbred line (RIL) population developed from a cross between Cocodrie and Dular with contrasting response to alkalinity stress. Forty-six additive QTLs for nine morpho-physiological traits were mapped on to a linkage map of 4679 SNPs under alkalinity stress at the seedling stage and seven major-effect QTLs were for alkalinity tolerance scoring, Na+ and K+ concentrations and Na+:K+ ratio. The candidate genes were identified based on the comparison of the impacts of variants of genes present in five QTL intervals using the whole genome sequences of both parents. Differential expression of no apical meristem protein, cysteine protease precursor, retrotransposon protein, OsWAK28, MYB transcription factor, protein kinase, ubiquitin-carboxyl protein, and NAD binding protein genes in parents indicated their role in response to alkali stress. Our study suggests that the genetic basis of tolerance to alkalinity stress is most likely different from that of salinity stress. Introgression and validation of the QTLs and genes can be useful for improving alkalinity tolerance in rice at the seedling stage and advancing understanding of the molecular genetic basis of alkalinity stress adaptation.
Collapse
|
8
|
Leseigneur C, Boucontet L, Duchateau M, Pizarro-Cerda J, Matondo M, Colucci-Guyon E, Dussurget O. NAD kinase promotes Staphylococcus aureus pathogenesis by supporting production of virulence factors and protective enzymes. eLife 2022; 11:e79941. [PMID: 35723663 PMCID: PMC9208755 DOI: 10.7554/elife.79941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) is the primary electron donor for reductive reactions that are essential for the biosynthesis of major cell components in all organisms. Nicotinamide adenine dinucleotide kinase (NADK) is the only enzyme that catalyzes the synthesis of NADP(H) from NAD(H). While the enzymatic properties and physiological functions of NADK have been thoroughly studied, the role of NADK in bacterial pathogenesis remains unknown. Here, we used CRISPR interference to knock down NADK gene expression to address the role of this enzyme in Staphylococcus aureus pathogenic potential. We find that NADK inhibition drastically decreases mortality of zebrafish infected with S. aureus. Furthermore, we show that NADK promotes S. aureus survival in infected macrophages by protecting bacteria from antimicrobial defense mechanisms. Proteome-wide data analysis revealed that production of major virulence-associated factors is sustained by NADK. We demonstrate that NADK is required for expression of the quorum-sensing response regulator AgrA, which controls critical S. aureus virulence determinants. These findings support a key role for NADK in bacteria survival within innate immune cells and the host during infection.
Collapse
Affiliation(s)
- Clarisse Leseigneur
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche YersiniaParisFrance
| | - Laurent Boucontet
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Unité Macrophages et Développement de l’ImmunitéParisFrance
| | - Magalie Duchateau
- Institut Pasteur, Université Paris Cité, CNRS USR2000, Unité de Spectrométrie de Masse pour la Biologie, Plateforme de protéomiqueParisFrance
| | - Javier Pizarro-Cerda
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche YersiniaParisFrance
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, CNRS USR2000, Unité de Spectrométrie de Masse pour la Biologie, Plateforme de protéomiqueParisFrance
| | - Emma Colucci-Guyon
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Unité Macrophages et Développement de l’ImmunitéParisFrance
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche YersiniaParisFrance
| |
Collapse
|
9
|
Polyploidy and microbiome associations mediate similar responses to pathogens in Arabidopsis. Curr Biol 2022; 32:2719-2729.e5. [DOI: 10.1016/j.cub.2022.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 05/06/2022] [Indexed: 01/04/2023]
|
10
|
Tanaka M, Ishikawa Y, Suzuki S, Ogawa T, Taniguchi YY, Miyagi A, Ishikawa T, Yamaguchi M, Munekage YN, Kawai-Yamada M. Change in expression levels of NAD kinase-encoding genes in Flaveria species. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153495. [PMID: 34411985 DOI: 10.1016/j.jplph.2021.153495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Nicotinamide adenine dinucleotides (NAD(H)) and NAD phosphates (NADP(H)) are electron carriers involved in redox reactions and metabolic processes in all organisms. NAD kinase (NADK) is the only enzyme that phosphorylates NAD+ into NADP+, using ATP as a phosphate donor. In NADP-dependent malic enzyme (NADP-ME)-type C4 photosynthesis, NADP(H) are required for dehydrogenation by NADP-dependent malate dehydrogenase (NADP-MDH) in mesophyll cells, and decarboxylation by NADP-ME in bundle sheath cells. In this study, we identified five NADK genes (FbNADK1a, 1b, 2a, 2b, and 3) from the C4 model species Flaveria bidentis. RNA-Seq database analysis revealed higher transcript abundance in one of the chloroplast-type NADK2 genes of C4F. bidentis (FbNADK2a). Comparative analysis of NADK activity in leaves of C3, C3-C4, and C4Flaveria showed that C4Flaveria (F. bidentis and F. trinervia) had higher NADK activity than the other photosynthetic-types of Flaveria. Taken together, our results suggest that chloroplastic NAD kinase appeared to increase in importance as C3 plants evolved into C4 plants in the genus Flaveria.
Collapse
Affiliation(s)
- Masami Tanaka
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Yuuma Ishikawa
- Institute for Molecular Physiology, Heinrich-Heine-Universität, Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Sayaka Suzuki
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Takako Ogawa
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yukimi Y Taniguchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Yuri N Munekage
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan.
| |
Collapse
|
11
|
MURATA K. Polyphosphate-dependent nicotinamide adenine dinucleotide (NAD) kinase: A novel missing link in human mitochondria. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:479-498. [PMID: 34629356 PMCID: PMC8553519 DOI: 10.2183/pjab.97.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Polyphosphate [poly(P)] is described as a homopolymer of inorganic phosphates. Nicotinamide adenine dinucleotide kinase (NAD kinase) catalyzes the phosphorylation of NAD+ to NADP+ in the presence of ATP (ATP-NAD kinase). Novel NAD kinase that explicitly phosphorylates NAD+ to NADP+ using poly(P), besides ATP [ATP/poly(P)-NAD kinase], was found in bacteria, in particular, Gram-positive bacteria, and the gene encoding ATP/poly(P)-NAD kinase was also newly identified in Mycobacterium tuberculosis H37Rv. Both NAD kinases required multi-homopolymeric structures for activity expression. The enzymatic and genetic results, combined with their primary and tertiary structures, have led to the discovery of a long-awaited human mitochondrial NAD kinase. This discovery showed that the NAD kinase is a bacterial type of ATP/poly(P)-NAD kinase. These pioneering findings, i.e., ATP/poly(P)-NAD kinase, NAD kinase gene, and human mitochondrial NAD kinase, have significantly enhanced research on the biochemistry, molecular biology, and evolutionary biology of NAD kinase, mitochondria, and poly(P), including some biotechnological knowledge applicable to NADP+ production.
Collapse
|
12
|
Ludovici GM, Oliveira de Souza S, Chierici A, Cascone MG, d'Errico F, Malizia A. Adaptation to ionizing radiation of higher plants: From environmental radioactivity to chernobyl disaster. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 222:106375. [PMID: 32791372 DOI: 10.1016/j.jenvrad.2020.106375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this work is to highlight the effects of ionizing radiation on the genetic material in higher plants by assessing both adaptive processes as well as the evolution of plant species. The effects that the ionizing radiation has on greenery following a nuclear accident, was examined by taking the Chernobyl Nuclear Power Plant disaster as a case study. The genetic and evolutionary effects that ionizing radiation had on plants after the Chernobyl accident were highlighted. The response of biota to Chernobyl irradiation was a complex interaction among radiation dose, dose rate, temporal and spatial variation, varying radiation sensitivities of the different plants' species, and indirect effects from other events. Ionizing radiation causes water radiolysis, generating highly reactive oxygen species (ROS). ROS induce the rapid activation of detoxifying enzymes. DeoxyriboNucleic Acid (DNA) is the object of an attack by both, the hydroxyl ions and the radiation itself, thus triggering a mechanism both direct and indirect. The effects on DNA are harmful to the organism and the long-term development of the species. Dose-dependent aberrations in chromosomes are often observed after irradiation. Although multiple DNA repair mechanisms exist, double-strand breaks (DSBs or DNA-DSBs) are often subject to errors. Plants DSBs repair mechanisms mainly involve homologous and non-homologous dependent systems, the latter especially causing a loss of genetic information. Repeated ionizing radiation (acute or chronic) ensures that plants adapt, demonstrating radioresistance. An adaptive response has been suggested for this phenomenon. As a result, ionizing radiation influences the genetic structure, especially during chronic irradiation, reducing genetic variability. This reduction may be associated with the fact that particular plant species are more subject to chronic stress, confirming the adaptive theory. Therefore, the genomic effects of ionizing radiation demonstrate their likely involvement in the evolution of plant species.
