1
|
Roy A, Chowdhury AS, Ray A, Baidya A, Roychowdhury B, Sarkar D, Sanyal D, Maisnam I, Biswas K, Pandit K, Banerjee M, Raychaudhuri M, Sengupta N, Chakraborty PP, Mukhopadhyay P, Raychaudhuri P, Sahana PK, Palui R, Bhattacharjee R, Mukhopadhyay S, Mukhopadhyay S, Ray S, Goswami S, Chowdhury S, Pramanik S, Swar SC, Ghosh S, Mondal S, Das TC. Diagnostic approach to rickets: an Endocrine Society of Bengal (ESB) consensus statement. Ann Pediatr Endocrinol Metab 2024; 29:284-307. [PMID: 39506343 PMCID: PMC11541088 DOI: 10.6065/apem.2448044.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 11/08/2024] Open
Abstract
Rickets, one of the leading causes of bony deformities and short stature, can be calciopenic (inciting event is defective intestinal calcium absorption) or phosphopenic (inciting event is phosphaturia). Early diagnosis and timely treatment of rickets are crucial for correction of the limb deformities. Guidelines exist for nutritional rickets, but the diagnosis and management of the relatively uncommon forms of rickets are complex. This consensus aims to formulate a simplified diagnostic approach for rickets, especially in resource-limited settings. The consensus statement has been formulated by a 29-member committee from the Endocrine Society of Bengal. The process included forming a working group, conducting a literature review, identifying controversies, drafting, and discussion at a consensus meeting. Participants rated their agreement with the clinical practice points, and a 70% consensus was required. Input integration and further review led to the final consensus statements. Children with suspected rickets should initially be examined for distinctive skeletal deformities. The diagnosis of rickets should be confirmed with characteristic radiographic abnormalities. It is advisable to order tests for serum calcium, inorganic phosphorus (Pi), liver function, 25-hydroxyvitamin D (25OHD), parathyroid hormone, creatinine, and potassium in all patients with rickets. In cases of refractory rickets, it is also recommended that assessments be conducted for spot urine calcium, Pi, creatinine, and, blood gas analysis. In children with rickets and metabolic acidosis, tests for glycosuria, uricosuria, aminoaciduria, low molecular weight proteinuria, and albuminuria should be conducted. In children with resistant calciopenic rickets and sufficient serum 25OHD levels, serum 1,25(OH)2D concentration should be tested. 1,25(OH)2 D and fibroblast growth factor 23 estimation is useful for certain forms of phosphopenic rickets.
Collapse
Affiliation(s)
- Ajitesh Roy
- Department of Endocrinology, Vivekananda Institute of Medical Sciences, Kolkata, India
| | | | - Arindam Ray
- Department of Medicine, College of Medicine & Sagore Dutta Hospital, Kolkata, India
| | - Arjun Baidya
- Department of Endocrinology, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | - Bibek Roychowdhury
- Consultant Endocrinologist and Ex-faculty, West Bengal Medical Education Service, Kolkata, India
| | - Dasarathi Sarkar
- Department of Endocrinology, G.D Hospital & Diabetes Institute, Kolkata, India
| | - Debmalya Sanyal
- Department of Endocrinology, KPC Medical College, Kolkata, India
| | - Indira Maisnam
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education &Research (IPGME&R)/SSKM Hospital, Kolkata, India
| | - Kaushik Biswas
- Department of Endocrinology, Medica Superspecialty Hospital, Kolkata, India
| | - Kaushik Pandit
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education &Research (IPGME&R)/SSKM Hospital, Kolkata, India
| | - Mainak Banerjee
- Department of Endocrinology, Vivekananda Institute of Medical Sciences, Kolkata, India
| | | | - Nilanjan Sengupta
- Department of Endocrinology, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | | | - Pradip Mukhopadhyay
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education &Research (IPGME&R)/SSKM Hospital, Kolkata, India
| | - Pradip Raychaudhuri
- Consultant Endocrinologist and Ex-faculty, West Bengal Medical Education Service, Kolkata, India
| | - Pranab Kumar Sahana
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education &Research (IPGME&R)/SSKM Hospital, Kolkata, India
| | - Rajan Palui
- Department of Endocrinology, The Mission Hospital, Durgapur, India
| | - Rana Bhattacharjee
- Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, India
| | | | - Satinath Mukhopadhyay
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education &Research (IPGME&R)/SSKM Hospital, Kolkata, India
| | - Sayantan Ray
- Department of Endocrinology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Soumik Goswami
- Department of Endocrinology, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | | | | | - Subir Chandra Swar
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education &Research (IPGME&R)/SSKM Hospital, Kolkata, India
| | - Sujoy Ghosh
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education &Research (IPGME&R)/SSKM Hospital, Kolkata, India
| | - Sunetra Mondal
- Department of Endocrinology, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | - Tapas Chandra Das
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education &Research (IPGME&R)/SSKM Hospital, Kolkata, India
| |
Collapse
|
2
|
Wu H, Ying H, Zhao W, Sun Y, Wang Y, Chen X, Li G, Yao Y, Xu S, Li T, Fang L, Sun X, Wang N, Xu J, Guan Q, Xia W, Wang L, Gao L, Zhao J, Xu C. Characterization of Novel PHEX Variants in X-linked Hypophosphatemic Rickets and Genotype-PHEX Activity Correlation. J Clin Endocrinol Metab 2024; 109:2242-2255. [PMID: 38442738 PMCID: PMC11318995 DOI: 10.1210/clinem/dgae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND X-linked hypophosphatemia (XLHR) is the most common genetic form of hypophosphatemic rickets (HR), which is caused by phosphate regulating endopeptidase homolog X-linked (PHEX) gene mutation. At present, the genotype-phenotype relationship of XLHR and the pathogenic role of PHEX are not fully understood. METHODS In this study, we summarized clinical features in a new cohort of 49 HR patients and detected 16 novel PHEX and 5 novel non-PHEX variants. Subsequently, we studied the pathogenesis of new variants by protein expression, glycosylation analysis, subcellular localization, and endopeptidase activity. RESULTS The results showed that missense variants (Q189H and X750R) slightly reduced protein expression without obviously altering protein length and localization, whereas truncating variants significantly impaired the synthesis of PHEX and produced a shorter immature protein in cells. Interestingly, no evident correlation was observed between mutation types and clinical phenotypes. However, when we analyzed the relationship between PHEX activity and serum phosphorus level, we found that patients with low PHEX activity tended to have severe hypophosphatemia and high rickets severity score. Following this observation, we established 2 new knock-in XLHR mouse models with 2 novel Phex variants (c.T1349C and c.C426G, respectively) using CRISPR/Cas9 technology. Both mouse models demonstrated clinical manifestations of XLHR seen in patients, and PhexC426G mice showed more severe phenotype than PhexT1349C mice, which further confirmed the rationality of genotype-PHEX enzymatic activity correlation analysis. CONCLUSION Therefore, our findings demonstrated that novel PHEX variants could disrupt protein function via affecting protein synthesis, post-translational modification, cellular trafficking, and catalytic activity. Our study facilitates a better understanding of XLHR pathogenic mechanism and PHEX activity-phenotype correlation, which is of crucial importance for future diagnosis and treatment of XLHR.
Collapse
Affiliation(s)
- Huixiao Wu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Hui Ying
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Wanyi Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Yan Sun
- Department of Pediatric, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Yanzhou Wang
- Department of Pediatric Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xinyu Chen
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Guimei Li
- Department of Pediatric, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Yangyang Yao
- Department of Pediatric Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Shuo Xu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Tianyou Li
- Department of Pediatric Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Li Fang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Xiaoqing Sun
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Ning Wang
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Jin Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Qingbo Guan
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Li Wang
- Independent Researcher, Tucson, AZ 85705, USA
| | - Ling Gao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| |
Collapse
|
3
|
Pan F, Zhang R, Liu X, Shi X, Xin Q, Qiao D, Li C, Zhang Y, Chen M, Guo W, Luan S, Shao L. Three exonic variants in the PHEX gene cause aberrant splicing in a minigene assay. Front Genet 2024; 15:1353674. [PMID: 38841723 PMCID: PMC11150636 DOI: 10.3389/fgene.2024.1353674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
Background: X-linked hypophosphatemia (XLH, OMIM 307800) is a rare phosphorus metabolism disorder caused by PHEX gene variants. Many variants simply classified as missense or nonsense variants were only analyzed at the DNA level. However, growing evidence indicates that some of these variants may alter pre-mRNA splicing, causing diseases. Therefore, this study aimed to use bioinformatics tools and a minigene assay to ascertain the effects of PHEX variations on pre-mRNA splicing. Methods: We analyzed 174 variants in the PHEX gene described as missense or nonsense variants. Finally, we selected eight candidate variants using bioinformatics tools to evaluate their effects on pre-mRNA splicing using a minigene assay system. The complementary DNA (cDNA) sequence for the PHEX gene (RefSeq NM_000444.6) serves as the basis for DNA variant numbering. Results: Of the eight candidate variants, three were found to cause abnormal splicing. Variants c.617T>G p.(Leu206Trp) and c.621T>A p.(Tyr207*) in exon 5 altered the splicing of pre-mRNA, owing to the activation of a cryptic splice site in exon 5, which produced an aberrant transcript lacking a part of exon 5, whereas variant c.1700G>C p.(Arg567Pro) in exon 16 led to the activation of a cryptic splice site in intron 16, resulting in a partial inclusion of intron 16. Conclusion: Our study employed a minigene system, which has a great degree of flexibility to assess abnormal splicing patterns under the circumstances of patient mRNA samples that are not available, to explore the impact of the exonic variants on pre-mRNA splicing. Based on the aforementioned experimental findings, we demonstrated the importance of analyzing exonic variants at the mRNA level.
Collapse
Affiliation(s)
- Fengjiao Pan
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Ruixiao Zhang
- Department of Emergency, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xuyan Liu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xiaomeng Shi
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Qing Xin
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dan Qiao
- Department of Nephrology, Dalian Medical University, Dalian, China
| | - Changying Li
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Nephrology, Weifang Medical University, Weifang, China
| | - Mengke Chen
- Department of Nephrology, Liaocheng Third People’s Hospital, Liaocheng, China
| | - Wencong Guo
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Shufang Luan
- Department of Medical Insurance Administration, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Iwata E, Sah SK, Chen IP, Reichenberger E. Dental abnormalities in rare genetic bone diseases: Literature review. Clin Anat 2024; 37:304-320. [PMID: 37737444 PMCID: PMC11068025 DOI: 10.1002/ca.24117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
Currently, over 500 rare genetic bone disorders are identified. These diseases are often accompanied by dental abnormalities, which are sometimes the first clue for an early diagnosis. However, not many dentists are sufficiently familiar with phenotypic abnormalities and treatment approaches when they encounter patients with rare diseases. Such patients often need dental treatment but have difficulties in finding a dentist who can treat them appropriately. Herein we focus on major dental phenotypes and summarize their potential causes and mechanisms, if known. We discuss representative diseases, dental treatments, and their effect on the oral health of patients and on oral health-related quality of life. This review can serve as a starting point for dentists to contribute to early diagnosis and further investigate the best treatment options for patients with rare disorders, with the goal of optimizing treatment outcomes.
Collapse
Affiliation(s)
- Eiji Iwata
- Department of Oral and Maxillofacial Surgery, Kakogawa Central City Hospital, Kakogawa, Japan
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shyam Kishor Sah
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Ernst Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| |
Collapse
|
5
|
Fourikou M, Karipiadou A, Ververi A, Savvidou P, Laliotis N, Tsitouras V, Stabouli S, Roilides E, Kollios K. X-linked hypophosphatemia due to a de novo novel splice-site variant in a 7-year-old girl with scaphocephaly, Chiari syndrome type I and syringomyelia. Bone Rep 2024; 20:101731. [PMID: 38226334 PMCID: PMC10788211 DOI: 10.1016/j.bonr.2023.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
X-linked hypophosphatemia (XLH) is a rare X-linked dominant inherited disorder caused by loss-of-function variants in the PHEX gene and characterized by renal phosphate wasting, hypophosphatemia, abnormal vitamin D metabolism, growth retardation and lower limb deformities. We describe a case of XLH-rickets in a 7-year-old girl with scaphocephaly, Chiari syndrome type I and syringomyelia, with a de novo non-canonical splice variant (c.1080-3C > G) in intron 9 of the PHEX gene, that has not been previously described.
Collapse
Affiliation(s)
- Maria Fourikou
- 3rd Department of Paediatrics, Aristotle University of Thessaloniki, Hippokration General Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece
| | - Aristea Karipiadou
- 3rd Department of Paediatrics, Aristotle University of Thessaloniki, Hippokration General Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece
| | - Athina Ververi
- Centre for Genetics of Rare Diseases, Papageorgiou General Hospital, Agiou Pavlou 76, Pavlos Melas 564 29, Thessaloniki, Greece
| | - Parthena Savvidou
- 3rd Department of Paediatrics, Aristotle University of Thessaloniki, Hippokration General Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece
| | - Nikolaos Laliotis
- Department of Orthopaedics, Inter Balkan Medical Center, Asklipiou 10, 57001 Pylaia, Thessaloniki, Greece
| | - Vassilios Tsitouras
- 2nd Neurosurgery Department, Aristotle University of Thessaloniki, Hippokration General Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece
| | - Stella Stabouli
- 1st Department of Paediatrics, Aristotle University of Thessaloniki, Hippokration General Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece
| | - Emmanuel Roilides
- 3rd Department of Paediatrics, Aristotle University of Thessaloniki, Hippokration General Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece
| | - Konstantinos Kollios
- 3rd Department of Paediatrics, Aristotle University of Thessaloniki, Hippokration General Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece
| |
Collapse
|
6
|
Steur J, Bohner L, Jackowski J, Hanisch M, Oelerich O. Oral health and oral-health-related quality of life in people with X-linked hypophosphatemia. BMC Oral Health 2024; 24:259. [PMID: 38383400 PMCID: PMC10880295 DOI: 10.1186/s12903-024-04028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND X-linked hypophosphatemia (XLH) is a type of vitamin D-resistant rickets. It is the most common form of it and is related with oral health problems. This study aimed to analyze the OHRQoL of people suffering from XLH and measure physical oral health to confirm or refute evidence of reduced oral health. METHODS The German version of the Oral Health Impact Profile (OHIP-14G), was used to measure OHRQoL. All study participants underwent clinical examination, and oral health was scored using the Physical Oral Health Index (PhOX). RESULTS A total of 26 people participated in the study, of whom five were male and 21 were female. The average participant age was 40.9 ± 12.8 years. The OHIP-14G score was 14.3 (± 12.1; 95% CI: 9.37. 19.16) points (range 0-44 points). The PhOX score was 77.1 (± 9.9; 95% CI: 73.10-81.13) points (range 61-95 points). CONCLUSIONS The results of this study confirm that oral health and OHRQoL are both reduced in the studied cohort of people affected by XLH. Particular attention should be paid to perfect oral hygiene in people with XLH, as the impaired enamel mineralisation increases the risk of caries and thus also the occurrence of apical infections.
