1
|
Westmark CJ. Consumption of Breast Milk Is Associated with Decreased Prevalence of Autism in Fragile X Syndrome. Nutrients 2021; 13:nu13061785. [PMID: 34073785 PMCID: PMC8225095 DOI: 10.3390/nu13061785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Breastfeeding is associated with numerous health benefits, but early life nutrition has not been specifically studied in the neurodevelopmental disorder fragile X syndrome (FXS). Herein, I evaluate associations between the consumption of breast milk during infancy and the prevalence of autism, allergies, diabetes, gastrointestinal (GI) problems and seizures in FXS. The study design was a retrospective survey of families enrolled in the Fragile X Online Registry and Accessible Research Database (FORWARD). There was a 1.7-fold reduction in the prevalence of autism in FXS participants who were fed breast milk for 12 months or longer. There were strong negative correlations between increased time the infant was fed breast milk and the prevalence of autism and seizures and moderate negative correlations with the prevalence of GI problems and allergies. However, participants reporting GI problems or allergies commenced these comorbidities significantly earlier than those not fed breast milk. Parsing the data by sex indicated that males exclusively fed breast milk exhibited decreased prevalence of GI problems and allergies. These data suggest that long-term or exclusive use of breast milk is associated with reduced prevalence of key comorbidities in FXS, although breast milk is associated with the earlier development of GI problems and allergies.
Collapse
Affiliation(s)
- Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; ; Tel.: +1-608-262-9730
- Molecular & Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
2
|
Westmark CJ. Soy-Based Therapeutic Baby Formulas: Testable Hypotheses Regarding the Pros and Cons. Front Nutr 2017; 3:59. [PMID: 28149839 PMCID: PMC5241282 DOI: 10.3389/fnut.2016.00059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
Soy-based infant formulas have been consumed in the United States since 1909, and currently constitute a significant portion of the infant formula market. There are efforts underway to generate genetically modified soybeans that produce therapeutic agents of interest with the intent to deliver those agents in a soy-based infant formula platform. The threefold purpose of this review article is to first discuss the pros and cons of soy-based infant formulas, then present testable hypotheses to discern the suitability of a soy platform for drug delivery in babies, and finally start a discussion to inform public policy on this important area of infant nutrition.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin , Madison, WI , USA
| |
Collapse
|
3
|
Zwemer LM, Nolin SL, Okamoto PM, Eisenberg M, Wick HC, Bianchi DW. Global transcriptome dysregulation in second trimester fetuses with FMR1 expansions. Prenat Diagn 2016; 37:43-52. [PMID: 27646161 DOI: 10.1002/pd.4928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We tested the hypothesis that FMR1 expansions would result in global gene dysregulation as early as the second trimester of human fetal development. METHOD Using cell-free fetal RNA obtained from amniotic fluid supernatant and expression microarrays, we compared RNA levels in samples from fetuses with premutation or full mutation allele expansions with control samples. RESULTS We found clear signals of differential gene expression relating to a variety of cellular functions, including ubiquitination, mitochondrial function, and neuronal/synaptic architecture. Additionally, among the genes showing differential gene expression, we saw links to related diseases of intellectual disability and motor function. Finally, within the unique molecular phenotypes established for each mutation set, we saw clear signatures of mitochondrial dysfunction and disrupted neurological function. Patterns of differential gene expression were very different in male and female fetuses with premutation alleles. CONCLUSION These results support a model for which genetic misregulation during fetal development may set the stage for late clinical manifestations of FMR1-related disorders. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lillian M Zwemer
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Sarah L Nolin
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Patricia M Okamoto
- Integrated Genetics/Laboratory Corporation of America® Holdings, Westborough, MA, USA
| | - Marcia Eisenberg
- Laboratory Corporation of America® Holdings, Research Triangle Park, NC, USA
| | - Heather C Wick
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Diana W Bianchi
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
4
|
Lozano R, Saito N, Reed D, Eldeeb M, Schneider A, Hessl D, Tassone F, Beckett L, Hagerman R. Aging in Fragile X Premutation Carriers. CEREBELLUM (LONDON, ENGLAND) 2016; 15:587-94. [PMID: 27334385 PMCID: PMC8020959 DOI: 10.1007/s12311-016-0805-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is now recognized that FMR1 premutation carriers (PC) are at risk to develop a range of neurological, psychiatric, and immune-mediated disorders during adulthood. There are conflicting findings regarding the incidence of hypertension, hypothyroidism, diabetes, and cancer in these patients that warrant further study. A retrospective controlled study was performed in a convenience sample of 248 controls (130 men, 118 women) and 397 FMR1 PC with and without fragile X-associated tremor ataxia syndrome (FXTAS) (176 men, 221 women); all participants were at least 45 years old (men: mean 62.4, SD 9.5; women: mean 62.8, SD 9.9; p = 0.63). Memory and cognitive assessments (Wechsler Adult Intelligence Scale (WAIS-III), Wechsler Memory Scale (WMS-III)) and molecular testing (CGG repeats and FMR1-mRNA levels) were performed. Additional data included body mass index (BMI), cholesterol levels, blood pressure, hemoglobin A1c (HbA1c) levels, and medical history. A higher percentage of PC subjects self-reported having a diagnosis of hypertension (50.0 vs. 35.0 %, p = 0.006) and thyroid problems (20.4 vs. 10.0 %, p = 0.012) than control subjects. When comparing controls versus PC with FXTAS, the association was higher for diabetes (p = 0.043); however, the effect was not significant after adjusting for demographic predictors. Blood pressure, blood glucose levels, HbA1c, and BMI values were not significantly different between the two groups. The PC with FXTAS group performed consistently lower in neuropsychological testing compared with the PC without FXTAS group, but the differences were very small for all but the WAIS full-scale IQ. Based on these findings, it appears that the risk for hypertension, thyroid problems, and diabetes may be more frequent in PC with FXTAS, which will require verification in future studies.