Collapse
Affiliation(s)
| | | | - Andrea Chierici
- Department of Industrial Engineering, University of Rome Tor Vergata, Italy; Department of Civil and Industrial Engineering, University of Pisa, Italy
| | | | - Francesco d'Errico
- Department of Civil and Industrial Engineering, University of Pisa, Italy
| | - Andrea Malizia
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy.
| |
Collapse
|
13
|
Wang X, Li BB, Ma TT, Sun LY, Tai L, Hu CH, Liu WT, Li WQ, Chen KM. The NAD kinase OsNADK1 affects the intracellular redox balance and enhances the tolerance of rice to drought. BMC PLANT BIOLOGY 2020; 20:11. [PMID: 31910821 PMCID: PMC6947874 DOI: 10.1186/s12870-019-2234-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/30/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND NAD kinases (NADKs) are the only known enzymes that directly phosphorylate NAD(H) to generate NADP(H) in different subcellular compartments. They participate in multiple life activities, such as modulating the NADP/NAD ratio, maintaining the intracellular redox balance and responding to environmental stresses. However, the functions of individual NADK in plants are still under investigation. Here, a rice NADK, namely, OsNADK1, was identified, and its functions in plant growth regulation and stress tolerance were analysed by employing a series of transgenic plant lines. RESULTS OsNADK1 is a cytosol-localized NADK in rice. It was expressed in all rice tissues examined, and its transcriptional expression could be stimulated by a number of environmental stress treatments. Compared with wild-type (WT) rice, the mutant plant osnadk1 in which OsNADK1 was knocked out was a dwarf at the heading stage and had decreased NADP(H)/NAD(H), ascorbic acid (ASA)/dehydroascorbate (DHA) and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios, which led to increased oxidation states in the rice cells and sensitivity to drought. Moreover, certain stress-related genes showed differential expression patterns in osnadk1 under both normal growth and drought-stress conditions compared with WT. Among these genes, OsDREB1B and several WRKY family transcription factors, e.g., OsWRKY21 and OsWRKY42, showed correlated co-expression patterns with OsNADK1 in osnadk1 and the plants overexpressing or underexpressing OsNADK1, implying roles for these transcription factors in OsNADK1-mediated processes. In addition, overexpression of OsNADK1 enhanced the drought tolerance of rice plants, whereas loss of function of the gene reduced the tolerance. Furthermore, the proline content was dramatically increased in the leaves of the OsNADK1-overexpressing lines under drought conditions. CONCLUSIONS Altogether, the results suggest that an OsNADK1-mediated intracellular redox balance is involved in the tolerance of rice plants to drought.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 Hubei China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Tian-Tian Ma
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Liang-Yu Sun
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
- College of Life Science and Agriculture, Zhoukou Normal University, Zhoukou, 466001 Henan China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
14
|
Ishikawa Y, Kawai-Yamada M, Hashida SN. Measurement of Chloroplastic NAD Kinase Activity and Whole Tissue NAD Kinase Assay. Bio Protoc 2020; 10:e3480. [PMID: 33654713 PMCID: PMC7842763 DOI: 10.21769/bioprotoc.3480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 11/02/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADP) synthesis requires nicotinamide adenine dinucleotide (NAD) kinase activity, substrate NAD and ATP. The NAD kinase responds to various environmental stimuli and its activity is regulated via various regulatory pathways, such as Ca2+-dependent and redox-dependent signals. Conventional in vitro NAD kinase assay has been useful to evaluate enzyme activity; however, recent reports revealed a dynamics of NADP pool (the sum of NADP+ and NADPH) under fluctuating light condition, indicating that the rate of NADP synthesis is not always determined by NAD kinase activity. Here, we developed a novel method for the estimation of chloroplastic NAD kinase activity by quantifying the changes in the NADP amounts in response to illumination. As our approach does not involve protein extraction, it saves time (compared to the in vitro assay), thereby allowing for a sequence of assays, and provides several clues in the investigation of regulatory mechanisms behind NADP synthesis under various environmental conditions.
Collapse
Affiliation(s)
- Yuuma Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shin-Nosuke Hashida
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Japan
| |
Collapse
|
15
|
de Souza Chaves I, Feitosa-Araújo E, Florian A, Medeiros DB, da Fonseca‐Pereira P, Charton L, Heyneke E, Apfata JA, Pires MV, Mettler‐Altmann T, Araújo WL, Neuhaus HE, Palmieri F, Obata T, Weber AP, Linka N, Fernie AR, Nunes‐Nesi A. The mitochondrial NAD + transporter (NDT1) plays important roles in cellular NAD + homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:487-504. [PMID: 31278825 PMCID: PMC6900047 DOI: 10.1111/tpj.14452] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 05/20/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme required for all living organisms. In eukaryotic cells, the final step of NAD+ biosynthesis is exclusively cytosolic. Hence, NAD+ must be imported into organelles to support their metabolic functions. Three NAD+ transporters belonging to the mitochondrial carrier family (MCF) have been biochemically characterized in plants. AtNDT1 (At2g47490), focus of the current study, AtNDT2 (At1g25380), targeted to the inner mitochondrial membrane, and AtPXN (At2g39970), located in the peroxisomal membrane. Although AtNDT1 was presumed to reside in the chloroplast membrane, subcellular localization experiments with green fluorescent protein (GFP) fusions revealed that AtNDT1 locates exclusively in the mitochondrial membrane in stably transformed Arabidopsis plants. To understand the biological function of AtNDT1 in Arabidopsis, three transgenic lines containing an antisense construct of AtNDT1 under the control of the 35S promoter alongside a T-DNA insertional line were evaluated. Plants with reduced AtNDT1 expression displayed lower pollen viability, silique length, and higher rate of seed abortion. Furthermore, these plants also exhibited an increased leaf number and leaf area concomitant with higher photosynthetic rates and higher levels of sucrose and starch. Therefore, lower expression of AtNDT1 was associated with enhanced vegetative growth but severe impairment of the reproductive stage. These results are discussed in the context of the mitochondrial localization of AtNDT1 and its important role in the cellular NAD+ homeostasis for both metabolic and developmental processes in plants.
Collapse
Affiliation(s)
- Izabel de Souza Chaves
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - Elias Feitosa-Araújo
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - Alexandra Florian
- Max‐Planck‐Institute of Molecular Plant Physiology Am Mühlenberg 114476Potsdam‐GolmGermany
| | - David B. Medeiros
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - Paula da Fonseca‐Pereira
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - Lennart Charton
- Department of Plant BiochemistryHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Elmien Heyneke
- Max‐Planck‐Institute of Molecular Plant Physiology Am Mühlenberg 114476Potsdam‐GolmGermany
| | - Jorge A.C. Apfata
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - Marcel V. Pires
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - Tabea Mettler‐Altmann
- Department of Plant BiochemistryHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Wagner L. Araújo
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - H. Ekkehard Neuhaus
- Department of Plant PhysiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnology and BiopharmaceuticsUniversity of Bari70125BariItaly
| | - Toshihiro Obata
- Max‐Planck‐Institute of Molecular Plant Physiology Am Mühlenberg 114476Potsdam‐GolmGermany
| | - Andreas P.M. Weber
- Department of Plant BiochemistryHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Nicole Linka
- Department of Plant BiochemistryHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant Physiology Am Mühlenberg 114476Potsdam‐GolmGermany
| | - Adriano Nunes‐Nesi
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
- Max‐Planck‐Institute of Molecular Plant Physiology Am Mühlenberg 114476Potsdam‐GolmGermany
| |
Collapse
|
16
|
Hashida SN, Kawai-Yamada M. Inter-Organelle NAD Metabolism Underpinning Light Responsive NADP Dynamics in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:960. [PMID: 31404160 PMCID: PMC6676473 DOI: 10.3389/fpls.2019.00960] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 05/24/2023]
Abstract
Upon illumination, photosystem I in chloroplasts catalyzes light-driven electron transport from plastocyanin to ferredoxin, followed by the reduction of NADP+ to NADPH by ferredoxin:NADP+ reductase for CO2 fixation. At the beginning of photosynthesis, NADP+ supply control is dominated by de novo NADP+ synthesis rather than being recycled from the Calvin cycle. Importantly, ferredoxin distributes electrons to NADP+ as well as to thioredoxins for light-dependent regulatory mechanisms, to cyclic electron flow for more adenosine triphosphate (ATP) production, and to several metabolites for reductive reactions. We previously demonstrated that the NADP+ synthesis activity and the amount of the NADP pool size, namely the sum of NADP+ and NADPH, varies depending on the light conditions and the ferredoxin-thioredoxin system. In addition, the regulatory mechanism of cytoplasmic NAD+ supply is also involved in the chloroplastic NADP+ supply control because NAD+ is an essential precursor for NADP+ synthesis. In this mini-review, we summarize the most recent advances on our understanding of the regulatory mechanisms of NADP+ production, focusing on the interactions, crosstalk, and co-regulation between chloroplasts and the cytoplasm at the level of NAD+ metabolism and molecular transport.