Collapse
Affiliation(s)
- Jannik Steur
- Department of Prosthodontics, University Hospital Münster, Münster, 48149, Germany
| | - Lauren Bohner
- Department of Oral and Maxillofacial Surgery, University Hospital Münster, Münster, 48149, Germany
| | - Jochen Jackowski
- Department of Oral Surgery and Policlinical Ambulance, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 45, Witten, 58448, Germany
| | - Marcel Hanisch
- Department of Oral and Maxillofacial Surgery, University Hospital Münster, Münster, 48149, Germany
- Department of Oral Surgery and Policlinical Ambulance, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 45, Witten, 58448, Germany
| | - Ole Oelerich
- Department of Prosthodontics, University Hospital Münster, Münster, 48149, Germany.
| |
Collapse
|
7
|
AlSubaihin A, Harrington J. Hereditary Rickets: A Quick Guide for the Pediatrician. Curr Pediatr Rev 2024; 20:380-394. [PMID: 36475338 DOI: 10.2174/1573396319666221205123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/10/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
With the increased discovery of genes implicated in vitamin D metabolism and the regulation of calcium and phosphate homeostasis, a growing number of genetic forms of rickets are now recognized. These are categorized into calciopenic and phosphopenic rickets. Calciopenic forms of hereditary rickets are caused by genetic mutations that alter the enzymatic activity in the vitamin D activation pathway or impair the vitamin D receptor action. Hereditary forms of phosphopenic rickets, on the other hand, are caused by genetic mutations that lead to increased expression of FGF23 hormone or that impair the absorptive capacity of phosphate at the proximal renal tubule. Due to the clinical overlap between acquired and genetic forms of rickets, identifying children with hereditary rickets can be challenging. A clear understanding of the molecular basis of hereditary forms of rickets and their associated biochemical patterns allow the health care provider to assign the correct diagnosis, avoid non-effective interventions and shorten the duration of the diagnostic journey in these children. In this mini-review, known forms of hereditary rickets listed on the Online Mendelian Inheritance in Man database are discussed. Further, a clinical approach to identify and diagnose children with hereditary forms of rickets is suggested.
Collapse
Affiliation(s)
- Abdulmajeed AlSubaihin
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- King Saud University Medical City, Riyadh, Saudi Arabia
| | - Jennifer Harrington
- Division of Endocrinology, Women's and Children's Health Network, North Adelaide, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
8
|
Yang G, Mack H, Harraka P, Colville D, Savige J. Ocular manifestations of the genetic renal tubulopathies. Ophthalmic Genet 2023; 44:515-529. [PMID: 37702059 DOI: 10.1080/13816810.2023.2253901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The genetic tubulopathies are rare and heterogenous disorders that are often difficult to identify. This study examined the tubulopathy-causing genes for ocular associations that suggested their genetic basis and, in some cases, the affected gene. METHODS Sixty-seven genes from the Genomics England renal tubulopathy panel were reviewed for ocular features, and for retinal expression in the Human Protein Atlas and an ocular phenotype in mouse models in the Mouse Genome Informatics database. The genes resulted in disease affecting the proximal tubules (n = 24); the thick ascending limb of the loop of Henle (n = 10); the distal convoluted tubule (n = 15); or the collecting duct (n = 18). RESULTS Twenty-five of the tubulopathy-associated genes (37%) had ocular features reported in human disease, 49 (73%) were expressed in the retina, although often at low levels, and 16 (24%) of the corresponding mouse models had an ocular phenotype. Ocular abnormalities were more common in genes affected in the proximal tubulopathies (17/24, 71%) than elsewhere (7/43, 16%). They included structural features (coloboma, microphthalmia); refractive errors (myopia, astigmatism); crystal deposition (in oxalosis, cystinosis) and sclerochoroidal calcification (in Bartter, Gitelman syndromes). Retinal atrophy was common in the mitochondrial-associated tubulopathies. Structural abnormalities and crystal deposition were present from childhood, but sclerochoroidal calcification typically occurred after middle age. CONCLUSIONS Ocular abnormalities are uncommon in the genetic tubulopathies but may be helpful in recognizing the underlying genetic disease. The retinal expression and mouse phenotype data suggest that further ocular associations may become apparent with additional reports. Early identification may be necessary to monitor and treat visual complications.
Collapse
Affiliation(s)
- GeFei Yang
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Heather Mack
- Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Philip Harraka
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Deb Colville
- Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
9
|
Jacob P, Bhavani GS, Udupa P, Wang Z, Hariharan SV, Delampady K, Dalal A, Kamath N, Ikegawa S, Shenoy RD, Handattu K, Shah H, Girisha KM. Exome Sequencing in Monogenic Forms of Rickets. Indian J Pediatr 2023; 90:1182-1190. [PMID: 36692815 PMCID: PMC10627992 DOI: 10.1007/s12098-022-04393-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To understand the phenotypic and genotypic spectrum of genetic forms of rickets in 10 families. METHODS Detailed clinical, radiographic, and biochemical evaluation of 10 families with phenotypes suggestive of a genetic cause of rickets was performed. Molecular testing using exome sequencing aided in the diagnosis of six different forms of known genetic causes. RESULTS Eleven disease-causing variants including five previously reported variants (CYP27B1:c.1319_1325dup, p.(Phe443Profs*24), VDR:c.1171C>T, p.(Arg391Cys), PHEX: c.1586_1586+1del, PHEX: c.1482+5G>C, PHEX: c.58C>T, p.(Arg20*)) and six novel variants (CYP27B1:c.974C>T, p.(Thr325Met), CYP27B1: c.1376G>A, p.(Arg459His), CYP2R1: c.595C>T, p.(Arg199*), CYP2R1:c.1330G>C, p.(Gly444Arg),SLC34A3:c.1336-11_1336-1del, SLC2A2: c.589G>C, p.(Val197Leu)) in the genes known to cause monogenic rickets were identified. CONCLUSION The authors hereby report a case series of individuals from India with a molecular diagnosis of rickets and provide the literature review which would help in enhancing the clinical and molecular profile for rapid and differential diagnosis of rickets.
Collapse
Affiliation(s)
- Prince Jacob
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prajna Udupa
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Sankar V Hariharan
- Department of Pediatrics, Genetics Clinic, SAT Hospital, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Kishan Delampady
- Department of Endocrinology, AJ Hospital & Research Center, Mangalore, Karnataka, India
| | - Ashwin Dalal
- Diagnostics Division, Center for DNA Fingerprinting & Diagnostics, Hyderabad, Telangana, India
| | - Nutan Kamath
- Department of Pediatrics, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shiro Ikegawa
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Rathika D Shenoy
- Department of Pediatrics, K S Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| | - Koushik Handattu
- Department of Pediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hitesh Shah
- Department of Pediatric Orthopedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
10
|
Herrou J, Fechtenbaum J, Rothenbuhler A, Kamenický P, Roux C, Linglart A, Briot K. Development of Spinal Enthesopathies in Adults With X-linked Hypophosphatemia. J Clin Endocrinol Metab 2023; 108:e1524-e1531. [PMID: 37390471 DOI: 10.1210/clinem/dgad383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
CONTEXT Musculoskeletal complications are the main manifestations in adults with X-linked hypophosphatemia (XLH). Enthesopathy significantly impairs quality of life. OBJECTIVE To identify the risk factors associated with the development and progression of spinal enthesopathies in adults with XLH. DESIGN AND SETTING We conducted a retrospective study in the French Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism. PATIENTS Adults XLH patients with 2 EOS® imaging performed at least 2 years apart at the same center between June 2011 and March 2022. The progression of enthesopathies was defined as a new enthesopathy at least 1 intervertebral level in patients with or without presence of enthesopathy at baseline. MAIN OUTCOME MEASURES Demographic, treatment, PHEX mutation with the progression of enthesopathies. RESULTS Fifty-one patients (66.7% of women, mean age 42.1 ± 13.4 years) underwent 2 EOS imaging with an average interval of 5.7 (± 2.31) years.Progression of spinal enthesopathies was observed in 27 (52.9%) patients. In univariate analysis, patients with a progression of spinal enthesopathies were significantly older (P < .0005), were significantly older at treatment initiation (P = .02), presented with dental complications (P = .03), received less frequently treatment during childhood with phosphate and/or vitamin D analogs (P = .06), and presented more frequently with hip osteoarthritis (P = .002) at baseline. In multivariate analysis, none of these factors was associated with a progression of spinal enthesopathies. CONCLUSION This study confirms the high proportion of patients with a progression of spinal enthesopathies. Age seems to be the main factor associated with progression.
Collapse
Affiliation(s)
- Julia Herrou
- Department of Rheumatology, INSERM UMR 1153, Université de Paris-Cité, APHP Centre, Cochin Hospital, 75014 Paris, France
- Department of Rheumatology, APHP Centre, Cochin Hospital, 75014 Paris, France
| | - Jacques Fechtenbaum
- Department of Rheumatology, APHP Centre, Cochin Hospital, 75014 Paris, France
| | - Anya Rothenbuhler
- Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR Network for Rare Bone and Calcium Phosphate Disorders, Paris, France
- Department of Endocrinology and Diabetes for Children, APHP, Bicêtre Paris Saclay Hospital, 94270 Le Kremlin Bicêtre, France
- APHP, Plateforme d'expertise Paris Saclay maladies rares, Bicêtre Paris Saclay Hospital, 94270 Le Kremlin Bicêtre, France
| | - Peter Kamenický
- Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR Network for Rare Bone and Calcium Phosphate Disorders, Paris, France
- Université Paris-Saclay, INSERM UMR-S 1185, Physiologie et Physiopathologie Endocriniennes, 94270 Le Kremlin-Bicêtre, France
| | - Christian Roux
- Department of Rheumatology, INSERM UMR 1153, Université de Paris-Cité, APHP Centre, Cochin Hospital, 75014 Paris, France
- Department of Rheumatology, APHP Centre, Cochin Hospital, 75014 Paris, France
- Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR Network for Rare Bone and Calcium Phosphate Disorders, Paris, France
| | - Agnès Linglart
- Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR Network for Rare Bone and Calcium Phosphate Disorders, Paris, France
- Department of Endocrinology and Diabetes for Children, APHP, Bicêtre Paris Saclay Hospital, 94270 Le Kremlin Bicêtre, France
- APHP, Plateforme d'expertise Paris Saclay maladies rares, Bicêtre Paris Saclay Hospital, 94270 Le Kremlin Bicêtre, France
| | - Karine Briot
- Department of Rheumatology, INSERM UMR 1153, Université de Paris-Cité, APHP Centre, Cochin Hospital, 75014 Paris, France
- Department of Rheumatology, APHP Centre, Cochin Hospital, 75014 Paris, France
- Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR Network for Rare Bone and Calcium Phosphate Disorders, Paris, France
| |
Collapse
|
11
|
Pan H, Yang Y, Xu H, Jin A, Huang X, Gao X, Sun S, Liu Y, Liu J, Lu T, Wang X, Zhu Y, Jiang L. The odontoblastic differentiation of dental mesenchymal stem cells: molecular regulation mechanism and related genetic syndromes. Front Cell Dev Biol 2023; 11:1174579. [PMID: 37818127 PMCID: PMC10561098 DOI: 10.3389/fcell.2023.1174579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets.
Collapse
Affiliation(s)
- Houwen Pan
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
12
|
Borghi M, da Silva LM, Bispo L, Longui CA. A genetic study of a Brazilian cohort of patients with X-linked hypophosphatemia reveals no correlation between genotype and phenotype. Front Pediatr 2023; 11:1215952. [PMID: 37794959 PMCID: PMC10546205 DOI: 10.3389/fped.2023.1215952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Aim X-linked hypophosphatemia (XLH) is the most common inherited form of rickets, and it is caused by pathogenic inactivating variants of the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. The main purpose of this study is to identify the presence of a genotype-phenotype correlation in a cohort of XLH patients. Methods This is a retrospective study including patients diagnosed with hypophosphatemic rickets, confirmed by clinical, radiological, and laboratory findings. Medical records were reviewed for phenotypic analyses. Genomic DNA was extracted from the peripheral blood lymphocytes, and PHEX sequencing was performed by exomic NGS sequencing. The Wilcoxon rank-sum test and the two-tailed Fisher's exact test were employed for the statistical analyses of this study. Results A total of 41 patients were included in this study, and 63.41% (26/41) of the patients were female. The mutation analyses identified 29.27% missense variants and 29.72% nonsense variants, most of them were considered deleterious (66.41%). Six novel deleterious variants in the PHEX gene were detected in seven patients. The median concentrations of pretreatment serum calcium, phosphorus, and parathyroid hormone (PTH) were not significantly different among patients with different genotypes. An orthopedic surgery due to bone deformity was required in 57.69%. Conclusions Our analysis did not identify any specific genotype as a predictor. No significant genotype-phenotype correlation was found, suggesting that the recognition of subjacent pathogenic mutation in the PHEX gene may have limited prognostic value. Despite this finding, genetic testing may be useful for identifying affected individuals early and providing appropriate treatment.
Collapse
Affiliation(s)
- Mauro Borghi
- School of Medical Sciences Santa Casa SP and Pediatric Endocrinology Unit, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
- Hospital São Luiz—Rede D´Or—CMA, Departament of Anesthesiology, São Paulo, Brazil
| | | | - Luciana Bispo
- Laboratório Mendelics, Department of Genetic, São Paulo, Brazil
| | - Carlos A. Longui
- School of Medical Sciences Santa Casa SP and Pediatric Endocrinology Unit, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Ma J, Zhang Y, Ding X, Liang Z, Yang C, Deng Z, He H, Guan Z, Zeng C, Lin Y, Luo X. Co-occurrence of Spondyloepiphyseal Dysplasia and X-Linked Hypophosphatemia in a Three-Generation Chinese Family. Calcif Tissue Int 2023; 113:266-275. [PMID: 37278761 PMCID: PMC10449693 DOI: 10.1007/s00223-023-01104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Rare genetic skeletal disorders (GSDs) remain the major problem in orthopedics and result in significant morbidity in patients, but the causes are highly diverse. Precise molecular diagnosis will benefit management and genetic counseling. This study aims to share the diagnostic experience on a three-generation Chinese family with co-occurrence of spondyloepiphyseal dysplasia (SED) and X-linked hypophosphatemia (XLH), and evaluate the therapeutic effects of two third-generation siblings. The proband, his younger brother, and mother presented with short stature, skeletal problems, and hypophosphatemia. His father, paternal grandfather, and aunt also manifested short stature and skeletal deformities. Whole exome sequencing (WES) of proband-brother-parents initially only found the proband and his younger brother had a pathogenic c.2833G > A(p.G945S) variant in the COL2A1 gene inherited from their father. Re-analysis of WES uncovered the proband and his younger brother also harbored a pathogenic ex.12 del variant in the PHEX gene transmitted from their mother. Sanger sequencing, agarose gel electrophoresis, and quantitative polymerase chain reaction proved these results. The proband and his younger brother were confirmed to have a paternally inherited SED and a maternally inherited XLH. During a 2.8-year follow-up, these two siblings remained short stature and hypophosphatemia, but their radiographic signs and serum bone alkaline phosphatase levels were improved with treatment of oral phosphate and calcitriol. Our study presents the first report of co-occurrence of SED and XLH, shows the possibility that two different rare GSDs co-exist in a single patient, and alerts clinicians and geneticists to be cautious about this condition. Our study also suggests that next-generation sequencing has limit in detecting exon-level large deletions.
