1
|
Nahas LD, Datta A, Alsamman AM, Adly MH, Al-Dewik N, Sekaran K, Sasikumar K, Verma K, Doss GPC, Zayed H. Genomic insights and advanced machine learning: characterizing autism spectrum disorder biomarkers and genetic interactions. Metab Brain Dis 2024; 39:29-42. [PMID: 38153584 PMCID: PMC10799794 DOI: 10.1007/s11011-023-01322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 12/29/2023]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by altered brain connectivity and function. In this study, we employed advanced bioinformatics and explainable AI to analyze gene expression associated with ASD, using data from five GEO datasets. Among 351 neurotypical controls and 358 individuals with autism, we identified 3,339 Differentially Expressed Genes (DEGs) with an adjusted p-value (≤ 0.05). A subsequent meta-analysis pinpointed 342 DEGs (adjusted p-value ≤ 0.001), including 19 upregulated and 10 down-regulated genes across all datasets. Shared genes, pathogenic single nucleotide polymorphisms (SNPs), chromosomal positions, and their impact on biological pathways were examined. We identified potential biomarkers (HOXB3, NR2F2, MAPK8IP3, PIGT, SEMA4D, and SSH1) through text mining, meriting further investigation. Additionally, we shed light on the roles of RPS4Y1 and KDM5D genes in neurogenesis and neurodevelopment. Our analysis detected 1,286 SNPs linked to ASD-related conditions, of which 14 high-risk SNPs were located on chromosomes 10 and X. We highlighted potential missense SNPs associated with FGFR inhibitors, suggesting that it may serve as a promising biomarker for responsiveness to targeted therapies. Our explainable AI model identified the MID2 gene as a potential ASD biomarker. This research unveils vital genes and potential biomarkers, providing a foundation for novel gene discovery in complex diseases.
Collapse
Affiliation(s)
| | - Ankur Datta
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Alsamman M Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Monica H Adly
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Nader Al-Dewik
- Department of Research, Women's Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Karthik Sekaran
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Center for Brain Research, Indian Institute of Science, Bengaluru, India
| | - K Sasikumar
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kanika Verma
- Department of parasitology and host biology ICMR-NIMR, Dwarka, Delhi, India
| | - George Priya C Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Francis S, Tseng A, Rawls E, Conelea C, Grissom N, Kummerfeld E, Ma S, Jacob S. Integrating Causal Discovery and Clinically-Relevant Insights to Explore Directional Relationships between Autistic Features, Sex at Birth, and Cognitive Abilities. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.21.23300348. [PMID: 38196591 PMCID: PMC10775686 DOI: 10.1101/2023.12.21.23300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Prevalence in autism spectrum disorder (ASD) diagnosis has long been strongly male-biased. Yet, consensus has not been reached on mechanisms and clinical features that underlie sex-based discrepancies. Whereas females may be under-diagnosed because of inconsistencies in diagnostic/ascertainment procedures (sex-biased criteria, social camouflaging), diagnosed males may have exhibited more overt behaviors (e.g., hyperactivity, aggression) that prompted clinical evaluation. Applying a novel network-theory-based approach, we extracted data-driven, clinically-relevant insights from a large, well-characterized sample (Simons Simplex Collection) of 2175 autistic males (Ages = 8.9±3.5 years) and 334 autistic females (Ages = 9.2±3.7 years). Exploratory factor analysis (EFA) and expert clinical review reduced data dimensionality to 15 factors of interest. To offset inherent confounds of an imbalanced sample, we identified a subset of males (N=331) matched to females on key variables (Age, IQ) and applied data-driven CDA using Greedy Fast Causal Inference (GFCI) for three groups (All Females, All Males, and Matched Males). Structural equation modeling (SEM) extracted measures of model fit and effect sizes for causal relationships between sex, age, and, IQ on EFA-selected factors capturing phenotypic representations of autism across sensory, social, and restricted and repetitive behavior domains. Our methodology unveiled sex-specific directional relationships to inform developmental outcomes and targeted interventions.
Collapse
|
3
|
Parcerisas A, Ortega-Gascó A, Pujadas L, Soriano E. The Hidden Side of NCAM Family: NCAM2, a Key Cytoskeleton Organization Molecule Regulating Multiple Neural Functions. Int J Mol Sci 2021; 22:10021. [PMID: 34576185 PMCID: PMC8471948 DOI: 10.3390/ijms221810021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
Although it has been over 20 years since Neural Cell Adhesion Molecule 2 (NCAM2) was identified as the second member of the NCAM family with a high expression in the nervous system, the knowledge of NCAM2 is still eclipsed by NCAM1. The first studies with NCAM2 focused on the olfactory bulb, where this protein has a key role in axonal projection and axonal/dendritic compartmentalization. In contrast to NCAM1, NCAM2's functions and partners in the brain during development and adulthood have remained largely unknown until not long ago. Recent studies have revealed the importance of NCAM2 in nervous system development. NCAM2 governs neuronal morphogenesis and axodendritic architecture, and controls important neuron-specific processes such as neuronal differentiation, synaptogenesis and memory formation. In the adult brain, NCAM2 is highly expressed in dendritic spines, and it regulates synaptic plasticity and learning processes. NCAM2's functions are related to its ability to adapt to the external inputs of the cell and to modify the cytoskeleton accordingly. Different studies show that NCAM2 interacts with proteins involved in cytoskeleton stability and proteins that regulate calcium influx, which could also modify the cytoskeleton. In this review, we examine the evidence that points to NCAM2 as a crucial cytoskeleton regulation protein during brain development and adulthood. This key function of NCAM2 may offer promising new therapeutic approaches for the treatment of neurodevelopmental diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
- Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Alba Ortega-Gascó
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Lluís Pujadas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
4
|
Johnson CN, Ramphal B, Koe E, Raudales A, Goldsmith J, Margolis AE. Cognitive correlates of autism spectrum disorder symptoms. Autism Res 2021; 14:2405-2411. [PMID: 34269525 DOI: 10.1002/aur.2577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 01/12/2023]
Abstract
Due to the diverse behavioral presentation of autism spectrum disorder (ASD), identifying ASD subtypes using patterns of cognitive abilities has become an important point of research. Some previous studies on cognitive profiles in ASD suggest that the discrepancy between verbal intelligence quotient (VIQ) and performance IQ (PIQ) is associated with ASD symptoms, while others have pointed to VIQ as the critical predictor. Given that VIQ is a component of the VIQ-PIQ discrepancy, it was unclear which was most driving these associations. This study tested whether VIQ, PIQ, or the VIQ-PIQ discrepancy was most associated with ASD symptoms in children and adults with ASD (N = 527). Using data from the Autism Brain Imaging Data Exchange (ABIDE), we tested the independent contribution of each IQ index and their discrepancy to ASD symptom severity using multiple linear regressions predicting ASD symptoms. VIQ was most associated with lower symptom severity as measured by the Autism Diagnostic Observation Schedule (ADOS) total score, and when VIQ was included in models predicting ASD symptoms, associations with PIQ and IQ discrepancy were not significant. An association between VIQ and ASD communication symptoms drove the association with ASD symptom severity. These results suggest that associations between ASD communication symptoms and IQ discrepancy or PIQ reported in prior studies likely resulted from variance shared with VIQ. Subtyping ASD on the basis of VIQ should be a point of future research, as it may allow for the development of more personalized approaches to intervention. LAY SUMMARY: Previous research on links between autism severity and verbal and nonverbal intelligence has produced mixed results. Our study examined whether verbal intelligence, nonverbal intelligence, or the discrepancy between the two was most related to autism symptoms. We found that higher verbal intelligence was most associated with less severe autism communication symptoms. Given the relevance of verbal intelligence in predicting autism symptom severity, subtyping autism on the basis of verbal intelligence could lead to more personalized treatments.
Collapse
Affiliation(s)
- Camille N Johnson
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Bruce Ramphal
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Emily Koe
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Amarelis Raudales
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Amy E Margolis
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
5
|
Frei JA, Niescier RF, Bridi MS, Durens M, Nestor JE, Kilander MBC, Yuan X, Dykxhoorn DM, Nestor MW, Huang S, Blatt GJ, Lin YC. Regulation of Neural Circuit Development by Cadherin-11 Provides Implications for Autism. eNeuro 2021; 8:ENEURO.0066-21.2021. [PMID: 34135003 PMCID: PMC8266214 DOI: 10.1523/eneuro.0066-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurologic condition characterized by alterations in social interaction and communication, and restricted and/or repetitive behaviors. The classical Type II cadherins cadherin-8 (Cdh8, CDH8) and cadherin-11 (Cdh11, CDH11) have been implicated as autism risk gene candidates. To explore the role of cadherins in the etiology of autism, we investigated their expression patterns during mouse brain development and in autism-specific human tissue. In mice, expression of cadherin-8 and cadherin-11 was developmentally regulated and enriched in the cortex, hippocampus, and thalamus/striatum during the peak of dendrite formation and synaptogenesis. Both cadherins were expressed in synaptic compartments but only cadherin-8 associated with the excitatory synaptic marker neuroligin-1. Induced pluripotent stem cell (iPSC)-derived cortical neural precursor cells (NPCs) and cortical organoids generated from individuals with autism showed upregulated CDH8 expression levels, but downregulated CDH11. We used Cdh11 knock-out (KO) mice of both sexes to analyze the function of cadherin-11, which could help explain phenotypes observed in autism. Cdh11-/- hippocampal neurons exhibited increased dendritic complexity along with altered neuronal and synaptic activity. Similar to the expression profiles in human tissue, levels of cadherin-8 were significantly elevated in Cdh11 KO brains. Additionally, excitatory synaptic markers neuroligin-1 and postsynaptic density (PSD)-95 were both increased. Together, these results strongly suggest that cadherin-11 is involved in regulating the development of neuronal circuitry and that alterations in the expression levels of cadherin-11 may contribute to the etiology of autism.
