1
|
Ruiz A, Ramos L. Genetic Variants in KNDy Pathway Lack Association with Premature Ovarian Insufficiency in Mexican Women: A Sequencing-Based Cohort Study. Genes (Basel) 2024; 15:788. [PMID: 38927724 PMCID: PMC11203232 DOI: 10.3390/genes15060788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Previous studies have demonstrated the essential role of the Kisspeptin/Neurokinin B/Dynorphin A (KNDy) pathway in female reproductive biology by regulating the activity of the hypothalamic-pituitary-gonadal axis. Identified loss-of-function mutations in these genes are linked to various reproductive disorders. This study investigated genetic disorders linked to mutations in the KNDy genes related to premature ovarian insufficiency (POI). A cohort of 14 Mexican POI patients underwent genetic screening using PCR-SSCP and Sanger sequencing, assessing the genetic variations' impact on protein function thereafter using multiple in silico tools. The PCR excluded extensive deletions, insertions, and duplications, while SSCP detected five genetic variants. Variations occurred in the KISS1 (c.58G>A and c.242C>G), KISS1R (c.1091A>T), PDYN (c.600C>T), and OPRK1 (c.36G>T) genes, whereas no genetic anomalies were found in NK3/NK3R genes. Each single-nucleotide variant underwent genotyping using PCR-SSCP in 100 POI-free subjects. Their allelic frequencies paralleled the patient group. These observations indicate that allelic variations in the KNDy genes may not contribute to POI etiology. Hence, screening for mutations in KNDy genes should not be a part of the diagnostic protocol for POI.
Collapse
Affiliation(s)
| | - Luis Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, México City C.P. 14080, Mexico
| |
Collapse
|
2
|
Dwivedi I, Haddad GG. Investigating the neurobiology of maternal opioid use disorder and prenatal opioid exposure using brain organoid technology. Front Cell Neurosci 2024; 18:1403326. [PMID: 38812788 PMCID: PMC11133580 DOI: 10.3389/fncel.2024.1403326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Over the past two decades, Opioid Use Disorder (OUD) among pregnant women has become a major global public health concern. OUD has been characterized as a problematic pattern of opioid use despite adverse physical, psychological, behavioral, and or social consequences. Due to the relapsing-remitting nature of this disorder, pregnant mothers are chronically exposed to exogenous opioids, resulting in adverse neurological and neuropsychiatric outcomes. Collateral fetal exposure to opioids also precipitates severe neurodevelopmental and neurocognitive sequelae. At present, much of what is known regarding the neurobiological consequences of OUD and prenatal opioid exposure (POE) has been derived from preclinical studies in animal models and postnatal or postmortem investigations in humans. However, species-specific differences in brain development, variations in subject age/health/background, and disparities in sample collection or storage have complicated the interpretation of findings produced by these explorations. The ethical or logistical inaccessibility of human fetal brain tissue has also limited direct examinations of prenatal drug effects. To circumvent these confounding factors, recent groups have begun employing induced pluripotent stem cell (iPSC)-derived brain organoid technology, which provides access to key aspects of cellular and molecular brain development, structure, and function in vitro. In this review, we endeavor to encapsulate the advancements in brain organoid culture that have enabled scientists to model and dissect the neural underpinnings and effects of OUD and POE. We hope not only to emphasize the utility of brain organoids for investigating these conditions, but also to highlight opportunities for further technical and conceptual progress. Although the application of brain organoids to this critical field of research is still in its nascent stages, understanding the neurobiology of OUD and POE via this modality will provide critical insights for improving maternal and fetal outcomes.
