1
|
Arshad W, Steinbrecher T, Wilhelmsson PK, Fernandez-Pozo N, Pérez M, Mérai Z, Rensing SA, Chandler JO, Leubner-Metzger G. Aethionema arabicum dimorphic seed trait resetting during transition to seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1358312. [PMID: 38525145 PMCID: PMC10957558 DOI: 10.3389/fpls.2024.1358312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
The transition from germinating seeds to emerging seedlings is one of the most vulnerable plant life cycle stages. Heteromorphic diaspores (seed and fruit dispersal units) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments. While the roles and mechanisms of seedling traits have been studied in monomorphic species, which produce one type of diaspore, very little is known about seedlings in heteromorphic species. Using the dimorphic diaspore model Aethionema arabicum (Brassicaceae), we identified contrasting mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained from IND fruits by pericarp (fruit coat) removal. What follows the completion of germination is the pre-emergence seedling growth phase, which we investigated by comparative growth assays of early seedlings derived from the M+ seeds, bare M- seeds, and IND fruits. The dimorphic seedlings derived from M+ and M- seeds did not differ in their responses to ambient temperature and water potential. The phenotype of seedlings derived from IND fruits differed in that they had bent hypocotyls and their shoot and root growth was slower, but the biomechanical hypocotyl properties of 15-day-old seedlings did not differ between seedlings derived from germinated M+ seeds, M- seeds, or IND fruits. Comparison of the transcriptomes of the natural dimorphic diaspores, M+ seeds and IND fruits, identified 2,682 differentially expressed genes (DEGs) during late germination. During the subsequent 3 days of seedling pre-emergence growth, the number of DEGs was reduced 10-fold to 277 root DEGs and 16-fold to 164 shoot DEGs. Among the DEGs in early seedlings were hormonal regulators, in particular for auxin, ethylene, and gibberellins. Furthermore, DEGs were identified for water and ion transporters, nitrate transporter and assimilation enzymes, and cell wall remodeling protein genes encoding enzymes targeting xyloglucan and pectin. We conclude that the transcriptomes of seedlings derived from the dimorphic diaspores, M+ seeds and IND fruits, undergo transcriptional resetting during the post-germination pre-emergence growth transition phase from germinated diaspores to growing seedlings.
Collapse
Affiliation(s)
- Waheed Arshad
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Tina Steinbrecher
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | | | - Noe Fernandez-Pozo
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- Department Plant Breeding and Physiology, Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), Málaga, Spain
| | - Marta Pérez
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Stefan A. Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Jake O. Chandler
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Gerhard Leubner-Metzger
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| |
Collapse
|
2
|
Wu K, Wang L, Wu Z, Liu Z, Li Z, Shen J, Shi S, Liu H, Rensing C, Feng R. Selenite reduced cadmium uptake, interfered signal transduction of endogenous phytohormones, and stimulated secretion of tartaric acid based on a combined analysis of non-invasive micro-test technique, transcriptome and metabolome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108107. [PMID: 38029613 DOI: 10.1016/j.plaphy.2023.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Selenium (Se) can reduce uptake and translocation of cadmium (Cd) in plants via plenty of ways, including regulation of root morphology. However, the underlying mechanisms on how Se will regulate root morphology under metal(loid) stresses are not fully illustrated. To fill up this knowledge gap, we investigated the effects of 0.5 mg L-1 selenite (Se(IV)) on root exudates, root morphology, root endogenous hormones, and Cd uptake efficiency of rice under the 1 mg L-1 Cd stress condition. The results showed that Se(IV) significantly reduced shoot and root Cd concentrations, and decreased Cd uptake efficiency via root hairs determined by a non-invasive micro-test (NMT) technology. When compared to the 1 mg L-1 Cd (Cd1) treatment, addition of 0.5 mg L-1 Se(IV) (1) significantly reduced root surface area and tip numbers, and non-significantly reduced root length, but significantly enhanced root diameter and root volume; (2) significantly enhanced concentrations of tartaric acid in the root exudate solution, root auxin (IAA) and root jasmonic acid (JA) via a UHPLC or a HPLC analysis; (3) significantly up-regulated metabolites correlated with synthesis of IAA, JA, gibberellin (GA), and salicylic acid, such as GA53, M-SA, (+/-)7-epi-JA, and derivatives of tryptophan and indole in the metabolome analysis. However, results of transcriptome analysis showed that (1) no upregulated differentially expressed genes (DEGs) were enriched in IAA synthesis; (2) some upregulated DEGs were found to be enriched in JA and GA53 synthesis pathways. In summary, although Se(IV) stimulated the synthesis of IAA, JA, and GA53, it significantly inhibited root growth mainly by 1) affecting signal transduction of IAA and GA; 2) altering IAA polar transport and homeostasis; and 3) regulating DEGs including SAUR32, SAUR36, SAUR76, OsSub33, OsEXPA8, OsEXPA18, and Os6bglu24.