Collapse
Affiliation(s)
- Jeannine A Frei
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Morgan S Bridi
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Madel Durens
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Jonathan E Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | | | - Xiaobing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Michael W Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Gene J Blatt
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| |
Collapse
|
6
|
Bhandari R, Paliwal JK, Kuhad A. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors. ADVANCES IN NEUROBIOLOGY 2020; 24:97-141. [PMID: 32006358 DOI: 10.1007/978-3-030-30402-7_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous consortium of pervasive development disorders (PDD) which ranges from atypical autism, autism, and Asperger syndrome affecting brain in the developmental stage. This debilitating neurodevelopmental disorder results in both core as well as associated symptoms. Core symptoms observed in autistic patients are lack of social interaction, pervasive, stereotyped, and restricted behavior while the associated symptoms include irritability, anxiety, aggression, and several comorbid disorders.ASD is a polygenic disorder and is multifactorial in origin. Copy number variations (CNVs) of several genes that regulate the synaptogenesis and signaling pathways are one of the major factors responsible for the pathogenesis of autism. The complex integration of various CNVs cause mutations in the genes which code for molecules involved in cell adhesion, voltage-gated ion-channels, scaffolding proteins as well as signaling pathways (PTEN and mTOR pathways). These mutated genes are responsible for affecting synaptic transmission by causing plasticity dysfunction responsible, in turn, for the expression of ASD.Epigenetic modifications affecting DNA transcription and various pre-natal and post-natal exposure to a variety of environmental factors are also precipitating factors for the occurrence of ASD. All of these together cause dysregulation of glutamatergic signaling as well as imbalance in excitatory: inhibitory pathways resulting in glial cell activation and release of inflammatory mediators responsible for the aberrant social behavior which is observed in autistic patients.In this chapter we review and provide insight into the intricate integration of various genetic, epigenetic, and environmental factors which play a major role in the pathogenesis of this disorder and the mechanistic approach behind this integration.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Jyoti K Paliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|
7
|
Kiser DP, Popp S, Schmitt-Böhrer AG, Strekalova T, van den Hove DL, Lesch KP, Rivero O. Early-life stress impairs developmental programming in Cadherin 13 (CDH13)-deficient mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:158-168. [PMID: 30165120 DOI: 10.1016/j.pnpbp.2018.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cadherin-13 (CDH13), a member of the calcium-dependent cell adhesion molecule family, has been linked to neurodevelopmental disorders, including autism spectrum (ASD) and attention-deficit/hyperactivity (ADHD) disorders, but also to depression. In the adult brain, CDH13 expression is restricted e.g. to the presynaptic compartment of inhibitory GABAergic synapses in the hippocampus and Cdh13 knockout mice show an increased inhibitory drive onto hippocampal CA1 pyramidal neurons, leading to a shift in excitatory/inhibitory balance. CDH13 is also moderating migration of serotonergic neurons in the dorsal raphe nucleus, establishing projections preferentially to the thalamus and cerebellum during brain development. Furthermore, CDH13 is upregulated by chronic stress as well as in depression, suggesting a role in early-life adaptation to stressful experience. Here, we therefore investigated the interaction between Cdh13 variation and neonatal maternal separation (MS) in mice. METHODS Male and female wild-type (Cdh13+/+), heterozygous (Cdh13+/-) and homozygous (Cdh13-/-) knockout mice exposed to MS, or daily handling as control, were subjected to a battery of behavioural tests to assess motor activity, learning and memory as well as anxiety-like behaviour. A transcriptome analysis of the hippocampus was performed in an independent cohort of mice which was exposed to MS or handling, but remained naïve for behavioural testing. RESULTS MS lead to increased anxiety-like behaviour in Cdh13-/- mice compared to the other two MS groups. Cdh13-/- mice showed a context-dependent effect on stress- and anxiety-related behaviour, impaired extinction learning following contextual fear conditioning and decreased impulsivity, as well as a mild decrease in errors in the Barnes maze and reduced risk-taking in the light-dark transition test after MS. We also show sex differences, with increased locomotor activity in female Cdh13-/- mice, but unaltered impulsivity and activity in male Cdh13-/- mice. Transcriptome analysis revealed several pathways associated with cell surface/adhesion molecules to be altered following Cdh13 deficiency, together with an influence on endoplasmic reticulum function. CONCLUSION MS resulted in increased stress resilience, increased exploration and an overall anxiolytic behavioural phenotype in male Cdh13+/+ and Cdh13+/- mice. Cdh13 deficiency, however, obliterated most of the effects caused by early-life stress, with Cdh13-/- mice exhibiting delayed habituation, no reduction of anxiety-like behaviour and decreased fear extinction. Our behavioural findings indicate a role of CDH13 in the programming of and adaptation to early-life stress. Finally, our transcriptomic data support the view of CDH13 as a neuroprotective factor as well as a mediator in cell-cell interactions, with an impact on synaptic plasticity.
Collapse
Affiliation(s)
- Dominik P Kiser
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Sandy Popp
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Angelika G Schmitt-Böhrer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Daniel L van den Hove
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.
| |
Collapse
|
8
|
Hawi Z, Tong J, Dark C, Yates H, Johnson B, Bellgrove MA. The role of cadherin genes in five major psychiatric disorders: A literature update. Am J Med Genet B Neuropsychiatr Genet 2018; 177:168-180. [PMID: 28921840 DOI: 10.1002/ajmg.b.32592] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Converging evidence from candidate gene, genome-wide linkage, and association studies support a role of cadherins in the pathophysiology of five major psychiatric disorders including attention deficit hyperactivity disorder, autism spectrum disorder (ASD), schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). These molecules are transmembrane proteins which act as cell adhesives by forming adherens junctions (AJs) to bind cells within tissues. Members of the cadherin superfamily are also involved in biological processes such as signal transduction and plasticity that have been implicated in the etiology of major psychiatric conditions. Although there are over 110 genes mapped to the cadherin superfamily, our literature survey showed that evidence of association with psychiatric disorders is strongest for CDH7, CHD11, and CDH13. Gene enrichment analysis showed that those cadherin genes implicated in psychiatric disorders were overrepresented in biological processes such as in cell-cell adhesion (GO:0007156 & GO:0098742) and adherens junction organization (GO:0034332). Further, cadherin genes were also mapped to processes that have been linked to the development of psychiatric disorders such as nervous system development (GO:0007399). To further understand the role of cadherin SNPs implicated in psychiatric disorders, we utilized an in silico computational pipeline to functionally annotate associated variants. This analysis yielded eight variants mapped to PCDH1-13, CDH7, CDH11, and CDH13 that are predicted to be biologically functional. Functional genomic evaluation is now required to understand the molecular mechanism by which these variants might confer susceptibility to psychiatric disorders.
Collapse
Affiliation(s)
- Ziarih Hawi
- Monash Institute for Cognitive and Clinical Neurosciences (MICCN), School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Janette Tong
- Monash Institute for Cognitive and Clinical Neurosciences (MICCN), School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Callum Dark
- Monash Institute for Cognitive and Clinical Neurosciences (MICCN), School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Hannah Yates
- Monash Institute for Cognitive and Clinical Neurosciences (MICCN), School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Beth Johnson
- Monash Institute for Cognitive and Clinical Neurosciences (MICCN), School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Mark A Bellgrove
- Monash Institute for Cognitive and Clinical Neurosciences (MICCN), School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
May T, Brignell A, Hawi Z, Brereton A, Tonge B, Bellgrove MA, Rinehart NJ. Trends in the Overlap of Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder: Prevalence, Clinical Management, Language and Genetics. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2018. [DOI: 10.1007/s40474-018-0131-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Wijnhoven LAMW, Creemers DHM, Vermulst AA, Granic I. Prevalence and Risk Factors of Anxiety in a Clinical Dutch Sample of Children with an Autism Spectrum Disorder. Front Psychiatry 2018; 9:50. [PMID: 29551982 PMCID: PMC5840159 DOI: 10.3389/fpsyt.2018.00050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/06/2018] [Indexed: 12/28/2022] Open
Abstract
Anxiety is highly prevalent in children with an autism spectrum disorder (ASD). However, there is inconsistency in studies investigating the prevalence and risk factors of anxiety in children with ASD. Therefore, the first aim of this study was to give an overview of the prevalence of anxiety symptoms in a clinical Dutch sample of children with ASD. The second aim was to investigate age, gender, ASD subtype, and IQ as potential risk factors for anxiety in this sample. In total, 172 children with ASD (age, 8-15 years) and their parents participated in this study. Specialized services in which children with ASD were recruited were two mental health institutes and one secondary special education school. The findings showed that more than 60% of the participating children with ASD had at least subclinical anxiety symptoms according to children. More than 80% of the children with ASD had at least subclinical anxiety symptoms according to parents. It was found that younger children and girls with ASD had more anxiety symptoms than older children and boys with ASD. Moreover, it was found that children with a higher performance (non-verbal) IQ and lower verbal IQ had more specific phobia symptoms. The findings suggest that in a clinical context, children with ASD have a high risk to have co-occurring anxiety symptoms, especially girls and younger children with ASD. Therefore, early prevention and treatment of anxiety in children with ASD who are most at risk is important.