Collapse
Affiliation(s)
- Reymundo Lozano
- Seaver Autism Center for Research and Treatment, Departments of Genetics and Genomic Sciences, Psychiatry, and Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, USA.
| | - Naomi Saito
- Department of Public Health Sciences, UC Davis School of Medicine, Sacramento, CA, USA
| | - Dallas Reed
- Departments of Genetics and Genomic Sciences and Obstetrics, Gynecology, and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marwa Eldeeb
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry, UC Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry, UC Davis School of Medicine, Sacramento, CA, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Biochemistry, UC Davis School of Medicine, Sacramento, CA, USA
| | - Laurel Beckett
- Department of Public Health Sciences, UC Davis School of Medicine, Sacramento, CA, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
5
|
Lozano R, Azarang A, Wilaisakditipakorn T, Hagerman RJ. Fragile X syndrome: A review of clinical management. Intractable Rare Dis Res 2016; 5:145-57. [PMID: 27672537 PMCID: PMC4995426 DOI: 10.5582/irdr.2016.01048] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fragile X mental retardation 1 gene, which codes for the fragile X mental retardation 1 protein, usually has 5 to 40 CGG repeats in the 5' untranslated promoter. The full mutation is the almost always the cause of fragile X syndrome (FXS). The prevalence of FXS is about 1 in 4,000 to 1 in 7,000 in the general population although the prevalence varies in different regions of the world. FXS is the most common inherited cause of intellectual disability and autism. The understanding of the neurobiology of FXS has led to many targeted treatments, but none have cured this disorder. The treatment of the medical problems and associated behaviors remain the most useful intervention for children with FXS. In this review, we focus on the non-pharmacological and pharmacological management of medical and behavioral problems associated with FXS as well as current recommendations for follow-up and surveillance.
Collapse
Affiliation(s)
- Reymundo Lozano
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA
- Department of Pediatrics, UC Davis, Sacramento, CA, USA
- Address correspondence to: Dr. Reymundo Lozano, Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA; Department of Pediatrics, UC Davis, Sacramento, CA, USA. E-mail:
| | - Atoosa Azarang
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA
- Department of Pediatrics, UC Davis, Sacramento, CA, USA
| | - Tanaporn Wilaisakditipakorn
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA
- Department of Pediatrics, UC Davis, Sacramento, CA, USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA
- Department of Pediatrics, UC Davis, Sacramento, CA, USA
| |
Collapse
|
6
|
Schneider A, Johnston C, Tassone F, Sansone S, Hagerman RJ, Ferrer E, Rivera SM, Hessl D. Broad autism spectrum and obsessive-compulsive symptoms in adults with the fragile X premutation. Clin Neuropsychol 2016; 30:929-43. [PMID: 27355445 DOI: 10.1080/13854046.2016.1189536] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Clinical observations and a limited number of research studies provide evidence that the fragile X premutation may confer risk for autism, executive dysfunction, and psychopathology. The link to autism spectrum symptoms and social cognition deficits with the premutation remains uncertain, and thus was the focus of the present investigation. METHOD Our sample included 131 individuals, 42 men/22 women with the FMR1 premutation (mean age = 31.83 ± 8.59 years) with a normal neurological exam, and 48 men/19 women healthy age-matched controls (mean age = 29.48 ± 7.29 years). Individuals completed a comprehensive neuropsychological battery with additional assessments for social cognition, broad autism spectrum, and obsessive-compulsive (OC) symptoms. RESULTS Premutation carriers self-reported higher rates of autism-related symptoms (Autism Quotient; p = .001). Among males only, premutation carriers showed more atypical social interaction (p < .001) and stereotyped behavior (p = .014) during standardized clinical examination on the Autism Diagnostic Observation Schedule (ADOS) relative to controls. Female premutation carriers reported significantly higher rates of OC symptoms compared to control females (p = .012). Molecular measures defining the expanded premutation (FMR1 CGG repeat length and/or mRNA) were significantly associated with a measure of theory of mind (Reading the Mind in the Eyes Task). CONCLUSIONS The results of this study indicate a higher rate of broad autism spectrum symptoms in some males with the premutation and provide evidence for an obsessive-compulsive subtype in female premutation carriers.