Collapse
Affiliation(s)
- KongYuan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZiHan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZiQing Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZengFei Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Jun Shen
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ShengJie Shi
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Bianchetti G, Clouet V, Legeai F, Baron C, Gazengel K, Vu BL, Baud S, To A, Manzanares-Dauleux MJ, Buitink J, Nesi N. Identification of transcriptional modules linked to the drought response of Brassica napus during seed development and their mitigation by early biotic stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14130. [PMID: 38842416 DOI: 10.1111/ppl.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 06/07/2024]
Abstract
In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the 'Express' genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre-occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS-treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co-expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis-element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co-expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.
Collapse
Affiliation(s)
- Grégoire Bianchetti
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Vanessa Clouet
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Fabrice Legeai
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Cécile Baron
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Kévin Gazengel
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Benoit Ly Vu
- IRHS, INRAE, Institut Agro Rennes-Angers, Université d'Angers, France
| | | | | | | | - Julia Buitink
- IRHS, INRAE, Institut Agro Rennes-Angers, Université d'Angers, France
| | - Nathalie Nesi
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| |
Collapse
|
4
|
Chen R, Luo L, Li K, Li Q, Li W, Wang X. Dormancy-Associated Gene 1 (OsDRM1) as an axillary bud dormancy marker: Retarding Plant Development, and Modulating Auxin Response in Rice (Oryza sativa L.). JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154117. [PMID: 37924628 DOI: 10.1016/j.jplph.2023.154117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023]
Abstract
Dormancy-Associated Genes 1/Auxin-Repressed Proteins (DRM1/ARP) are associated with bud dormancy, repression of plant growth, and responsiveness to hormones. To further explore the function of DRM1 proteins in rice, we isolated a dormancy-associated gene1 (OsDRM1) through microarray analysis. In situ hybridization analyses revealed that OsDRM1 is predominantly expressed in dormant axillary buds, while it is weakly expressed in growing buds, indicating that OsDRM1 gene can be used as a molecular marker for bud dormancy in rice. Overexpression of OsDRM1 in transgenic plants delayed axillary bud outgrowth by suppressing cell division within the buds. Further studies in OsDRM1-overexpressing transgenic plants showed a reduction in plant height, inhibition of root and hypocotyl elongation, and delayed heading time. Under auxin treatment, overexpression of OsDRM1 in transgenic lines partially rescued the shortened length of the primary and crown root. Taken together, these results indicated that OsDRM1 delayed bud growth by arresting the cell cycle and act as a growth repressor affect rice development by modulated auxin signaling.
Collapse
Affiliation(s)
- Ruihong Chen
- Horticultural Science Research Center, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Li
- College of Forest, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Li
- Horticultural Science Research Center, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaofeng Wang
- Horticultural Science Research Center, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Shanmugaraj N, Rajaraman J, Kale S, Kamal R, Huang Y, Thirulogachandar V, Garibay-Hernández A, Budhagatapalli N, Tandron Moya YA, Hajirezaei MR, Rutten T, Hensel G, Melzer M, Kumlehn J, von Wirén N, Mock HP, Schnurbusch T. Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence. THE PLANT CELL 2023; 35:3973-4001. [PMID: 37282730 PMCID: PMC10615218 DOI: 10.1093/plcell/koad164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Leaf and floral tissue degeneration is a common feature in plants. In cereal crops such as barley (Hordeum vulgare L.), pre-anthesis tip degeneration (PTD) starts with growth arrest of the inflorescence meristem dome, which is followed basipetally by the degeneration of floral primordia and the central axis. Due to its quantitative nature and environmental sensitivity, inflorescence PTD constitutes a complex, multilayered trait affecting final grain number. This trait appears to be highly predictable and heritable under standardized growth conditions, consistent with a developmentally programmed mechanism. To elucidate the molecular underpinnings of inflorescence PTD, we combined metabolomic, transcriptomic, and genetic approaches to show that barley inflorescence PTD is accompanied by sugar depletion, amino acid degradation, and abscisic acid responses involving transcriptional regulators of senescence, defense, and light signaling. Based on transcriptome analyses, we identified GRASSY TILLERS1 (HvGT1), encoding an HD-ZIP transcription factor, as an important modulator of inflorescence PTD. A gene-edited knockout mutant of HvGT1 delayed PTD and increased differentiated apical spikelets and final spikelet number, suggesting a possible strategy to increase grain number in cereals. We propose a molecular framework that leads to barley PTD, the manipulation of which may increase yield potential in barley and other related cereals.