Collapse
Affiliation(s)
- Lieke A M W Wijnhoven
- Mental Health Care Institute GGZ Oost-Brabant, Boekel, Netherlands.,Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Daan H M Creemers
- Mental Health Care Institute GGZ Oost-Brabant, Boekel, Netherlands.,Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Ad A Vermulst
- Mental Health Care Institute GGZ Oost-Brabant, Boekel, Netherlands
| | - Isabela Granic
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
11
|
Intellectual Functioning and Autism Spectrum Disorder: Can Profiles Inform Identification of Subpopulations? REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2017. [DOI: 10.1007/s40489-017-0118-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
13
|
Drgonova J, Walther D, Hartstein GL, Bukhari MO, Baumann MH, Katz J, Hall FS, Arnold ER, Flax S, Riley A, Rivero-Martin O, Lesch KP, Troncoso J, Ranscht B, Uhl GR. Cadherin 13: human cis-regulation and selectively-altered addiction phenotypes and cerebral cortical dopamine in knockout mice. Mol Med 2016; 22:537-547. [PMID: 27579475 PMCID: PMC5082297 DOI: 10.2119/molmed.2015.00170] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022] Open
Abstract
The cadherin 13 (CDH13) gene encodes a cell adhesion molecule likely to influence development and connections of brain circuits that modulate addiction, locomotion and cognition, including those that involve midbrain dopamine neurons. Human CDH13 mRNA expression differs by more than 80% in postmortem cerebral cortical samples from individuals with different CDH13 genotypes, supporting examination of mice with altered Cdh13 expression as models for common human variation at this locus. Constitutive cdh13 knockout mice display evidence for changed cocaine reward: shifted dose response relationship in tests of cocaine-conditioned place preference using doses that do not alter cocaine conditioned taste aversion. Reduced adult Cdh13 expression in conditional knockouts also alters cocaine reward in ways that correlate with individual differences in cortical Cdh13 mRNA levels. In control and comparison behavioral assessments, knockout mice display modestly-quicker acquisition of rotarod and water maze tasks, with a trend toward faster acquisition of 5 choice serial reaction time tasks that otherwise displayed no genotype-related differences. They display significant differences in locomotion in some settings, with larger effects in males. In assessments of brain changes that might contribute to these behavioral differences, there are selective alterations of dopamine levels, dopamine/metabolite ratios, dopaminergic fiber densities and mRNA encoding the activity dependent transcription factor npas4 in cerebral cortex of knockout mice. These novel data and previously reported human associations of CDH13 variants with addiction, individual differences in responses to stimulant administration and attention deficit hyperactivity disorder (ADHD) phenotypes suggest that levels of CDH13 expression, through mechanisms likely to include effects on mesocortical dopamine, influence stimulant reward and may contribute modestly to cognitive and locomotor phenotypes relevant to ADHD.
Collapse
Affiliation(s)
- Jana Drgonova
- Molecular Neurobiology, NIH-IRP, NIDA, Baltimore, Maryland 21224
| | - Donna Walther
- Molecular Neurobiology, NIH-IRP, NIDA, Baltimore, Maryland 21224
| | - G Luke Hartstein
- Molecular Neurobiology, NIH-IRP, NIDA, Baltimore, Maryland 21224
| | | | | | - Jonathan Katz
- Medicinal Chemistry, NIH-IRP, NIDA, Baltimore, Maryland 21224
| | - Frank Scott Hall
- Molecular Neurobiology, NIH-IRP, NIDA, Baltimore, Maryland 21224
| | | | - Shaun Flax
- Dept of Psychology, American Univ, Washington, DC
| | | | - Olga Rivero-Martin
- Translational Neurobiology, Dept Psychiatry, Univ Würzburg, Würzburg Germany
| | - Klaus-Peter Lesch
- Translational Neurobiology, Dept Psychiatry, Univ Würzburg, Würzburg Germany
| | - Juan Troncoso
- Div Neuropathology, Johns Hopkins Sch Med, Baltimore MD 21202
| | | | - George R Uhl
- Molecular Neurobiology, NIH-IRP, NIDA, Baltimore, Maryland 21224
| |
Collapse
|
14
|
Francis SM, Kistner-Griffin E, Yan Z, Guter S, Cook EH, Jacob S. Variants in Adjacent Oxytocin/Vasopressin Gene Region and Associations with ASD Diagnosis and Other Autism Related Endophenotypes. Front Neurosci 2016; 10:195. [PMID: 27242401 PMCID: PMC4863894 DOI: 10.3389/fnins.2016.00195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/20/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There has been increasing interest in oxytocin (peptide: OT, gene: OXT) as a treatment pathway for neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). Neurodevelopmental disorders affect functional, social, and intellectual abilities. With advances in molecular biology, research has connected multiple gene regions to the clinical presentation of ASD. Studies have also shown that the neuropeptide hormones OT and arginine vasopressin (AVP) influence mammalian social and territorial behaviors and may have treatment potential for neurodevelopmental disorders. Published data examining molecular and phenotypic variation in ASD, such as cognitive abilities, are limited. Since most studies have focused on the receptors in the OT-AVP system, we investigated genetic variation within peptide genes for association with phenotypic ASD features that help identify subgroups within the spectrum. METHODS In this study, TDT analysis was carried out utilizing FBAT in 207 probands (156 trios) and a European Ancestry (EA) subsample (108 trios).The evolutionarily related and adjacent genes of OXT and AVP were studied for associations between the tagged single nucleotide polymorphisms and ASD diagnosis, social abilities, restrictive and repetitive behaviors, and IQ for cognitive abilities. Additionally, relationships with whole blood serotonin (WB5HT) were explored because of the developmental relationships connecting plasma levels of OT and WB5HT within ASD. RESULTS RESULTS indicate significant association between OXT rs6084258 (p = 0.001) and ASD. Associations with several endophenotypes were also noted: OXT rs6133010 was associated with IQ (full scale IQ, p = 0.008; nonverbal IQ, p = 0.010, verbal IQ, p = 0.006); and OXT rs4813625 and OXT rs877172 were associated with WB5HT levels (EA, p = 0.027 and p = 0.033, respectively). Additionally, we measured plasma OT (pOT) levels in a subsample (N = 54). RESULTS show the three polymorphisms, OXT rs6084258, OXT rs11697250, and OXT rs877172, have significant association with pOT (EA, p = 0.011, p = 0.010, and p = 0.002, respectively). CONCLUSIONS These findings suggest that SNPs near OXT and AVP are associated with diagnosis of ASD, social behaviors, restricted and repetitive behaviors, IQ, pOT, and WB5HT. Future studies need to replicate these findings and examine gene-interactions in other neurodevelopmental disorders. Mechanisms of action may influence early social and cognitive development that may or may not be limited to ASD diagnosis.