Collapse
Affiliation(s)
- A Schneider
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,c Department of Pediatrics , UC Davis School of Medicine , Sacramento , CA , USA
| | - C Johnston
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,b Department of Psychiatry and Behavioral Sciences , UC Davis School of Medicine , Sacramento , CA , USA
| | - F Tassone
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,f Department of Biochemistry and Molecular Medicine , UC Davis , Davis , CA , USA
| | - S Sansone
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,g Department of Human Development , UC Davis , Davis , CA , USA
| | - R J Hagerman
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,c Department of Pediatrics , UC Davis School of Medicine , Sacramento , CA , USA
| | - E Ferrer
- d Department of Psychology , UC Davis , Davis , CA , USA
| | - S M Rivera
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,d Department of Psychology , UC Davis , Davis , CA , USA.,e Center for Mind and Brain, UC Davis , Davis , CA , USA
| | - D Hessl
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,b Department of Psychiatry and Behavioral Sciences , UC Davis School of Medicine , Sacramento , CA , USA
| |
Collapse
|
7
|
Risk factors for autism spectrum disorder in the Thai population. Eur J Pediatr 2015; 174:1365-72. [PMID: 26226890 DOI: 10.1007/s00431-015-2544-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder commonly prevalent in children worldwide including Thailand. However, there are very few studies thus far addressing risk factors for ASD in Thai children. This case-control study aims to investigate whether various risk factors especially socioeconomic status, advanced parental age (age >35 years), perinatal factors, maternal autoimmune diseases, and family history of neuropsychiatric illnesses were associated with the risk of having an offspring with ASD. There were 235 children with ASD (age 8.44 ± 3.37 years) and 235 controls (age 8.39 ± 3.37 years) enrolled in this study. The risk of developing ASD in these children included advanced paternal age (adjusted odds ratio (AOR) = 3.49, 95 % confidence interval (CI) = 2.05-5.96), family history of neuropsychiatric illnesses particularly if such disorders came from the paternal side of the child's family (AOR = 2.87, 95 % CI = 1.29-6.39), and having unemployed mothers (AOR = 1.65, 95 % CI = 1.08-2.54). CONCLUSION This study supports previous findings of Western countries where risk factors for ASD tend to occur in children whose fathers were of advanced paternal age and in the families with neuropsychiatric illnesses particularly if such disorders came from the paternal side of the child's family. WHAT IS KNOWN • Family history of neuropsychiatric disorders and advanced paternal age are risk factors for ASD in the offspring previously identified in the studies in Europe and North America. What is New: • To our knowledge, this is the first study documenting risk factors for ASD in the Asian population. • Our study supports previous findings of Western countries where risk factors for ASD tend to occur in the families with neuropsychiatric illnesses particularly if such disorders came from the paternal side of the child's family.
Collapse
|
8
|
Wu S, Ding Y, Wu F, Li R, Xie G, Hou J, Mao P. Family history of autoimmune diseases is associated with an increased risk of autism in children: A systematic review and meta-analysis. Neurosci Biobehav Rev 2015; 55:322-32. [PMID: 25981892 DOI: 10.1016/j.neubiorev.2015.05.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/30/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND We conducted a systematic review and meta-analysis to summarize the current evidence on the relationship between family history of autoimmune diseases (ADs) and risk of autism in children, as current evidence suggests inconsistent results. METHODS We identified relevant studies by searching PubMed, EmBase, and Web of Science databases up to Dec 2014. Risk estimates from individual studies were pooled using random-effects models. Sub-groups analyses were conducted by some study-level factors. Publication bias was assessed by funnel plots, Egger's regression test and Begg-Mazumdar test. RESULTS A total of 11 articles were included in the meta-analysis, including 3 cohort studies, 6 case-control studies, and 2 cross-sectional studies. The meta-analysis showed that family history of all ADs combined was associated with a 28% (95% CI: 12-48%) higher risk of autism in children. For some specific ADs, evidence synthesis for risk of autism in children showed a statistically significant association with family history of hypothyroidism (OR=1.64, 95% CI: 1.07-2.50), type 1 diabetes (OR=1.49, 95% CI: 1.23-1.81), rheumatoid arthritis (OR=1.51, 95% CI: 1.19-1.91), and psoriasis (OR=1.59, 95% CI: 1.28-1.97). The results varied in some subgroups. CONCLUSION An overall increased risk of autism in children with family history of ADs was identified. More mechanistic studies are needed to further explain the association between family history of ADs and increased risk of autism in children.
Collapse
Affiliation(s)
- Shunquan Wu
- Research and Technology Service Center, 302 Hospital of PLA, Beijing, China
| | - Yingying Ding
- Department of Medical Microbiology and Parasitology, Second Military Medical University, Shanghai, China
| | - Fuquan Wu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Ruisheng Li
- Research and Technology Service Center, 302 Hospital of PLA, Beijing, China
| | - Guoming Xie
- Research and Technology Service Center, 302 Hospital of PLA, Beijing, China
| | - Jun Hou
- Research and Technology Service Center, 302 Hospital of PLA, Beijing, China.
| | - Panyong Mao
- Research and Technology Service Center, 302 Hospital of PLA, Beijing, China.