Collapse
Affiliation(s)
- Nandhakumar Shanmugaraj
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Sandip Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Adriana Garibay-Hernández
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nagaveni Budhagatapalli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Mohammed R Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle 06120,Germany
| |
Collapse
|
6
|
Pan C, Zhou Y, Yao L, Yu L, Qiao Z, Tang M, Wei F. Amomum tsaoko DRM1 regulate seed germination and improve heat tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 286:154007. [PMID: 37209458 DOI: 10.1016/j.jplph.2023.154007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Seed dormancy and germination are critical to medicinal plant reproduction. Dormancy-associated gene (DRM1) has been involved in the regulation of dormancy in Arabidopsis meristematic tissues or organs. However, research on molecular functions and regulations of DRM1 in Amomum tsaoko, an important medicinal plant, is rare. In this study, the DRM1 was isolated from embryos of A. tsaoko, and the results of protein subcellular localization in Arabidopsis protoplast indicated that DRM1 was mainly nucleus and cytoplasm. Expression analysis showed that DRM1 especially exhibited the highest transcript level in dormant seed and short-time stratification while displaying a high response of hormone and abiotic stress. Further investigation showed that ectopic expression of DRM1 in Arabidopsis exhibited delayed seed germination and germination capability to high temperatures. Additionally, DRM1 transgenic Arabidopsis exhibited increased tolerance to heat stress by enhancing antioxidative capacities and regulating stress-associated genes (AtHsp25.3-P, AtHsp18.2-CI, AtHsp70B, AtHsp101, AtGolS1, AtMBF1c, AtHsfA2, AtHsfB1 and AtHsfB2). Overall, our results reveal the role of DRM1 in seed germination and abiotic stress response.
Collapse
Affiliation(s)
- Chunliu Pan
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Yunyi Zhou
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Lixiang Yao
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Liying Yu
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Zhu Qiao
- Guangxi Medicinal Resources Conservation and Genetic Improvement Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China.
| | - Meiqiong Tang
- Guangxi Medicinal Resources Conservation and Genetic Improvement Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China.
| | - Fan Wei
- Guangxi Medicinal Resources Conservation and Genetic Improvement Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China.
| |
Collapse
|
7
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
8
|
Zhao W, Zhang S, Zhu Y, Xi X, Bao P, Ma Z, Kapral T, Chen S, Zagrovic B, Yang Y, Lu Z. POSTAR3: an updated platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Nucleic Acids Res 2022; 50:D287-D294. [PMID: 34403477 PMCID: PMC8728292 DOI: 10.1093/nar/gkab702] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 08/14/2021] [Indexed: 02/02/2023] Open
Abstract
RNA-binding proteins (RBPs) play key roles in post-transcriptional regulation. Accurate identification of RBP binding sites in multiple cell lines and tissue types from diverse species is a fundamental endeavor towards understanding the regulatory mechanisms of RBPs under both physiological and pathological conditions. Our POSTAR annotation processes make use of publicly available large-scale CLIP-seq datasets and external functional genomic annotations to generate a comprehensive map of RBP binding sites and their association with other regulatory events as well as functional variants. Here, we present POSTAR3, an updated database with improvements in data collection, annotation infrastructure, and analysis that support the annotation of post-transcriptional regulation in multiple species including: we made a comprehensive update on the CLIP-seq and Ribo-seq datasets which cover more biological conditions, technologies, and species; we added RNA secondary structure profiling for RBP binding sites; we provided miRNA-mediated degradation events validated by degradome-seq; we included RBP binding sites at circRNA junction regions; we expanded the annotation of RBP binding sites, particularly using updated genomic variants and mutations associated with diseases. POSTAR3 is freely available at http://postar.ncrnalab.org.
Collapse
Affiliation(s)
- Weihao Zhao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shang Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yumin Zhu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaochen Xi
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pengfei Bao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ziyuan Ma
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Thomas H Kapral
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Shuyuan Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Faculty of Science, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Yucheng T Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Liang Q, Song K, Lu M, Dai T, Yang J, Wan J, Li L, Chen J, Zhan R, Wang S. Transcriptome and Metabolome Analyses Reveal the Involvement of Multiple Pathways in Flowering Intensity in Mango. FRONTIERS IN PLANT SCIENCE 2022; 13:933923. [PMID: 35909785 PMCID: PMC9330041 DOI: 10.3389/fpls.2022.933923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/13/2022] [Indexed: 05/19/2023]
Abstract
Mango (Mangifera indica L.) is famous for its sweet flavor and aroma. China is one of the major mango-producing countries. Mango is known for variations in flowering intensity that impacts fruit yield and farmers' profitability. In the present study, transcriptome and metabolome analyses of three cultivars with different flowering intensities were performed to preliminarily elucidate their regulatory mechanisms. The transcriptome profiling identified 36,242 genes. The major observation was the differential expression patterns of 334 flowering-related genes among the three mango varieties. The metabolome profiling detected 1,023 metabolites that were grouped into 11 compound classes. Our results show that the interplay of the FLOWERING LOCUS T and CONSTANS together with their upstream/downstream regulators/repressors modulate flowering robustness. We found that both gibberellins and auxins are associated with the flowering intensities of studied mango varieties. Finally, we discuss the roles of sugar biosynthesis and ambient temperature pathways in mango flowering. Overall, this study presents multiple pathways that can be manipulated in mango trees regarding flowering robustness.