Collapse
Affiliation(s)
- Sunday M. Francis
- Department of Psychiatry, University of MinnesotaMinneapolis, MN, USA
| | - Emily Kistner-Griffin
- Biostatistics Shared Resource, Hollings Cancer Center, Medical University of South CarolinaCharleston, SC, USA
| | | | - Stephen Guter
- Department of Psychiatry, Institute of Juvenile Research, University of Illinois at ChicagoChicago, IL, USA
| | - Edwin H. Cook
- Department of Psychiatry, Institute of Juvenile Research, University of Illinois at ChicagoChicago, IL, USA
| | - Suma Jacob
- Department of Psychiatry, University of MinnesotaMinneapolis, MN, USA
| |
Collapse
|
15
|
Chapman NH, Nato AQ, Bernier R, Ankenman K, Sohi H, Munson J, Patowary A, Archer M, Blue EM, Webb SJ, Coon H, Raskind WH, Brkanac Z, Wijsman EM. Whole exome sequencing in extended families with autism spectrum disorder implicates four candidate genes. Hum Genet 2015; 134:1055-68. [PMID: 26204995 PMCID: PMC4578871 DOI: 10.1007/s00439-015-1585-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/11/2015] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders, characterized by impairment in communication and social interactions, and by repetitive behaviors. ASDs are highly heritable, and estimates of the number of risk loci range from hundreds to >1000. We considered 7 extended families (size 12-47 individuals), each with ≥3 individuals affected by ASD. All individuals were genotyped with dense SNP panels. A small subset of each family was typed with whole exome sequence (WES). We used a 3-step approach for variant identification. First, we used family-specific parametric linkage analysis of the SNP data to identify regions of interest. Second, we filtered variants in these regions based on frequency and function, obtaining exactly 200 candidates. Third, we compared two approaches to narrowing this list further. We used information from the SNP data to impute exome variant dosages into those without WES. We regressed affected status on variant allele dosage, using pedigree-based kinship matrices to account for relationships. The p value for the test of the null hypothesis that variant allele dosage is unrelated to phenotype was used to indicate strength of evidence supporting the variant. A cutoff of p = 0.05 gave 28 variants. As an alternative third filter, we required Mendelian inheritance in those with WES, resulting in 70 variants. The imputation- and association-based approach was effective. We identified four strong candidate genes for ASD (SEZ6L, HISPPD1, FEZF1, SAMD11), all of which have been previously implicated in other studies, or have a strong biological argument for their relevance.
Collapse
Affiliation(s)
- Nicola H Chapman
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Alejandro Q Nato
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Katy Ankenman
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Harkirat Sohi
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeff Munson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Center on Child Development and Disability, University of Washington, Seattle, WA, USA
| | - Ashok Patowary
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Marilyn Archer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth M Blue
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Center on Child Development and Disability, University of Washington, Seattle, WA, USA
| | - Hilary Coon
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Wendy H Raskind
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Ellen M Wijsman
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA.
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- University of Washington, University of Washington Tower, T15, 4333 Brooklyn Ave, NE, BOX 359460, Seattle, WA, 98195-9460, USA.
| |
Collapse
|
16
|
Balardin JB, Sato JR, Vieira G, Feng Y, Daly E, Murphy C, Murphy D, Ecker C. Relationship Between Surface-Based Brain Morphometric Measures and Intelligence in Autism Spectrum Disorders: Influence of History of Language Delay. Autism Res 2015; 8:556-66. [PMID: 25735789 DOI: 10.1002/aur.1470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/04/2015] [Indexed: 11/07/2022]
Abstract
Autism spectrum disorders (ASD) are a group of conditions that show abnormalities in the neuroanatomy of multiple brain regions. The variability in the development of intelligence and language among individuals on the autism spectrum has long been acknowledged, but it remains unknown whether these differences impact on the neuropathology of ASD. In this study, we aimed to compare associations between surface-based regional brain measures and general intelligence (IQ) scores in ASD individuals with and without a history of language delay. We included 64 ASD adults of normal intelligence (37 without a history of language delay and 27 with a history of language delay and 80 neurotypicals). Regions with a significant association between verbal and nonverbal IQ and measures of cortical thickness (CT), surface area, and cortical volume were first identified in the combined sample of individuals with ASD and controls. Thicker dorsal frontal and temporal cortices, and thinner lateral orbital frontal and parieto-occipital cortices were associated with greater and lower verbal IQ scores, respectively. Correlations between cortical volume and verbal IQ were observed in similar regions as revealed by the CT analysis. A significant difference between ASD individuals with and without a history of language delay in the association between CT and verbal IQ was evident in the parieto-occipital region. These results indicate that ASD subgroups defined on the basis of differential language trajectories in childhood can have different associations between verbal IQ and brain measures in adulthood despite achieving similar levels of cognitive performance.
Collapse
Affiliation(s)
- Joana Bisol Balardin
- Department of Neurology and NIF-LIM44, FMUSP, University of Sao Paulo, Sao Paulo, Brazil
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo Andre, Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo Andre, Brazil
| | - Gilson Vieira
- Department of Neurology and NIF-LIM44, FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - Yeu Feng
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Clodagh Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| |
Collapse
|
17
|
Kiser DP, Rivero O, Lesch KP. Annual research review: The (epi)genetics of neurodevelopmental disorders in the era of whole-genome sequencing--unveiling the dark matter. J Child Psychol Psychiatry 2015; 56:278-95. [PMID: 25677560 DOI: 10.1111/jcpp.12392] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND SCOPE Neurodevelopmental disorders (NDDs) are defined by a wide variety of behavioural phenotypes, psychopathology and clinically informed categorical classifications. Diagnostic entities include intellectual disability (ID), the autism spectrum (ASD) and attention-deficit/hyperactivity disorder (ADHD). The aetiopathogenesis of these conditions and disorders involves an interaction between both genetic and environmental risk factors on the developmental trajectory. Despite their remarkable genetic heterogeneity and complexity of pathophysiological mechanisms, NDDs display an overlap in their phenotypic features, a considerable degree of comorbidity as well as sharing of genetic and environmental risk factors. This review aims to provide an overview of the genetics and epigenetic of NDDs. FINDINGS Recent evidence suggests a critical role of defined and tightly regulated neurodevelopmental programs running out of control in NDDs, most notably neuronal proliferation and migration, synapse formation and remodelling, as well as neural network configuration resulting in compromised systems connectivity and function. Moreover, the machinery of epigenetic programming, interacting with genetic liability, impacts many of those processes and pathways, thus modifying vulnerability of, and resilience to, NDDs. Consequently, the categorically defined entities of ID, ADHD and ASD are increasingly viewed as disorders on a multidimensional continuum of molecular and cellular deficiencies in neurodevelopment. As such, this range of NDDs displays a broad phenotypic diversity, which may be explained by a combination and interplay of underlying loss- and potential gain-of-function traits. CONCLUSION In this overview, we discuss a backbone continuum concept of NDDs by summarizing pertinent findings in genetics and epigenetics. We also provide an appraisal of the genetic overlap versus differences, with a focus on genome-wide screening approaches for (epi)genetic variation. Finally, we conclude with insights from evolutionary psychobiology suggesting positive selection for discrete NDD-associated traits.
Collapse
Affiliation(s)
- Dominik P Kiser
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | | | | |
Collapse
|
18
|
Nowell KP, Schanding GT, Kanne SM, Goin-Kochel RP. Cognitive Profiles in Youth with Autism Spectrum Disorder: An Investigation of Base Rate Discrepancies using the Differential Ability Scales—Second Edition. J Autism Dev Disord 2015; 45:1978-88. [DOI: 10.1007/s10803-014-2356-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Baum KT, Shear PK, Howe SR, Bishop SL. A comparison of WISC-IV and SB-5 intelligence scores in adolescents with autism spectrum disorder. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2014; 19:736-45. [PMID: 25398894 DOI: 10.1177/1362361314554920] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In autism spectrum disorders, results of cognitive testing inform clinical care, theories of neurodevelopment, and research design. The Wechsler Intelligence Scale for Children and the Stanford-Binet are commonly used in autism spectrum disorder evaluations and scores from these tests have been shown to be highly correlated in typically developing populations. However, they have not been compared in individuals with autism spectrum disorder, whose core symptoms can make testing challenging, potentially compromising test reliability. We used a within-subjects research design to evaluate the convergent validity between the Wechsler Intelligence Scale for Children, 4th ed., and Stanford-Binet, 5th ed., in 40 youth (ages 10-16 years) with autism spectrum disorder. Corresponding intelligence scores were highly correlated (r = 0.78 to 0.88), but full-scale intelligence quotient (IQ) scores (t(38) = -2.27, p = 0.03, d = -0.16) and verbal IQ scores (t(36) = 2.23, p = 0.03; d = 0.19) differed between the two tests. Most participants obtained higher full-scale IQ scores on the Stanford-Binet, 5th ed., compared to Wechsler Intelligence Scale for Children, 4th ed., with 14% scoring more than one standard deviation higher. In contrast, verbal indices were higher on the Wechsler Intelligence Scale for Children, 4th ed., Verbal-nonverbal discrepancy classifications were only consistent for 60% of the sample. Comparisons of IQ test scores in autism spectrum disorder and other special groups are important, as it cannot necessarily be assumed that convergent validity findings in typically developing children and adolescents hold true across all pediatric populations.
Collapse
|
20
|
Emberti Gialloreti L, Pardini M, Benassi F, Marciano S, Amore M, Mutolo MG, Porfirio MC, Curatolo P. Reduction in retinal nerve fiber layer thickness in young adults with autism spectrum disorders. J Autism Dev Disord 2014; 44:873-82. [PMID: 24014196 DOI: 10.1007/s10803-013-1939-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent years have seen an increase in the use of retinal nerve fiber layer (RNFL) evaluation as an easy-to-use, reproducible, proxy-measure of brain structural abnormalities. Here, we evaluated RNFL thickness in a group of subjects with high functioning autism (HFA) or with Asperger Syndrome (AS) to its potential as a tool to study autism pathophysiology. All subjects underwent high-resolution spectral domain optical coherence tomography to evaluate RNFL thickness. HFA subjects presented with reduced global RNFL thickness compared both to AS subjects and controls. AS subjects showed a reduced nasal quadrant RNFL thickness compared to controls. Verbal-IQ/performance-IQ discrepancy correlated with RNFL thickness. Our data suggest that RNFL evaluation could help in the development of biological markers of autism pathophysiology.