| |
Collapse
|
9
|
Lozano R, Rosero CA, Hagerman RJ. Fragile X spectrum disorders. Intractable Rare Dis Res 2014; 3:134-46. [PMID: 25606363 PMCID: PMC4298643 DOI: 10.5582/irdr.2014.01022] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/28/2014] [Indexed: 12/13/2022] Open
Abstract
The fragile X mental retardation 1 gene (FMR1), which codes for the fragile X mental retardation 1 protein (FMRP), is located at Xp27.3. The normal allele of the FMR1 gene typically has 5 to 40 CGG repeats in the 5' untranslated region; abnormal alleles of dynamic mutations include the full mutation (> 200 CGG repeats), premutation (55-200 CGG repeats) and the gray zone mutation (45-54 CGG repeats). Premutation carriers are common in the general population with approximately 1 in 130-250 females and 1 in 250-810 males, whereas the full mutation and Fragile X syndrome (FXS) occur in approximately 1 in 4000 to 1 in 7000. FMR1 mutations account for a variety of phenotypes including the most common monogenetic cause of inherited intellectual disability (ID) and autism (FXS), the most common genetic form of ovarian failure, the fragile X-associated primary ovarian insufficiency (FXPOI, premutation); and fragile X-associated tremor/ataxia syndrome (FXTAS, premutation). The premutation can also cause developmental problems including ASD and ADHD especially in boys and psychopathology including anxiety and depression in children and adults. Some premutation carriers can have a deficit of FMRP and some unmethylated full mutation individuals can have elevated FMR1 mRNA that is considered a premutation problem. Therefore the term "Fragile X Spectrum Disorder" (FXSD) should be used to include the wide range of overlapping phenotypes observed in affected individuals with FMR1 mutations. In this review we focus on the phenotypes and genotypes of children with FXSD.
Collapse
Affiliation(s)
- Reymundo Lozano
- UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
- Address correspondence to: Dr. Reymundo Lozano, UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA. E-mail:
| | - Carolina Alba Rosero
- Instituto Colombiano del Sistema Nervioso, Clínica Montserrat, Bogotá D.C, Colombia
| | - Randi J Hagerman
- UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
10
|
Kidd SA, Lachiewicz A, Barbouth D, Blitz RK, Delahunty C, McBrien D, Visootsak J, Berry-Kravis E. Fragile X syndrome: a review of associated medical problems. Pediatrics 2014; 134:995-1005. [PMID: 25287458 DOI: 10.1542/peds.2013-4301] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common known genetic cause of inherited intellectual disability and the most common known single-gene cause of autism spectrum disorder. It has been reported that a spectrum of medical problems are commonly experienced by people with FXS, such as otitis media, seizures, and gastrointestinal problems. Previous studies examining the prevalence of medical problems related to FXS have been challenging to interpret because of their marked differences in population, setting, and sampling. Through this comprehensive review, we update the literature by reviewing studies that have reported on prominent medical problems associated with FXS. We then compare prevalence results from those studies with results from a large cross-sectional database consisting of data collected by fragile X clinics that specialize in the care of children with FXS and are part of the Fragile X Clinical and Research Consortium. It is vital for pediatricians and other clinicians to be familiar with the medical problems related to FXS so that affected patients may receive proper diagnosis and treatment; improved care may lead to better quality of life for these patients and their families.
Collapse
Affiliation(s)
- Sharon A Kidd
- National Fragile X Foundation, Walnut Creek, California;
| | - Ave Lachiewicz
- Departments of Pediatrics, Psychiatry, and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Deborah Barbouth
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Robin K Blitz
- Developmental Pediatrics, Barrow Neurologic Institute at Phoenix Children's Hospital, Phoenix, Arizona; Department of Pediatrics, University of Arizona College of Medicine, Phoenix, Arizona
| | - Carol Delahunty
- Department of Developmental and Rehabilitation Pediatrics, Cleveland Clinic, Cleveland, Ohio
| | - Dianne McBrien
- Department of Pediatrics, University of Iowa Medical Center, Iowa City, Iowa
| | - Jeannie Visootsak
- Departments of Human Genetics, and Pediatrics, Emory University, Atlanta, Georgia; and
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurologic Sciences, and Biochemistry, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
11
|
Berman RF, Buijsen RA, Usdin K, Pintado E, Kooy F, Pretto D, Pessah IN, Nelson DL, Zalewski Z, Charlet-Bergeurand N, Willemsen R, Hukema RK. Mouse models of the fragile X premutation and fragile X-associated tremor/ataxia syndrome. J Neurodev Disord 2014; 6:25. [PMID: 25136376 PMCID: PMC4135345 DOI: 10.1186/1866-1955-6-25] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/29/2014] [Indexed: 11/10/2022] Open
Abstract
Carriers of the fragile X premutation (FPM) have CGG trinucleotide repeat expansions of between 55 and 200 in the 5'-UTR of FMR1, compared to a CGG repeat length of between 5 and 54 for the general population. Carriers were once thought to be without symptoms, but it is now recognized that they can develop a variety of early neurological symptoms as well as being at risk for developing the late onset neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Several mouse models have contributed to our understanding of FPM and FXTAS, and findings from studies using these models are summarized here. This review also discusses how this information is improving our understanding of the molecular and cellular abnormalities that contribute to neurobehavioral features seen in some FPM carriers and in patients with FXTAS. Mouse models show much of the pathology seen in FPM carriers and in individuals with FXTAS, including the presence of elevated levels of Fmr1 mRNA, decreased levels of fragile X mental retardation protein, and ubiquitin-positive intranuclear inclusions. Abnormalities in dendritic spine morphology in several brain regions are associated with neurocognitive deficits in spatial and temporal memory processes, impaired motor performance, and altered anxiety. In vitro studies have identified altered dendritic and synaptic architecture associated with abnormal Ca(2+) dynamics and electrical network activity. FPM mice have been particularly useful in understanding the roles of Fmr1 mRNA, fragile X mental retardation protein, and translation of a potentially toxic polyglycine peptide in pathology. Finally, the potential for using these and emerging mouse models for preclinical development of therapies to improve neurological function in FXTAS is considered.