Collapse
Affiliation(s)
- Shin-nosuke Hashida
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
17
|
Tai L, Li BB, Nie XM, Zhang PP, Hu CH, Zhang L, Liu WT, Li WQ, Chen KM. Calmodulin Is the Fundamental Regulator of NADK-Mediated NAD Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:681. [PMID: 31275331 PMCID: PMC6593290 DOI: 10.3389/fpls.2019.00681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/06/2019] [Indexed: 05/02/2023]
Abstract
Calcium (Ca2+) signaling and nicotinamide adenine dinucleotide (NAD) signaling are two basic signal regulation pathways in organisms, playing crucial roles in signal transduction, energy metabolism, stress tolerance, and various developmental processes. Notably, calmodulins (CaMs) and NAD kinases (NADKs) are important hubs for connecting these two types of signaling networks, where CaMs are the unique activators of NADKs. NADK is a key enzyme for NADP (including NADP+ and NADPH) biosynthesis by phosphorylating NAD (including NAD+ and NADH) and therefore, maintains the balance between NAD pool and NADP pool through an allosteric regulation mode. In addition, the two respective derivatives from NAD+ (substrate of NADK) and NADP+ (product of NADK), cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), have been considered to be the important messengers for intracellular Ca2+ homeostasis which could finally influence the combination between CaM and NADK, forming a feedback regulation mechanism. In this review article, we briefly summarized the major research advances related to the feedback regulation pathway, which is activated by the interaction of CaM and NADK during plant development and signaling. The theories and fact will lay a solid foundation for further studies related to CaM and NADK and their regulatory mechanisms as well as the NADK-mediated NAD signaling behavior in plant development and response to stress.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiu-Min Nie
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Peng-Peng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
- Department of General Biology, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Ishikawa Y, Miyagi A, Ishikawa T, Nagano M, Yamaguchi M, Hihara Y, Kaneko Y, Kawai-Yamada M. One of the NAD kinases, sll1415, is required for the glucose metabolism of Synechocystis sp. PCC 6803. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:654-666. [PMID: 30693583 DOI: 10.1111/tpj.14262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 05/04/2023]
Abstract
Pyridine nucleotides (NAD(P)(H)) are electron carriers that are the driving forces in various metabolic pathways. Phosphorylation of NAD(H) to NADP(H) is performed by the enzyme NAD kinase (NADK). Synechocystis sp. PCC 6803 harbors two genes (sll1415 and slr0400) that encode proteins with NADK homology. When genetic mutants for sll1415 and slr0400 (Δ1415 and Δ0400, respectively) were cultured under photoheterotrophic growth conditions only the Δ1415 cells showed a growth defect. In wild-type cells, the sll1415 transcript accumulated after the cells were transferred to photoheterotrophic conditions. Furthermore, NAD(P)(H) measurements demonstrated that a dynamic metabolic conversion was implemented during the adaptation from photoautotrophic to photoheterotrophic conditions. Electron microscopy observation and biochemistry quantification demonstrated the accumulation of glycogen in the Δ1415 cells under photoheterotrophic conditions at 96 h. Quantitative real-time reverse transcription PCR (qRT-PCR) demonstrated the accumulation of mRNAs that encoded glycogen biosynthesis-related enzymes in photoheterotrophic Δ1415 cells. At 96 h, enzyme activity measurement in the photoheterotrophic Δ1415 cells demonstrated that the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were decreased, but the activities of glucose dehydrogenase were increased. Furthermore, metabolomics analysis demonstrated that the Δ1415 cells showed increased glucose-6-phosphate and 6-phosphogluconate content at 96 h. Therefore, sll1415 has a significant function in the oxidative pentose phosphate (OPP) pathway for catabolism of glucose under photoheterotrophic conditions. Additionally, it is presumed that the slr0400 had a different role in glucose catabolism during growth. These results suggest that the two Synechocystis sp. PCC 6803 NADKs (Sll1415 and Slr0400) have distinct functions in photoheterotrophic cyanobacterial metabolism.
Collapse
Affiliation(s)
- Yuuma Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Minoru Nagano
- Graduate School of Science, Ritsumeikan University, Kusatsu, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Yasuko Kaneko
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| |
Collapse
|
19
|
Hashida SN, Miyagi A, Nishiyama M, Yoshida K, Hisabori T, Kawai-Yamada M. Ferredoxin/thioredoxin system plays an important role in the chloroplastic NADP status of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:947-960. [PMID: 29920827 DOI: 10.1111/tpj.14000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/03/2018] [Accepted: 06/06/2018] [Indexed: 05/09/2023]
Abstract
NADP is a key electron carrier for a broad spectrum of redox reactions, including photosynthesis. Hence, chloroplastic NADP status, as represented by redox status (ratio of NADPH to NADP+ ) and pool size (sum of NADPH and NADP+ ), is critical for homeostasis in photosynthetic cells. However, the mechanisms and molecules that regulate NADP status in chloroplasts remain largely unknown. We have now characterized an Arabidopsis mutant with imbalanced NADP status (inap1), which exhibits a high NADPH/NADP+ ratio and large NADP pool size. inap1 is a point mutation in At2g04700, which encodes the catalytic subunit of ferredoxin/thioredoxin reductase. Upon illumination, inap1 demonstrated earlier increases in NADP pool size than the wild type did. The mutated enzyme was also found in vitro to inefficiently reduce m-type thioredoxin, which activates Calvin cycle enzymes, and NADP-dependent malate dehydrogenase to export reducing power to the cytosol. Accordingly, Calvin cycle metabolites and amino acids diminished in inap1 plants. In addition, inap1 plants barely activate NADP-malate dehydrogenase, and have an altered redox balance between the chloroplast and cytosol, resulting in inefficient nitrate reduction. Finally, mutants deficient in m-type thioredoxin exhibited similar light-dependent NADP dynamics as inap1. Collectively, the data suggest that defects in ferredoxin/thioredoxin reductase and m-type thioredoxin decrease the consumption of NADPH, leading to a high NADPH/NADP+ ratio and large NADP pool size. The data also suggest that the fate of NADPH is an important influence on NADP pool size.
Collapse
Affiliation(s)
- Shin-Nosuke Hashida
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646, Abiko, Chiba, 270-1194, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Maho Nishiyama
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan
| | - Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
20
|
Gakière B, Fernie AR, Pétriacq P. More to NAD + than meets the eye: A regulator of metabolic pools and gene expression in Arabidopsis. Free Radic Biol Med 2018; 122:86-95. [PMID: 29309893 DOI: 10.1016/j.freeradbiomed.2018.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Since its discovery more than a century ago, nicotinamide adenine dinucleotide (NAD+) is recognised as a fascinating cornerstone of cellular metabolism. This ubiquitous energy cofactor plays vital roles in metabolic pathways and regulatory processes, a fact emphasised by the essentiality of a balanced NAD+ metabolism for normal plant growth and development. Research on the role of NAD in plants has been predominantly carried out in the model plant Arabidopsis thaliana (Arabidopsis) with emphasis on the redox properties and cellular signalling functions of the metabolite. This review examines the current state of knowledge concerning how NAD can regulate both metabolic pools and gene expression in Arabidopsis. Particular focus is placed on recent studies highlighting the complexity of metabolic regulations involving NAD, more particularly in the mitochondrial compartment, and of signalling roles with respect to interactions with environmental fluctuations most specifically those involving plant immunity.
Collapse
Affiliation(s)
- Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. Paris-Saclay, Bâtiment 630 Rue Noetzlin, 91192 Gif-sur-Yvette cedex, France; Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. ParisSaclay, Bâtiment 630 Rue Noetzlin, 91192 Gif-sur-Yvette cedex, France
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, Wissenschaftspark Golm, 14476 Potsdam-Golm, Germany
| | - Pierre Pétriacq
- biOMICS Facility, Department of Animal and Plant Sciences, The University of Sheffield, S10 2TN Sheffield, United Kingdom; UMR 1332 Biologie du Fruit et Pathologie, INRA Bordeaux & Université de Bordeaux, F-33883 Villenave d'Ornon, France.
| |
Collapse
|
21
|
Hu CH, Wei XY, Yuan B, Yao LB, Ma TT, Zhang PP, Wang X, Wang PQ, Liu WT, Li WQ, Meng LS, Chen KM. Genome-Wide Identification and Functional Analysis of NADPH Oxidase Family Genes in Wheat During Development and Environmental Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:906. [PMID: 30083172 PMCID: PMC6065054 DOI: 10.3389/fpls.2018.00906] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/08/2018] [Indexed: 05/06/2023]
Abstract
As the key producers of reactive oxygen species (ROS), NADPH oxidases (NOXs), also known as respiratory burst oxidase homologs (RBOHs), play crucial roles in various biological processes in plants with considerable evolutionary selection and functional diversity in the entire terrestrial plant kingdom. However, only limited resources are available on the phylogenesis and functions of this gene family in wheat. Here, a total of 46 NOX family genes were identified in the wheat genome, and these NOXs could be classified into three subgroups: typical TaNOXs, TaNOX-likes, and ferric reduction oxidases (TaFROs). Phylogenetic analysis indicated that the typical TaNOXs might originate from TaFROs during evolution, and the TaFROs located on Chr 2 might be the most ancient forms of TaNOXs. TaNOXs are highly expressed in wheat with distinct tissue or organ-specificity and stress-inducible diversity. A large-scale expression and/or coexpression analysis demonstrated that TaNOXs can be divided into four functional groups with different expression patterns under a broad range of environmental stresses. Different TaNOXs are coexpressed with different sets of other genes, which widely participate in several important intracellular processes such as cell wall biosynthesis, defence response, and signal transduction, suggesting their vital but diversity of roles in plant growth regulation and stress responses of wheat.