Collapse
Affiliation(s)
- Leonardo Emberti Gialloreti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang X, Hou D, Jiang W, Zhang C. Intercellular protein-protein interactions at synapses. Protein Cell 2014; 5:420-44. [PMID: 24756565 PMCID: PMC4026422 DOI: 10.1007/s13238-014-0054-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/23/2014] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.
Collapse
Affiliation(s)
- Xiaofei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
| | - Dongmei Hou
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Wei Jiang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Chen Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| |
Collapse
|
22
|
Identification of risk genes for autism spectrum disorder through copy number variation analysis in Austrian families. Neurogenetics 2014; 15:117-27. [DOI: 10.1007/s10048-014-0394-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/25/2014] [Indexed: 12/13/2022]
|
23
|
Bartlett CW, Hou L, Flax JF, Hare A, Cheong SY, Fermano Z, Zimmerman-Bier B, Cartwright C, Azaro MA, Buyske S, Brzustowicz LM. A genome scan for loci shared by autism spectrum disorder and language impairment. Am J Psychiatry 2014; 171:72-81. [PMID: 24170272 PMCID: PMC4431698 DOI: 10.1176/appi.ajp.2013.12081103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The authors conducted a genetic linkage study of families that have both autism spectrum disorder (ASD) and language-impaired probands to find common communication impairment loci. The hypothesis was that these families have a high genetic loading for impairments in language ability, thus influencing the language and communication deficits of the family members with ASD. Comprehensive behavioral phenotyping of the families also enabled linkage analysis of quantitative measures, including normal, subclinical, and disordered variation in all family members for the three general autism symptom domains: social, communication, and compulsive behaviors. METHOD The primary linkage analysis coded persons with either ASD or specific language impairment as "affected." The secondary linkage analysis consisted of quantitative metrics of autism-associated behaviors capturing normal to clinically severe variation, measured in all family members. RESULTS Linkage to language phenotypes was established at two novel chromosomal loci, 15q23-26 and 16p12. The secondary analysis of normal and disordered quantitative variation in social and compulsive behaviors established linkage to two loci for social behaviors (at 14q and 15q) and one locus for repetitive behaviors (at 13q). CONCLUSION These data indicate shared etiology of ASD and specific language impairment at two novel loci. Additionally, nonlanguage phenotypes based on social aloofness and rigid personality traits showed compelling evidence for linkage in this study group. Further genetic mapping is warranted at these loci.
Collapse
Affiliation(s)
- Christopher W. Bartlett
- The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Liping Hou
- The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Judy F. Flax
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ
| | - Abby Hare
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ
| | - Soo Yeon Cheong
- The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Zena Fermano
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ
| | - Barbie Zimmerman-Bier
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ,Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ
| | - Charles Cartwright
- Department of Psychiatry, University of Medicine and Dentistry of New Jersey – New Jersey Medical School, Newark, NJ
| | - Marco A. Azaro
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ
| | - Steven Buyske
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ,Department of Statistics and Biostatistics, Rutgers University, Rutgers University, Piscataway, NJ
| | - Linda M. Brzustowicz
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ,Corresponding Author:
| |
Collapse
|
24
|
Ankenman K, Elgin J, Sullivan K, Vincent L, Bernier R. Nonverbal and verbal cognitive discrepancy profiles in autism spectrum disorders: influence of age and gender. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2014; 119:84-99. [PMID: 24450323 DOI: 10.1352/1944-7558-119.1.84] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Research suggests that discrepant cognitive abilities are more common in children with autism spectrum disorder (ASD) and may indicate an important ASD endophenotype. The current study examined the frequency of IQ discrepancy profiles (nonverbal IQ > verbal IQ [NVIQ > VIQ], verbal IQ > nonverbal IQ [VIQ > NVIQ], and no split) and the relationship of gender, age, and ASD symptomatology to IQ discrepancy profile in a large sample of children with ASD. The NVIQ > VIQ profile occurred at a higher frequency than expected, had more young males, and showed more autism symptoms than the other groups. Results suggest that the NVIQ > VIQ profile may be less likely to represent a subtype of ASD, but rather a common developmental pathway for children with ASD and other disorders.
Collapse
|
25
|
Using IQ discrepancy scores to examine the neural correlates of specific cognitive abilities. J Neurosci 2013; 33:14135-45. [PMID: 23986248 DOI: 10.1523/jneurosci.0775-13.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The underlying neural determinants of general intelligence have been studied intensively, and seem to derive from the anatomical and functional characteristics of a frontoparietal network. Little is known, however, about the underlying neural correlates of domain-specific cognitive abilities, the other factors hypothesized to explain individual performance on intelligence tests. Previous preliminary studies have suggested that spatially distinct neural structures do not support domain-specific cognitive abilities. To test whether differences between abilities that affect performance on verbal and performance tasks derive instead from the morphological features of a single anatomical network, we assessed in two independent samples of healthy human participants (N=83 and N=58; age range, 5-57 years) the correlation of cortical thickness with the magnitude of the verbal intelligence quotient (VIQ)-performance intelligence quotient (PIQ) discrepancy. We operationalized the VIQ-PIQ discrepancy by regressing VIQ onto PIQ (VIQ-regressed-on-PIQ score), and by regressing PIQ onto VIQ (PIQ-regressed-on-VIQ score). In both samples, a progressively thinner cortical mantle in anterior and posterior regions bilaterally was associated with progressively greater (more positive) VIQ-regressed-on-PIQ scores. A progressively thicker cortical mantle in anterior and posterior regions bilaterally was associated with progressively greater (more positive) PIQ-regressed-on-VIQ scores. Variation in cortical thickness in these regions accounted for a large portion of the overall variance in magnitude of the VIQ-PIQ discrepancy. The degree of hemispheric asymmetry in cortical thickness accounted for a much smaller but statistically significant portion of variance in VIQ-PIQ discrepancy.
Collapse
|
26
|
Chojnicka I, Strawa K, Fudalej S, Fudalej M, Pawlak A, Kostrzewa G, Wojnar M, Krajewski P, Płoski R. Analysis of four genes involved in the neurodevelopment shows association of rs4307059 polymorphism in the cadherin 9/10 region with completed suicide. Neuropsychobiology 2013; 66:134-40. [PMID: 22846907 DOI: 10.1159/000339559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 05/21/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND We hypothesized that DNA variants affecting neurodevelopment such as rs4307059 (CDH10/CDH9), rs930752 (NRXN1), rs6265 (BDNF) or rs10868235 (NTRK2) may predispose to completed suicide. METHODOLOGY We used a case-control two-stage approach based on a discovery cohort (557 cases and ∼550 controls) and replication cohort (159 cases and 186 controls). The suicides were ascertained as consecutive cases autopsied at the Department of Forensic Medicine, Medical University of Warsaw, Poland. RESULTS In the discovery cohort we found an association between suicide and the CC genotype in the rs4307059 polymorphism (OR 1.64, p = 0.012). The trend for an overrepresentation of the CC homozygotes among suicides was replicated in the second cohort (OR 1.97, p = 0.056). Analysis in the pooled cohorts showed that rs4307059 CC was associated with completed suicide (OR 1.71, p = 0.002) also after Bonferroni correction (p(cor.) = 0.024). In an exploratory search for genotype-phenotype correlation we found that males with the rs4307059 CC genotype committed suicide earlier than those with CT/TT genotypes (p = 0.049). CONCLUSIONS The CC genotype of rs4307059 located in the region between CDH9 and CDH10 is associated with completed suicide in a Polish cohort.