Collapse
Affiliation(s)
- Ila Dwivedi
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Gabriel G. Haddad
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Rady Children’s Hospital, San Diego, CA, United States
| |
Collapse
|
3
|
Conradt E, Camerota M, Maylott S, Lester BM. Annual Research Review: Prenatal opioid exposure - a two-generation approach to conceptualizing neurodevelopmental outcomes. J Child Psychol Psychiatry 2023; 64:566-578. [PMID: 36751734 DOI: 10.1111/jcpp.13761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Opioid use during pregnancy impacts the health and well-being of two generations: the pregnant person and the child. The factors that increase risk for opioid use in the adult, as well as those that perpetuate risk for the caregiver and child, oftentimes replicate across generations and may be more likely to affect child neurodevelopment than the opioid exposure itself. In this article, we review the prenatal opioid exposure literature with the perspective that this is not a singular event but an intergenerational cascade of events. We highlight several mechanisms of transmission across generations: biological factors, including genetics and epigenetics and the gut-brain axis; parent-child mechanisms, such as prepregnancy experience of child maltreatment, quality of parenting, infant behaviors, neonatal opioid withdrawal diagnosis, and broader environmental contributors including poverty, violence exposure, stigma, and Child Protective Services involvement. We conclude by describing ways in which intergenerational transmission can be disrupted by early intervention.
Collapse
Affiliation(s)
- Elisabeth Conradt
- Department of Psychiatry, Duke University, Durham, NC, USA.,Department of Pediatrics, Duke University, Durham, NC, USA
| | - Marie Camerota
- Brown Center for the Study of Children at Risk, Department of Psychiatry and Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | - Sarah Maylott
- Department of Psychiatry, Duke University, Durham, NC, USA
| | - Barry M Lester
- Brown Center for the Study of Children at Risk, Department of Psychiatry and Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
4
|
Gaddis N, Mathur R, Marks J, Zhou L, Quach B, Waldrop A, Levran O, Agrawal A, Randesi M, Adelson M, Jeffries PW, Martin NG, Degenhardt L, Montgomery GW, Wetherill L, Lai D, Bucholz K, Foroud T, Porjesz B, Runarsdottir V, Tyrfingsson T, Einarsson G, Gudbjartsson DF, Webb BT, Crist RC, Kranzler HR, Sherva R, Zhou H, Hulse G, Wildenauer D, Kelty E, Attia J, Holliday EG, McEvoy M, Scott RJ, Schwab SG, Maher BS, Gruza R, Kreek MJ, Nelson EC, Thorgeirsson T, Stefansson K, Berrettini WH, Gelernter J, Edenberg HJ, Bierut L, Hancock DB, Johnson EO. Multi-trait genome-wide association study of opioid addiction: OPRM1 and beyond. Sci Rep 2022; 12:16873. [PMID: 36207451 PMCID: PMC9546890 DOI: 10.1038/s41598-022-21003-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Opioid addiction (OA) is moderately heritable, yet only rs1799971, the A118G variant in OPRM1, has been identified as a genome-wide significant association with OA and independently replicated. We applied genomic structural equation modeling to conduct a GWAS of the new Genetics of Opioid Addiction Consortium (GENOA) data together with published studies (Psychiatric Genomics Consortium, Million Veteran Program, and Partners Health), comprising 23,367 cases and effective sample size of 88,114 individuals of European ancestry. Genetic correlations among the various OA phenotypes were uniformly high (rg > 0.9). We observed the strongest evidence to date for OPRM1: lead SNP rs9478500 (p = 2.56 × 10-9). Gene-based analyses identified novel genome-wide significant associations with PPP6C and FURIN. Variants within these loci appear to be pleiotropic for addiction and related traits.