Collapse
Affiliation(s)
- Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
- Department of General Biology, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Xiao-Yong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Bo Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Lin-Bo Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Tian-Tian Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Peng-Peng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Peng-Qi Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
- *Correspondence: Kun-Ming Chen ;
| |
Collapse
|
22
|
Li BB, Wang X, Tai L, Ma TT, Shalmani A, Liu WT, Li WQ, Chen KM. NAD Kinases: Metabolic Targets Controlling Redox Co-enzymes and Reducing Power Partitioning in Plant Stress and Development. FRONTIERS IN PLANT SCIENCE 2018; 9:379. [PMID: 29662499 PMCID: PMC5890153 DOI: 10.3389/fpls.2018.00379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 03/07/2018] [Indexed: 05/03/2023]
Abstract
NAD(H) and NADP(H) are essential co-enzymes which dominantly control a number of fundamental biological processes by acting as reducing power and maintaining the intracellular redox balance of all life kingdoms. As the only enzymes that catalyze NAD(H) and ATP to synthesize NADP(H), NAD Kinases (NADKs) participate in many essential metabolic reactions, redox sensitive regulation, photosynthetic performance and also reactive oxygen species (ROS) homeostasis of cells and therefore, play crucial roles in both development and stress responses of plants. NADKs are highly conserved enzymes in amino acid sequences but have multiple subcellular localization and diverse functions. They may function as monomers, dimers or multimers in cells but the enzymatic properties in plants are not well elucidated yet. The activity of plant NADK is regulated by calcium/calmodulin and plays crucial roles in photosynthesis and redox co-enzyme control. NADK genes are expressed in almost all tissues and developmental stages of plants with specificity for different members. Their transcripts can be greatly stimulated by a number of environmental factors such as pathogenic attack, irritant applications and abiotic stress treatments. Using transgenic approaches, several studies have shown that NADKs are involved in chlorophyll synthesis, photosynthetic efficiency, oxidative stress protection, hormone metabolism and signaling regulation, and therefore contribute to the growth regulation and stress tolerance of plants. In this review, the enzymatic properties and functional mechanisms of plant NADKs are thoroughly investigated based on literature and databases. The results obtained here are greatly advantageous for further exploration of NADK function in plants.
Collapse
|
23
|
Sun L, Li Y, Miao W, Piao T, Hao Y, Hao FS. NADK2 positively modulates abscisic acid-induced stomatal closure by affecting accumulation of H 2O 2, Ca 2+ and nitric oxide in Arabidopsis guard cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:81-90. [PMID: 28716423 DOI: 10.1016/j.plantsci.2017.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 05/04/2023]
Abstract
NAD kinase2 (NADK2) plays key roles in chloroplastic NADP biosynthesis, stress adaptation and modulation of cellular metabolisms in Arabidopsis. However, it is unknown whether and how NADK2 affects abscisic acid (ABA)-mediated stomatal movement. Here, we detected that null mutant nadk2 was more sensitive to drought stress than WT, and NADK2 gene was active in guard cells. Furthermore, NADK2 mutation impaired ABA-induced stomatal closure and ABA inhibition of light-promoted stomatal opening. NADK2 disruption also impaired ABA-stimulated accumulation of H2O2, Ca2+ and nitric oxide (NO) in guard cells, but did not affect the stomatal closure evoked by exogenous H2O2, Ca2+ or NO. Expression analysis revealed that ABA-promoted increases in transcripts of AtrbohD, AtrbohF and NIA1 were markedly arrested in guard cells of nadk2 compared with those of WT. Besides, genetic evidence indicated that NADK2 acted synergistically with OST1 and ABI1 during ABA-induced stomatal closure. Together, these results suggest that NADK2 is an essential positive regulator, and functions upstream of H2O2 in guard cell ABA signaling. It stimulates stomatal closure mainly through increasing the generation of H2O2, Ca2+ and NO in guard cells in Arabidopsis.
Collapse
Affiliation(s)
- Lirong Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Yaping Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Wenwen Miao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Tingting Piao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Yang Hao
- Henan University Minsheng College, Kaifeng 475004, China; Shanxi Ding Xin Kang Hua Pharmaceutical Company Limited, Taiyuan 030006, China.
| | - Fu-Shun Hao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
24
|
Miwa A, Sawada Y, Tamaoki D, Yokota Hirai M, Kimura M, Sato K, Nishiuchi T. Nicotinamide mononucleotide and related metabolites induce disease resistance against fungal phytopathogens in Arabidopsis and barley. Sci Rep 2017; 7:6389. [PMID: 28743869 PMCID: PMC5526872 DOI: 10.1038/s41598-017-06048-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/07/2017] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD), is known to act as a functional molecule in animals, whereas its function in plants is largely unknown. In this study, we found that NMN accumulated in barley cultivars resistant to phytopathogenic fungal Fusarium species. Although NMN does not possess antifungal activity, pretreatment with NMN and related metabolites enhanced disease resistance to Fusarium graminearum in Arabidopsis leaves and flowers and in barley spikes. The NMN-induced Fusarium resistance was accompanied by activation of the salicylic acid-mediated signalling pathway and repression of the jasmonic acid/ethylene-dependent signalling pathways in Arabidopsis. Since NMN-induced disease resistance was also observed in the SA-deficient sid2 mutant, an SA-independent signalling pathway also regulated the enhanced resistance induced by NMN. Compared with NMN, NAD and NADP, nicotinamide pretreatment had minor effects on resistance to F. graminearum. Constitutive expression of the NMNAT gene, which encodes a rate-limiting enzyme for NAD biosynthesis, resulted in enhanced disease resistance in Arabidopsis. Thus, modifying the content of NAD-related metabolites can be used to optimize the defence signalling pathways activated in response to F. graminearum and facilitates the control of disease injury and mycotoxin accumulation in plants.
Collapse
Affiliation(s)
- Akihiro Miwa
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Daisuke Tamaoki
- Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934, Japan
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Makoto Kimura
- Division of Molecular and Cellular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Takumi Nishiuchi
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa, 920-1192, Japan.
- Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934, Japan.
| |
Collapse
|
25
|
Biochemistry and Physiology of Vitamins in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:65-90. [DOI: 10.1007/978-3-319-54910-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Ishikawa Y, Miyagi A, Haishima Y, Ishikawa T, Nagano M, Yamaguchi M, Hihara Y, Kawai-Yamada M. Metabolomic analysis of NAD kinase-deficient mutants of the cyanobacterium Synechocystis sp. PCC 6803. JOURNAL OF PLANT PHYSIOLOGY 2016; 205:105-112. [PMID: 27657983 DOI: 10.1016/j.jplph.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 05/04/2023]
Abstract
NAD kinase (NADK) phosphorylates NAD(H) to NADP(H). The enzyme has a crucial role in the regulation of the NADP(H)/NAD(H) ratio in various organisms. The unicellular cyanobacterium Synechocystis sp. PCC 6803 possesses two NADK-encoding genes, sll1415 and slr0400. To elucidate the metabolic change in NADK-deficient mutants growing under photoautotrophic conditions, we conducted metabolomic analysis using capillary electrophoresis mass spectrometry (CE-MS). The growth curves of the wild-type parent (WT) and NADK-deficient mutants (Δ1415 and Δ0400) did not show any differences under photoautotrophic conditions. The NAD(P)(H) balance showed abnormality in both mutants. However, only the metabolite pattern of Δ0400 showed differences compared to WT. These results indicated that the two NADK isoforms have distinct functions in cyanobacterial metabolism.
Collapse
Affiliation(s)
- Yuuma Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Yuto Haishima
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Minoru Nagano
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan.
| |
Collapse
|
27
|
Mai HJ, Pateyron S, Bauer P. Iron homeostasis in Arabidopsis thaliana: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks. BMC PLANT BIOLOGY 2016; 16:211. [PMID: 27716045 PMCID: PMC5048462 DOI: 10.1186/s12870-016-0899-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/16/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is the central regulator of iron uptake in Arabidopsis thaliana roots. We performed transcriptome analyses of six day-old seedlings and roots of six week-old plants using wild type, a fit knock-out mutant and a FIT over-expression line grown under iron-sufficient or iron-deficient conditions. We compared genes regulated in a FIT-dependent manner depending on the developmental stage of the plants. We assembled a high likelihood dataset which we used to perform co-expression and functional analysis of the most stably iron deficiency-induced genes. RESULTS 448 genes were found FIT-regulated. Out of these, 34 genes were robustly FIT-regulated in root and seedling samples and included 13 novel FIT-dependent genes. Three hundred thirty-one genes showed differential regulation in response to the presence and absence of FIT only in the root samples, while this was the case for 83 genes in the seedling samples. We assembled a virtual dataset of iron-regulated genes based on a total of 14 transcriptomic analyses of iron-deficient and iron-sufficient wild-type plants to pinpoint the best marker genes for iron deficiency and analyzed this dataset in depth. Co-expression analysis of this dataset revealed 13 distinct regulons part of which predominantly contained functionally related genes. CONCLUSIONS We could enlarge the list of FIT-dependent genes and discriminate between genes that are robustly FIT-regulated in roots and seedlings or only in one of those. FIT-regulated genes were mostly induced, few of them were repressed by FIT. With the analysis of a virtual dataset we could filter out and pinpoint new candidates among the most reliable marker genes for iron deficiency. Moreover, co-expression and functional analysis of this virtual dataset revealed iron deficiency-induced and functionally distinct regulons.