Collapse
Affiliation(s)
- Qingzhi Liang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- *Correspondence: Qingzhi Liang
| | - Kanghua Song
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Mingsheng Lu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Tao Dai
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Jie Yang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Jiaxin Wan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Li Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Jingjing Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Rulin Zhan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Rulin Zhan
| | - Songbiao Wang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Songbiao Wang
| |
Collapse
|
10
|
Mácová K, Prabhullachandran U, Štefková M, Spyroglou I, Pěnčík A, Endlová L, Novák O, Robert HS. Long-Term High-Temperature Stress Impacts on Embryo and Seed Development in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:844292. [PMID: 35528932 PMCID: PMC9075611 DOI: 10.3389/fpls.2022.844292] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/29/2022] [Indexed: 05/22/2023]
Abstract
Brassica napus (rapeseed) is the second most important oilseed crop worldwide. Global rise in average ambient temperature and extreme weather severely impact rapeseed seed yield. However, fewer research explained the phenotype changes caused by moderate-to-high temperatures in rapeseed. To investigate these events, we determined the long-term response of three spring cultivars to different temperature regimes (21/18°C, 28/18°C, and 34/18°C) mimicking natural temperature variations. The analysis focused on the plant appearance, seed yield, quality and viability, and embryo development. Our microscopic observations suggest that embryonic development is accelerated and defective in high temperatures. Reduced viable seed yield at warm ambient temperature is due to a reduced fertilization rate, increased abortion rate, defective embryonic development, and pre-harvest sprouting. Reduced auxin levels in young seeds and low ABA and auxin levels in mature seeds may cause embryo pattern defects and reduced seed dormancy, respectively. Glucosinolates and oil composition measurements suggest reduced seed quality. These identified cues help understand seed thermomorphogenesis and pave the way to developing thermoresilient rapeseed.
Collapse
Affiliation(s)
- Kateřina Mácová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Unnikannan Prabhullachandran
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marie Štefková
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Ioannis Spyroglou
- Plant Sciences Core Facility, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | | | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - Hélène S Robert
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
11
|
Karamat U, Sun X, Li N, Zhao J. Genetic regulators of leaf size in Brassica crops. HORTICULTURE RESEARCH 2021; 8:91. [PMID: 33931619 PMCID: PMC8087820 DOI: 10.1038/s41438-021-00526-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 05/06/2023]
Abstract
Leaf size influences plant development and biomass and is also an important agricultural trait in Brassica crops, in which leaves are the main organ produced for consumption. Leaf size is determined by the coordinated regulation of cell proliferation and cell expansion during leaf development, and these processes are strictly controlled by various integrated signals from the intrinsic regulatory network and the growth environment. Understanding the molecular mechanism of leaf size control is a prerequisite for molecular breeding for crop improvement purposes. Although research on leaf size control is just beginning in Brassica, recent studies have identified several genes and QTLs that are important in leaf size regulation. These genes have been proposed to influence leaf growth through different pathways and mechanisms, including phytohormone biosynthesis and signaling, transcription regulation, small RNAs, and others. In this review, we summarize the current findings regarding the genetic regulators of leaf size in Brassica and discuss future prospects for this research.
Collapse
Affiliation(s)
- Umer Karamat
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China
| | - Xiaoxue Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China.
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China.
| |
Collapse
|
12
|
Roy S, Saxena S, Sinha A, Nandi AK. DORMANCY/AUXIN ASSOCIATED FAMILY PROTEIN 2 of Arabidopsis thaliana is a negative regulator of local and systemic acquired resistance. JOURNAL OF PLANT RESEARCH 2020; 133:409-417. [PMID: 32227262 DOI: 10.1007/s10265-020-01183-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
To fine tune defense response output, plants recruit both positive and negative regulators. Here we report Arabidopsis DORMANCY/AUXIN ASSOCIATED FAMILY PROTEIN 2(DAP2) gene as a negative regulator of basal defense against virulent bacterial pathogens. Expression of DAP2 enhances upon pathogen inoculation. Our experiments show that DAP2 suppressed resistance against virulent strains of bacterial pathogens, pathogen-induced callose deposition, and ROS accumulation; however, it did not influence effector-triggered immunity. In addition, DAP2 negatively regulated systemic acquired resistance (SAR). DAP2 expression was enhanced in the pathogen-free systemic tissues of SAR-induced plants. Previously, Arabidopsis Flowering locus D (FLD) gene has been shown to be essential for SAR but not for local resistance. We show here that FLD function is necessary for SAR-induced expression of DAP2, suggesting DAP2 as a target of FLD for activation of SAR in Arabidopsis.