Collapse
Affiliation(s)
- Jian Ma
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Ye Zhang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Xiaoxiao Ding
- Department of Child Health, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518028, China
| | - Zhijiang Liang
- Department of Public Health, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Chaoxiang Yang
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Zhi Deng
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Hui He
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Zhihong Guan
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Xianqiong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Guangdong Women and Children Hospital, Guangzhou, 511442, China.
| |
Collapse
|
14
|
Nabeshima Y, Sato T, Zukeran H, Komatsu R, Nakano S, Ichihashi Y, Tominaga T, Miwa M, Amano N, Ishii T, Hasegawa T. Fibroblast growth factor 23 levels in cord and peripheral blood during early neonatal period as possible predictors of affected offspring of X-linked hypophosphatemic rickets: report of three female cases from two pedigrees. J Pediatr Endocrinol Metab 2023; 36:786-790. [PMID: 37342899 DOI: 10.1515/jpem-2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVES The role of serum fibroblast growth factor 23 (FGF23) level in early neonatal period on the diagnosis of X-linked hypophosphatemic rickets (XLH) remains unclear. CASE PRESENTATION Two female patients from the first pedigree had an affected mother, and the other female from the second pedigree had an affected father. In all three cases, FGF23 levels were high in cord blood and peripheral blood at day 4-5. Additionally, the FGF23 levels considerably increased from birth to day 4-5. We identified a PHEX pathogenic variant and initiated treatment during infancy in each case. CONCLUSIONS In neonates with a parent diagnosed as PHEX-associated XLH, FGF23 in cord blood and peripheral blood at day 4-5 may be useful markers for predicting the presence of XLH.
Collapse
Affiliation(s)
- Yukiyo Nabeshima
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Tokyo Metropolitan Hospital Otsuka, Tokyo, Japan
| | - Takeshi Sato
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Hiroaki Zukeran
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Rieko Komatsu
- Department of Pediatrics, Saitama City Hospital, Saitama, Japan
| | - Satsuki Nakano
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yosuke Ichihashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | - Masayuki Miwa
- Department of Pediatrics, Saitama City Hospital, Saitama, Japan
| | - Naoko Amano
- Department of Pediatrics, Saitama City Hospital, Saitama, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Münch J, Goodyer PR, Wagner CA. Tubular Diseases and Stones Seen From Pediatric and Adult Nephrology Perspectives. Semin Nephrol 2023; 43:151437. [PMID: 37968178 DOI: 10.1016/j.semnephrol.2023.151437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The tubular system of the kidneys is a complex series of morphologic and functional units orchestrating the content of tubular fluid as it flows along the nephron and collecting ducts. Renal tubules maintain body water, regulate electrolytes and acid-base balance, reabsorb precious organic solutes, and eliminate specific metabolites, toxins, and drugs. In addition, decisive mechanisms to adjust blood pressure are governed by the renal tubules. Genetic as well as acquired disorders of these tubular functions may cause serious diseases that manifest both in childhood and adulthood. This article addresses a selection of tubulopathies and the underlying pathomechanisms, while highlighting the important differences in pediatric and adult nephrology care. These range from rare monogenic conditions such as nephrogenic diabetes insipidus, cystinosis, and Bartter syndrome that present in childhood, to the genetic and acquired tubular pathologies causing hypertension or nephrolithiasis that are more prevalent in adults. Both pediatric and adult nephrologists must be aware of these conditions and the age-dependent manifestations that warrant close interaction between the two subspecialties.
Collapse
Affiliation(s)
- Johannes Münch
- Institute of Physiology, University of Zurich, Zurich, Switzerland; Institute of Human Genetics, University of Zurich, Zurich, Switzerland; National Center of Competence in Research, NCCR Kidney.CH, Switzerland
| | - Paul R Goodyer
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research, NCCR Kidney.CH, Switzerland.
| |
Collapse
|
16
|
Presentation and Diagnosis of Pediatric X-Linked Hypophosphatemia. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
X-linked hypophosphatemia (XLH) is a rare type of hereditary hypophosphatemic rickets. Patients with XLH have various symptoms that lower their QOL as defined by HAQ, RAPID3, SF36-PCS, and SF36-MCS in adult patients and SF-10 and PDCOI in pediatric patients. Early diagnosis and treatment are needed to reduce the burden, but the condition is often diagnosed late in childhood. The present review aims to summarize the symptoms, radiological and biological characteristics, and long-term prognosis of pediatric XLH. Typical symptoms of XLH are lower leg deformities (age six months or later), growth impairment (first year of life or later), and delayed gross motor development with progressive lower limb deformities (second year of life or later). Other symptoms include dental abscess, bone pain, hearing impairment, and Chiari type 1 malformation. Critical, radiological findings of rickets are metaphyseal widening, cupping, and fraying, which tend to occur in the load-bearing bones. The Rickets Severity Score, validated for XLH, is useful for assessing the severity of rickets. The biochemical features of XLH include elevated FGF23, hypophosphatemia, low 1,25(OH)2D, and elevated urine phosphate. Renal phosphate wasting can be assessed using the tubular maximum reabsorption of phosphate per glomerular filtration rate (TmP/GFR), which yields low values in patients with XLH. XLH should be diagnosed early because the multisystem symptoms often worsen over time. The present review aims to help physicians diagnose XLH at an early stage.
Collapse
|
17
|
Terracciano A, De Bernardi ML, Novizio R, De Brasi D, Iolascon A, Della Monica M, Scavuzzo F, Serino D, Novelli A, Piscopo C. A New de novo Mosaic Mutation of PHEX Gene: A Case Report of a Boy with Hypophosphatemic Rickets. Endocr Metab Immune Disord Drug Targets 2023; 23:1235-1239. [PMID: 36847234 PMCID: PMC10518859 DOI: 10.2174/1871530323666230227142202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND X-linked hypophosphatemia is the most prevalent form of heritable rickets, characterized by an X-linked dominant inheritance pattern. The genetic basis of X-linked hypophosphatemia is a loss-of-function mutation in the PHEX gene (Phosphate regulating gene with Homology to Endopeptidases on the X chromosome), which leads to an enhanced production of phosphaturic hormone FGF23. X-linked hypophosphatemia causes rickets in children and osteomalacia in adults. Clinical manifestations are numerous and variable, including slowdown in growth, swing-through gait and progressive tibial bowing, related to skeletal and extraskeletal actions of FGF23. PHEX gene spans over 220 kb and consists of 22 exons. To date, hereditary and sporadic mutations are known (missense, nonsense, deletions and splice site mutations). CASE PRESENTATION Herein, we describe a male patient carrying a novel de novo mosaic nonsense mutation c.2176G>T (p.Glu726Ter) located in exon 22 of PHEX gene. CONCLUSION We highlight this new mutation among possible causative of X-linked hypophosphatemia and suggest that mosaicism of PHEX mutations is not so uncommon and should be excluded in diagnostic workflow of heritable rickets both in male and female patients.
Collapse
Affiliation(s)
- Alessandra Terracciano
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | | | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | | | | | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carmelo Piscopo
- Medical and Laboratory Genetic Unit, Cardarelli Hospital, Naples, Italy
| |
Collapse
|
18
|
Impact of X-Linked Hypophosphatemia on Muscle Symptoms. Genes (Basel) 2022; 13:genes13122415. [PMID: 36553684 PMCID: PMC9778127 DOI: 10.3390/genes13122415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
X-linked hypophosphatemia (XLH) is the most common hereditary form of rickets and deficiency of renal tubular phosphate transport in humans. XLH is caused by the inactivation of mutations within the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene and follows an X-dominant transmission. It has an estimated frequency of 1 case per 20,000, and over 300 distinct pathogenic variations have been reported that result in an excess of fibroblast growth factor 23 (FGF23) in the serum. Increased levels of FGF23 lead to renal phosphate loss, decreased serum 1,25-dihydroxyvitamin D, and increased metabolism of 1,25-dihydoxyvitamin D, resulting in hypophosphatemia. Major clinical manifestations include rickets, bone deformities, and growth retardation that develop during childhood, and osteomalacia-related fractures or pseudo-fractures, degenerative osteoarthritis, enthesopathy, dental anomalies, and hearing loss during adulthood, which can affect quality of life. In addition, fatigue is also a common symptom in patients with XLH, who experience decreased motion, muscle weakness, and pain, contributing to altered quality of life. The clinical and biomedical characteristics of XLH are extensively defined in bone tissue since skeletal deformations and mineralization defects are the most evident effects of high FGF23 and low serum phosphate levels. However, despite the muscular symptoms that XLH causes, very few reports are available on the effects of FGF23 and phosphate in muscle tissue. Given the close relationship between bones and skeletal muscles, studying the effects of FGF23 and phosphate on muscle could provide additional opportunities to understand the interactions between these two important compartments of the body. By describing the current literature on XLH and skeletal muscle dysfunctions, the purpose of this review is to highlight future areas of research that could contribute to a better understanding of XLH muscular disability and its management.
Collapse
|
19
|
Tavana N, Ting TH, Lai K, Kennerson ML, Thilakavathy K. Whole exome sequencing identifies two novel variants in PHEX and DMP1 in Malaysian children with hypophosphatemic rickets. Ital J Pediatr 2022; 48:193. [PMID: 36482408 PMCID: PMC9730657 DOI: 10.1186/s13052-022-01385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hypophosphatemic rickets (HR) is a genetic disease of phosphate wasting that is characterized by defective bone mineralization. The most common cause of the disease is mutations in the phosphate regulating gene with homologies to endopeptidases on the X chromosome (PHEX) gene. The aims of this study were to identify the gene variants responsible for HR in three cases of Malaysian origin from three independent families and to describe their clinical, biochemical, and radiological features. METHODS Whole exome sequencing (WES) was performed on all patients and their parents, followed by Sanger sequencing validation. Bioinformatics tools were used to provide supporting evidence for pathogenicity of variants. To confirm that a mutation is de novo, paternity test was carried out. High resolution melting curve analysis was performed to assess the allele frequency in normal controls for mutations that were found in the patients. RESULTS The patients showed typical characteristics of HR including lower limb deformity, hypophosphatemia, and elevated alkaline phosphatase. WES revealed two variants in the PHEX gene and one variant in the dentin matrix protein 1 (DMP1) gene. Two of the three variants were novel, including c.1946_1954del (p.Gly649_Arg651del) in PHEX and c.54 + 1G > A in DMP1. Our data suggests that the novel p.Gly649_Arg651del variant is likely pathogenic for HR disease. CONCLUSIONS This study extends the variant spectrum of the PHEX and DMP1 genes. Our findings indicate that WES is an advantageous approach for diagnosis of genetic diseases which are heterogeneous.
Collapse
Affiliation(s)
- Nahid Tavana
- grid.11142.370000 0001 2231 800XDepartment of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor Malaysia
| | - Tzer Hwu Ting
- grid.11142.370000 0001 2231 800XDepartment of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor Malaysia
| | - Kaitao Lai
- grid.1013.30000 0004 1936 834XNorthcott Neuroscience Laboratory, ANZAC Research Institute, University of Sydney, Concord, NSW Australia ,grid.1013.30000 0004 1936 834XSydney Medical School, University of Sydney, Sydney, NSW Australia
| | - Marina L. Kennerson
- grid.1013.30000 0004 1936 834XNorthcott Neuroscience Laboratory, ANZAC Research Institute, University of Sydney, Concord, NSW Australia ,grid.414685.a0000 0004 0392 3935Molecular Medicine Laboratory, Concord Hospital, Concord, NSW Australia
| | - Karuppiah Thilakavathy
- grid.11142.370000 0001 2231 800XDepartment of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor Malaysia ,grid.11142.370000 0001 2231 800XGenetics and Regenerative Medicine Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor Malaysia
| |
Collapse
|
20
|
Alhamoudi KM, Alghamdi B, Alswailem M, Nasir A, Aljomaiah A, Al-Hindi H, Alzahrani AS. A Unique Mechanism of a Novel Synonymous PHEX Variant Causing X-Linked Hypophosphatemia. J Clin Endocrinol Metab 2022; 107:2883-2891. [PMID: 35896147 DOI: 10.1210/clinem/dgac435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Synonymous mutations are usually nonpathogenic. OBJECTIVE We report here a family with X-linked hypophosphatemia (XLH) due to a novel synonymous PHEX variant with a unique mechanism. METHODS We studied a 4-member family (a mother, a son, and 2 daughters), all affected with XLH. Genomic DNA was extracted from peripheral leucocytes. Whole exome sequencing (WES) was used to identify the underlying genetic variant in the proband (the son). Sanger sequencing was used to confirm this variant in the proband and his family members. RT-PCR and sequencing of the cDNA revealed the effect of this variant on the PHEX structure and function. RESULTS A synonymous variant in the PHEX gene (c.1701A>C) was identified in all affected members. This variant changes the first nucleotide of exon 17 from adenine to cytosine. Using RT-PCR, this variant was shown to interfere with splicing of exons 16 with 17 resulting in a single shorter PHEX transcript in the proband compared to normal control. Sanger sequencing of the cDNA revealed a complete skipping of exon 17 and direct splicing of exons 16 and 18. This led to a frameshift and an introduction of a new stop codon in the next codon (codon 568), which ultimately led to truncation and loss of the final 183 amino acids of PHEX. CONCLUSION This novel variant shows how a synonymous exonic mutation may induce a complex series of changes in the transcription and translation of the gene and causes a disease, a mechanism that is not commonly recognized.
Collapse
Affiliation(s)
- Kheloud M Alhamoudi
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, MBC#03, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Balgees Alghamdi
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, MBC#03, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, MBC#03, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Abdul Nasir
- Department of Molecular science and Technology, Ajou University, Suwon, 443-749, South Korea
| | - Abeer Aljomaiah
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, P.O Box 3354, Riyadh 11211, Saudi Arabia
| | - Hindi Al-Hindi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital & Research Centre, P.O Box 3354, Riyadh 11211, Saudi Arabia
| | - Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, MBC#03, PO BOX 3354, Riyadh, 11211, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, P.O Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
21
|
Pathogenic Variants of the PHEX Gene. ENDOCRINES 2022. [DOI: 10.3390/endocrines3030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Twenty-five years ago, a pathogenic variant of the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene was identified as the cause of X-linked hypophosphatemic rickets (XLH). Subsequently, the overproduction of fibroblast growth factor 23 (FGF23) due to PHEX defects has been found to be associated with XLH pathophysiology. However, the mechanism by which PHEX deficiency contributes to the upregulation of FGF23 and the function of PHEX itself remain unclear. To date, over 700 pathogenic variants have been identified in patients with XLH, and functional assays and genotype–phenotype correlation analyses based on pathogenic variant data derived from XLH patients have been reported. Genetic testing for XLH is useful for the diagnosis. Not only have single-nucleotide variants causing missense, nonsense, and splicing variants and small deletion/insertion variants causing frameshift/non-frameshift alterations been observed, but also gross deletion/duplication variants causing copy number variants have been reported as pathogenic variants in PHEX. With the development of new technologies including next generation sequencing, it is expected that an increasing number of pathogenic variants will be identified. This chapter aimed to summarize the genotype of PHEX and related analyses and discusses the pathophysiology of PHEX defects to seek clues on unsolved questions.