Collapse
Affiliation(s)
- Hans-Jörg Mai
- Institute of Botany, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Building 26.13, 02.36, 40225 Düsseldorf, Germany
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Building 26.13, 02.36, 40225 Düsseldorf, Germany
- CEPLAS Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Zhang R. MNADK, a Long-Awaited Human Mitochondrion-Localized NAD Kinase. J Cell Physiol 2015; 230:1697-701. [PMID: 25641397 DOI: 10.1002/jcp.24926] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/06/2015] [Indexed: 01/08/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form, NADP, play essential roles in numerous cellular processes in all organisms. NADP maintains a pool of its reducing equivalent, NADPH, which regenerates cellular oxidative defense systems to counteract oxidative damages. Mitochondria represent a major source of oxidative stress, because the majority of superoxide, a reactive oxygen species, is generated from the mitochondrial respiratory chain. Therefore, as universal electron carriers in cellular electron transfer reactions, the pyridine nucleotides are required by mitochondria for both antioxidant protection and biosynthetic pathways. The NAD kinase (NADK) is the sole NADP biosynthetic enzyme. Because NADP is membrane-impermeable, eukaryotes need compartment-specific NADKs for different organelles. Consistently, in both yeast and plants, three compartment-specific NADKs have been identified. In contrast, even though the first human NADK, a cytosolic one, was identified in 2001, the identity of a hypothesized mitochondrial NADK remained elusive, until a recent discovery that the uncharacterized human gene C5ORF33 encodes a mitochondrion-localized NADK, referred to as MNADK. Three groups have characterized MNADK functions based on distinct systems involving yeast, mouse, and human studies, from aspects of both in vitro and in vivo evidence. MNADK is a mitochondrial NADK that is enriched and nutritionally-regulated in mouse liver, and a MNADK-deficient patient exhibits symptoms characteristic of mitochondrial disease. The identification of MNADK provides a key clue to the mechanism involved in mitochondrial NADPH production and the maintenance of redox balance in mammalian cells. The roles of MNADK in physiological and pathological processes have yet to be discovered.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, and the Cardiovascular Research Institute, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
29
|
NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. Proc Natl Acad Sci U S A 2015; 112:1386-91. [PMID: 25605906 DOI: 10.1073/pnas.1417290112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADP) is a critical cofactor during metabolism, calcium signaling, and oxidative defense, yet how animals regulate their NADP pools in vivo and how NADP-synthesizing enzymes are regulated have long remained unknown. Here we show that expression of Nadk, an NAD(+) kinase-encoding gene, governs NADP biosynthesis in vivo and is essential for development in Xenopus frog embryos. Unexpectedly, we found that embryonic Nadk expression is dynamic, showing cell type-specific up-regulation during both frog and sea urchin embryogenesis. We analyzed the NAD kinases (NADKs) of a variety of deuterostome animals, finding two conserved internal domains forming a catalytic core but a highly divergent N terminus. One type of N terminus (found in basal species such as the sea urchin) mediates direct catalytic activation of NADK by Ca(2+)/calmodulin (CaM), whereas the other (typical for vertebrates) is phosphorylated by a CaM kinase-dependent mechanism. This work indicates that animal NADKs govern NADP biosynthesis in vivo and are regulated by evolutionarily divergent and conserved CaM-dependent mechanisms.
Collapse
|
30
|
Abstract
Background NAD(H) kinase (NADK) is the key enzyme that catalyzes de novo synthesis of NADP(H) from NAD(H) for NADP(H)-based metabolic pathways. In plants, NADKs form functional subfamilies. Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; however, the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood. Principal Findings We performed a comparative genomic analysis that identified 74 NADK gene homologs from 24 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots and eudicots. Phylogenetic and structural analysis classified these NADK genes into four well-conserved subfamilies with considerable variety in the domain organization and gene structure among subfamily members. In addition to the typical NAD_kinase domain, additional domains, such as adenylate kinase, dual-specificity phosphatase, and protein tyrosine phosphatase catalytic domains, were found in subfamily II. Interestingly, NADKs in subfamily III exhibited low sequence similarity (∼30%) in the kinase domain within the subfamily and with the other subfamilies. These observations suggest that gene fusion and exon shuffling may have occurred after gene duplication, leading to specific domain organization seen in subfamilies II and III, respectively. Further analysis of the exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures, during the process of structural evolution of NADK family genes. Finally, both available global microarray data analysis and qRT-RCR experiments revealed that the NADK genes in Arabidopsis and Oryza sativa show different expression patterns in different developmental stages and under several different abiotic/biotic stresses and hormone treatments, underscoring the functional diversity and functional divergence of the NADK family in plants. Conclusions These findings will facilitate further studies of the NADK family and provide valuable information for functional validation of this family in plants.
Collapse
|
31
|
Zhang R. MNADK, a novel liver-enriched mitochondrion-localized NAD kinase. Biol Open 2013; 2:432-8. [PMID: 23616928 PMCID: PMC3625872 DOI: 10.1242/bio.20134259] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022] Open
Abstract
NADP+ and its reducing equivalent NADPH are essential for counteracting oxidative damage. Mitochondria are the major source of oxidative stress, since the majority of superoxide is generated from the mitochondrial respiratory chain. Because NADP+ cannot pass through the mitochondrial membrane, NADP+ generation within mitochondria is critical. However, only a single human NAD kinase (NADK) has been identified, and it is localized to the cytosol. Therefore, sources of mitochondrial NADP+ and mechanisms for maintaining its redox balance remain largely unknown. Here, we show that the uncharacterized human gene C5ORF33, named MNADK (mouse homologue 1110020G09Rik), encodes a novel mitochondrion-localized NAD kinase. In mice MNADK is mostly expressed in the liver, and also abundant in brown fat, heart, muscle and kidney, all being mitochondrion-rich. Indeed, MNADK is localized to mitochondria in Hep G2 cells, a human liver cell line, as demonstrated by fluorescence imaging. Having a conserved NAD kinase domain, a recombinant MNADK showed NAD kinase activity, confirmed by mass spectrometry analysis. Consistent with a role of NADP+ as a coenzyme in anabolic reactions, such as lipid synthesis, MNADK is nutritionally regulated in mice. Fasting increased MNADK levels in liver and fat, and obesity dramatically reduced its level in fat. MNADK expression was suppressed in human liver tumors. Identification of MNADK immediately suggests a model in which NADK and MNADK are responsible for de novo synthesis of NADP+ in cytosol and mitochondria, respectively, and therefore provides novel insights into understanding the sources and mechanisms of mitochondrial NADP+ and NADH production in human cells.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University , Detroit, MI 48201 , USA
| |
Collapse
|
32
|
Hashida SN, Takahashi H, Takahara K, Kawai-Yamada M, Kitazaki K, Shoji K, Goto F, Yoshihara T, Uchimiya H. NAD+ accumulation during pollen maturation in Arabidopsis regulating onset of germination. MOLECULAR PLANT 2013; 6:216-25. [PMID: 22907882 DOI: 10.1093/mp/sss071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although the nicotinamide nucleotides NAD(H) and NADP(H) are essential for various metabolic reactions that play major roles in maintenance of cellular homeostasis, the significance of NAD biosynthesis is not well understood. Here, we investigated the dynamics of pollen nicotinamide nucleotides in response to imbibition, a representative germination cue. Metabolic analysis with capillary electrophoresis electrospray ionization mass spectrometry revealed that excess amount of NAD+ is accumulated in freshly harvested dry pollen, whereas it dramatically decreased immediately after contact with water. Importantly, excess of NAD+ impaired pollen tube growth. Moreover, NAD+ accumulation was retained after pollen was imbibed in the presence of NAD+-consuming reaction inhibitors and pollen germination was greatly retarded. Pollen deficient in the nicotinate/nicotinamide mononucleotide adenyltransferase (NMNAT) gene, encoding a key enzyme in NAD biosynthesis, and a lack of NAD+ accumulation in the gametophyte, showed precocious pollen tube germination inside the anther locule and vigorous tube growth under high-humidity conditions. Hence, the accumulation of excess NAD+ is not essential for pollen germination, but instead participates in regulating the timing of germination onset. These results indicate that NAD+ accumulation acts to negatively regulate germination and a decrease in NAD+ plays an important role in metabolic state transition.
Collapse
Affiliation(s)
- Shin-nosuke Hashida
- Institute of Molecular and Cellular Biosciences-IMCB, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pétriacq P, de Bont L, Tcherkez G, Gakière B. NAD: not just a pawn on the board of plant-pathogen interactions. PLANT SIGNALING & BEHAVIOR 2013; 8:e22477. [PMID: 23104110 PMCID: PMC3745554 DOI: 10.4161/psb.22477] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/06/2012] [Accepted: 10/08/2012] [Indexed: 05/18/2023]
Abstract
Many metabolic processes that occur in living cells involve oxido-reduction (redox) chemistry underpinned by redox compounds such as glutathione, ascorbate and/or pyridine nucleotides. Among these redox carriers, nicotinamide adenine dinucleotide (NAD) is the cornerstone of cellular oxidations along catabolism and is therefore essential for plant growth and development. In addition to its redox role, there is now compelling evidence that NAD is a signal molecule controlling crucial functions like primary and secondary carbon metabolism. Recent studies using integrative -omics approaches combined with molecular pathology have shown that manipulating NAD biosynthesis and recycling lead to an alteration of metabolites pools and developmental processes, and changes in the resistance to various pathogens. NAD levels should now be viewed as a potential target to improve tolerance to biotic stress and crop improvement. In this paper, we review the current knowledge on the key role of NAD (and its metabolism) in plant responses to pathogen infections.