Collapse
Affiliation(s)
- Robert F Berman
- Department of Neurological Surgery, Room 502C, UC Davis, 1515 Newton Court, Davis, CA 95618, USA
| | | | - Karen Usdin
- NIDDK, National Institutes of Health, Bethesda, MD, USA
| | | | - Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | - Isaac N Pessah
- Department Molecular Biosciences, UC Davis, Davis, CA, USA
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zachary Zalewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Rob Willemsen
- Department Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Renate K Hukema
- Department Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
12
|
Hagerman R, Hagerman P. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome. Lancet Neurol 2013; 12:786-98. [PMID: 23867198 DOI: 10.1016/s1474-4422(13)70125-x] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fragile X syndrome, the most common heritable form of cognitive impairment, is caused by epigenetic silencing of the fragile X (FMR1) gene owing to large expansions (>200 repeats) of a non-coding CGG-repeat element. Smaller, so-called premutation expansions (55-200 repeats) can cause a family of neurodevelopmental phenotypes (attention deficit hyperactivity disorder, autism spectrum disorder, seizure disorder) and neurodegenerative (fragile X-associated tremor/ataxia syndrome [FXTAS]) phenotypes through an entirely distinct molecular mechanism involving increased FMR1 mRNA production and toxicity. Results of basic cellular, animal, and human studies have helped to elucidate the underlying RNA toxicity mechanism, while clinical research is providing a more nuanced picture of the range of clinical manifestations. Advances of knowledge on both mechanistic and clinical fronts are driving new approaches to targeted treatment, but two important necessities are emerging: to define the extent to which the mechanisms contributing to FXTAS also contribute to other neurodegenerative and medical disorders, and to redefine FXTAS in view of its differing presentations and associated features.
Collapse
Affiliation(s)
- Randi Hagerman
- Department of Pediatrics and the MIND Institute, University of California, Davis, School of Medicine, Davis, CA, USA
| | | |
Collapse
|
13
|
Seritan AL, Ortigas M, Seritan S, Bourgeois JA, Hagerman RJ. PSYCHIATRIC DISORDERS ASSOCIATED WITH FXTAS. ACTA ACUST UNITED AC 2013; 9:59-64. [PMID: 25620899 DOI: 10.2174/157340013805289699] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carriers of the FMR1 premutation (with 55-200 CGG repeats) may present with multiple medical and psychiatric disorders. Middle-aged carriers (males more often than females) may suffer from fragile X-associated tremor/ataxia syndrome (FXTAS). FXTAS is a newly discovered neurodegenerative disease characterized by intention tremor and ataxia, along with several other neurological features. Psychiatric manifestations are common in premutation carriers of both genders and include attention deficits, anxiety, depression, irritability, impulse dyscontrol, and substance abuse or dependence. Major depressive disorder, panic disorder with or without agoraphobia, generalized anxiety disorder, social phobia, and specific phobia are among the psychiatric diagnoses often encountered in premutation carriers, including those with FXTAS. Later in the course of the illness, cognitive deficits (including dementia) may occur. In this paper, we discuss common psychiatric phenotypes in FXTAS, based on a thorough review of the literature, as well as our own research experience. Symptomatic pharmacologic treatments are available, although disease modifying agents have not yet been developed.
Collapse
Affiliation(s)
- Andreea L Seritan
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, California ; Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California
| | - Melina Ortigas
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California
| | - Stefan Seritan
- University of California Santa Barbara, College for Creative Studies, Santa Barbara, California
| | - James A Bourgeois
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California ; Department of Pediatrics, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
14
|
Tassone F, Iong KP, Tong TH, Lo J, Gane LW, Berry-Kravis E, Nguyen D, Mu LY, Laffin J, Bailey DB, Hagerman RJ. FMR1 CGG allele size and prevalence ascertained through newborn screening in the United States. Genome Med 2012; 4:100. [PMID: 23259642 PMCID: PMC4064316 DOI: 10.1186/gm401] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/19/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Population screening for FMR1 mutations has been a topic of considerable discussion since the FMR1 gene was identified in 1991. Advances in understanding the molecular basis of fragile X syndrome (FXS) and in genetic testing methods have led to new, less expensive methodology to use for large screening endeavors. A core criterion for newborn screening is an accurate understanding of the public health burden of a disease, considering both disease severity and prevalence rate. This article addresses this need by reporting prevalence rates observed in a pilot newborn screening study for FXS in the US. METHODS Blood spot screening of 14,207 newborns (7,312 males and 6,895 females) was conducted in three birthing hospitals across the United States beginning in November 2008, using a PCR-based approach. RESULTS The prevalence of gray zone alleles was 1:66 females and 1:112 males, while the prevalence of a premutation was 1:209 females and 1:430 males. Differences in prevalence rates were observed among the various ethnic groups; specifically higher frequency for gray zone alleles in males was observed in the White group compared to the Hispanic and African-American groups. One full mutation male was identified (>200 CGG repeats). CONCLUSIONS The presented pilot study shows that newborn screening in fragile X is technically feasible and provides overall prevalence of the premutation and gray zone alleles in the USA, suggesting that the prevalence of the premutation, particularly in males, is higher than has been previously reported.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA
- MIND Institute, UC Davis Medical Center, Sacramento, CA 95817, USA
| | - Ka Pou Iong
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Tzu-Han Tong
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Joyce Lo
- Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Louise W Gane
- MIND Institute, UC Davis Medical Center, Sacramento, CA 95817, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Danh Nguyen
- Division of Biostatistics, UC Davis, Davis, CA 95616, USA
| | - Lisa Y Mu
- Division of Biostatistics, UC Davis, Davis, CA 95616, USA
| | - Jennifer Laffin
- Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA
| | - Don B Bailey
- RTI International, Research Triangle Park, NC 27709, USA
| | - Randi J Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, CA 95817, USA
- Department of Pediatrics, UC Davis, Sacramento, CA 95817, USA
| |
Collapse
|
15
|
Clinicians learn less and less about more and more until they know nothing about everything; researchers learn more and more about less and less until they know everything about nothing: discuss. Behav Brain Sci 2012; 35:358-9. [PMID: 23095379 DOI: 10.1017/s0140525x12001367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A number of recent developments in our understanding of the biology of heritability question commonly held views on the immutability of genetic factors. These have numerous potential implications for improving understanding and practice in pre- and postconceptional care and for infant and child mental health, and they carry a cautionary message against overgeneralization.