Collapse
|
22
|
Jurca CM, Iuhas O, Kozma K, Petchesi CD, Zaha DC, Bembea M, Jurca S, Paul C, Jurca AD. Effects of Burosumab Treatment on Two Siblings with X-Linked Hypophosphatemia. Case Report and Literature Review. Genes (Basel) 2022; 13:genes13081392. [PMID: 36011303 PMCID: PMC9407333 DOI: 10.3390/genes13081392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
X-linked hypophosphatemia (XLH) or vitamin D-resistant rickets (MIM#307800), is a monogenic disorder with X-linked inheritance. It is caused by mutations present in the Phosphate Regulating Endopeptidase Homolog X-Linked (PHEX) gene responsible for the degradation of the bone-derived hormone fibroblast growth factor 23 (FGF23) into inactive fragments, but the entire mechanism is currently unclear. The inactivation of the gene prevents the degradation of FGF23, causing increased levels of FGF23, which leads to decreased tubular reabsorbtion of phosphorus. Clinical aspects are growth delay, limb deformities, bone pain, osteomalacia, dental anomalies, and enthesopathy. Laboratory evaluation shows hypophosphatemia, elevated alkaline phosphatase (ALP), and normal serum calcium levels, whereas parathormone (PTH) may be normal or increased and FGF23 greatly increased. Conventional treatment consists of administration of oral phosphate and calcitriol. Treatment with Burosumab, a monoclonal antibody that binds to FGF23, reducing its activity, was approved in 2018. Methods. We describe a case of two siblings, a girl and a boy, diagnosed with XLH, monitored by the Genetic Department of the County Emergency Clinical Hospital since 2019. The clinical picture is suggestive for XLH, both siblings exhibiting short stature, lower limb curvature, bone pain, marked walking weakness, and fatigue. Radiological aspects showed marked deformity of the lower limbs: genu varum in the girl, genu varum and valgum in the boy. Laboratory investigations showed hypophosphathemia, hyperphosphaturia, elevated ALP, normal PTH, and highly increased FGF23 in both. DNA analysis performed on the two siblings revealed a nonsense mutation in exone 5 of the PHEX gene: NM_000444.6(PHEX):c.565C > T (p.Gln189Ter). Results. At the age of 13½ on 7 June 2021, the two children started treatment with Burosumab in therapeutic doses and were monitored clinically and biochemically at regular intervals according to the protocol established by the Endocrinology Commission of the Romanian Health Ministry. Conclusions. The first results of the Burosumab treatment in the two siblings are extremely encouraging and suggest a favorable long-term evolution under this treatment.
Collapse
Affiliation(s)
- Claudia Maria Jurca
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea, Romania, (Part of ERN THACA), 410469 Oradea, Romania
| | - Oana Iuhas
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea, Romania, (Part of ERN THACA), 410469 Oradea, Romania
| | - Kinga Kozma
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea, Romania, (Part of ERN THACA), 410469 Oradea, Romania
| | - Codruta Diana Petchesi
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
- Correspondence:
| | - Dana Carmen Zaha
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
| | - Marius Bembea
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
| | - Sanziana Jurca
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
| | - Corina Paul
- Department of Pediatrics, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alexandru Daniel Jurca
- Faculty of Medicine and Pharmacy, Department of Preclinical Disciplines, 1 December Sq., University of Oradea, 410081 Oradea, Romania
| |
Collapse
|
23
|
El Hakam C, Parenté A, Baraige F, Magnol L, Forestier L, Di Meo F, Blanquet V. PHEX L222P Mutation Increases Phex Expression in a New ENU Mouse Model for XLH Disease. Genes (Basel) 2022; 13:1356. [PMID: 36011266 PMCID: PMC9407253 DOI: 10.3390/genes13081356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023] Open
Abstract
PhexL222P mouse is a new ENU mouse model for XLH disease due to Leu to Pro amino acid modification at position 222. PhexL222P mouse is characterized by growth retardation, hypophosphatemia, hypocalcemia, reduced body bone length, and increased epiphyseal growth plate thickness and femur diameter despite the increase in PHEXL222P expression. Actually, PhexL222P mice show an increase in Fgf23, Dmp1, and Mepe and Slc34a1 (Na-Pi IIa cotransporter) mRNA expression similar to those observed in Hyp mice. Femoral osteocalcin and sclerostin and Slc34a1 do not show any significant variation in PhexL222P mice. Molecular dynamics simulations support the experimental data. P222 might locally break the E217-Q224 β-sheet, which in turn might disrupt inter-β-sheet interactions. We can thus expect local protein misfolding, which might be responsible for the experimentally observed PHEXL222P loss of function. This model could be a valuable addition to the existing XLH model for further comprehension of the disease occurrence and testing of new therapies.
Collapse
Affiliation(s)
- Carole El Hakam
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Alexis Parenté
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Fabienne Baraige
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Laetitia Magnol
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Lionel Forestier
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Florent Di Meo
- INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France;
| | - Véronique Blanquet
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| |
Collapse
|
24
|
Cao Y, You Y, Wang Q, Ren X, Li S, Li L, Xia W, Guan X, Yang T, Ikegawa S, Wang Z, Zhao X. Identification of six novel variants from nine Chinese families with hypophosphatemic rickets. BMC Med Genomics 2022; 15:161. [PMID: 35842615 PMCID: PMC9287957 DOI: 10.1186/s12920-022-01305-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Background Hypophosphatemic rickets (HR) is a rare genetic disorder associated with renal phosphate wasting and characterized by bone defects. Inactivating mutations in the phosphate regulating endopeptidase homolog X‑linked gene (PHEX) account for most cases of HR. The aim of this study was to identify causative variants in nine unrelated Chinese families associated with HR, and to determine potential pathogenicity of the identified variants. Methods Genomic DNA was isolated from the peripheral blood of HR patients and their healthy relatives, followed by next-generation sequencing and/or Sanger sequencing. In silico prediction combined with conservation analysis was performed to assess the effects of the variants, and 3D protein modeling was conducted to predict the functional effects on the encoded protein. Results All HR patients recruited in this study displayed bone deformities and tooth agenesis, as well as reduced serum phosphate levels and elevated urine phosphate levels. Nine PHEX variants were identified in eight families, including four novel variants (c.1661_1726del, c.980A > G, c.1078A > T, and c.1017_1051dup). Of the nine identified PHEX variants, five caused a truncated protein, two caused an altered amino acid, and the other two were the canonical splicing variants. Novel variants c.1336G > A and c.1364 T > C in SLC34A3 were also found in one family. Conservation analysis showed that all the amino acids corresponding to the missense variants were highly conserved. In silico analysis and 3D protein structure modeling confirmed the pathogenicity of these variants. Conclusions This study identified four novel variants in PHEX and two novel variants in SLC34A3 in a Chinese cohort with HR. Our findings highlight the dominant role of PHEX in HR, and expand the genotypic and phenotypic spectra of this disorder. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01305-w.
Collapse
Affiliation(s)
- Yixuan Cao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yi You
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Qiong Wang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xiuzhi Ren
- The People's Hospital of Wuqing District, Tianjin, 301700, China
| | - Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Lulu Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xin Guan
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Tao Yang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences (IMS), Tokyo, 108-8639, Japan
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences (IMS), Tokyo, 108-8639, Japan
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
25
|
Scorcelletti M, Kara S, Zange J, Jordan J, Semler O, Schönau E, Rittweger J, Ireland A, Seefried L. Lower limb bone geometry in adult individuals with X-linked hypophosphatemia: an observational study. Osteoporos Int 2022; 33:1601-1611. [PMID: 35435480 PMCID: PMC9187561 DOI: 10.1007/s00198-022-06385-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/25/2022] [Indexed: 12/05/2022]
Abstract
UNLABELLED We assessed lower-limb geometry in adults with X-linked hypophosphatemia (XLH) and controls. We found large differences in multiple measures including femoral and tibial torsion, bowing and cross-sectional area and acetabular version and coverage which may contribute to clinical problems such as osteoarthritis, fractures and altered gait common in XLH. PURPOSE Individuals with X-linked hypophosphatemia (XLH) are at risk of lower-limb deformities and early onset of osteoarthritis. These two factors may be linked, as altered biomechanics is a risk factor for osteoarthritis. This exploratory evaluation aims at providing clues and concepts for this association to facilitate future larger-scale and longitudinal studies on that aspect. METHODS For this observational study, 13 patients with XLH, aged 18-65 years (6 female), were compared with sex-, age- and weight-matched healthy individuals at a single German research centre. Femoral and hip joint geometry, including femoral and tibial torsion and femoral and tibial shaft bowing, bone cross-sectional area (CSA) and acetabular version and coverage were measured from magnetic resonance imaging (MRI) scans. RESULTS Total femoral torsion was 29° lower in individuals with XLH than in controls (p < 0.001), mainly resulting from lower intertrochanteric torsion (ITT) (p < 0.001). Femoral lateral and frontal bowing, tibial frontal bowing, mechanical axis, femoral mechanical-anatomical angle, acetabular version and acetabular coverage were all greater and tibial torsion lower in individuals with XLH as compared to controls (all p < 0.05). Greater femoral total and marrow cavity CSA, greater tibial marrow cavity CSA and lower cortical CSA were observed in XLH (all p < 0.05). DISCUSSION We observed large differences in clinically relevant measures of tibia and particularly femur bone geometry in individuals with XLH compared to controls. These differences may plausibly contribute to clinical manifestations of XLH such as early-onset osteoarthritis, pseudofractures and altered gait and therefore should be considered when planning corrective surgeries.
Collapse
Affiliation(s)
- Matteo Scorcelletti
- Research Centre for Musculoskeletal Science and Sports Medicine, Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Serhan Kara
- Division of Muscle and Bone Metabolism, Institute of Aerospace Medicine DLR, Cologne, Germany
| | - Jochen Zange
- Division of Muscle and Bone Metabolism, Institute of Aerospace Medicine DLR, Cologne, Germany
| | - Jens Jordan
- Division of Muscle and Bone Metabolism, Institute of Aerospace Medicine DLR, Cologne, Germany
| | - Oliver Semler
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Eckhard Schönau
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Jörn Rittweger
- Division of Muscle and Bone Metabolism, Institute of Aerospace Medicine DLR, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Alex Ireland
- Research Centre for Musculoskeletal Science and Sports Medicine, Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Lothar Seefried
- Orthopaedic Department, University of Würzburg, Wurzburg, Germany.
| |
Collapse
|
26
|
Trombetti A, Al-Daghri N, Brandi ML, Cannata-Andía JB, Cavalier E, Chandran M, Chaussain C, Cipullo L, Cooper C, Haffner D, Harvengt P, Harvey NC, Javaid MK, Jiwa F, Kanis JA, Laslop A, Laurent MR, Linglart A, Marques A, Mindler GT, Minisola S, Yerro MCP, Rosa MM, Seefried L, Vlaskovska M, Zanchetta MB, Rizzoli R. Interdisciplinary management of FGF23-related phosphate wasting syndromes: a Consensus Statement on the evaluation, diagnosis and care of patients with X-linked hypophosphataemia. Nat Rev Endocrinol 2022; 18:366-384. [PMID: 35484227 DOI: 10.1038/s41574-022-00662-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
X-linked hypophosphataemia (XLH) is the most frequent cause of hypophosphataemia-associated rickets of genetic origin and is associated with high levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23). In addition to rickets and osteomalacia, patients with XLH have a heavy disease burden with enthesopathies, osteoarthritis, pseudofractures and dental complications, all of which contribute to reduced quality of life. This Consensus Statement presents the outcomes of a working group of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases, and provides robust clinical evidence on management in XLH, with an emphasis on patients' experiences and needs. During growth, conventional treatment with phosphate supplements and active vitamin D metabolites (such as calcitriol) improves growth, ameliorates leg deformities and dental manifestations, and reduces pain. The continuation of conventional treatment in symptom-free adults is still debated. A novel therapeutic approach is the monoclonal anti-FGF23 antibody burosumab. Although promising, further studies are required to clarify its long-term efficacy, particularly in adults. Given the diversity of symptoms and complications, an interdisciplinary approach to management is of paramount importance. The focus of treatment should be not only on the physical manifestations and challenges associated with XLH and other FGF23-mediated hypophosphataemia syndromes, but also on the major psychological and social impact of the disease.