Collapse
Affiliation(s)
- Nathan Gaddis
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Ravi Mathur
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Jesse Marks
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Linran Zhou
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Bryan Quach
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Alex Waldrop
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Miriam Adelson
- Dr. Miriam and Sheldon G. Adelson Clinic for Drug Abuse, Treatment and Research, Las Vegas, NV, USA
| | - Paul W Jeffries
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Randwick, NSW, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Leah Wetherill
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dongbing Lai
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathleen Bucholz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Tatiana Foroud
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernice Porjesz
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | | | | | | | | | - Bradley Todd Webb
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Richard C Crist
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard Sherva
- Genome Science Institute, Boston University, Boston, MA, USA
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
| | - Gary Hulse
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, WA, Australia
| | - Dieter Wildenauer
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, WA, Australia
| | - Erin Kelty
- School of Population and Global Health, Population and Public Health, The University of Western Australia, Perth, WA, Australia
| | - John Attia
- Hunter Medical Research Institute, Newcastle, Australia
| | - Elizabeth G Holliday
- Hunter Medical Research Institute, Newcastle, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Mark McEvoy
- Hunter Medical Research Institute, Newcastle, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy College of Health, Medicine and Wellbeing, The University of Newcastle, New Lambton Heights, NSW, Australia
| | - Sibylle G Schwab
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Brion S Maher
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Richard Gruza
- Department of Family and Community Medicine, Saint Louis University, Saint Louis, MO, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reyjavik, Iceland
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel Gelernter
- Department of Psychiatry, Genetics, & Neuroscience, Yale University School of Medicine, West Haven, CT, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura Bierut
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Dana B Hancock
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Eric Otto Johnson
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA.
- Fellow Program, RTI International, Research Triangle Park, NC, USA.
| |
Collapse
|
5
|
Hriatpuii V, Sema HP, Vankhuma C, Iyer M, Subramaniam MD, Rao KRSS, Vellingiri B, Kumar NS. Association of OPRM1 with addiction: a review on drug, alcohol and smoking addiction in worldwide population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Drugs are chemicals which can disrupt the nerve cell functions of the brain. The present study aims to investigate the addiction related gene (OPRM1) in three types of addiction—drugs, alcohol and smoking. Pathway for the addiction was ascertained through KEGG database, and the hotspot mutations for various populations were identified from Gnomad-exomes database. In silico analyses like SIFT, Polyphen, Hope, I-mutant and mutation taster were performed to understand the amino acid substitution, protein function, stability and pathogenicity of the variants.
Main body
Addiction-related variants were found in exons 1, 2 and 3, while the exon 4 did not exhibit any addiction related variation. Among all the variants from this gene, rs1799971 (A118G) polymorphism was the most commonly studied variation for addiction in different populations worldwide. Population-wise allele and genotype frequencies, demographic and epidemiological studies have also been performed from different populations, and the possible association of these variants with addiction was evaluated.
Conclusion
Our findings suggest that OPRM1 polymorphism impact as pharmacogenetic predictor of response to naltrexone and can also address the genetic predisposition related to addiction in human beings.
Collapse
|
6
|
Analyses of polymorphisms of intron 2 of OPRK1 (kappa-opioid receptor gene) in association with opioid and cocaine dependence diagnoses in an African-American population. Neurosci Lett 2022; 768:136364. [PMID: 34843875 DOI: 10.1016/j.neulet.2021.136364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022]
Abstract