Collapse
Affiliation(s)
- Izabela Chojnicka
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Anney R, Klei L, Pinto D, Almeida J, Bacchelli E, Baird G, Bolshakova N, Bölte S, Bolton PF, Bourgeron T, Brennan S, Brian J, Casey J, Conroy J, Correia C, Corsello C, Crawford EL, de Jonge M, Delorme R, Duketis E, Duque F, Estes A, Farrar P, Fernandez BA, Folstein SE, Fombonne E, Gilbert J, Gillberg C, Glessner JT, Green A, Green J, Guter SJ, Heron EA, Holt R, Howe JL, Hughes G, Hus V, Igliozzi R, Jacob S, Kenny GP, Kim C, Kolevzon A, Kustanovich V, Lajonchere CM, Lamb JA, Law-Smith M, Leboyer M, Le Couteur A, Leventhal BL, Liu XQ, Lombard F, Lord C, Lotspeich L, Lund SC, Magalhaes TR, Mantoulan C, McDougle CJ, Melhem NM, Merikangas A, Minshew NJ, Mirza GK, Munson J, Noakes C, Nygren G, Papanikolaou K, Pagnamenta AT, Parrini B, Paton T, Pickles A, Posey DJ, Poustka F, Ragoussis J, Regan R, Roberts W, Roeder K, Roge B, Rutter ML, Schlitt S, Shah N, Sheffield VC, Soorya L, Sousa I, Stoppioni V, Sykes N, Tancredi R, Thompson AP, Thomson S, Tryfon A, Tsiantis J, Van Engeland H, Vincent JB, Volkmar F, Vorstman JAS, Wallace S, Wing K, Wittemeyer K, Wood S, Zurawiecki D, Zwaigenbaum L, Bailey AJ, Battaglia A, Cantor RM, Coon H, Cuccaro ML, Dawson G, Ennis S, Freitag CM, Geschwind DH, Haines JL, Klauck SM, McMahon WM, Maestrini E, Miller J, Monaco AP, Nelson SF, Nurnberger JI, Oliveira G, Parr JR, Pericak-Vance MA, Piven J, Schellenberg GD, Scherer SW, Vicente AM, Wassink TH, Wijsman EM, Betancur C, Buxbaum JD, Cook EH, Gallagher L, Gill M, Hallmayer J, Paterson AD, Sutcliffe JS, Szatmari P, Vieland VJ, Hakonarson H, Devlin B. Individual common variants exert weak effects on the risk for autism spectrum disorders. Hum Mol Genet 2012; 21:4781-92. [PMID: 22843504 PMCID: PMC3471395 DOI: 10.1093/hmg/dds301] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 11/13/2022] Open
Abstract
While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASDs), the contribution of common variation to the risk of developing ASD is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating the association of individual single nucleotide polymorphisms (SNPs), we also sought evidence that common variants, en masse, might affect the risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest P-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. In contrast, allele scores derived from the transmission of common alleles to Stage 1 cases significantly predict case status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele score results, it is reasonable to conclude that common variants affect the risk for ASD but their individual effects are modest.
Collapse
Affiliation(s)
- Richard Anney
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA
| | - Dalila Pinto
- The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, ON, CanadaM5G 1L7
| | - Joana Almeida
- Hospital Pediátrico de Coimbra, 3000–076 Coimbra, Portugal
| | - Elena Bacchelli
- Department of Biology, University of Bologna, 40126 Bologna, Italy
| | - Gillian Baird
- Guy's and St Thomas' NHS Trust & King's College, London SE1 9RT, UK
| | - Nadia Bolshakova
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Sven Bölte
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, J.W. Goethe University Frankfurt, 60528 Frankfurt, Germany
| | | | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur and
- University Paris Diderot-Paris 7, CNRS URA 2182, Fondation FondaMental, 75015 Paris, France
| | - Sean Brennan
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Jessica Brian
- Autism Research Unit, The Hospital for Sick Children and Bloorview Kids Rehabilitation, University of Toronto, Toronto, ON, CanadaM5G 1Z8
| | - Jillian Casey
- School of Medicine, Medical Science University College, Dublin 4, Ireland
| | - Judith Conroy
- School of Medicine, Medical Science University College, Dublin 4, Ireland
| | - Catarina Correia
- Instituto Nacional de Saude Dr Ricardo Jorge and Instituto Gulbenkian de Cîencia, 1649-016 Lisbon, Portugal
- BioFIG—Center for Biodiversity, Functional and Integrative Genomics, Campus da FCUL, C2.2.12, Campo Grande, 1749-016 Lisboa, Portugal
| | - Christina Corsello
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L. Crawford
- Department of Molecular Physiology and Biophysics, Vanderbilt Kennedy Center, and Centers for Human Genetics Research and Molecular Neuroscience and
| | - Maretha de Jonge
- Department of Child Psychiatry, University Medical Center, Utrecht, 3508 GA, The Netherlands
| | - Richard Delorme
- Child and Adolescent Psychiatry, APHP, Hôpital Robert Debré, 75019 Paris, France
| | - Eftichia Duketis
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, J.W. Goethe University Frankfurt, 60528 Frankfurt, Germany
| | | | | | - Penny Farrar
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Bridget A. Fernandez
- Disciplines of Genetics and Medicine, Memorial University of Newfoundland,St John's, NL, CanadaA1B 3V6
| | - Susan E. Folstein
- Department of Psychiatry, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Eric Fombonne
- Division of Psychiatry, McGill University, Montreal, QC, CanadaH3A 1A1
| | - John Gilbert
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33101, USA
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joseph T. Glessner
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andrew Green
- School of Medicine, Medical Science University College, Dublin 4, Ireland
| | - Jonathan Green
- Academic Department of Child Psychiatry, University of Manchester, Manchester M9 7AA, UK
| | - Stephen J. Guter
- Department of Psychiatry, Institute for Juvenile Research, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Elizabeth A. Heron
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Richard Holt
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jennifer L. Howe
- The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, ON, CanadaM5G 1L7
| | - Gillian Hughes
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Vanessa Hus
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roberta Igliozzi
- BioFIG—Center for Biodiversity, Functional and Integrative Genomics, Campus da FCUL, C2.2.12, Campo Grande, 1749-016 Lisboa, Portugal
| | - Suma Jacob
- Department of Psychiatry, Institute for Juvenile Research, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Graham P. Kenny
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Cecilia Kim
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexander Kolevzon
- The Seaver Autism Center for Research and Treatment, Department of Psychiatry, The Friedman Brain Institute, Mount Sinai School of Medicine, New York NY 10029, USA
| | - Vlad Kustanovich
- Autism Genetic Resource Exchange, Autism Speaks, Los Angeles, CA 90036-4234, USA
| | - Clara M. Lajonchere
- Autism Genetic Resource Exchange, Autism Speaks, Los Angeles, CA 90036-4234, USA
| | | | - Miriam Law-Smith
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Marion Leboyer
- Department of Psychiatry, Groupe hospitalier Henri Mondor-Albert Chenevier, INSERM U995, AP-HP; University Paris 12, Fondation FondaMental, Créteil 94000, France
| | - Ann Le Couteur
- Institutes of Neuroscience and Health and Society, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Bennett L. Leventhal
- Nathan Kline Institute for Psychiatric Research (NKI), 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
- Department of Child and Adolescent Psychiatry, New York University, NYU Child Study Center, New York, NY 10016, USA
| | - Xiao-Qing Liu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frances Lombard
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Catherine Lord
- Center for Autism and the Developing Brain, Weill Cornell Medical College, White Plains, NY, USA
| | - Linda Lotspeich
- Department of Psychiatry, Division of Child and Adolescent Psychiatry and Child Development, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sabata C. Lund
- Department of Molecular Physiology and Biophysics, Vanderbilt Kennedy Center, and Centers for Human Genetics Research and Molecular Neuroscience and
| | - Tiago R. Magalhaes
- Instituto Nacional de Saude Dr Ricardo Jorge and Instituto Gulbenkian de Cîencia, 1649-016 Lisbon, Portugal
- BioFIG—Center for Biodiversity, Functional and Integrative Genomics, Campus da FCUL, C2.2.12, Campo Grande, 1749-016 Lisboa, Portugal
| | - Carine Mantoulan
- Centre d'Eudes et de Recherches en Psychopathologie, University de Toulouse Le Mirail, Toulouse 31200, France
| | - Christopher J. McDougle
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nadine M. Melhem
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA
| | - Alison Merikangas
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Nancy J. Minshew
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ghazala K. Mirza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jeff Munson
- Department of Psychiatry and Behavioral Sciences
| | - Carolyn Noakes
- Autism Research Unit, The Hospital for Sick Children and Bloorview Kids Rehabilitation, University of Toronto, Toronto, ON, CanadaM5G 1Z8
| | - Gudrun Nygren
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katerina Papanikolaou
- University Department of Child Psychiatry, Athens University, Medical School, Agia Sophia Children's Hospital, 115 27 Athens, Greece
| | | | - Barbara Parrini
- Stella Maris Institute for Child and Adolescent Neuropsychiatry, 56128 Calambrone (Pisa), Italy
| | - Tara Paton
- The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, ON, CanadaM5G 1L7
| | - Andrew Pickles
- Department of Medicine, School of Epidemiology and Health Science, University of Manchester, Manchester M13 9PT, UK
| | - David J. Posey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fritz Poustka
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, J.W. Goethe University Frankfurt, 60528 Frankfurt, Germany
| | - Jiannis Ragoussis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Regina Regan
- School of Medicine, Medical Science University College, Dublin 4, Ireland
| | - Wendy Roberts
- Autism Research Unit, The Hospital for Sick Children and Bloorview Kids Rehabilitation, University of Toronto, Toronto, ON, CanadaM5G 1Z8
| | - Kathryn Roeder
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Bernadette Roge
- Centre d'Eudes et de Recherches en Psychopathologie, University de Toulouse Le Mirail, Toulouse 31200, France
| | - Michael L. Rutter
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College, London SE5 8AF, UK
| | - Sabine Schlitt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, J.W. Goethe University Frankfurt, 60528 Frankfurt, Germany