Collapse
Affiliation(s)
- Pierre Pétriacq
- Institut de Biologie des Plantes; CNRS UMR 8618; Université Paris-Sud; Orsay, France
| | - Linda de Bont
- Institut de Biologie des Plantes; CNRS UMR 8618; Université Paris-Sud; Orsay, France
| | - Guillaume Tcherkez
- Institut de Biologie des Plantes; CNRS UMR 8618; Université Paris-Sud; Orsay, France
- Institut Universitaire de France; Paris, France
| | - Bertrand Gakière
- Institut de Biologie des Plantes; CNRS UMR 8618; Université Paris-Sud; Orsay, France
| |
Collapse
|
34
|
Garcia-Lor A, Curk F, Snoussi-Trifa H, Morillon R, Ancillo G, Luro F, Navarro L, Ollitrault P. A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the 'true citrus fruit trees' group (Citrinae, Rutaceae) and the origin of cultivated species. ANNALS OF BOTANY 2013; 111:1-19. [PMID: 23104641 PMCID: PMC3523644 DOI: 10.1093/aob/mcs227] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/12/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Despite differences in morphology, the genera representing 'true citrus fruit trees' are sexually compatible, and their phylogenetic relationships remain unclear. Most of the important commercial 'species' of Citrus are believed to be of interspecific origin. By studying polymorphisms of 27 nuclear genes, the average molecular differentiation between species was estimated and some phylogenetic relationships between 'true citrus fruit trees' were clarified. METHODS Sanger sequencing of PCR-amplified fragments from 18 genes involved in metabolite biosynthesis pathways and nine putative genes for salt tolerance was performed for 45 genotypes of Citrus and relatives of Citrus to mine single nucleotide polymorphisms (SNPs) and indel polymorphisms. Fifty nuclear simple sequence repeats (SSRs) were also analysed. KEY RESULTS A total of 16 238 kb of DNA was sequenced for each genotype, and 1097 single nucleotide polymorphisms (SNPs) and 50 indels were identified. These polymorphisms were more valuable than SSRs for inter-taxon differentiation. Nuclear phylogenetic analysis revealed that Citrus reticulata and Fortunella form a cluster that is differentiated from the clade that includes three other basic taxa of cultivated citrus (C. maxima, C. medica and C. micrantha). These results confirm the taxonomic subdivision between the subgenera Metacitrus and Archicitrus. A few genes displayed positive selection patterns within or between species, but most of them displayed neutral patterns. The phylogenetic inheritance patterns of the analysed genes were inferred for commercial Citrus spp. CONCLUSIONS Numerous molecular polymorphisms (SNPs and indels), which are potentially useful for the analysis of interspecific genetic structures, have been identified. The nuclear phylogenetic network for Citrus and its sexually compatible relatives was consistent with the geographical origins of these genera. The positive selection observed for a few genes will help further works to analyse the molecular basis of the variability of the associated traits. This study presents new insights into the origin of C. sinensis.
Collapse
Affiliation(s)
- Andres Garcia-Lor
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
| | - Franck Curk
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
- INRA, UR1103 Génétique et Ecophysiologie de la Qualité des Agrumes, F-20230 San Giuliano, France
| | - Hager Snoussi-Trifa
- Horticultural Laboratory, Tunisian National Agronomic Research Institute (INRAT), Rue Hedi Karray, 2049 Ariana, Tunisia
| | - Raphael Morillon
- UMR AGAP, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), TA A-108/02, 34398 Montpellier, Cedex 5, France
| | - Gema Ancillo
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
| | - François Luro
- INRA, UR1103 Génétique et Ecophysiologie de la Qualité des Agrumes, F-20230 San Giuliano, France
| | - Luis Navarro
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
- For correspondence. E-mail or
| | - Patrick Ollitrault
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
- UMR AGAP, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), TA A-108/02, 34398 Montpellier, Cedex 5, France
- For correspondence. E-mail or
| |
Collapse
|
35
|
Jeelani G, Husain A, Sato D, Soga T, Suematsu M, Nozaki T. Biochemical and functional characterization of novel NADH kinase in the enteric protozoan parasite Entamoeba histolytica. Biochimie 2012; 95:309-19. [PMID: 23069387 DOI: 10.1016/j.biochi.2012.09.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
Abstract
NAD(H) kinase catalyzes the phosphorylation of NAD(H) to form NADP(H) using ATP or inorganic polyphosphate as a phosphoryl donor. While the enzyme is conserved throughout prokaryotes and eukaryotes, remarkable differences in kinetic parameters including substrate preference, cation dependence, and physiological roles exist among the organisms. In the present study, we biochemically characterized NAD(H) kinase from the anaerobic/microaerophilic fermentative protozoan parasite Entamoeba histolytica, which lacks the conventional mitochondria capable of oxidative phosphorylation, leading to ATP. The kinetic properties of E. histolytica NAD(H) kinase recombinantly produced in Escherichia coli showed remarkable differences from those in bacteria and higher eukaryotes. Entamoeba NAD(H) kinase preferred NADH to NAD+ as the phosphoryl acceptor, utilized nucleoside triphosphates including ATP, GTP and deoxyATP, but not nucleoside di-, mono-phosphates, or inorganic polyphosphates, as the phosphoryl donor. To further understand the physiological roles in E. histolytica, we generated a stable transformant overexpressing NAD(H) kinase. Overexpression of NAD(H) kinase resulted in a 1.6-2 fold increase in the NADPH and NADP+ concentrations, a 40% reduction of the intracellular concentration of reactive oxygen species, and also led to increased tolerance toward hydrogen peroxide. These data, together with the essentially of NAD(H) kinase gene, underscore its significance as an NADP(H)-producing enzyme in this organism, and should help in designing of drugs targeting this enzyme.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | | | | | | | |
Collapse
|
36
|
The cyanobacterial NAD kinase gene sll1415 is required for photoheterotrophic growth and cellular redox homeostasis in Synechocystis sp. strain PCC 6803. J Bacteriol 2011; 194:218-24. [PMID: 22056937 DOI: 10.1128/jb.05873-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NAD kinase (NADK), which phosphorylates NAD to NADP, is one of the key enzymes regulating the cellular NADP(H) level. In Synechocystis sp. strain PCC 6803, slr0400 and sll1415 were shown to encode NAD kinases. The NADP(H) pool in the cyanobacterium was remarkably reduced by an sll1415-null mutation but slightly reduced by an slr0400-null mutation. The reduction of the NADP(H) level in the sll1415 mutant led to a significant accumulation of glucose-6-phosphate and a loss of photoheterotrophic growth. As the primary NADK gene, sll1415 was found to inhibit the transcription of genes involved in redox homeostasis and to exert stronger effects on methyl viologen tolerance than slr0040.
Collapse
|
37
|
Kusano M, Fukushima A, Redestig H, Saito K. Metabolomic approaches toward understanding nitrogen metabolism in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1439-53. [PMID: 21220784 DOI: 10.1093/jxb/erq417] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants can assimilate inorganic nitrogen (N) sources to organic N such as amino acids. N is the most important of the mineral nutrients required by plants and its metabolism is tightly coordinated with carbon (C) metabolism in the fundamental processes that permit plant growth. Increased understanding of N regulation may provide important insights for plant growth and improvement of quality of crops and vegetables because N as well as C metabolism are fundamental components of plant life. Metabolomics is a global biochemical approach useful to study N metabolism because metabolites not only reflect the ultimate phenotypes (traits), but can mediate transcript levels as well as protein levels directly and/or indirectly under different N conditions. This review outlines analytical and bioinformatic techniques particularly used to perform metabolomics for studying N metabolism in higher plants. Examples are used to illustrate the application of metabolomic techniques to the model plants Arabidopsis and rice, as well as other crops and vegetables.
Collapse
Affiliation(s)
- Miyako Kusano
- RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan.
| | | | | | | |
Collapse
|
38
|
Hashida SN, Itami T, Takahashi H, Takahara K, Nagano M, Kawai-Yamada M, Shoji K, Goto F, Yoshihara T, Uchimiya H. Nicotinate/nicotinamide mononucleotide adenyltransferase-mediated regulation of NAD biosynthesis protects guard cells from reactive oxygen species in ABA-mediated stomatal movement in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3813-25. [PMID: 20591898 DOI: 10.1093/jxb/erq190] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) and its derivative nicotinamide adenine dinucleotide phosphate (NADP) are indispensable co-factors in broad-spectrum metabolic events for the maintenance of cellular homeostasis in all living organisms. In this study, the cellular expression levels of NAD biosynthesis genes in Arabidopsis were investigated. A very high expression of nicotinate/nicotinamide mononucleotide adenyltransferase (NMNAT) was observed in the differentiated stomatal guard cells of the leaf surface. Transcriptional analysis confirmed that several genes in the biosynthesis pathway were also highly expressed in stomatal guard cells. In fact, NAD and NADP metabolisms were investigated during stomatal movement. Importantly, the generation of phytohormone ABA-induced reactive oxygen species, which acts as a signal for stomatal closure, was accompanied by markedly decreased levels of NAD. The ABA-induced oxidative stress caused stomatal cell death in the nmnat mutant. Furthermore, stomata partially lost their ability to close leading to drought susceptibility. The stomata were less responsive to opening cues as well. These results indicate that NAD biosynthesis is involved in protecting guard cells from ABA-induced local oxidative stress via the regulation of NMNAT activity. In this study, it is demonstrated that NMNAT is essential for the maintenance of NAD homeostasis enabling sustainable stomatal movement.