Collapse
Affiliation(s)
- Shweta Roy
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shobhita Saxena
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aviroop Sinha
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
13
|
Visconti S, D'Ambrosio C, Fiorillo A, Arena S, Muzi C, Zottini M, Aducci P, Marra M, Scaloni A, Camoni L. Overexpression of 14-3-3 proteins enhances cold tolerance and increases levels of stress-responsive proteins of Arabidopsis plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110215. [PMID: 31623776 DOI: 10.1016/j.plantsci.2019.110215] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 05/13/2023]
Abstract
14-3-3 proteins are a family of conserved proteins present in eukaryotes as several isoforms, playing a regulatory role in many cellular and physiological processes. In plants, 14-3-3 proteins have been reported to be involved in the response to stress conditions, such as drought, salt and cold. In the present study, 14-3-3ε and 14-3-3ω isoforms, which were representative of ε and non-ε phylogenetic groups, were overexpressed in Arabidopsis thaliana plants; the effect of their overexpression was investigated on H+-ATPase activation and plant response to cold stress. Results demonstrated that H+-ATPase activity was increased in 14-3-3ω-overexpressing plants, whereas overexpression of both 14-3-3 isoforms brought about cold stress tolerance, which was evaluated through ion leakage, lipid peroxidation, osmolyte synthesis, and ROS production assays. A dedicated tandem mass tag (TMT)-based proteomic analysis demonstrated that different proteins involved in the plant response to cold or oxidative stress were over-represented in 14-3-3ε-overexpressing plants.
Collapse
Affiliation(s)
- Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Chiara D'Ambrosio
- Proteomics & Mass Spectrometry Laboratory ISPAAM, National Research Council, 80147, Naples, Italy.
| | - Anna Fiorillo
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Simona Arena
- Proteomics & Mass Spectrometry Laboratory ISPAAM, National Research Council, 80147, Naples, Italy
| | - Carlo Muzi
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Michela Zottini
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Patrizia Aducci
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mauro Marra
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory ISPAAM, National Research Council, 80147, Naples, Italy
| | - Lorenzo Camoni
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
14
|
Souza GBD, Mendes TADO, Fontes PP, Barros VDA, Gonçalves AB, Ferreira TDF, Costa MDBL, Alves MS, Fietto LG. Genome-wide identification and expression analysis of dormancy-associated gene 1/auxin repressed protein (DRM1/ARP) gene family in Glycine max. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 146:134-141. [PMID: 30914276 DOI: 10.1016/j.pbiomolbio.2019.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/22/2022]
Abstract
Dormancy-Associated gene 1/Auxin Repressed protein (DRM1/ARP) genes are responsive to hormones involved in defense response to biotic stress, such as salicylic acid (SA) and methyl jasmonate (MeJA), as well as to hormones that regulate plant growth and development, including auxins. These characteristics suggest that this gene family may be an important link between the response to pathogens and plant growth and development. In this investigation, the DRM1/ARP genes were identified in the genome of four legume species. The deduced proteins were separated into three distinct groups, according to their sequence conservation. The expression profile of soybean genes from each group was measured in different organs, after treatment with auxin and MeJA and in response to the nematode Meloidogyne javanica. The results demonstrated that this soybean gene family is predominantly expressed in root. The time auxin takes to alter DRM1/ARP expression suggests that these genes can be classified as a late response to auxin. Nevertheless, only the groups 1 and 3 are induced in roots infected by M. javanica and only group 3 is induced by MeJA, which indicates a high level of complexity in expression control mechanisms of DRM1/ARP family in soybean.
Collapse
Affiliation(s)
- Gilza Barcelos de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Patrícia Pereira Fontes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Vanessa de Almeida Barros
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Amanda Bonoto Gonçalves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Thiago de Freitas Ferreira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Maximiller Dal-Bianco Lamas Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Murilo Siqueira Alves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil.
| | - Luciano Gomes Fietto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil.
| |
Collapse
|
15
|
A gene expression map of shoot domains reveals regulatory mechanisms. Nat Commun 2019; 10:141. [PMID: 30635575 PMCID: PMC6329838 DOI: 10.1038/s41467-018-08083-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023] Open
Abstract
Gene regulatory networks control development via domain-specific gene expression. In seed plants, self-renewing stem cells located in the shoot apical meristem (SAM) produce leaves from the SAM peripheral zone. After initiation, leaves develop polarity patterns to form a planar shape. Here we compare translating RNAs among SAM and leaf domains. Using translating ribosome affinity purification and RNA sequencing to quantify gene expression in target domains, we generate a domain-specific translatome map covering representative vegetative stage SAM and leaf domains. We discuss the predicted cellular functions of these domains and provide evidence that dome seemingly unrelated domains, utilize common regulatory modules. Experimental follow up shows that the RABBIT EARS and HANABA TARANU transcription factors have roles in axillary meristem initiation. This dataset provides a community resource for further study of shoot development and response to internal and environmental signals. The shoot apical meristem (SAM) maintains stem cells and generates new leaves and flowers from its periphery. Here via spatially resolved translatome profiling, Tian et al. define distinct molecular signatures of different SAM and leaf domains and identify regulators of axillary meristem initiation.