| | - Naisha Shah
- School of Medicine, Medical Science University College, Dublin 4, Ireland
| | - Val C. Sheffield
- Department of Pediatrics and Howard Hughes Medical Institute Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Latha Soorya
- The Seaver Autism Center for Research and Treatment, Department of Psychiatry, The Friedman Brain Institute, Mount Sinai School of Medicine, New York NY 10029, USA
| | - Inês Sousa
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Vera Stoppioni
- Neuropsichiatria Infantile, Ospedale Santa Croce, 61032 Fano, Italy
| | - Nuala Sykes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Raffaella Tancredi
- Stella Maris Institute for Child and Adolescent Neuropsychiatry, 56128 Calambrone (Pisa), Italy
| | - Ann P. Thompson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, CanadaL8N 3Z5
| | - Susanne Thomson
- Department of Molecular Physiology and Biophysics, Vanderbilt Kennedy Center, and Centers for Human Genetics Research and Molecular Neuroscience and
| | - Ana Tryfon
- The Seaver Autism Center for Research and Treatment, Department of Psychiatry, The Friedman Brain Institute, Mount Sinai School of Medicine, New York NY 10029, USA
| | - John Tsiantis
- University Department of Child Psychiatry, Athens University, Medical School, Agia Sophia Children's Hospital, 115 27 Athens, Greece
| | - Herman Van Engeland
- Department of Child Psychiatry, University Medical Center, Utrecht, 3508 GA, The Netherlands
| | - John B. Vincent
- Centre for Addiction and Mental Health, Clarke Institute and Department of Psychiatry, University of Toronto, Toronto, ON, CanadaM5G 1X8
| | - Fred Volkmar
- Child Study Centre, Yale University, New Haven, CT 06520, USA
| | - JAS Vorstman
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Simon Wallace
- Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford, OX3 7JX, UK
| | - Kirsty Wing
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kerstin Wittemeyer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford, OX3 7JX, UK
| | - Shawn Wood
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA
| | - Danielle Zurawiecki
- The Seaver Autism Center for Research and Treatment, Department of Psychiatry, The Friedman Brain Institute, Mount Sinai School of Medicine, New York NY 10029, USA
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, University of Alberta, Edmonton, AB, CanadaT6G 2J3
| | - Anthony J. Bailey
- BC Mental Health and Addictions Research Unit, University of British Columbia, Vancouver, BC, CanadaV5Z4H4
| | - Agatino Battaglia
- Stella Maris Institute for Child and Adolescent Neuropsychiatry, 56128 Calambrone (Pisa), Italy
| | | | - Hilary Coon
- Psychiatry Department, University of Utah Medical School, Salt Lake City, UT 84108, USA
| | - Michael L. Cuccaro
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33101, USA
| | | | - Sean Ennis
- School of Medicine, Medical Science University College, Dublin 4, Ireland
| | - Christine M. Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, J.W. Goethe University Frankfurt, 60528 Frankfurt, Germany
| | - Daniel H. Geschwind
- Department of Neurology, Los Angeles School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jonathan L. Haines
- Center for Human Genetics Research, Vanderbilt University Medical Centre, Nashville, TN 37232, USA
| | - Sabine M. Klauck
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - William M. McMahon
- Psychiatry Department, University of Utah Medical School, Salt Lake City, UT 84108, USA
| | - Elena Maestrini
- Department of Biology, University of Bologna, 40126 Bologna, Italy
| | - Judith Miller
- Psychiatry Department, University of Utah Medical School, Salt Lake City, UT 84108, USA
| | - Anthony P. Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Office of the President, Tufts University, Boston, MA, USA
| | | | - John I. Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Jeremy R. Parr
- Institutes of Neuroscience and Health and Society, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3366, USA
| | - Gerard D. Schellenberg
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen W. Scherer
- The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, ON, CanadaM5G 1L7
| | - Astrid M. Vicente
- Instituto Nacional de Saude Dr Ricardo Jorge and Instituto Gulbenkian de Cîencia, 1649-016 Lisbon, Portugal
- BioFIG—Center for Biodiversity, Functional and Integrative Genomics, Campus da FCUL, C2.2.12, Campo Grande, 1749-016 Lisboa, Portugal
| | - Thomas H. Wassink
- Department of Psychiatry, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ellen M. Wijsman
- Department of Biostatistics and
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Catalina Betancur
- INSERM U952
- CNRS UMR 7224 and
- UPMC Univ Paris 06, Paris 75005, France and
| | - Joseph D. Buxbaum
- The Seaver Autism Center for Research and Treatment, Department of Psychiatry, The Friedman Brain Institute, Mount Sinai School of Medicine, New York NY 10029, USA
| | - Edwin H. Cook
- Department of Psychiatry, Institute for Juvenile Research, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Louise Gallagher
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Michael Gill
- Autism Genetics Group, Department of Psychiatry, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Joachim Hallmayer
- Department of Psychiatry, Division of Child and Adolescent Psychiatry and Child Development, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Andrew D. Paterson
- The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, ON, CanadaM5G 1L7
| | - James S. Sutcliffe
- Department of Molecular Physiology and Biophysics, Vanderbilt Kennedy Center, and Centers for Human Genetics Research and Molecular Neuroscience and
| | - Peter Szatmari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, CanadaL8N 3Z5
| | - Veronica J. Vieland
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA
| |
Collapse
|
28
|
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.
Collapse
Affiliation(s)
- Shinji Hirano
- Department of Neurobiology and Anatomy, Kochi Medical School, Okoh-cho Kohasu, Nankoku-City 783–8505, Japan.
| | | |
Collapse
|
29
|
Cadherins and neuropsychiatric disorders. Brain Res 2012; 1470:130-44. [PMID: 22765916 DOI: 10.1016/j.brainres.2012.06.020] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 01/29/2023]
Abstract
Cadherins mediate cell-cell adhesion but are also involved in intracellular signaling pathways associated with neuropsychiatric disease. Most of the ∼100 cadherins that are expressed in the brain exhibit characteristic spatiotemporal expression profiles. Cadherins have been shown to regulate neural tube regionalization, neuronal migration, gray matter differentiation, neural circuit formation, spine morphology, synapse formation and synaptic remodeling. The dysfunction of the cadherin-based adhesive system may alter functional connectivity and coherent information processing in the human brain in neuropsychiatric disease. Several neuropsychiatric disorders, such as epilepsy/mental retardation, autism, bipolar disease and schizophrenia, have been associated with cadherins, mostly by genome-wide association studies. For example, CDH15 and PCDH19 are associated with cognitive impairment; CDH5, CDH8, CDH9, CDH10, CDH13, CDH15, PCDH10, PCDH19 and PCDHb4 with autism; CDH7, CDH12, CDH18, PCDH12 and FAT with bipolar disease and schizophrenia; and CDH11, CDH12 and CDH13 with methamphetamine and alcohol dependency. To date, disease-causing mutations are established for PCDH19 in patients with epilepsy, cognitive impairment and/or autistic features. In conclusion, genes encoding members of the cadherin superfamily are of special interest in the pathogenesis of neuropsychiatric disease because cadherins play a pivotal role in the development of the neural circuitry as well as in mature synaptic function.
Collapse
|
30
|
Lesca G, Rudolf G, Labalme A, Hirsch E, Arzimanoglou A, Genton P, Motte J, de Saint Martin A, Valenti MP, Boulay C, De Bellescize J, Kéo-Kosal P, Boutry-Kryza N, Edery P, Sanlaville D, Szepetowski P. Epileptic encephalopathies of the Landau-Kleffner and continuous spike and waves during slow-wave sleep types: genomic dissection makes the link with autism. Epilepsia 2012; 53:1526-38. [PMID: 22738016 DOI: 10.1111/j.1528-1167.2012.03559.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE The continuous spike and waves during slow-wave sleep syndrome (CSWSS) and the Landau-Kleffner (LKS) syndrome are two rare epileptic encephalopathies sharing common clinical features including seizures and regression. Both CSWSS and LKS can be associated with the electroencephalography pattern of electrical status epilepticus during slow-wave sleep and are part of a clinical continuum that at its benign end also includes rolandic epilepsy (RE) with centrotemporal spikes. The CSWSS and LKS patients can also have behavioral manifestations that overlap the spectrum of autism disorders (ASD). An impairment of brain development and/or maturation with complex interplay between genetic predisposition and nongenetic factors has been suspected. A role for autoimmunity has been proposed but the pathophysiology of CSWSS and of LKS remains uncharacterized. METHODS In recent years, the participation of rare genomic alterations in the susceptibility to epileptic and autistic disorders has been demonstrated. The involvement of copy number variations (CNVs) in 61 CSWSS and LKS patients was questioned using comparative genomic hybridization assays coupled with validation by quantitative polymerase chain reaction (PCR). KEY FINDINGS Whereas the patients showed highly heterogeneous in genomic architecture, several potentially pathogenic alterations were detected. A large number of these corresponded to genomic regions or genes (ATP13A4, CDH9, CDH13, CNTNAP2, CTNNA3, DIAPH3, GRIN2A, MDGA2, SHANK3) that have been either associated with ASD for most of them, or involved in speech or language impairment, or in RE. Particularly, CNVs encoding cell adhesion proteins (cadherins, protocadherins, contactins, catenins) were detected with high frequency (≈20% of the patients) and significant enrichment (cell adhesion: p = 0.027; cell adhesion molecule binding: p = 9.27 × 10(-7)). SIGNIFICANCE Overall our data bring the first insights into the possible molecular pathophysiology of CSWSS and LKS. The overrepresentation of cell adhesion genes and the strong overlap with the genetic, genomic and molecular ASD networks, provide an exciting and unifying view on the clinical links among CSWSS, LKS, and ASD.