Collapse
Affiliation(s)
- Shin-nosuke Hashida
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Recent research has unraveled a number of unexpected functions of the pyridine nucleotides. In this review, we will highlight the variety of known physiological roles of NADP. In its reduced form (NADPH), this molecule represents a universal electron donor, not only to drive biosynthetic pathways. Perhaps even more importantly, NADPH is the unique provider of reducing equivalents to maintain or regenerate the cellular detoxifying and antioxidative defense systems. The roles of NADPH in redox sensing and as substrate for NADPH oxidases to generate reactive oxygen species further extend its scope of functions. NADP(+), on the other hand, has acquired signaling functions. Its conversion to second messengers in calcium signaling may have critical impact on important cellular processes. The generation of NADP by NAD kinases is a key determinant of the cellular NADP concentration. The regulation of these enzymes may, therefore, be critical to feed the diversity of NADP-dependent processes adequately. The increasing recognition of the multiple roles of NADP has thus led to exciting new insights in this expanding field.
Collapse
Affiliation(s)
- Line Agledal
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | | | | |
Collapse
|
40
|
Takahara K, Kasajima I, Takahashi H, Hashida SN, Itami T, Onodera H, Toki S, Yanagisawa S, Kawai-Yamada M, Uchimiya H. Metabolome and photochemical analysis of rice plants overexpressing Arabidopsis NAD kinase gene. PLANT PHYSIOLOGY 2010; 152:1863-73. [PMID: 20154096 PMCID: PMC2850022 DOI: 10.1104/pp.110.153098] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 02/04/2010] [Indexed: 05/18/2023]
Abstract
The chloroplastic NAD kinase (NADK2) is reported to stimulate carbon and nitrogen assimilation in Arabidopsis (Arabidopsis thaliana), which is vulnerable to high light. Since rice (Oryza sativa) is a monocotyledonous plant that can adapt to high light, we studied the effects of NADK2 expression in rice by developing transgenic rice plants that constitutively expressed the Arabidopsis chloroplastic NADK gene (NK2 lines). NK2 lines showed enhanced activity of NADK and accumulation of the NADP(H) pool, while intermediates of NAD derivatives were unchanged. Comprehensive analysis of the primary metabolites in leaves using capillary electrophoresis mass spectrometry revealed elevated levels of amino acids and several sugar phosphates including ribose-1,5-bisphosphate, but no significant change in the levels of the other metabolites. Studies of chlorophyll fluorescence and gas change analyses demonstrated greater electron transport and CO2 assimilation rates in NK2 lines, compared to those in the control. Analysis of oxidative stress response indicated enhanced tolerance to oxidative stress in these transformants. The results suggest that NADP content plays a critical role in determining the photosynthetic electron transport rate in rice and that its enhancement leads to stimulation of photosynthesis metabolism and tolerance of oxidative damages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maki Kawai-Yamada
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1–1–1, Bunkyo-ku, Tokyo 113–0032, Japan (K.T., I.K., S.-n.H., T.I., H.U.); Iwate Biotechnology Center, Kitakami, Iwate 024–0003, Japan (H.T., H.U.); Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electronic Power Industry, 1646 Abiko, Chiba 270–1194, Japan (S.-n.H.); Division of Plant Sciences, National Institute of Agrobiological Sciences, 2–1–2 Kannondai, Tsukuba, Ibaraki 305–8602, Japan (H.O., S.T.); Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1–1–1, Bunkyo-ku, Tokyo 113–8657, Japan (S.Y.); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi 332–0012, Japan (S.Y., M.K.-Y.); Department of Environmental Science and Technology (M.K.-Y.) and Institute for Environmental Science and Technology (M.K.-Y., H.U.), Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama 338–0825, Japan
| | | |
Collapse
|
41
|
Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF. Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Appl Microbiol Biotechnol 2010; 87:583-93. [PMID: 20180116 DOI: 10.1007/s00253-010-2481-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/28/2010] [Accepted: 01/28/2010] [Indexed: 11/24/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADP) is synthesized by phosphorylation of either oxidized or reduced nicotinamide adenine dinucleotide (NAD/NADH). Here, the cg1601/ppnK gene product from Corynebacterium glutamicum genome was purified from recombinant Escherichia coli and enzymatic characterization revealed its activity as a polyphosphate (PolyP)/ATP-dependent NAD kinase (PPNK). PPNK from C. glutamicum was shown to be active as homotetramer accepting PolyP, ATP, and even ADP for phosphorylation of NAD. The catalytic efficiency with ATP as phosphate donor for phosphorylation of NAD was higher than with PolyP. With respect to the chain length of PolyP, PPNK was active with short-chain PolyPs. PPNK activity was independent of bivalent cations when using ATP, but was enhanced by manganese and in particular by magnesium ions. When using PolyP, PPNK required bivalent cations, preferably manganese ions, for activity. PPNK was inhibited by NADP and NADH at concentrations below millimolar. Overexpression of ppnK in C. glutamicum wild type slightly reduced growth and ppnK overexpression in the lysine producing strain DM1729 resulted in a lysine product yield on glucose of 0.136 +/- 0.006 mol lysine (mol glucose)(-1), which was 12% higher than that of the empty vector control strain.
Collapse
Affiliation(s)
- Steffen N Lindner
- Institute of Molecular Microbiology and Biotechnology, Westfalian Wilhelms University Muenster, 48149, Muenster, Germany
| | | | | | | | | |
Collapse
|
42
|
Waller JC, Dhanoa PK, Schumann U, Mullen RT, Snedden WA. Subcellular and tissue localization of NAD kinases from Arabidopsis: compartmentalization of de novo NADP biosynthesis. PLANTA 2010; 231:305-17. [PMID: 19921251 DOI: 10.1007/s00425-009-1047-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/21/2009] [Indexed: 05/18/2023]
Abstract
The de novo biosynthesis of the triphosphopyridine NADP is catalyzed solely by the ubiquitous NAD kinase family. The Arabidopsis (Arabidopsis thaliana) genome contains two genes encoding NAD+ kinases (NADKs), annotated as NADK1, NADK2, and one gene encoding a NADH kinase, NADK3, the latter isoform preferring NADH as a substrate. Here, we examined the tissue-specific and developmental expression patterns of the three NADKs using transgenic plants stably transformed with NADK promoter::glucuronidase (GUS) reporter gene constructs. We observed distinct spatial and temporal patterns of GUS activity among the NADK::GUS plants. All three NADK::GUS transgenes were expressed in reproductive tissue, whereas NADK1::GUS activity was found mainly in the roots, NADK2::GUS in leaves, and NADK3::GUS was restricted primarily to leaf vasculature and lateral root primordia. We also examined the subcellular distribution of the three NADK isoforms using NADK-green fluorescent protein (GFP) fusion proteins expressed transiently in Arabidopsis suspension-cultured cells. NADK1 and NADK2 were found to be localized to the cytosol and plastid stroma, respectively, consistent with previous work, whereas NADK3 localized to the peroxisomal matrix via a novel type 1 peroxisomal targeting signal. The specific subcellular and tissue distribution profiles among the three NADK isoforms and their possible non-overlapping roles in NADP(H) biosynthesis in plant cells are discussed.
Collapse
Affiliation(s)
- Jeffrey C Waller
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
43
|
Abstract
Molecular modelling suggests that a group of proteins in plants known as the β-hydroxyacid dehydrogenases, or the hydroxyisobutyrate dehydrogenase superfamily, includes enzymes that reduce succinic semialdehyde and glyoxylate to γ-hydroxybutyrate and glycolate respectively. Recent biochemical and expression studies reveal that NADPH-dependent cytosolic (termed GLYR1) and plastidial (termed GLYR2) isoforms of succinic semialdehyde/glyoxylate reductase exist in Arabidopsis. Succinic semialdehyde and glyoxylate are typically generated in leaves via two distinct metabolic pathways, γ-aminobutyrate and glycolate respectively. In the present review, it is proposed that the GLYRs function in the detoxification of both aldehydes during stress and contribute to redox balance. Outstanding questions are highlighted in a scheme for the subcellular organization of the detoxification mechanism in Arabidopsis.
Collapse
|
44
|
Takahashi H, Takahara K, Hashida SN, Hirabayashi T, Fujimori T, Kawai-Yamada M, Yamaya T, Yanagisawa S, Uchimiya H. Pleiotropic modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing the NAD kinase2 gene. PLANT PHYSIOLOGY 2009; 151:100-13. [PMID: 19587098 PMCID: PMC2735975 DOI: 10.1104/pp.109.140665] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 07/02/2009] [Indexed: 05/18/2023]
Abstract
Nicotinamide nucleotides (NAD and NADP) are important cofactors in many metabolic processes in living organisms. In this study, we analyzed transgenic Arabidopsis (Arabidopsis thaliana) plants that overexpress NAD kinase2 (NADK2), an enzyme that catalyzes the synthesis of NADP from NAD in chloroplasts, to investigate the impacts of altering NADP level on plant metabolism. Metabolite profiling revealed that NADP(H) concentrations were proportional to NADK activity in NADK2 overexpressors and in the nadk2 mutant. Several metabolites associated with the Calvin cycle were also higher in the overexpressors, accompanied by an increase in overall Rubisco activity. Furthermore, enhanced NADP(H) production due to NADK2 overexpression increased nitrogen assimilation. Glutamine and glutamate concentrations, as well as some other amino acids, were higher in the overexpressors. These results indicate that overexpression of NADK2 either directly or indirectly stimulates carbon and nitrogen assimilation in Arabidopsis under restricted conditions. Importantly, since neither up-regulation nor down-regulation of NADK2 activity affected the sum amount of NAD and NADP or the redox state, the absolute level of NADP and/or the NADP/NAD ratio likely plays a key role in regulating plant metabolism.