Collapse
Affiliation(s)
- Andrea Trombetti
- Division of Bone Diseases, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Jorge B Cannata-Andía
- Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Retic REDinREN-RICORS, 2040-ISCIII, Madrid, Spain
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liege, CHU de Liège, Liège, Belgium
| | - Manju Chandran
- Complicated Metabolic Bone Disorders Clinic, Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Catherine Chaussain
- Université de Paris, Institut des maladies musculo-squelettiques, URP2496, UFR Odontologie, Montrouge, France
- AP-HP, FHU DDS-Net, Centre de Référence des Maladies Rares du Métabolisme du Calcium et du Phosphore, Service médecine bucco-dentaire, Hôpital Bretonneau, GH Paris Nord Université de Paris, Paris, France
| | - Lucia Cipullo
- Patient representative with XLH, Geneva, Switzerland
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Dieter Haffner
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Pol Harvengt
- XLH Belgium, Belgian association of patients with XLH (a member of the International XLH Alliance), Waterloo, Belgium
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Famida Jiwa
- Chair of the Committee of Patients Societies at the International Osteoporosis Foundation, Osteoporosis Canada, Toronto, Canada
| | - John A Kanis
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK
| | - Andrea Laslop
- Scientific Office, Federal Office for Safety in Health Care, Vienna, Austria
| | - Michaël R Laurent
- Centre for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Agnès Linglart
- Paris-Saclay University, INSERM U1185, Le Kremlin-Bicêtre, France
- AP-HP, endocrinology and diabetes for children, Reference centre for rare diseases of calcium and phosphate metabolism, OSCAR network, Platform of expertise for rare diseases of Paris Saclay Hospital, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre, France
| | - Andréa Marques
- Rheumatology Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
- Health Sciences Research Unit: Nursing (UICiSA:E), Nursing School of Coimbra, Coimbra, Portugal
| | - Gabriel T Mindler
- Department of Paediatric Orthopaedics, Orthopaedic Hospital Speising, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiologic and Cardiovascular Sciences, 'Sapienza', Rome University, Rome, Italy
| | | | - Mario Miguel Rosa
- Departamento de Neurociências, Laboratório de Farmacologia Clínica E Terapêutica Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Lothar Seefried
- Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Mila Vlaskovska
- Medical Faculty, Department of Pharmacology, Medical University Sofia, Sofia, Bulgaria
| | - María Belén Zanchetta
- Instituto de Investigaciones Metabólicas (IDIM), Universidad del Salvador, Buenos Aires, Argentina
| | - René Rizzoli
- Division of Bone Diseases, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| |
Collapse
|
27
|
Sant' Ana I, Torrini R, Alves Coelho MC, Cantoni J, Madeira M, Ribeiro M. X-linked hypophosphatemic rickets: Description of seven new variants in patients followed up in reference hospitals in Rio de Janeiro. Mol Genet Genomic Med 2022; 10:e1941. [PMID: 35384411 PMCID: PMC9184672 DOI: 10.1002/mgg3.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background X‐linked hypophosphatemic rickets (XLHR) is a rare genetic disease, often delayed in diagnosis due to the low degree of suspicion and limited access to sophisticated diagnostic tools that confirm the diagnosis, such as genetic testing. Methods Through a cross‐sectional and observational study, 26 patients with a previously presumptive diagnosis of X‐linked hypophosphatemic rickets (based on clinical history, laboratory findings, and physical examination), were followed for approximately 12 months. During 12 months of follow‐up, only 16 patients underwent genetic testing and enrolled in the study. Previous data were analyzed, such as clinical history (e.g., gender, current age, age of clinical diagnosis, age of admission to hospital, family history, and previous orthopedic surgery), physical exam, imaging tests (e.g., radiological changes) and laboratory tests (e.g., tubular maximum reabsorption rate of phosphate to glomerular filtration rate, alkaline phosphatase, and phosphate levels) at the time of the patient’s admission to IEDE and UFRJ, to corroborate and substantiate our research. These data were extracted from the medical records of the patients. Results Among the 16 patients analyzed by molecular biology techniques, the new generation sequencing (NGS), using DNA samples from oral swabs, we obtained seven variants never previously described, which were verified by Sanger sequencing. Among the seven variants never previously described, the most common coding impact was the nonsense mutation. We found two frameshift, one intronic splicing variant, three nonsense, and one deletion splice junction loss. Among patients with new mutations who presented data in the medical record, 100% showed a reduction in TmP/GFR (average of 1.98 mg/dl), the most sensitive laboratory parameter at the time of diagnosis, as well as serum phosphorus (100% had hypophosphatemia on arrival at the referral hospitals––average of 2.4 mg/dl and median 2.3 mg/dl). We also performed NGS on three mothers of the patients with identified mutations. Among these mothers, only one tested negative for the mutation and no family history was reported as well. This mother had serum phosphate of 3.5 mg/dl (normal range: 2.5–4.5 mg/dl) at the time of genetic test collection. The others had a positive test, low serum phosphorus at the time of the molecular test, in addition to a positive family history. Conclusion This study describes seven new variants in the PHEX gene and aims to increase the knowledge of the scientific community about the types of mutations involving this gene, increasing information on the genetic basis of this condition, enabling future considerations about genotype–phenotype correlation, in addition to diagnosis accurate and early.
Collapse
Affiliation(s)
- Iara Sant' Ana
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione (IEDE), Rio de Janeiro, Brazil.,Endocrinology Division, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Renato Torrini
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione (IEDE), Rio de Janeiro, Brazil
| | | | - Joyce Cantoni
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione (IEDE), Rio de Janeiro, Brazil
| | - Miguel Madeira
- Endocrinology Division, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Márcia Ribeiro
- Medical Genetic Service, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Lin Y, Zhang W, Huang X, Su L, Cai Y, Liang C, Rao M, Liu L, Zeng C. Two De Novo Mosaic Variants Within the Same Site of PHEX Gene in a Girl with X-Linked Hypophosphatemic Rickets. Calcif Tissue Int 2022; 110:266-271. [PMID: 34487203 DOI: 10.1007/s00223-021-00909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
X-linked hypophosphatemic rickets (XLH) is the most common form of hypophosphatemic rickets, which is caused by the deficiencies of PHEX gene with an X-linked dominant inheritance pattern. As at least several thousands of XLH patients have been diagnosed, only several males and fewer females with mosaicism of PHEX gene were found. Here we describe an XLH girl with two de novo mosaic variants within the same site of PHEX gene. To rapidly screen all of the causative genes of hypophosphatemic rickets and rule out other diseases, DNA samples were initially analyzed using whole exome sequencing (WES). Interestingly, two different pathogenic mosaic variants, a known c.1809G > A(p.W603*) variant and a novel c.1809G > T(p.W603C) variant within the same site of PHEX gene, were identified in the proband by WES. Subsequent Sanger sequencing confirmed the presence and de novo pattern of these two mosaic variants in the proband, which were absent in her healthy parents. This is the first case to report two different mosaic variants of PHEX gene in an XLH individual. This XLH girl has a de novo mosaic genotype of c.1809 = /G > T/G > A in PHEX gene. Our report adds an unusual mocaicism case for XLH and expands the mutational event and spectrum of PHEX gene. Our report also alerts clinicians and geneticists to be cautious about mocaicism and detection methods.
Collapse
Affiliation(s)
- Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Xinjiang Huang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Ling Su
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Yanna Cai
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Cuili Liang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Min Rao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China.
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China.
| |
Collapse
|
29
|
Rush ET, Johnson B, Aradhya S, Beltran D, Bristow SL, Eisenbeis S, Guerra NE, Krolczyk S, Miller N, Morales A, Ramesan P, Sarafrazi S, Truty R, Dahir K. Molecular Diagnoses of X-Linked and Other Genetic Hypophosphatemias: Results From a Sponsored Genetic Testing Program. J Bone Miner Res 2022; 37:202-214. [PMID: 34633109 PMCID: PMC9298723 DOI: 10.1002/jbmr.4454] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022]
Abstract
X-linked hypophosphatemia (XLH), a dominant disorder caused by pathogenic variants in the PHEX gene, affects both sexes of all ages and results in elevated serum fibroblast growth factor 23 (FGF23) and below-normal serum phosphate. In XLH, rickets, osteomalacia, short stature, and lower limb deformity may be present with muscle pain and/or weakness/fatigue, bone pain, joint pain/stiffness, hearing difficulty, enthesopathy, osteoarthritis, and dental abscesses. Invitae and Ultragenyx collaborated to provide a no-charge sponsored testing program using a 13-gene next-generation sequencing panel to confirm clinical XLH or aid diagnosis of suspected XLH/other genetic hypophosphatemia. Individuals aged ≥6 months with clinical XLH or suspected genetic hypophosphatemia were eligible. Of 831 unrelated individuals tested between February 2019 and June 2020 in this cross-sectional study, 519 (62.5%) individuals had a pathogenic or likely pathogenic variant in PHEX (PHEX-positive). Among the 312 PHEX-negative individuals, 38 received molecular diagnoses in other genes, including ALPL, CYP27B1, ENPP1, and FGF23; the remaining 274 did not have a molecular diagnosis. Among 319 patients with a provider-reported clinical diagnosis of XLH, 88.7% (n = 283) had a reportable PHEX variant; 81.5% (n = 260) were PHEX-positive. The most common variant among PHEX-positive individuals was an allele with both the gain of exons 13-15 and c.*231A>G (3'UTR variant) (n = 66/519). Importantly, over 80% of copy number variants would have been missed by traditional microarray analysis. A positive molecular diagnosis in 41 probands (4.9%; 29 PHEX positive, 12 non-PHEX positive) resulted in at least one family member receiving family testing. Additional clinical or family member information resulted in variant(s) of uncertain significance (VUS) reclassification to pathogenic/likely pathogenic (P/LP) in 48 individuals, highlighting the importance of segregation and clinical data. In one of the largest XLH genetic studies to date, 65 novel PHEX variants were identified and a high XLH diagnostic yield demonstrated broad insight into the genetic basis of XLH. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eric T Rush
- Children's Mercy Kansas City, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri - Kansas City School of Medicine, Kansas City, MO, USA.,Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | | | | - Norma E Guerra
- Department of Pediatric Nephrology, Hospital General del Centro Médico Nacional «La Raza», Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, Mexico
| | | | | | | | | | | | | | - Kathryn Dahir
- Program for Metabolic Bone Disorders, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| |
Collapse
|
30
|
Fuente R, García-Bengoa M, Fernández-Iglesias Á, Gil-Peña H, Santos F, López JM. Cellular and Molecular Alterations Underlying Abnormal Bone Growth in X-Linked Hypophosphatemia. Int J Mol Sci 2022; 23:ijms23020934. [PMID: 35055123 PMCID: PMC8778463 DOI: 10.3390/ijms23020934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemic rickets, is caused by inactivating mutations of the phosphate-regulating endopeptidase gene (PHEX). XLH is mainly characterized by short stature, bone deformities and rickets, while in hypophosphatemia, normal or low vitamin D levels and low renal phosphate reabsorption are the principal biochemical aspects. The cause of growth impairment in patients with XLH is not completely understood yet, thus making the study of the growth plate (GP) alterations necessary. New treatment strategies targeting FGF23 have shown promising results in normalizing the growth velocity and improving the skeletal effects of XLH patients. However, further studies are necessary to evaluate how this treatment affects the GP as well as its long-term effects and the impact on adult height.
Collapse
Affiliation(s)
- Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Physiology, Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - María García-Bengoa
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hanover, Germany
| | - Ángela Fernández-Iglesias
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Helena Gil-Peña
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Fernando Santos
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - José Manuel López
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Correspondence:
| |
Collapse
|
31
|
Xu T, Tao X, Zhang Z, Yue H. Clinical and genetic characteristics of 29 Chinese patients with X-linked hypophosphatemia. Front Endocrinol (Lausanne) 2022; 13:956646. [PMID: 36060934 PMCID: PMC9437435 DOI: 10.3389/fendo.2022.956646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The aim of this study was to fully describe the clinical and genetic characteristics, including clinical manifestations, intact fibroblast growth factor 23 (iFGF23) levels, and presence of PHEX gene mutations, of 22 and 7 patients with familial and sporadic X-linked dominant hypophosphatemia (XLH), respectively. METHODS Demographic data, clinical features, biochemical indicators, and imaging data of 29 patients were collected. All 22 exons and exon-intron boundaries of the PHEX gene were amplified by polymerase chain reaction (PCR) and directly sequenced. The serum level of iFGF23 was measured in 15 of the patients. RESULTS Twenty-nine patients (male/female: 13:16, juvenile/adult: 15:14) with XLH were included. The main symptoms were bowed lower extremities (89.7%), abnormal gait (89.7%), and short stature/growth retardation (78.6%). Hypophosphatemia with a high alkaline phosphatase level was the main biochemical feature and the median value of serum iFGF23 was 55.7 pg/ml (reference range: 16.1-42.2 pg/ml). Eight novel mutations in the PHEX gene were identified by Sanger sequencing, including two missense mutations (p. Gln682Leu and p. Phe312Ser), two deletions (c.350_356del and c.755_761del), one insertion (c.1985_1986insTGAC), and three splice mutations (c.1700+5G>C, c.1966-1G>T, and c.350-14_350-1del). Additionally, the recurrence rate after the first orthopedic surgery was 77.8% (7/9), and five of them had their first surgery before puberty. CONCLUSION Our study expanded the clinical phenotypes and gene mutation spectrum of XLH and provided a reference for the optimal timing of orthopedic surgeries.
Collapse
Affiliation(s)
| | | | | | - Hua Yue
- *Correspondence: Hua Yue, ; Zhenlin Zhang,
| |
Collapse
|
32
|
Haffner D, Leifheit-Nestler M, Grund A, Schnabel D. Rickets guidance: part I-diagnostic workup. Pediatr Nephrol 2022; 37:2013-2036. [PMID: 34910242 PMCID: PMC9307538 DOI: 10.1007/s00467-021-05328-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/22/2023]
Abstract
Rickets is a disease of the growing child arising from alterations in calcium and phosphate homeostasis resulting in impaired apoptosis of hypertrophic chondrocytes in the growth plate. Its symptoms depend on the patients' age, duration of disease, and underlying disorder. Common features include thickened wrists and ankles due to widened metaphyses, growth failure, bone pain, muscle weakness, waddling gait, and leg bowing. Affected infants often show delayed closure of the fontanelles, frontal bossing, and craniotabes. The diagnosis of rickets is based on the presence of these typical clinical symptoms and radiological findings on X-rays of the wrist or knee, showing metaphyseal fraying and widening of growth plates, in conjunction with elevated serum levels of alkaline phosphatase. Nutritional rickets due to vitamin D deficiency and/or dietary calcium deficiency is the most common cause of rickets. Currently, more than 20 acquired or hereditary causes of rickets are known. The latter are due to mutations in genes involved in vitamin D metabolism or action, renal phosphate reabsorption, or synthesis, or degradation of the phosphaturic hormone fibroblast growth factor 23 (FGF23). There is a substantial overlap in the clinical features between the various entities, requiring a thorough workup using biochemical analyses and, if necessary, genetic tests. Part I of this review focuses on the etiology, pathophysiology and clinical findings of rickets followed by the presentation of a diagnostic approach for correct diagnosis. Part II focuses on the management of rickets, including new therapeutic approaches based on recent clinical practice guidelines.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dirk Schnabel
- Center for Chronically Sick Children, Pediatric Endocrinology, University Medicine, Charitè Berlin, Germany
| |
Collapse
|
33
|
Herrou J, Picaud AS, Lassalle L, Pacot L, Chaussain C, Merzoug V, Hervé A, Gadion M, Rothenbuhler A, Kamenický P, Roux C, Linglart A, Duplan MB, Briot K. Prevalence of Enthesopathies in Adults With X-linked Hypophosphatemia: Analysis of Risk Factors. J Clin Endocrinol Metab 2022; 107:e224-e235. [PMID: 34406383 DOI: 10.1210/clinem/dgab580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Enthesopathies are the determinant of a poor quality of life in adults with X-linked hypophosphatemia (XLH). OBJECTIVE To describe the prevalence of patients with enthesopathies and to identify the risk factors of having enthesopathies. METHODS Retrospective study in the French Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism between June 2011 and December 2020. Adult XLH patients with full body X-rays performed using the EOS® low-dose radiation system and clinical data collected from medical records. The main outcome measures were demographics, PHEX mutation, conventional treatment, and dental disease with the presence of enthesopathies. RESULTS Of the 114 patients included (68% women, mean age 42.2 ± 14.3 years), PHEX mutation was found in 105 patients (94.6%), 86 (77.5%) had been treated during childhood. Enthesopathies (spine and/or pelvis) were present in 67% of the patients (n = 76). Patients with enthesopathies were significantly older (P = .001) and more frequently reported dental disease collected from medical records (P = .03). There was no correlation between the PHEX mutations and the presence of enthesopathies. Sixty-two patients had a radiographic dental examination in a reference center. Severe dental disease (number of missing teeth, number of teeth endodontically treated, alveolar bone loss, and proportion of patients with 5 abscesses or more) was significantly higher in patients with enthesopathies. CONCLUSION Adult XLH patients have a high prevalence of enthesopathies in symptomatic adults patients with XLH seen in a reference center. Age and severe dental disease were significantly associated with the presence of enthesopathies.