RATIONALE The dynorphin/kappa-opioid receptor (KOR) system (encoded by PDYN and OPRK1 genes respectively) is highly regulated by repeated exposure to drugs of abuse, including mu-opioid agonists and cocaine. These changes in the dynorphin/KOR system can then influence the rewarding effects of these drugs of abuse. Activation of the dynorphin/KOR system is also thought to have a role in the pro-addictive effects of stress. Recent in vitro assays showed that the OPRK1 intron 2 may function as a genomic enhancer in the regulation KOR expression, and contains a glucocorticiod-responsive sequence site. We hypothesize that SNPs in intron 2 of OPRK1 are associated with categorical opioid or cocaine dependence diagnoses, as well as with dimensional aspects of drug use (i.e., magnitude of drug exposure). METHODS This study includes 577 subjects ≥ 18 years old, with African ancestry (AA) from the USA. They were divided into three groups: 152 control subjects, 142 persons with lifetime opioid dependence diagnosis (OD), and 283 subjects with lifetime cocaine dependence diagnosis (CD). Five SNPs (rs16918909, rs7016778, rs997917, rs6473797, rs10111937) that span 10 Kb nucleotides in intron 2 of OPRK1 were used for the association analyses. Genotyping was performed with the Smokescreen® array or sequencing of PCR-amplified DNA fragments. Association analyses for OD and CD diagnoses and the OPRK1 intron 2 alleles were carried out with Fisher's exact test. The Kreek-McHugh-Schluger-Kellogg (KMSK) scales were used for dimensional measure of maximum exposure to specific drugs, using Mann-Whitney tests. RESULTS Two SNPs, rs997917 and rs10111937 showed point-wise significant allelic association (p < 0.05) with CD diagnosis, and rs10111937 showed a point-wise significance in association with OD. None of these single SNP associations with categorical diagnoses were significant after correction for multiple testing (pcorr > 0.05). However, significant associations of several genotype patterns (diplotypes) were found with cocaine dependence, but none for opioid dependence. The most significant genotype pattern with cocaine dependence diagnosis occurred for rs6473797 and rs10111937 (pcorr = 0.036, odds ratio = 1.92, FDR < 0.05), and survived correction for multiple testing. Dimensional analyses with KMSK scores show that persons with either rs997917 or rs10111937 variants had greater exposure to cocaine, compared to those with prototype allele (Mann-Whitney tests, point-wise). CONCLUSIONS This study provides additional support of potential importance of regulatory regions of intron 2 of the OPRK1 gene in development of cocaine and opioid dependence diagnoses, in a population with African-American ancestry.
Collapse
|
7
|
Lee YK, Gold MS, Fuehrlein BS. Looking beyond the opioid receptor: A desperate need for new treatments for opioid use disorder. J Neurol Sci 2022; 432:120094. [PMID: 34933249 DOI: 10.1016/j.jns.2021.120094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
The mainstay of treatment for opioid use disorder (OUD) is opioid agonist therapy (OAT), which modulates opioid receptors to reduce substance craving and use. OAT maintains dependence on opioids but helps reduce overdose and negative sequelae of substance abuse. Despite increasing availability of OAT, its effectiveness is limited by difficulty in initiating and maintaining patients on treatment. With the worsening opioid epidemic in the United States and rising overdose deaths, a more durable and effective treatment for OUD is necessary. This paper reviews novel treatments being investigated for OUD, including neuromodulatory interventions, psychedelic drugs, and other novel approaches. Neuromodulatory interventions can stimulate the addiction neural circuitry involving the dorsolateral prefrontal cortex and deeper mesolimbic structures to curb craving and reduce use, and multiple clinical trials for interventional treatment for OUD are currently conducted. Similarly, psychedelic agents are being investigated for efficacy in OUD specifically. There is a resurgence of interest in psychedelic agents' therapeutic potential, with evidence of improving mood symptoms and decreased substance use even after just one dose. Exact mechanism of their anti-addictive effect is not fully elucidated, but psychedelic agents do not maintain opioid dependence and some may even be helpful in abating symptoms of withdrawal. Other potential approaches for OUD include targeting different parts of the dopamine-dependent addiction pathway, identifying susceptible genes and modulating gene products, as well as utilizing vaccines as immunotherapy to blunt the addictive effects of substances. Much more clinical data are needed to support efficacy and safety of these therapies in OUD, but these proposed novel treatments look beyond the opioid receptor to offer hope for a more durably effective OUD treatment.
Collapse
Affiliation(s)
- Yu Kyung Lee
- School of Medicine, Yale University, 333 Cedar St, New Haven, CT 06510, USA.
| | - Mark S Gold
- Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | - Brian S Fuehrlein
- Department of Psychiatry, Yale University, 300 George Street, New Haven, CT 06511, USA.