Collapse
|
16
|
Distribution and frequency of intranuclear inclusions in female CGG KI mice modeling the fragile X premutation. Brain Res 2012; 1472:124-37. [PMID: 22796595 DOI: 10.1016/j.brainres.2012.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/12/2012] [Accepted: 06/29/2012] [Indexed: 11/21/2022]
Abstract
The fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder caused by CGG trinucleotide repeat expansions in the fragile X mental retardation 1 (FMR1) gene. The neuropathological hallmark of FXTAS is the presence of ubiquitin-positive intranuclear inclusions in neurons and in astroglia. Intranuclear inclusions have also been reported in the neurons of male CGG KI mice carrying an expanded CGG trinucleotide repeat and used to model FXTAS, but no study has been carried out quantifying inclusions in female CGG KI mice heterozygous for the fragile X premutation. We used histologic and immunocytochemical methods to determine the pathological features of intranuclear inclusions in astroglia and neurons. In female CGG KI mice, ubiquitin-positive intranuclear inclusions were found in neurons and astroglia throughout the brain in cortical and subcortical regions. These inclusions increased in number and became larger with advanced age and increasing CGG repeat length, supporting hypotheses that these pathologic features are progressive across the lifespan. The number of inclusions in neurons was reduced by ∼25% in female CGG KI mice compared to male CGG KI mice, but not so low as the 50% predicted. These data emphasize the need to evaluate the neurocognitive and pathological features in female carriers of the fragile X premutation with and without FXTAS symptomatology is warranted, as this population shows similar neuropathological features present in male FXTAS patients.
Collapse
|
17
|
Hall DA, O'keefe JA. Fragile x-associated tremor ataxia syndrome: the expanding clinical picture, pathophysiology, epidemiology, and update on treatment. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2012; 2. [PMID: 23439567 PMCID: PMC3570061 DOI: 10.7916/d8hd7tds] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/21/2011] [Indexed: 12/12/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive degenerative movement disorder characterized by kinetic tremor, cerebellar gait ataxia, parkinsonism, and cognitive decline. This disorder occurs in both males and females, frequently in families with children who have fragile X syndrome. The clinical features of this disorder, both classic and newly described, are summarized in this paper. In screening studies, fragile X mental retardation 1 (FMR1) gene premutation (55–200 CGG) expansions are most frequently seen in men with ataxia who have tested negative for spinocerebellar ataxias. Since the original description, the classic FXTAS phenotype has now been reported in females and in carriers of smaller (45–54 CGG) and larger (>200 CGG) expansions in FMR1. Premutation carriers may present with a Parkinson disease phenotype or hypotension, rather than with tremor and/or ataxia. Parkinsonism and gait ataxia may also be seen in individuals with gray zone (41–54 CGG) expansions. Studies regarding medication to treat the symptoms in FXTAS are few in number and suggest that medications targeted to specific symptoms, such as kinetic tremor or gait ataxia, may be most beneficial. Great progress has been made in regards to FXTAS research, likely given the readily available gene test and the screening of multiple family members, including parents and grandparents, of fragile X syndrome children. Expansion of genotypes and phenotypes in the disorder may suggest that a broader disease definition might be necessary in the future.