Collapse
|
16
|
Mombaerts L, Carignano A, Robertson FC, Hearn TJ, Junyang J, Hayden D, Rutterford Z, Hotta CT, Hubbard KE, Maria MRC, Yuan Y, Hannah MA, Goncalves J, Webb AAR. Dynamical differential expression (DyDE) reveals the period control mechanisms of the Arabidopsis circadian oscillator. PLoS Comput Biol 2019; 15:e1006674. [PMID: 30703082 PMCID: PMC6377142 DOI: 10.1371/journal.pcbi.1006674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 02/15/2019] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
The circadian oscillator, an internal time-keeping device found in most organisms, enables timely regulation of daily biological activities by maintaining synchrony with the external environment. The mechanistic basis underlying the adjustment of circadian rhythms to changing external conditions, however, has yet to be clearly elucidated. We explored the mechanism of action of nicotinamide in Arabidopsis thaliana, a metabolite that lengthens the period of circadian rhythms, to understand the regulation of circadian period. To identify the key mechanisms involved in the circadian response to nicotinamide, we developed a systematic and practical modeling framework based on the identification and comparison of gene regulatory dynamics. Our mathematical predictions, confirmed by experimentation, identified key transcriptional regulatory mechanisms of circadian period and uncovered the role of blue light in the response of the circadian oscillator to nicotinamide. We suggest that our methodology could be adapted to predict mechanisms of drug action in complex biological systems.
Collapse
Affiliation(s)
- Laurent Mombaerts
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Alberto Carignano
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Fiona C. Robertson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Timothy J. Hearn
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Jin Junyang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David Hayden
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Zoe Rutterford
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Carlos T. Hotta
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Katherine E. Hubbard
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Marti Ruiz C. Maria
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ye Yuan
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | | | - Jorge Goncalves
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Alex A. R. Webb
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Vyacheslavova AO, Abdeeva IA, Piruzian ES, Bruskin SA. Protein interference for regulation of gene expression in plants. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transcription factors (TFs) play a central role in the gene regulation associated with a plant's development and its response to the environmental factors. The work of TFs is well regulated at each stage of their activities. TFs usually consist of three protein domains required for DNA binding, dimerization, and transcriptional regulation. Alternative splicing (AS) produces multiple proteins with varying composition of domains. Recent studies have shown that AS of some TF genes form small proteins (small interfering peptide/small interfering protein, siPEP/siPRoT), which lack one or more domains and negatively regulate target TFs by the mechanism of protein interference (peptide interference/protein interference, PEPi/PROTi). The presence of an alternative form for the transcription factor CCA1 of Arabidopsis thaliana, has been shown to be involved in the regulation of the response to cold stress. For the PtFLC protein, one of the isoforms was found, which is formed as a result of alternative splicing and acts as a negative repressor, binding to the full-length TF PtFLC and therefore regulating the development of the Poncirus trifoliata. For A. thaliana, a FLM gene was found forming the FLM-б isoform, which acts as a dominant negative regulator and stimulates the development of the flower formation process due to the formation of a heterodimer with SVP TF. Small interfering peptides and proteins can actively participate in the regulation of gene expression, for example, in situations of stress or at different stages of plant development. Moreover, small interfering peptides and proteins can be used as a tool for fundamental research on the function of genes as well as for applied research for permanent or temporary knockout of genes. In this review, we have demonstrated recent studies related to siPEP/siPROT and their involvement in the response to various stresses, as well as possible ways to obtain small proteins.
Collapse
|
18
|
Liu Y, Wu J, Sun N, Tu C, Shi X, Cheng H, Liu S, Li S, Wang Y, Zheng Y, Uversky VN. Intrinsically Disordered Proteins as Important Players during Desiccation Stress of Soybean Radicles. J Proteome Res 2017; 16:2393-2409. [PMID: 28525284 DOI: 10.1021/acs.jproteome.6b01045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) play a variety of important physiological roles in all living organisms. However, there is no comprehensive analysis of the abundance of IDPs associated with environmental stress in plants. Here, we show that a set of heat-stable proteins (i.e., proteins that do not denature after boiling at 100 °C for 10 min) was present in R0mm and R15mm radicles (i.e., before radicle emergence and 15 mm long radicles) of soybean (Glycine max) seeds. This set of 795 iTRAQ-quantified heat-stable proteins contained a high proportion of wholly or highly disordered proteins (15%), which was significantly higher than that estimated for the whole soybean proteome containing 55,787 proteins (9%). The heat-stable proteome of soybean radicles that contain many IDPs could protect lactate dehydrogenase (LDH) during freeze-thaw cycles. Comparison of the 795 heat-stable proteins in the R0mm and R15mm soybean radicles revealed that many of these proteins changed abundance during seedling growth with 170 and 89 proteins being more abundant in R0mm and R15mm, respectively. KEGG analysis identified 18 proteins from the cysteine and methionine metabolism pathways and nine proteins from the phenylpropanoid biosynthesis pathway. As an important type of IDP related to stress, 30 late embryogenesis abundant proteins were also found. Ten selected proteins with high levels of predicted intrinsic disorder were able to efficiently protect LDH from the freeze-thaw-induced inactivation, but the protective ability was not correlated with the disorder content of these proteins. These observations suggest that protection of the enzymes and other proteins in a stressed cell can be one of the biological functions of plant IDPs.