Collapse
Affiliation(s)
- Julia Herrou
- INSERM UMR 1153, Université de Paris, APHP Centre, Paris, France
- APHP Centre, Department of Rheumatology, Cochin Hospital, Paris, France
| | - Axelle Salcion Picaud
- APHP Centre, Department of Rheumatology, Cochin Hospital, Paris, France
- Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR Network for Rare Bone and Calcium Phosphate Disorders, Paris, France
| | - Louis Lassalle
- APHP, Department of Radiology, Cochin Hospital, Paris, France
| | - Laurence Pacot
- APHP, Department of Genetics, Cochin Hospital, Paris, France
| | - Catherine Chaussain
- Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR Network for Rare Bone and Calcium Phosphate Disorders, Paris, France
- Université de Paris, Medical and Dental Schools, Paris, France
- APHP, Department of Odontology, Bretonneau Hospital, HUPNVS, Paris, France
| | - Valérie Merzoug
- APHP, Department of Pediatric Radiology, Bicêtre Paris Saclay Hospital, Le Kremlin Bicêtre, France
| | - Agathe Hervé
- APHP, Department of Odontology, Bretonneau Hospital, HUPNVS, Paris, France
| | - Margaux Gadion
- APHP, Department of Odontology, Bretonneau Hospital, HUPNVS, Paris, France
| | - Anya Rothenbuhler
- Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR Network for Rare Bone and Calcium Phosphate Disorders, Paris, France
- APHP, Department of Endocrinology and Diabetes for Children, Bicêtre Paris Saclay Hospital, Le Kremlin Bicêtre, France
- APHP, Plateforme d'expertise Paris Saclay maladies rares, Bicêtre Paris Saclay Hospital, Le Kremlin Bicêtre, France
| | - Peter Kamenický
- Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR Network for Rare Bone and Calcium Phosphate Disorders, Paris, France
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre,France
| | - Christian Roux
- INSERM UMR 1153, Université de Paris, APHP Centre, Paris, France
- APHP Centre, Department of Rheumatology, Cochin Hospital, Paris, France
- Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR Network for Rare Bone and Calcium Phosphate Disorders, Paris, France
| | - Agnès Linglart
- Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR Network for Rare Bone and Calcium Phosphate Disorders, Paris, France
- APHP, Department of Endocrinology and Diabetes for Children, Bicêtre Paris Saclay Hospital, Le Kremlin Bicêtre, France
- APHP, Plateforme d'expertise Paris Saclay maladies rares, Bicêtre Paris Saclay Hospital, Le Kremlin Bicêtre, France
| | - Martin Biosse Duplan
- Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR Network for Rare Bone and Calcium Phosphate Disorders, Paris, France
- Université de Paris, Medical and Dental Schools, Paris, France
- APHP, Department of Odontology, Bretonneau Hospital, HUPNVS, Paris, France
| | - Karine Briot
- INSERM UMR 1153, Université de Paris, APHP Centre, Paris, France
- APHP Centre, Department of Rheumatology, Cochin Hospital, Paris, France
- Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, OSCAR Network for Rare Bone and Calcium Phosphate Disorders, Paris, France
| |
Collapse
|
34
|
Ishihara Y, Ohata Y, Takeyari S, Kitaoka T, Fujiwara M, Nakano Y, Yamamoto K, Yamada C, Yamamoto K, Michigami T, Mabe H, Yamaguchi T, Matsui K, Tamada I, Namba N, Yamamoto A, Etoh J, Kawaguchi A, Kosugi R, Ozono K, Kubota T. Genotype-phenotype analysis, and assessment of the importance of the zinc-binding site in PHEX in Japanese patients with X-linked hypophosphatemic rickets using 3D structure modeling. Bone 2021; 153:116135. [PMID: 34333162 DOI: 10.1016/j.bone.2021.116135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
X-linked hypophosphatemic rickets (XLH) is an inheritable type of rickets caused by inactivating variants in the phosphate regulating endopeptidase homolog X-linked (PHEX) gene, which results in the overproduction of fibroblast growth factor 23 (FGF23). The mechanism by which PHEX impairment leads to FGF23 overproduction is unknown. Because little is known regarding the genotype-phenotype correlation in Japanese XLH, we summarized the available clinical and genetic data and analyzed the genotype-phenotype relationships using 3-dimensional (3D) structure modeling to clarify the XLH pathophysiology. We retrospectively reviewed the clinical features and performed genetic analysis of 39 Japanese patients with XLH from 28 unrelated pedigrees carrying any known or novel PHEX variant. To predict changes in the 3D structure of mutant PHEX, we constructed a putative 3D model of each mutant and evaluated the effect of structural alteration by genotype-phenotype correlation analysis. Genetic analysis revealed 23 PHEX variants, including eight novel variants. They were associated with high i-FGF23 levels, hypophosphatemia, phosphaturia, high alkaline phosphatase levels, and short stature. No gene dosage effect or genotype-phenotype correlation was observed when truncating and non-truncating variants were compared. However, the conservation of the zinc-binding site and cavity in PHEX had an impact on the elevation of i-FGF23 levels. Via genotype-phenotype relationship analysis using 3D modeling, we showed that the zinc-binding site and cavity in PHEX can play a critical role in its function. These findings provide new genetic clues for investigating the function of PHEX and the pathogenesis of XLH.
Collapse
Affiliation(s)
- Yasuki Ishihara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; The 1st. Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan; Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; The 1st. Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yukako Nakano
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Yamamoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chieko Yamada
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsusuke Yamamoto
- Department of Pediatric Nephrology and Metabolism, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Hiroyo Mabe
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Takeshi Yamaguchi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Katsuyuki Matsui
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Izumi Tamada
- Department of Pediatrics, Imakiire General Hospital, Kagoshima, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Akiko Yamamoto
- Department of Pediatrics, Kumamoto Chuo Hospital, Kumamoto, Japan
| | - Junya Etoh
- Department of Pediatrics, Saga-Ken Medical Centre Koseikan, Saga, Japan
| | - Azusa Kawaguchi
- Department of Pediatrics, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Rieko Kosugi
- Department of Diabetes and Endocrinology, Shizuoka General Hospital, Shizuoka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
35
|
Asano S, Sako S, Funasaki Y, Takeshita Y, Niida Y, Takamura T. A mosaic mutation of phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) in X-linked hypophosphatemic rickets with mild bone phenotypes. Endocr J 2021; 68:1135-1141. [PMID: 33907069 DOI: 10.1507/endocrj.ej20-0809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
X-linked hypophosphatemic rickets (XLH) is primarily characterized by renal phosphate wasting with hypophosphatemia, short stature, and bone deformity of the leg. Here we present a male case of XLH with relatively mild bone deformity caused by a mosaic mutation of the phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX). Polymerase chain reaction (PCR) direct sequencing revealed a novel in-frame deletion, NM-000444.6:c.671-685del p.Gln224-Ser228del, at exon 6 in PHEX as a mosaic pattern. This mutation was not found in any database and may result in a significant change in higher-order protein structure and function. TA cloning of the PCR product and clone sequencing estimated the mutation allele frequency at 21%. Literature review of the previously reported three cases with novel mosaic mutations in PHEX, together with the present case, suggests that the rates of the mutation allele correlate with phenotype severity to some extent. We initially treated him with nutritional vitamin D supplements and phosphate salts. However, to avoid the development of secondary/tertiary hyperparathyroidism, we had switched nutritional to active vitamin D supplementation with reduced phosphorus salts. The present report contributes to understanding the relationship between the mosaic rate, in addition to the mutation locus, of the PHEX gene, and clinical features of XLH.
Collapse
Affiliation(s)
- Shoko Asano
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa 920-8640, Japan
| | - Saori Sako
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa 920-8640, Japan
| | - Yuka Funasaki
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa 920-8640, Japan
| | - Yo Niida
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa 920-8640, Japan
| |
Collapse
|
36
|
Cavaco D, Amaro P, Simões-Pereira J, Pereira MC. X-Linked Hypophosphatemic Rickets: Report of a Novel PHEX Mutation and Cinacalcet as Adjuvant Therapy in the Mineral Metabolism Control. Mod Rheumatol Case Rep 2021; 6:145-149. [PMID: 34561702 DOI: 10.1093/mrcr/rxab031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/24/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
X-linked hypophosphatemic rickets (XLH) is a rare disease caused by a mutation in the PHEX gene, located on the X chromosome. This gene encodes the phosphate regulating endopeptidase, and its inactivation leads to increased levels of circulating phosphatonins responsible for renal phosphate loss. The treatment of XLH is still carried out with long-term administration of phosphate and calcitriol, which can be complicated by hyperparathyroidism, nephrocalcinosis, renal failure and hypertension. We describe the case of a four-decades follow-up patient with XLH. When she was diagnosed, at 19, due to bone pain and deformities, she was put on therapy with phosphorus and cholecalciferol. Despite the clinical improvement, serum phosphorus remained difficult to control. At the age of 44, she developed tertiary hyperparathyroidism and was submitted to parathyroidectomy. Five years later, parathyroid hyperfunction recurred. This time, cinacalcet was started, 30 mg alternating with 60 mg/day. Currently, she is 59 years-old and remains with controlled mineral metabolism. The genetic study of this patient revealed a nonsense heterozygous mutation (c.501G> A) in PHEX gene that was not previously described. In this case, the off-label use of cinacalcet resulted in the normalization of serum PTH and phosphorus levels, eliminated recurrent secondary hyperparathyroidism, which aggravates the bone fragility inherent to XLH and prevented a new parathyroidectomy. This report also adds important information to the genetic basis of XLH with the identification of a new nonsense mutation of the PHEX gene.
Collapse
Affiliation(s)
- Daniela Cavaco
- Department of Endocrinology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Pedro Amaro
- Department of Orthopaedic Surgery, Hospital Beatriz Ângelo, Lisbon, Portugal
| | - Joana Simões-Pereira
- Department of Endocrinology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal.,NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria Conceição Pereira
- Department of Endocrinology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| |
Collapse
|
37
|
Rickets in Children: An Update. Biomedicines 2021; 9:biomedicines9070738. [PMID: 34199067 PMCID: PMC8301330 DOI: 10.3390/biomedicines9070738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Rickets refers to a deficient mineralization of the growth plate cartilage, predominantly affecting longer bones. Despite the fact that preventive measures are available, it is still a common disease worldwide; nutritional rickets, due to vitamin D deficiency or dietary calcium inadequate intake, remains the most common form. Medical history, physical examination, radiologic features and biochemical tests are essential for diagnosis. Although recent studies suggest hypophosphatemia as the leading alteration, rickets is classically divided into two categories: calcipenic rickets and phosphopenic rickets. Knowledge of this categorization and of respective clinical and laboratory features is essential for rapid diagnosis and correct management. The aim of this review is to analyze the epidemiological, pathogenetic, clinical, and therapeutic aspects of the different forms of rickets, describing the novelties on this “long-lived” disease.
Collapse
|
38
|
Giralt M, Chocron S, Ferrer R, Ariceta G. Plasma intact fibroblast growth factor 23 level is a useful tool for diagnostic approach of renal hypophosphatemia. Pediatr Nephrol 2021; 36:1025-1028. [PMID: 33492457 DOI: 10.1007/s00467-020-04906-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Primary hypophosphatemic syndromes are a heterogeneous group of rare diseases. In recent years, fibroblast growth factor 23 (FGF23) has been postulated as a useful tool for differential diagnosis of hypophosphatemic rickets characterized by impaired renal phosphate reabsorption. This study aimed to investigate the utility of FGF23 to discriminate between X-linked hypophosphatemic rickets (XLH), an FGF23-driven disease, from other causes of renal phosphate wasting such as Fanconi syndrome (FS), a generalized dysfunction of the proximal tubule unrelated to FGF23. METHODS Circulating levels of intact FGF23 (iFGF23) were measured in nine children with XLH receiving conventional therapy (six girls, mean ± SD age 10.8 ± 6.7 years) and nine children with secondary FS (four girls, mean ± SD age 9.9 ± 5.2 years), using an automated chemiluminescent immunoassay. Phosphate, calcium, creatinine, estimated glomerular filtration rate (eGFR), intact parathormone (iPTH), and urinary parameters were evaluated simultaneously. Maximum renal tubular threshold for phosphate reabsorption (TmP/GFR) was also estimated. RESULTS Plasma iFGF23 concentrations in patients with XLH were significantly higher than those in the SF group: 146.2 ± 69.2 ng/L vs. 29.5 ± 15.0 ng/L (p < 0.001). Remarkably, we did not observe an overlap between XLH and FS patients. Significant hypophosphatemia (2.55 ± 0.50 mg/dL) and secondary hyperparathyroidism (iPTH 109.4 ± 58.1 ng/mL) were present in XLH patients, while FS patients showed modest hypophosphatemia (3.97 ± 0.68 mg/dL), higher TmP/GFR compared with XLH, lower eGFR and hypercalciuria. CONCLUSIONS This study supports the value of measuring FGF23 levels as a useful tool to exclude XLH in patients with increased phosphate wasting of kidney origin. Graphical Abstract.
Collapse
Affiliation(s)
- Marina Giralt
- Department of Biochemistry, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sara Chocron
- Department of Pediatric Nephrology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Roser Ferrer
- Department of Biochemistry, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Gema Ariceta
- Department of Pediatric Nephrology, Vall d'Hebron University Hospital, Autonoma University of Barcelona, Barcelona, Spain.
| |
Collapse
|
39
|
Laurent MR, De Schepper J, Trouet D, Godefroid N, Boros E, Heinrichs C, Bravenboer B, Velkeniers B, Lammens J, Harvengt P, Cavalier E, Kaux JF, Lombet J, De Waele K, Verroken C, van Hoeck K, Mortier GR, Levtchenko E, Vande Walle J. Consensus Recommendations for the Diagnosis and Management of X-Linked Hypophosphatemia in Belgium. Front Endocrinol (Lausanne) 2021; 12:641543. [PMID: 33815294 PMCID: PMC8018577 DOI: 10.3389/fendo.2021.641543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
X-linked hypophosphatemia (XLH) is the most common genetic form of hypophosphatemic rickets and osteomalacia. In this disease, mutations in the PHEX gene lead to elevated levels of the hormone fibroblast growth factor 23 (FGF23), resulting in renal phosphate wasting and impaired skeletal and dental mineralization. Recently, international guidelines for the diagnosis and treatment of this condition have been published. However, more specific recommendations are needed to provide guidance at the national level, considering resource availability and health economic aspects. A national multidisciplinary group of Belgian experts convened to discuss translation of international best available evidence into locally feasible consensus recommendations. Patients with XLH may present to a wide array of primary, secondary and tertiary care physicians, among whom awareness of the disease should be raised. XLH has a very broad differential-diagnosis for which clinical features, biochemical and genetic testing in centers of expertise are recommended. Optimal care requires a multidisciplinary approach, guided by an expert in metabolic bone diseases and involving (according to the individual patient's needs) pediatric and adult medical specialties and paramedical caregivers, including but not limited to general practitioners, dentists, radiologists and orthopedic surgeons. In children with severe or refractory symptoms, FGF23 inhibition using burosumab may provide superior outcomes compared to conventional medical therapy with phosphate supplements and active vitamin D analogues. Burosumab has also demonstrated promising results in adults on certain clinical outcomes such as pseudofractures. In summary, this work outlines recommendations for clinicians and policymakers, with a vision for improving the diagnostic and therapeutic landscape for XLH patients in Belgium.