Collapse
Affiliation(s)
- Deborah A Hall
- Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | | |
Collapse
|
18
|
Carp HJ, Selmi C, Shoenfeld Y. The autoimmune bases of infertility and pregnancy loss. J Autoimmun 2012; 38:J266-74. [PMID: 22284905 DOI: 10.1016/j.jaut.2011.11.016] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 11/26/2022]
|
19
|
Tassone F, Greco CM, Hunsaker MR, Seritan AL, Berman RF, Gane LW, Jacquemont S, Basuta K, Jin LW, Hagerman PJ, Hagerman RJ. Neuropathological, clinical and molecular pathology in female fragile X premutation carriers with and without FXTAS. GENES BRAIN AND BEHAVIOR 2012; 11:577-85. [PMID: 22463693 DOI: 10.1111/j.1601-183x.2012.00779.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder associated with premutation alleles of the fragile X mental retardation 1 (FMR1) gene. Approximately 40% of older male premutation carriers, and a smaller proportion of females, are affected by FXTAS; due to the lower penetrance the characterization of the disorder in females is much less detailed. Core clinical features of FXTAS include intention tremor, cerebellar gait ataxia and frequently parkinsonism, autonomic dysfunction and cognitive deficits progressing to dementia in up to 50% of males. In this study, we report the clinical, molecular and neuropathological findings of eight female premutation carriers. Significantly, four of these women had dementia; of the four, three had FXTAS plus dementia. Post-mortem examination showed the presence of intranuclear inclusions in all eight cases, which included one asymptomatic premutation carrier who died from cancer. Among the four subjects with dementia, three had sufficient number of cortical amyloid plaques and neurofibrillary tangles to make Alzheimer's disease a highly likely cause of dementia and a fourth case had dementia with cortical Lewy bodies. Dementia appears to be more common than originally reported in females with FXTAS. Although further studies are required, our observation suggests that in a portion of FXTAS cases there is Alzheimer pathology and perhaps a synergistic effect on the progression of the disease may occur.
Collapse
Affiliation(s)
- F Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Autism is a neurodevelopmental disorders characterized by impairments in communication and social behavior, and by repetitive behaviors. Although genetic factors might be largely responsible for the occurrence of autism they cannot fully account for all cases and it is likely that in addition to a certain combination of autism-related genes, specific environmental factors might act as risk factors triggering the development of autism. Thus, the role of environmental factors in autism is an important area of research and recent data will be discussed in this review. Interestingly, the results show that many environmental risk factors are interrelated and their identification and comparison might unveil a common scheme of alterations on a contextual as well as molecular level. For example, both, disruption in the immune system and in zinc homeostasis may affect synaptic transmission in autism. Thus, here, a model is proposed that interconnects the most important and scientifically recognized environmental factors. Moreover, similarities in how these risk factors impact synapse function are discussed and a possible influence on an already well described genetic pathway leading to the development of autism via zinc homeostasis is proposed.
Collapse
Affiliation(s)
- Andreas M Grabrucker
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University Ulm, Germany
| |
Collapse
|
21
|
Tondo M, Poo P, Naudó M, Ferrando T, Genovés J, Molero M, Martorell L. Predisposition to epilepsy in fragile X syndrome: does the Val66Met polymorphism in the BDNF gene play a role? Epilepsy Behav 2011; 22:581-3. [PMID: 21890420 DOI: 10.1016/j.yebeh.2011.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/14/2011] [Accepted: 08/01/2011] [Indexed: 12/25/2022]
Abstract
Epilepsy is detected in about 23% of patients with fragile X syndrome (FXS). Absence or reduced levels of the fragile X mental retardation protein (FMRP), a global regulator of translation in neurons and an important factor in synaptic plasticity, produce the observed epileptic patterns. The brain-derived neurotrophic factor (BDNF) gene is a specific regulator of synaptic plasticity, and disturbances in its function cause dendrite abnormalities similar to those observed in FXS. A putative reciprocal regulation of FMRP and BDNF has been hypothesized. The Val66Met polymorphism in the BDNF gene may be involved in the alteration of normal secretion of the mature peptide and may modulate the epileptic phenotype observed in some patients with FXS. We investigated the relationship of this Met66 allele to the prevalence of epilepsy in 77 patients with FXS. No association was observed between this polymorphism and epilepsy in our group of patients. Therefore, it should not be considered a biomarker for developing epilepsy in patients with FXS.
Collapse
Affiliation(s)
- Mireia Tondo
- Molecular Genetics Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Chonchaiya W, Au J, Schneider A, Hessl D, Harris SW, Laird M, Mu Y, Tassone F, Nguyen DV, Hagerman RJ. Increased prevalence of seizures in boys who were probands with the FMR1 premutation and co-morbid autism spectrum disorder. Hum Genet 2011; 131:581-9. [PMID: 22001913 DOI: 10.1007/s00439-011-1106-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 10/08/2011] [Indexed: 11/29/2022]
Abstract
Seizures are a common co-occurring condition in those with fragile X syndrome (FXS), and in those with idiopathic autism spectrum disorder (ASD). Seizures are also associated with ASD in those with FXS. However, little is known about the rate of seizures and how commonly these problems co-occur with ASD in boys with the FMR1 premutation. We, therefore, determined the prevalence of seizures and ASD in boys with the FMR1 premutation compared with their sibling counterparts and population prevalence estimates. Fifty premutation boys who presented as clinical probands (N = 25), or non-probands (identified by cascade testing after the proband was found) (N = 25), and 32 non-carrier controls were enrolled. History of seizures was documented and ASD was diagnosed by standardized measures followed by a team consensus of ASD diagnosis. Seizures (28%) and ASD (68%) were more prevalent in probands compared with non-probands (0 and 28%), controls (0 and 0%), and population estimates (1 and 1.7%). Seizures occurred more frequently in those with the premutation and co-morbid ASD particularly in probands compared with those with the premutation alone (25 vs. 3.85%, p = 0.045). Although cognitive and adaptive functioning in non-probands were similar to controls, non-probands were more likely to meet the diagnosis of ASD than controls (28 vs. 0%, p < 0.0001). In conclusion, seizures were relatively more common in premutation carriers who presented clinically as probands of the family and seizures were commonly associated with ASD in these boys. Therefore, boys with the premutation, particularly if they are probands should be assessed carefully for both ASD and seizures.