Collapse
Affiliation(s)
- Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Jiahui Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Nan Sun
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo , 285 Kapoor Hall, Buffalo, New York14260, United States
| | - Xiaoying Shi
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Hua Cheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Simu Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Shuiming Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yong Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yizhi Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard MDC07, Tampa, Florida 33612, United States
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
19
|
DeForte S, Uversky VN. Quarterly intrinsic disorder digest (April-May-June, 2014). INTRINSICALLY DISORDERED PROTEINS 2017; 5:e1287505. [PMID: 28321370 DOI: 10.1080/21690707.2017.1287505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This is the 6th issue of the Digested Disorder series that continues to use only 2 criteria for inclusion of a paper to this digest: The publication date (a paper should be published within the covered time frame) and the topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the second quarter of 2014; i.e., during the period of April, May, and June of 2014. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included papers a short description is given on its major findings.
Collapse
Affiliation(s)
- Shelly DeForte
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Département De Biochimie and Centre Robert-Cedergren, Bio-Informatique et Génomique, Université de Montréal, Succursale Centre-Ville, Montreal, Quebec, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute of Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
20
|
Tedeschi F, Rizzo P, Rutten T, Altschmied L, Bäumlein H. RWP-RK domain-containing transcription factors control cell differentiation during female gametophyte development in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1909-1924. [PMID: 27870062 DOI: 10.1111/nph.14293] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/17/2016] [Indexed: 05/02/2023]
Abstract
The formation of gametes is a prerequisite for any sexually reproducing organism in order to complete its life cycle. In plants, female gametes are formed in a multicellular tissue, the female gametophyte or embryo sac. Although the events leading to the formation of the female gametophyte have been morphologically characterized, the molecular control of embryo sac development remains elusive. We used single and double mutants as well as cell-specific marker lines to characterize a novel class of gene regulators in Arabidopsis thaliana, the RWP-RK domain-containing (RKD) transcription factors. Morphological and histological analyses were conducted using confocal laser scanning and differential interference contrast microscopy. Gene expression and transcriptome analyses were performed using quantitative reverse transcription-PCR and RNA sequencing, respectively. Our results showed that RKD genes are expressed during distinct stages of embryo sac development. Morphological analysis of the mutants revealed severe distortions in gametophyte polarity and cell differentiation. Transcriptome analysis revealed changes in the expression of several gametophyte-specific gene families (RKD2 and RKD3) and ovule development-specific genes (RKD3), and identified pleiotropic effects on phytohormone pathways (RKD5). Our data provide novel insight into the regulatory control of female gametophyte development. RKDs are involved in the control of cell differentiation and are required for normal gametophytic development.
Collapse
Affiliation(s)
- Francesca Tedeschi
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Paride Rizzo
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Lothar Altschmied
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Helmut Bäumlein
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| |
Collapse
|
21
|
Ben Daniel BH, Cattan E, Wachtel C, Avrahami D, Glick Y, Malichy A, Gerber D, Miller G. Identification of novel transcriptional regulators of Zat12 using comprehensive yeast one-hybrid screens. PHYSIOLOGIA PLANTARUM 2016; 157:422-441. [PMID: 26923089 DOI: 10.1111/ppl.12439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
To appropriately acclimate to environmental stresses, plants have to rapidly activate a specific transcriptional program. Yet, the identity and function of many of the transcriptional regulators that mediate early responses to abiotic stress stimuli is still unknown. In this work we employed the promoter of the multi-stress-responsive zinc-finger protein Zat12 in yeast one-hybrid (Y1H) screens to identify early abiotic stress-responsive transcriptional regulators. Analysis of Zat12 promoter fragments fused to luciferase underlined an approximately 200 bp fragment responsive to NaCl and to reactive oxygen species (ROS). Using these segments and others as baits against Y1H control or stress Arabidopsis prey libraries, we identified 15 potential Zat12 transcriptional regulators. Among the prominent proteins identified were known transcription factors including bZIP29 and ANAC91 as well as unknown function proteins such as a homolog of the human USB1, a U6 small nuclear RNA (snRNA) processing protein, and dormancy/auxin-associated family protein 2 (DRM2). Altered expression of Zat12 during high light stress in the knockout mutants further indicated the involvement of these proteins in the regulation of Zat12. Using a state of the art microfluidic approach we showed that AtUSB1 and DRM2 can specifically bind dsDNA and were able to identify the preferred DNA-binding motif of all four proteins. Overall, the proteins identified in this work provide an important start point for charting the earliest signaling network of Zat12 and of other genes required for acclimation to abiotic stresses.