Collapse
Affiliation(s)
- Michaël R. Laurent
- Centre for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium
- *Correspondence: Michaël R. Laurent,
| | - Jean De Schepper
- Division of Pediatric Endocrinology, KidZ Health Castle, University Hospital Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Pediatric Endocrinology, University Hospital Ghent, Ghent, Belgium
| | - Dominique Trouet
- Department of Pediatric Nephrology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - Nathalie Godefroid
- Pediatric Nephrology, Cliniques Universitaires St. Luc (UCL), Brussels, Belgium
| | - Emese Boros
- Paediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Claudine Heinrichs
- Paediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Bert Bravenboer
- Department of Endocrinology, University Hospital Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Brigitte Velkeniers
- Department of Endocrinology, University Hospital Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Johan Lammens
- Department of Orthopaedic Surgery and Department of Development and Regeneration, Prometheus LRD Division of Skeletal Tissue Engineering, KU Leuven - University Hospitals Leuven, Leuven, Belgium
| | - Pol Harvengt
- XLH Belgium, Belgian X-Linked Hypophosphatemic Rickets (XLH) Patient Association, Waterloo, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, University Hospital Center of Liège, University of Liège, Liège, Belgium
| | - Jean-François Kaux
- Physical Medicine, Rehabilitation and Sports Traumatology, University and University Hospital of Liège, Liège, Belgium
| | - Jacques Lombet
- Division of Nephrology, Department of Pediatrics, University Hospital Center of Liège, Liège, Belgium
| | - Kathleen De Waele
- Department of Pediatric Endocrinology, University Hospital Ghent, Ghent, Belgium
| | - Charlotte Verroken
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Koenraad van Hoeck
- Department of Pediatric Nephrology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - Geert R. Mortier
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Elena Levtchenko
- Department of Pediatrics/Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Johan Vande Walle
- Department of Pediatric Nephrology, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
40
|
Dahir K, Roberts MS, Krolczyk S, Simmons JH. X-Linked Hypophosphatemia: A New Era in Management. J Endocr Soc 2020; 4:bvaa151. [PMID: 33204932 PMCID: PMC7649833 DOI: 10.1210/jendso/bvaa151] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/07/2020] [Indexed: 01/29/2023] Open
Abstract
X-linked hypophosphatemia (XLH) is a rare, hereditary, progressive musculoskeletal disease that often causes pain and short stature, as well as decreased physical function, mobility, and quality of life. Hypophosphatemia in XLH is caused by loss of function mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene, resulting in excess levels of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23), which leads to renal phosphate wasting and decreased serum 1,25-dihydroxyvitamin D production. Historically, treatment options were limited to oral phosphate and active vitamin D analogues (conventional management) dosed several times daily in an attempt to improve skeletal mineralization by increasing serum phosphorus. The recent approval of burosumab, a fully human monoclonal antibody to FGF23, has provided a new, targeted treatment option for patients with XLH. This review summarizes our current understanding of XLH, the safety and efficacy of conventional management and burosumab, existing recommendations for managing patients, and unanswered questions in the field.
Collapse
Affiliation(s)
- Kathryn Dahir
- Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Jill H Simmons
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
41
|
Lin Y, Xu J, Li X, Sheng H, Su L, Wu M, Cheng J, Huang Y, Mao X, Zhou Z, Zhang W, Li C, Cai Y, Wu D, Lu Z, Yin X, Zeng C, Liu L. Novel variants and uncommon cases among southern Chinese children with X-linked hypophosphatemia. J Endocrinol Invest 2020; 43:1577-1590. [PMID: 32253725 DOI: 10.1007/s40618-020-01240-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE X-linked hypophosphatemia (XLH) is the most common inherited renal phosphate wasting disorder and is often misdiagnosed as vitamin D deficiency. This study aims to provide clinical and mutational characteristics of 65 XLH pediatric patients in southern China. METHODS In this work, a combination of DNA sequencing and qPCR analysis was used to study the PHEX gene in 80 pediatric patients diagnosed with hypophosphatemia. The clinical and laboratory data of confirmed 65 XLH patients were assessed and analyzed retrospectively. RESULTS In 65 XLH patients from 61 families, 51 different variants in the PHEX gene were identified, including 23 previously reported variants and 28 novel variants. In this cohort of XLH patients, the c.1601C>T(p.Pro534Leu) variant appears more frequently. Fourteen uncommon XLH cases were described, including four boys with de novo mosaic variants, eight patients with large deletions and a pair of monozygotic twins. The clinical manifestations in this cohort are very similar to those previously reported. CONCLUSION This study extends the mutational spectrum of the PHEX gene, which will contribute to accurate diagnosis. This study also suggests a supplementary qPCR or MLPA assay may be performed along with classical sequencing to confirm the gross insertion/deletion.
Collapse
Affiliation(s)
- Y Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - J Xu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - X Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - H Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - L Su
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - M Wu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - J Cheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Y Huang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - X Mao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Z Zhou
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - W Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - C Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Y Cai
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - D Wu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Z Lu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - X Yin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - C Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China.
| | - L Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China.
| |
Collapse
|
42
|
Robinson ME, AlQuorain H, Murshed M, Rauch F. Mineralized tissues in hypophosphatemic rickets. Pediatr Nephrol 2020; 35:1843-1854. [PMID: 31392510 DOI: 10.1007/s00467-019-04290-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022]
Abstract
Hypophosphatemic rickets is caused by renal phosphate wasting that is most commonly due to X-linked dominant mutations in PHEX. PHEX mutations cause hypophosphatemia indirectly, through the increased expression of fibroblast growth factor 23 (FGF23) by osteocytes. FGF23 decreases renal phosphate reabsorption and thereby increases phosphate excretion. The lack of phosphate leads to a mineralization defect at the level of growth plates (rickets), bone tissue (osteomalacia), and teeth, where the defect facilitates the formation of abscesses. The bone tissue immediately adjacent to osteocytes often remains unmineralized ("periosteocytic lesions"), highlighting the osteocyte defect in this disorder. Common clinical features of XLH include deformities of the lower extremities, short stature, enthesopathies, dental abscesses, as well as skull abnormalities such as craniosynostosis and Chiari I malformation. For the past four decades, XLH has been treated by oral phosphate supplementation and calcitriol, which improves rickets and osteomalacia and the dental manifestations, but often does not resolve all aspects of the mineralization defects. A newer treatment approach using inactivating FGF23 antibodies leads to more stable control of serum inorganic phosphorus levels and seems to heal rickets more reliably. However, the long-term benefits of FGF23 antibody treatment remain to be elucidated.
Collapse
Affiliation(s)
- Marie-Eve Robinson
- Shriners Hospital for Children and McGill University, 1003 Boulevard Decarie, Montreal, Québec, H4A 0A9, Canada
| | - Haitham AlQuorain
- Shriners Hospital for Children and McGill University, 1003 Boulevard Decarie, Montreal, Québec, H4A 0A9, Canada
| | - Monzur Murshed
- Shriners Hospital for Children and McGill University, 1003 Boulevard Decarie, Montreal, Québec, H4A 0A9, Canada
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, 1003 Boulevard Decarie, Montreal, Québec, H4A 0A9, Canada.
| |
Collapse
|
43
|
Faraji-Bellée CA, Cauliez A, Salmon B, Fogel O, Zhukouskaya V, Benoit A, Schinke T, Roux C, Linglart A, Miceli-Richard C, Chaussain C, Briot K, Bardet C. Development of Enthesopathies and Joint Structural Damage in a Murine Model of X-Linked Hypophosphatemia. Front Cell Dev Biol 2020; 8:854. [PMID: 33072734 PMCID: PMC7536578 DOI: 10.3389/fcell.2020.00854] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
X-linked hypophosphatemia (XLH) is characterized by rickets and osteomalacia, caused by inactivating mutations in the Phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. With aging, adult patients develop paradoxical heterotopic calcifications of tendons and ligaments at their insertion sites (enthesophytes), and joint alterations. Understanding the progression of this structural damage that severely affects patients’ quality of life will help to improve the management of XLH. Here, we characterized the occurrence of enthesophytes and joint alterations through a 12 month in vivo micro-CT follow-up in the Hyp mouse, a murine model of XLH (n = 5 mice per group). Similar to adult patients with XLH, Hyp mice developed calcaneal enthesophytes, hip joint alterations, erosions of the sacroiliac joints and periarticular calcifications. These lesions were already present at month 3 and gradually worsened over time. In sharp contrast, no abnormalities were observed in control mice at early time points. Histological analyses confirmed the presence of bone erosions, calcifications and expansion of mineralizing enthesis fibrocartilage in Hyp mice and their absence in controls and suggested that new bone formation is driven by altered mechanical strain. Interestingly, despite a strong deformation of the curvature, none of the Hyp mice displayed enthesophyte at the spine. Peripheral enthesophytes and joint alterations develop at the early stages of the disease and gradually worsen overtime. Overall, our findings highlight the relevance of this preclinical model to test new therapies aiming to prevent bone and joint complications in XLH.
Collapse
Affiliation(s)
- Carole-Anne Faraji-Bellée
- Université de Paris, Laboratory Orofacial Pathologies, Imaging and Biotherapies UR 2496, Dental School, Montrouge, France
| | - Axelle Cauliez
- Université de Paris, Laboratory Orofacial Pathologies, Imaging and Biotherapies UR 2496, Dental School, Montrouge, France
| | - Benjamin Salmon
- Université de Paris, Laboratory Orofacial Pathologies, Imaging and Biotherapies UR 2496, Dental School, Montrouge, France.,APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, Paris, France
| | - Olivier Fogel
- Department of Rheumatology, Cochin Hospital, Université de Paris, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, and Reference Center for Rare Genetic Bone Diseases, Cochin Hospital, Paris, France
| | - Volha Zhukouskaya
- Université de Paris, Laboratory Orofacial Pathologies, Imaging and Biotherapies UR 2496, Dental School, Montrouge, France.,APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Sud Hospital, Le Kremlin Bicêtre, France
| | - Aurélie Benoit
- Université de Paris, URB2I, UR 4462, Dental School, Montrouge, France
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Christian Roux
- Department of Rheumatology, Cochin Hospital, Université de Paris, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, and Reference Center for Rare Genetic Bone Diseases, Cochin Hospital, Paris, France
| | - Agnès Linglart
- APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Sud Hospital, Le Kremlin Bicêtre, France.,APHP, Department of Endocrinology and Diabetology for Children, Bicêtre Paris Sud Hospital, Le Kremlin-Bicêtre, France.,Paris Sud - Paris Saclay University, Faculté de Médecine, Le Kremlin - Bicêtre, France
| | - Corinne Miceli-Richard
- Department of Rheumatology, Cochin Hospital, Université de Paris, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, and Reference Center for Rare Genetic Bone Diseases, Cochin Hospital, Paris, France
| | - Catherine Chaussain
- Université de Paris, Laboratory Orofacial Pathologies, Imaging and Biotherapies UR 2496, Dental School, Montrouge, France.,APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, Paris, France.,APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Sud Hospital, Le Kremlin Bicêtre, France
| | - Karine Briot
- Department of Rheumatology, Cochin Hospital, Université de Paris, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, and Reference Center for Rare Genetic Bone Diseases, Cochin Hospital, Paris, France.,APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Platform of Expertise for Rare Diseases Paris-Sud, Bicêtre Paris-Sud Hospital, Le Kremlin Bicêtre, France
| | - Claire Bardet
- Université de Paris, Laboratory Orofacial Pathologies, Imaging and Biotherapies UR 2496, Dental School, Montrouge, France
| |
Collapse
|
44
|
Zheng B, Wang C, Chen Q, Che R, Sha Y, Zhao F, Ding G, Zhou W, Jia Z, Huang S, Chen Y, Zhang A. Functional Characterization of PHEX Gene Variants in Children With X-Linked Hypophosphatemic Rickets Shows No Evidence of Genotype-Phenotype Correlation. J Bone Miner Res 2020; 35:1718-1725. [PMID: 32329911 DOI: 10.1002/jbmr.4035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 11/08/2022]
Abstract
X-linked hypophosphatemia (XLHR) is caused by loss-of-function mutations in the phosphate regulating endopeptidase homolog X-linked (PHEX) gene. Considerable controversy exists regarding genotype-phenotype correlations in XLHR. The present study describes the clinical features and molecular genetic bases of 53 pediatric patients with XLHR. Overall, 47 different mutations were identified, of which 27 were not previously described in the literature or entered in the Human Gene Mutation Database (HGMD). A high prevalence (72.34%) of truncating variants was observed in XLHR patients. The clinical presentation and severity of XLHR did not show an evident correlation between the truncating and non-truncating mutation types in our cohort. To further delineate the characteristics of PHEX variants underlying this nonsignificant trend, we assessed the effects of 10 PHEX variants on protein expression, cellular trafficking, and endopeptidase activity. Our results showed that the nonsense mutations p.Arg567*, p.Gln714*, and p.Arg747* caused a reduction of protein molecular weight and a trafficking defect. Among seven non-truncating mutations, the p.Cys77Tyr, p.Cys85Ser, p.Ile281Lys, p.Ile333del, p.Ala514Pro, and p.Gly572Ser mutants were not secreted into the medium and remained trapped inside cells in an immature form, whereas the p.Gly553Glu mutant was terminally glycosylated and secreted into the medium. We further assessed the endopeptidase activity of the p.Gly553Glu mutant using a quenched fluorogenic peptide substrate and revealed that the activity of p.Gly553Glu significantly reduced to 13% compared with the wild type, which indicated disruption of catalytic function. These data not only support the clinical results showing no correlation between disease severity and the type of PHEX mutation but also provide helpful molecular insights into the pathogenesis of XLHR. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuxia Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ruochen Che
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yugen Sha
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Ying Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Lecoq AL, Brandi ML, Linglart A, Kamenický P. Management of X-linked hypophosphatemia in adults. Metabolism 2020; 103S:154049. [PMID: 31863781 DOI: 10.1016/j.metabol.2019.154049] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/23/2019] [Accepted: 11/25/2019] [Indexed: 11/27/2022]
Abstract
X-linked hypophosphatemia (XLH) is caused by mutations in the PHEX gene which result in Fibroblast Growth Factor-23 (FG-F23) excess and phosphate wasting. Clinically, XLH children present with rickets, bone deformities and short stature. In adulthood, patients may still be symptomatic with bone and joint pain, osteomalacia-related fractures or pseudofractures, precocious osteoarthrosis, enthesopathy, muscle weakness and severe dental anomalies. Besides these musculoskeletal and dental manifestations, adult XLH patients are also prone to secondary and tertiary hyperparathyroidism, cardiovascular and metabolic disorders. Pathophysiology of hyperparathyroidism is only partially understood but FGF23 excess and deficient production of calcitriol likely contributes to its development. Similarly, the pathophysiological mechanisms of potential cardiovascular and metabolic involvements are not clear, but FGF-23 excess may play an essential role. Treatment should be considered in symptomatic patients, patients undergoing orthopedic or dental surgery and women during pregnancy and lactation. Treatment with oral phosphate salts and active vitamin D analogs has incomplete efficacy and potential risks. Burosumab, a recombinant human monoclonal antibody against FGF-23, has proven its efficacy in phase 2 and phase 3 clinical trials in adult patients with XLH, but currently its position as first line or second line treatment differ among the countries.