Collapse
Affiliation(s)
- Weerasak Chonchaiya
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Health System, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rare intranuclear inclusions in the brains of 3 older adult males with fragile x syndrome: implications for the spectrum of fragile x-associated disorders. J Neuropathol Exp Neurol 2011; 70:462-9. [PMID: 21572337 DOI: 10.1097/nen.0b013e31821d3194] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The FMR1 gene is polymorphic for the length of CGG trinucleotide repeat expansions in the 5' untranslated region. Premutation (55-200 CGG repeats) and full-mutation (>200 CGG repeats) alleles give rise to their respective disorders by different pathogenic mechanisms: RNA gain-of-function toxicity leads to fragile X-associated tremor/ataxia syndrome in the premutation range, and transcriptional silencing and absence of fragile X mental retardation protein (FMRP) lead to fragile X syndrome in the full-mutation range. However, for the latter, incomplete silencing and/or size-mosaicism might result in some contribution to the disease process from residual messenger RNA production. To address this possibility, we examined the brains of 3 cases of fragile X syndrome for the presence of intranuclear inclusions in the hippocampal dentate gyrus. We identified low levels (0.1%-1.3%) of intranuclear inclusions in all 3 cases. Quantitative reverse transcription-polymerase chain reaction for FMR1 messenger RNA and immunofluorescence for FMRP revealed low but detectable levels of both RNA and protein in the 3 cases, consistent with the presence of small numbers of inclusions. The intranuclear inclusions were only present in FMRP-immunoreactive cells. The small numbers of inclusions and very low levels of both FMR1 RNA and protein suggest that the clinical course in these 3 subjects would not have been influenced by contributions from RNA toxicity.
Collapse
|
24
|
FMR1 premutation and full mutation molecular mechanisms related to autism. J Neurodev Disord 2011; 3:211-24. [PMID: 21617890 PMCID: PMC3261276 DOI: 10.1007/s11689-011-9084-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/09/2011] [Indexed: 11/10/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by an expanded CGG repeat (>200 repeats) in the 5′ un-translated portion of the fragile X mental retardation 1 gene (FMR1) leading to a deficiency or absence of the FMR1 protein (FMRP). FMRP is an RNA-binding protein that regulates the translation of a number of other genes that are important for synaptic development and plasticity. Furthermore, many of these genes, when mutated, have been linked to autism in the general population, which may explain the high comorbidity that exists between FXS and autism spectrum disorders (ASD). Additionally, premutation repeat expansions (55 to 200 CGG repeats) may also give rise to ASD through a different molecular mechanism that involves a direct toxic effect of FMR1 mRNA. It is believed that RNA toxicity underlies much of the premutation-related involvement, including developmental concerns like autism, as well as neurodegenerative issues with aging such as the fragile X-associated tremor ataxia syndrome (FXTAS). RNA toxicity can also lead to mitochondrial dysfunction, which is common in older premutation carriers both with and without FXTAS. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in idiopathic autism. Research regarding dysregulation of neurotransmitter systems caused by the lack of FMRP in FXS, including metabotropic glutamate receptor 1/5 (mGluR1/5) pathway and GABA pathways, has led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism.
Collapse
|
25
|
Hagerman R, Hoem G, Hagerman P. Fragile X and autism: Intertwined at the molecular level leading to targeted treatments. Mol Autism 2010; 1:12. [PMID: 20858229 PMCID: PMC2954865 DOI: 10.1186/2040-2392-1-12] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/21/2010] [Indexed: 01/17/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by an expanded CGG repeat (> 200 repeats) in the 5' untranslated portion of the fragile mental retardation 1 gene (FMR1), leading to deficiency or absence of the FMR1 protein (FMRP). FMRP is an RNA carrier protein that controls the translation of several other genes that regulate synaptic development and plasticity. Autism occurs in approximately 30% of FXS cases, and pervasive developmental disorder, not otherwise specified (PDD-NOS) occurs in an additional 30% of cases. Premutation repeat expansions (55 to 200 CGG repeats) may also give rise to autism spectrum disorders (ASD), including both autism and PDD-NOS, through a different molecular mechanism that involves a direct toxic effect of the expanded CGG repeat FMR1 mRNA. RNA toxicity can also lead to aging effects including tremor, ataxia and cognitive decline, termed fragile X-associated tremor ataxia syndrome (FXTAS), in premutation carriers in late life. In studies of mice bearing premutation expansions, there is evidence of early postnatal neuronal cell toxicity, presenting as reduced cell longevity, decreased dendritic arborization and altered synaptic morphology. There is also evidence of mitochondrial dysfunction in premutation carriers. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in autism without fragile X mutations. Research regarding dysregulation of neurotransmitter systems in FXS, including the metabotropic glutamate receptor (mGluR)1/5 pathway and γ aminobutyric acid (GABA)A pathways, have led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism.
Collapse
Affiliation(s)
- Randi Hagerman
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, USA
- MIND Institute, University of California, Davis, Health System, Sacramento, California, USA
| | - Gry Hoem
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromso, Norway
| | - Paul Hagerman
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, USA
| |
Collapse
|