Collapse
Affiliation(s)
- Bat-Hen Ben Daniel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Esther Cattan
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Chaim Wachtel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Dorit Avrahami
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- The Nanotechnology Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Yair Glick
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- The Nanotechnology Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Asaf Malichy
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- The Nanotechnology Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Doron Gerber
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- The Nanotechnology Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Gad Miller
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
22
|
Poupin MJ, Greve M, Carmona V, Pinedo I. A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN. FRONTIERS IN PLANT SCIENCE 2016; 7:492. [PMID: 27148317 PMCID: PMC4828629 DOI: 10.3389/fpls.2016.00492] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/28/2016] [Indexed: 05/05/2023]
Abstract
Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1) or auxin (axr1-5) signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2), indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control.
Collapse
Affiliation(s)
- María J. Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
- *Correspondence: María J. Poupin,
| | - Macarena Greve
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Vicente Carmona
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Ignacio Pinedo
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| |
Collapse
|
23
|
Sun YW, Tee CS, Ma YH, Wang G, Yao XM, Ye J. Attenuation of Histone Methyltransferase KRYPTONITE-mediated transcriptional gene silencing by Geminivirus. Sci Rep 2015; 5:16476. [PMID: 26602265 PMCID: PMC4658475 DOI: 10.1038/srep16476] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/06/2015] [Indexed: 01/07/2023] Open
Abstract
Although histone H3K9 methylation has been intensively studied in animals and a model plant Arabidopsis thaliana, little is known about the evolution of the histone methyltransferase and its roles in plant biotic stress response. Here we identified a Nicotiana benthamiana homolog of H3K9 histone methyltransferase KRYPTONITE (NbKYP) and demonstrated its fundamental roles on methylation of plant and virus, beside of leading to the suppression of endogenous gene expression and virus replication. NbKYP and another gene encoding DNA methyltransferase CHROMOMETHYLTRANSFERASE 3 (NbCMT3-1) were further identified as the key components of maintenance of transcriptional gene silencing, a DNA methylation involved anti-virus machinery. All three types of DNA methylations (asymmetric CHH and symmetric CHG/CG) were severely affected in NbKYP-silenced plants, but only severe reduction of CHG methylation found in NbCMT3-1-silenced plants. Attesting to the importance of plant histone H3K9 methylation immunity to virus, the virulence of geminiviruses requires virus-encoded trans-activator AC2 which inhibits the expression of KYP via activation of an EAR-motif-containing transcription repressor RAV2 (RELATED TO ABI3 and VP1). The reduction of KYP was correlated with virulence of various similar geminiviruses. These findings provide a novel mechanism of how virus trans-activates a plant endogenous anti-silencing machinery to gain high virulence.
Collapse
Affiliation(s)
- Yan-Wei Sun
- State Key Laboratory of Plant Genomics, Institute of
Microbiology, Chinese Academy of Sciences, Beijing
100101, China
| | - Chuan-Sia Tee
- Temasek Life Sciences Laboratory, National University of
Singapore, Singapore
117604, Singapore
| | - Yong-Huan Ma
- State Key Laboratory of Plant Genomics, Institute of
Microbiology, Chinese Academy of Sciences, Beijing
100101, China
| | - Gang Wang
- Temasek Life Sciences Laboratory, National University of
Singapore, Singapore
117604, Singapore
| | - Xiang-Mei Yao
- State Key Laboratory of Plant Genomics, Institute of
Microbiology, Chinese Academy of Sciences, Beijing
100101, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of
Microbiology, Chinese Academy of Sciences, Beijing
100101, China
- Temasek Life Sciences Laboratory, National University of
Singapore, Singapore
117604, Singapore
| |
Collapse
|
24
|
Sharma N, Tripathi A, Sanan-Mishra N. Profiling the expression domains of a rice-specific microRNA under stress. FRONTIERS IN PLANT SCIENCE 2015; 6:333. [PMID: 26029232 PMCID: PMC4429473 DOI: 10.3389/fpls.2015.00333] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/27/2015] [Indexed: 05/20/2023]
Abstract
Plant microRNAs (miRs) have emerged as important regulators of gene expression under normal as well as stressful environments. Rice is an important cereal crop whose productivity is compromised due to various abiotic stress factors such as salt, heat and drought. In the present study, we have investigated the role of rice-specific Osa-miR820, in indica rice cultivars showing contrasting response to salt stress. The dissection of expression patterns indicated that the miR is present in all the tissues but is enriched in the anther tissues. In salinity, the miR levels are up-regulated in the leaf tissues but down-regulated in the root tissues. To map the deregulation under salt stress comprehensive time kinetics of expression was performed in the leaf and root tissues. The reproductive stages were also analyzed under salt stress. It emerged that a common regulatory scheme for Osa-miR820 expression is present in the salt-susceptible Pusa Basmati 1 and salt-tolerant Pokkali varieties, although there is a variation in the levels of the miR and its target transcript, OsDRM2. The regulation of Osa-miR820 and its target were also studied under other abiotic stresses. This study thus captures the window for the miR-target correlation and the putative role of this regulation is discussed. This will help in gaining useful insights on the role of species specific miRs in plant development and abiotic stress response.
Collapse
Affiliation(s)
| | | | - Neeti Sanan-Mishra
- *Correspondence: Neeti Sanan-Mishra, Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India,
| |
Collapse
|