Collapse
|
45
|
Shi F, Li Y, Li Y, Wang X. Molecular properties, functions, and potential applications of NAD kinases. Acta Biochim Biophys Sin (Shanghai) 2009; 41:352-61. [PMID: 19430699 DOI: 10.1093/abbs/gmp029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
NAD kinase catalyzes the phosphorylation of NAD(H) to form NADP(H), using ATP as phosphoryl donor. It is the only key enzyme leading to the de novo NADP(+)/NADPH biosynthesis. Coenzymes such as NAD(H) and NADP(H) are known for their important functions. Recent studies have partially demonstrated that NAD kinase plays a crucial role in the regulation of NAD(H)/NADP(H) conversion. Here, the molecular properties, physiologic functions, and potential applications of NAD kinase are discussed.
Collapse
Affiliation(s)
- Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.
| | | | | | | |
Collapse
|
46
|
Hashida SN, Takahashi H, Uchimiya H. The role of NAD biosynthesis in plant development and stress responses. ANNALS OF BOTANY 2009; 103:819-24. [PMID: 19201765 PMCID: PMC2707885 DOI: 10.1093/aob/mcp019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/16/2008] [Accepted: 01/15/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pyridine nucleotides are essential for electron transport and serve as co-factors in multiple metabolic processes in all organisms. Each nucleotide has a particular role in metabolism. For instance, the NAD/NADP ratio is believed to be responsible for sustaining the functional status of plant cells. However, since enzymes involved in the synthesis and degradation of NAD and NADP have not been fully identified, the physiological functions of these co-enzymes in plant growth and development are largely unknown. SCOPE This Botanical Briefing covers progress in the developmental and stress-related roles of genes associated with NAD biosynthesis in plants. Special attention will be given to assessments of physiological impacts through the modulation of NAD and NADP biosynthesis. CONCLUSIONS The significance of NAD biosynthesis in plant development and NADP biosynthesis in plant stress tolerance is summarized in this Briefing. Further investigation of cells expressing a set of NAD biosynthetic genes would facilitate understanding of regulatory mechanisms by which plant cells maintain NAD homeostasis.
Collapse
Affiliation(s)
- Shin-nosuke Hashida
- Institute of Molecular and Cellular Biosciences (IMCB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Biotechnology Sector, Environmental Research Laboratory, Central Research Institute of Electronic Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Hideyuki Takahashi
- Institute of Molecular and Cellular Biosciences (IMCB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Hirofumi Uchimiya
- Institute of Molecular and Cellular Biosciences (IMCB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| |
Collapse
|
47
|
Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci Biotechnol Biochem 2008; 72:919-30. [PMID: 18391451 DOI: 10.1271/bbb.70738] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The functions of NAD(H) (NAD(+) and NADH) and NADP(H) (NADP(+) and NADPH) are undoubtedly significant and distinct. Hence, regulation of the intracellular balance of NAD(H) and NADP(H) is important. The key enzymes involved in the regulation are NAD kinase and NADP phosphatase. In 2000, we first succeeded in identifying the gene for NAD kinase, thereby facilitating worldwide studies of this enzyme from various organisms, including eubacteria, archaea, yeast, plants, and humans. Molecular biological study has revealed the physiological function of this enzyme, that is to say, the significance of NADP(H), in some model organisms. Structural research has elucidated the tertiary structure of the enzyme, the details of substrate-binding sites, and the catalytic mechanism. Research on NAD kinase also led to the discovery of archaeal NADP phosphatase. In this review, we summarize the physiological functions, applications, and structure of NAD kinase, and the way we discovered archaeal NADP phosphatase.
Collapse
|
48
|
Pollak N, Niere M, Ziegler M. NAD kinase levels control the NADPH concentration in human cells. J Biol Chem 2007; 282:33562-33571. [PMID: 17855339 DOI: 10.1074/jbc.m704442200] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NAD kinases (NADKs) are vital, as they generate the cellular NADP pool. As opposed to three compartment-specific isoforms in plants and yeast, only a single NADK has been identified in mammals whose cytoplasmic localization we established by immunocytochemistry. To understand the physiological roles of the human enzyme, we generated and analyzed cell lines stably deficient in or overexpressing NADK. Short hairpin RNA-mediated down-regulation led to similar (about 70%) decrease of both NADK expression, activity, and the NADPH concentration and was accompanied by increased sensitivity toward H(2)O(2). Overexpression of NADK resulted in a 4-5-fold increase in the NADPH, but not NADP(+), concentration, although the recombinant enzyme phosphorylated preferentially NAD(+). Surprisingly, NADK overexpression and the ensuing increase of the NADPH level only moderately enhanced protection against oxidant treatment. Apparently, to maintain the NADPH level for the regeneration of oxidative defense systems human cells depend primarily on NADP-dependent dehydrogenases (which re-reduce NADP(+)), rather than on a net increase of NADP. The stable shifts of the NADPH level in the generated cell lines were also accompanied by alterations in the expression of peroxiredoxin 5 and Nrf2. Because the basal oxygen radical level in the cell lines was only slightly changed, the redox state of NADP may be a major transmitter of oxidative stress.
Collapse
Affiliation(s)
- Nadine Pollak
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Marc Niere
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Mathias Ziegler
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.
| |
Collapse
|
49
|
Kim JH, Moon YR, Kim JS, Oh MH, Lee JW, Chung BY. Transcriptomic Profile of Arabidopsis Rosette Leaves during the Reproductive Stage after Exposure to Ionizing Radiation. Radiat Res 2007; 168:267-80. [PMID: 17705638 DOI: 10.1667/rr0963.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 03/28/2007] [Indexed: 11/03/2022]
Abstract
We attempted to obtain a transcriptomic profile of ionizing radiation-responsive genes in Arabidopsis plants using Affymetrix ATH1 whole-genome microarrays. The Arabidopsis plants were irradiated with 200 Gy gamma rays at the early reproduction stage, 33 days after sowing. Rosette leaves were harvested during the postirradiation period from 36 to 49 days after sowing and used for the microarray analysis. The most remarkable changes in the genome-wide expression were observed at 42 days after sowing (9 days after the irradiation). We identified 2165 genes as gamma-ray inducible and 1735 genes as gamma-ray repressible. These numbers of affected genes were almost two to seven times higher than those at other times. In a comparison of the control and irradiated groups, we also identified 354 differentially expressed genes as significant by applying Welch's t test and fold change analysis. The gene ontology analysis showed that radiation up-regulated defense/ stress responses but down-regulated rhythm/growth responses. Specific expression patterns of 10 genes for antioxidant enzymes, photosynthesis or chlorophyll synthesis after irradiation were also obtained using real-time quantitative PCR analysis. We discuss physiological and genetic alterations in the antioxidative defense system, photosynthesis and chlorophyll metabolism after irradiation at the reproductive stage.
Collapse
Affiliation(s)
- Jin-Hong Kim
- Advanced Radiation Research Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 1266 Shinjeong-dong, Jeongeup-si, Jeollabuk-do, Korea
| | | | | | | | | | | |
Collapse
|
50
|
Pollak N, Dölle C, Ziegler M. The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem J 2007; 402:205-18. [PMID: 17295611 PMCID: PMC1798440 DOI: 10.1042/bj20061638] [Citation(s) in RCA: 511] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pyridine nucleotides NAD and NADP play vital roles in metabolic conversions as signal transducers and in cellular defence systems. Both coenzymes participate as electron carriers in energy transduction and biosynthetic processes. Their oxidized forms, NAD+ and NADP+, have been identified as important elements of regulatory pathways. In particular, NAD+ serves as a substrate for ADP-ribosylation reactions and for the Sir2 family of NAD+-dependent protein deacetylases as well as a precursor of the calcium mobilizing molecule cADPr (cyclic ADP-ribose). The conversions of NADP+ into the 2'-phosphorylated form of cADPr or to its nicotinic acid derivative, NAADP, also result in the formation of potent intracellular calcium-signalling agents. Perhaps, the most critical function of NADP is in the maintenance of a pool of reducing equivalents which is essential to counteract oxidative damage and for other detoxifying reactions. It is well known that the NADPH/NADP+ ratio is usually kept high, in favour of the reduced form. Research within the past few years has revealed important insights into how the NADPH pool is generated and maintained in different subcellular compartments. Moreover, tremendous progress in the molecular characterization of NAD kinases has established these enzymes as vital factors for cell survival. In the present review, we summarize recent advances in the understanding of the biosynthesis and signalling functions of NAD(P) and highlight the new insights into the molecular mechanisms of NADPH generation and their roles in cell physiology.
Collapse
Affiliation(s)
- Nadine Pollak
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Christian Dölle
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Mathias Ziegler
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
- To whom correspondence should be addressed (email )
| |
Collapse
|