Collapse
Affiliation(s)
- Gaetan Lesca
- Department of Constitutional Cytogenetics, Lyon Hospices Civils, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Parsing heterogeneity in autism spectrum disorders: visual scanning of dynamic social scenes in school-aged children. J Am Acad Child Adolesc Psychiatry 2012; 51:238-48. [PMID: 22365460 PMCID: PMC3306820 DOI: 10.1016/j.jaac.2011.12.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/12/2011] [Accepted: 12/21/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To examine patterns of variability in social visual engagement and their relationship to standardized measures of social disability in a heterogeneous sample of school-aged children with autism spectrum disorders (ASD). METHOD Eye-tracking measures of visual fixation during free-viewing of dynamic social scenes were obtained for 109 children with ASD (mean age, 10.2 ± 3.2 years), 37 of whom were matched with 26 typically-developing (TD) children (mean age, 9.5 ± 2.2 years) on gender, age, and IQ. The smaller subset allowed between-group comparisons, whereas the larger group was used for within-group examinations of ASD heterogeneity. RESULTS Between-group comparisons revealed significantly attenuated orientation to socially salient aspects of the scenes, with the largest effect size (Cohen's d = 1.5) obtained for reduced fixation on faces. Within-group analyses revealed a robust association between higher fixation on the inanimate environment and greater social disability. However, the associations between fixation on the eyes and mouth and social adaptation varied greatly, even reversing, when comparing different cognitive profile subgroups. CONCLUSIONS Although patterns of social visual engagement with naturalistic social stimuli are profoundly altered in children with ASD, the social adaptivity of these behaviors varies for different groups of children. This variation likely represents different patterns of adaptation and maladaptation that should be traced longitudinally to the first years of life, before complex interactions between early predispositions and compensatory learning take place. We propose that variability in these early mechanisms of socialization may serve as proximal behavioral manifestations of genetic vulnerabilities.
Collapse
|
32
|
Chen YZ, Matsushita M, Girirajan S, Lisowski M, Sun E, Sul Y, Bernier R, Estes A, Dawson G, Minshew N, Shellenberg GD, Eichler EE, Rieder MJ, Nickerson DA, Tsuang DW, Tsuang MT, Wijsman EM, Raskind WH, Brkanac Z. Evidence for involvement of GNB1L in autism. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:61-71. [PMID: 22095694 PMCID: PMC3270696 DOI: 10.1002/ajmg.b.32002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/21/2011] [Indexed: 11/22/2022]
Abstract
Structural variations in the chromosome 22q11.2 region mediated by nonallelic homologous recombination result in 22q11.2 deletion (del22q11.2) and 22q11.2 duplication (dup22q11.2) syndromes. The majority of del22q11.2 cases have facial and cardiac malformations, immunologic impairments, specific cognitive profile and increased risk for schizophrenia and autism spectrum disorders (ASDs). The phenotype of dup22q11.2 is frequently without physical features but includes the spectrum of neurocognitive abnormalities. Although there is substantial evidence that haploinsufficiency for TBX1 plays a role in the physical features of del22q11.2, it is not known which gene(s) in the critical 1.5 Mb region are responsible for the observed spectrum of behavioral phenotypes. We identified an individual with a balanced translocation 46,XY,t(1;22)(p36.1;q11.2) and a behavioral phenotype characterized by cognitive impairment, autism, and schizophrenia in the absence of congenital malformations. Using somatic cell hybrids and comparative genomic hybridization (CGH) we mapped the chromosome-22 breakpoint within intron 7 of the GNB1L gene. Copy number evaluations and direct DNA sequencing of GNB1L in 271 schizophrenia and 513 autism cases revealed dup22q11.2 in two families with autism and private GNB1L missense variants in conserved residues in three families (P = 0.036). The identified missense variants affect residues in the WD40 repeat domains and are predicted to have deleterious effects on the protein. Prior studies provided evidence that GNB1L may have a role in schizophrenia. Our findings support involvement of GNB1L in ASDs as well.
Collapse
Affiliation(s)
- Ying-Zhang Chen
- Department of Medicine (Medical Genetics), University of WashingtonSeattle, Washington
| | - Mark Matsushita
- Department of Medicine (Medical Genetics), University of WashingtonSeattle, Washington
| | - Santhosh Girirajan
- Department of Genome Sciences, University of WashingtonSeattle, Washington
| | - Mark Lisowski
- Department of Medicine (Medical Genetics), University of WashingtonSeattle, Washington
| | - Elizabeth Sun
- Department of Medicine (Medical Genetics), University of WashingtonSeattle, Washington
| | - Youngmee Sul
- Department of Medicine (Medical Genetics), University of WashingtonSeattle, Washington
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattle, Washington
| | - Annette Estes
- Department of Speech and Hearing Sciences, University of WashingtonSeattle, Washington
| | - Geraldine Dawson
- Department of Psychiatry, University of North Carolina Chapel HillChapel Hill, North Carolina
| | - Nancy Minshew
- Department of Psychiatry and Neurology, University of PittsburghPittsburgh, Pennsylvania
| | - Gerard D Shellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of MedicinePhiladelphia, Pennsylvania
| | - Evan E Eichler
- Department of Genome Sciences, University of WashingtonSeattle, Washington,Howard Hughes Medical InstituteSeattle, Washington
| | - Mark J Rieder
- Department of Genome Sciences, University of WashingtonSeattle, Washington
| | | | - Debby W Tsuang
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattle, Washington,VISN-20 Mental Illness Research, Education, and Clinical Center, Department of Veteran AffairsSeattle, Washington
| | - Ming T Tsuang
- Department of Psychiatry University of CaliforniaSan Diego, La Jolla, California
| | - Ellen M Wijsman
- Department of Medicine (Medical Genetics), University of WashingtonSeattle, Washington,Department of Biostatistics, University of WashingtonSeattle, Washington
| | - Wendy H Raskind
- Department of Medicine (Medical Genetics), University of WashingtonSeattle, Washington,Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattle, Washington,VISN-20 Mental Illness Research, Education, and Clinical Center, Department of Veteran AffairsSeattle, Washington,**Correspondence to: Wendy H. Raskind, Division of Medical Genetics, Department of Medicine, University of Washington, D218, Box 357720, Seattle, WA 98195-7720. E-mail:
| | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattle, Washington,*Correspondence to: Zoran Brkanac, Department of Psychiatry and Behavioral Sciences, University of Washington, BB1545, Box 356560, Seattle, WA 98195-6560. E-mail:
| |
Collapse
|
33
|
Southwick JS, Bigler ED, Froehlich A, DuBray MB, Alexander AL, Lange N, Lainhart JE. Memory functioning in children and adolescents with autism. Neuropsychology 2011; 25:702-710. [PMID: 21843004 PMCID: PMC3340415 DOI: 10.1037/a0024935] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Memory functioning in children and adolescents ages 5-19 with autism (n = 50) and typically developing controls (n = 36) was assessed using a clinical assessment battery, the Test of Memory and Learning (TOMAL). METHOD Participant groups were statistically comparable in age, nonverbal IQ, handedness, and head circumference, and were administered the TOMAL. RESULTS Test performance on the TOMAL demonstrated broad differences in memory functioning in the autism group, across multiple task formats, including verbal and nonverbal, immediate and delayed, attention and concentration, sequential recall, free recall, associative recall, and multiple-trial learning memory. All index and nearly all subtest differences remained significant even after comparing a subset of the autism group (n = 36) and controls that were matched for verbal IQ (p > .05). However, retention of previously remembered information after a delay was similar in autism and controls. CONCLUSIONS These findings indicate that performance on measures of episodic memory is broadly reduced in autism, and support the conclusion that information encoding and organization, possibly due to inefficient cognitive processing strategies, rather than storage and retrieval, are the primary factors that limit memory performance in autism.
Collapse
Affiliation(s)
| | - Erin D Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University
| | | | - Molly B DuBray
- Interdepartmental Neuroscience Program, University of Utah
| | - Andrew L Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin
| | | | | |
Collapse
|