Collapse
Affiliation(s)
- Anne-Lise Lecoq
- AP-HP, Department of Endocrinology and Reproductive Diseases, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, filière OSCAR, and Platform of Expertise for Rare Disorders, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre, France
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, University Hospital of Florence, Florence, Italy
| | - Agnès Linglart
- AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, filière OSCAR, and Platform of Expertise for Rare Disorders, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre, France; Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- AP-HP, Department of Endocrinology and Reproductive Diseases, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, filière OSCAR, and Platform of Expertise for Rare Disorders, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre, France; Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France.
| |
Collapse
|
46
|
Rothenbuhler A, Schnabel D, Högler W, Linglart A. Diagnosis, treatment-monitoring and follow-up of children and adolescents with X-linked hypophosphatemia (XLH). Metabolism 2020; 103S:153892. [PMID: 30928313 DOI: 10.1016/j.metabol.2019.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022]
Abstract
Early diagnosis, optimal therapeutic management and regular follow up of children with X-linked hypophosphatemia (XLH) determine their long term outcomes and future quality of life. Biochemical screening of potentially affected newborns in familial cases and improving physician's knowledge on clinical signs, symptoms and biochemical characteristics of XLH for de novo cases should lead to earlier diagnosis and treatment initiation. The follow-up of children with XLH includes clinical, biochemical and radiological monitoring of treatment (efficacy and complications) and screening for XLH-related dental, neurosurgical, rheumatological, cardiovascular, renal and ENT complications. In 2018, the European Union approved the use of burosumab, a humanized monoclonal anti-FGF23 antibody, as an alternative therapy to conventional therapy (active vitamin D analogues and phosphate supplements) in growing children with XLH and insufficiently controlled disease. Diagnostic criteria of XLH and the principles of disease management with conventional treatment or with burosumab are reviewed in this paper.
Collapse
Affiliation(s)
- Anya Rothenbuhler
- APHP, Endocrinology and Diabetology for Children, Bicêtre Paris Sud Hospital, Le Kremlin-Bicêtre, France; APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, filière OSCAR, Paris, France; APHP, Platform of Expertise for Rare Disorders Paris-Sud, Bicêtre Paris Sud Hospital, Le Kremlin-Bicêtre, France.
| | - Dirk Schnabel
- Center for Chronic Sick Children, Pediatric Endocrinology, Charité, University Medicine Berlin, Germany
| | - Wolfgang Högler
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Department of Pediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Agnès Linglart
- APHP, Endocrinology and Diabetology for Children, Bicêtre Paris Sud Hospital, Le Kremlin-Bicêtre, France; APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, filière OSCAR, Paris, France; APHP, Platform of Expertise for Rare Disorders Paris-Sud, Bicêtre Paris Sud Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
47
|
Lambert AS, Zhukouskaya V, Rothenbuhler A, Linglart A. X-linked hypophosphatemia: Management and treatment prospects. Joint Bone Spine 2019; 86:731-738. [DOI: 10.1016/j.jbspin.2019.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
|
48
|
BinEssa HA, Zou M, Al-Enezi AF, Alomrani B, Al-Faham MSA, Al-Rijjal RA, Meyer BF, Shi Y. Functional analysis of 22 splice-site mutations in the PHEX, the causative gene in X-linked dominant hypophosphatemic rickets. Bone 2019; 125:186-193. [PMID: 31102713 DOI: 10.1016/j.bone.2019.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
CONTEXT X-linked hypophosphatemic rickets (XLH) is caused by inactivating mutations in the PHEX gene and is the most common form of hereditary rickets. The splice-site mutations account for 17% of all reported PHEX mutations. The functional consequence of these splice-site mutations has not been systemically investigated. OBJECTIVE The current study was undertaken to functionally annotate previously reported 22 splice-site mutations in the PHEX gene. METHODS PHEX mini-genes with different splice-site mutations were created by site-directed mutagenesis and expressed in HEK293 cells. The mRNA transcripts were analyzed by RT-PCR, cloning, and sequencing. RESULTS These splicing mutations led to a variety of consequences, including exon skipping, intron retention, and activation of cryptic splice sites. Among 22 splice-site mutations, exon skipping was the most common event accounting for 73% (16/22). Non-canonical splice-site mutations could result in splicing errors to the same extent as canonical splice-site mutations such as c.436+3G>C, c.436+4A>C, c.436+6T>C, c.437-3C>G, c.850-3C>G, c.1080-3C>A, c.1482+5G>C, c.1586+6T>C, c.1645+5G>A, c.1645+6T>C, c.1701-16T>A, c.1768+5G>A, and c.1899+5G>A. Interestingly, non-canonical (c.436+6T>C and c.1586+6T>C) and canonical splice-site mutations (c.1769-1G>C) could generate partial splicing errors (both wild-type and mutant transcripts were detected), resulting in incomplete inactivation of PHEX gene, which may explain the mild disease phenotype reported previously, providing evidence of genotype-phenotype correlation. c.1645C>T (p.R549*) had no impact on pre-mRNA splicing although it is located next to canonical splice donor site GT. CONCLUSIONS Exon skipping is the most common outcome due to splice-site mutations. Both canonical and non-canonical splice-site mutations can result in either severe or mild RNA splicing defects, contributing to phenotype heterogeneity. Non-canonical splice-site mutations should not be overlooked in genetic screening especially those located within 50 bp from canonical splice site.
Collapse
Affiliation(s)
- Huda A BinEssa
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Minjing Zou
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Anwar F Al-Enezi
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Basma Alomrani
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Manar S A Al-Faham
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Roua A Al-Rijjal
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Yufei Shi
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
49
|
Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, Wicart P, Bockenhauer D, Santos F, Levtchenko E, Harvengt P, Kirchhoff M, Di Rocco F, Chaussain C, Brandi ML, Savendahl L, Briot K, Kamenicky P, Rejnmark L, Linglart A. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol 2019; 15:435-455. [PMID: 31068690 PMCID: PMC7136170 DOI: 10.1038/s41581-019-0152-5] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
X-linked hypophosphataemia (XLH) is the most common cause of inherited phosphate wasting and is associated with severe complications such as rickets, lower limb deformities, pain, poor mineralization of the teeth and disproportionate short stature in children as well as hyperparathyroidism, osteomalacia, enthesopathies, osteoarthritis and pseudofractures in adults. The characteristics and severity of XLH vary between patients. Because of its rarity, the diagnosis and specific treatment of XLH are frequently delayed, which has a detrimental effect on patient outcomes. In this Evidence-Based Guideline, we recommend that the diagnosis of XLH is based on signs of rickets and/or osteomalacia in association with hypophosphataemia and renal phosphate wasting in the absence of vitamin D or calcium deficiency. Whenever possible, the diagnosis should be confirmed by molecular genetic analysis or measurement of levels of fibroblast growth factor 23 (FGF23) before treatment. Owing to the multisystemic nature of the disease, patients should be seen regularly by multidisciplinary teams organized by a metabolic bone disease expert. In this article, we summarize the current evidence and provide recommendations on features of the disease, including new treatment modalities, to improve knowledge and provide guidance for diagnosis and multidisciplinary care.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany.
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany.
| | - Francesco Emma
- Department of Pediatric Subspecialties, Division of Nephrology, Children's Hospital Bambino Gesù - IRCCS, Rome, Italy
| | - Deborah M Eastwood
- Department of Orthopaedics, Great Ormond St Hospital for Children, Orthopaedics, London, UK
- The Catterall Unit Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Martin Biosse Duplan
- Dental School, Université Paris Descartes Sorbonne Paris Cité, Montrouge, France
- APHP, Department of Odontology, Bretonneau Hospital, Paris, France
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
| | - Justine Bacchetta
- Department of Pediatric Nephrology, Rheumatology and Dermatology, University Children's Hospital, Lyon, France
| | - Dirk Schnabel
- Center for Chronic Sick Children, Pediatric Endocrinology, Charitè, University Medicine, Berlin, Germany
| | - Philippe Wicart
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
- APHP, Department of Pediatric Orthopedic Surgery, Necker - Enfants Malades University Hospital, Paris, France
- Paris Descartes University, Paris, France
| | - Detlef Bockenhauer
- University College London, Centre for Nephrology and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fernando Santos
- Hospital Universitario Central de Asturias (HUCA), University of Oviedo, Oviedo, Spain
| | - Elena Levtchenko
- Department of Pediatric Nephrology and Development and Regeneration, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Pol Harvengt
- RVRH-XLH, French Patient Association for XLH, Suresnes, France
| | - Martha Kirchhoff
- Phosphatdiabetes e.V., German Patient Association for XLH, Lippstadt, Germany
| | - Federico Di Rocco
- Pediatric Neurosurgery, Hôpital Femme Mère Enfant, Centre de Référence Craniosténoses, Université de Lyon, Lyon, France
| | - Catherine Chaussain
- Dental School, Université Paris Descartes Sorbonne Paris Cité, Montrouge, France
- APHP, Department of Odontology, Bretonneau Hospital, Paris, France
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
| | - Maria Louisa Brandi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Lars Savendahl
- Pediatric Endocrinology Unit, Karolinska University Hospital, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Karine Briot
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
- Paris Descartes University, Paris, France
- APHP, Department of Rheumatology, Cochin Hospital, Paris, France
- INSERM UMR-1153, Paris, France
| | - Peter Kamenicky
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
- APHP, Department of Endocrinology and Reproductive Diseases, Bicêtre Paris-Sud Hospital, Paris, France
- INSERM U1185, Bicêtre Paris-Sud, Paris-Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Agnès Linglart
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
- INSERM U1185, Bicêtre Paris-Sud, Paris-Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
- APHP, Platform of Expertise of Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris-Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Endocrinology and Diabetes for Children, Bicêtre Paris-Sud Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
50
|
Emma F, Cappa M, Antoniazzi F, Bianchi ML, Chiodini I, Eller Vainicher C, Di Iorgi N, Maghnie M, Cassio A, Balsamo A, Baronio F, de Sanctis L, Tessaris D, Baroncelli GI, Mora S, Brandi ML, Weber G, D'Ausilio A, Lanati EP. X-linked hypophosphatemic rickets: an Italian experts' opinion survey. Ital J Pediatr 2019; 45:67. [PMID: 31151476 PMCID: PMC6545008 DOI: 10.1186/s13052-019-0654-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/26/2019] [Indexed: 01/24/2023] Open
Abstract
Background X-linked hypophosphatemic rickets (XLH) is the first cause of inherited hypophosphatemia and is caused by mutation in the PHEX gene, resulting in excessive expression of the phosphaturic factor FGF23. Symptoms are mainly related to rickets in children and osteomalacia in adults and cause several complications that can be highly invalidating. Due to its rarity, XLH is poorly known and diagnosis is frequently delayed. Conventional treatment is based on oral phosphate salts supplementation and activated vitamin D analogs, which however, cannot cure the disease in most cases. Objective Due to the low prevalence of XLH, an experts’ opinion survey was conducted across Italian centers to collect data on XLH and on its management. Methods A questionnaire was developed by a group of experts to collect data on XLH epidemiology, diagnosis and treatment in Italy. Results Data from 10 Italian centers (nine of which pediatric) on 175 patients, followed between 1998 and 2017, were included in the survey. Most patients were followed since childhood and 63 children became adults during the investigated period. The diagnosis was made before the age of 1 and between 1 and 5 years in 11 and 50% of cases, respectively. Clinically apparent bone deformities were present in 95% of patients. These were ranked moderate/severe in 75% of subjects and caused growth stunting in 67% of patients. Other frequent complications included bone pain (40%), dental abscesses (33%), and dental malpositions (53%). Treatment protocols varied substantially among centers. Nephrocalcinosis was observed in 34% of patients. Tertiary hyperparathyroidism developed in 6% of patients. Conclusions XLH remains a severe condition with significant morbidities.
Collapse
Affiliation(s)
- F Emma
- Division of Nephrology, Department of Pediatric Subspecialties, Children's Hospital Bambino Gesù, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy.
| | - M Cappa
- Endocrinology Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - F Antoniazzi
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Pediatric Division, University of Verona, Borgo Roma Hospital, Verona, Italy
| | - M L Bianchi
- Experimental Laboratory for Children's Bone Metabolism Research, Bone Metabolism Unit, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - I Chiodini
- Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Dept. of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| | - C Eller Vainicher
- Unit of Endocrinology, IRCCS Cà Granda Foundation, Maggiore Policlinico Hospital, Milan, Italy
| | - N Di Iorgi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Department of General and Specialist Pediatric Sciences, Pediatric Clinic, IRCCS Giannina Gaslini Institute, University of Genova, Genova, Italy
| | - M Maghnie
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Department of General and Specialist Pediatric Sciences, Pediatric Clinic, IRCCS Giannina Gaslini Institute, University of Genova, Genova, Italy
| | - A Cassio
- Department of Medical & Surgical Sciences, Pediatric Unit, S. Orsola Malpighi University Hospital, Bologna, Italy
| | - A Balsamo
- Department of Medical & Surgical Sciences, Pediatric Unit, S. Orsola Malpighi University Hospital, Bologna, Italy
| | - F Baronio
- Department of Medical & Surgical Sciences, Pediatric Unit, S. Orsola Malpighi University Hospital, Bologna, Italy
| | - L de Sanctis
- Department of Public Health and Pediatric Sciences, University of Torino - Regina Margherita Children Hospital, Torino, Italy
| | - D Tessaris
- Department of Public Health and Pediatric Sciences, University of Torino - Regina Margherita Children Hospital, Torino, Italy
| | - G I Baroncelli
- Pediatric Unit, Department of Obstetrics, Gynecology and Pediatrics, University Hospital of Pisa, Pisa, Italy
| | - S Mora
- Department of Pediatrics, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - M L Brandi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, Careggi University Hospital, University of Florence, Florence, Italy
| | - G Weber
- Department of Pediatrics, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | | | | |
Collapse
|