| |
Collapse
|
8
|
Castro NCF, Silva IS, Cartágenes SC, Fernandes LMP, Ribera PC, Barros MA, Prediger RD, Fontes-Júnior EA, Maia CSF. Morphine Perinatal Exposure Induces Long-Lasting Negative Emotional States in Adult Offspring Rodents. Pharmaceutics 2021; 14:pharmaceutics14010029. [PMID: 35056925 PMCID: PMC8778186 DOI: 10.3390/pharmaceutics14010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Psychoactive substances during pregnancy and lactation is a key problem in contemporary society, causing social, economic, and health disturbance. In 2010, about 30 million people used opioid analgesics for non-therapeutic purposes, and the prevalence of opioids use during pregnancy ranged from 1% to 21%, representing a public health problem. This study aimed to evaluate the long-lasting neurobehavioral and nociceptive consequences in adult offspring rats and mice exposed to morphine during intrauterine/lactation periods. Pregnant rats and mice were exposed subcutaneously to morphine (10 mg/kg/day) during 42 consecutive days (from the first day of pregnancy until the last day of lactation). Offspring were weighed on post-natal days (PND) 1, 5, 10, 15, 20, 30, and 60, and behavioral tasks (experiment 1) or nociceptive responses (experiment 2) were assessed at 75 days of age (adult life). Morphine-exposed female rats displayed increased spontaneous locomotor activity. More importantly, both males and female rats perinatally exposed to morphine displayed anxiety- and depressive-like behaviors. Morphine-exposed mice presented alterations in the nociceptive responses on the writhing test. This study showed that sex difference plays a role in pain threshold and that deleterious effects of morphine during pre/perinatal periods are nonrepairable in adulthood, which highlights the long-lasting clinical consequences related to anxiety, depression, and nociceptive disorders in adulthood followed by intrauterine and lactation morphine exposure.
Collapse
Affiliation(s)
- Nair C. F. Castro
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
| | - Izabelle S. Silva
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
| | - Sabrina C. Cartágenes
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
| | - Luanna M. P. Fernandes
- Departamento de Ciências Morfológicas e Fisiológicas, Centro das Ciências Biológicas e da Saúde (CCBS), Universidade Estadual do Pará, Belém 66087-662, Brazil;
| | - Paula C. Ribera
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
| | - Mayara A. Barros
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
| | - Rui D. Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
| | - Enéas A. Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
| | - Cristiane S. F. Maia
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Universidade Federal do Pará, Belém 66075-900, Brazil; (N.C.F.C.); (I.S.S.); (S.C.C.); (P.C.R.); (M.A.B.); (E.A.F.-J.)
- Correspondence:
| |
Collapse
|
9
|
Levran O, Kreek MJ. Population-specific genetic background for the OPRM1 variant rs1799971 (118A>G): implications for genomic medicine and functional analysis. Mol Psychiatry 2021; 26:3169-3177. [PMID: 33037305 DOI: 10.1038/s41380-020-00902-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022]
Abstract
The mu-opioid receptor (MOR, OPRM1) has important roles in diverse functions including reward, addiction, and response to pain treatment. SNP rs1799971 (118A > G, N40D) which occur at a high frequency (40-60%) in Asia and moderate frequency (15%) in samples of European ancestry, is the only common coding variant in the canonical transcript, in non-African populations. Despite extensive studies, the molecular consequences of this variation remained unresolved. The aim of this study was to determine the genetic background of the OPRM1 region of 118G in four representative populations and to assess its potential modulatory effect. Seven common haplotypes with distinct population distribution were identified based on seven SNPs. Three haplotypes carry the 118G and additional highly linked regulatory SNPs (e.g., rs9383689) that could modulate the effect of 118G. Extended analysis in the 1000 Genomes database (n = 2504) revealed a common East Asian-specific haplotype with a different genetic background in which there are no variant alleles for an upstream LD block tagged by the eQTL rs9397171. The major European haplotype specifically includes the eQTL intronic SNP rs62436463 that must have arisen after the split between European and Asian populations. Differentiating between the effect of 118G and these SNPs requires specific experimental approaches. The analysis also revealed a significant increase in two 118A haplotypes with eQTL SNPs associated with drug addiction (rs510769) and obesity (rs9478496) in populations with native Mexican ancestry. Future studies are required to assess the clinical implication of these findings.
Collapse
Affiliation(s)
- Orna Levran
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA.
| | - Mary Jeanne Kreek
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| |
Collapse
|
10
|
Wachman EM, Wang A, Isley BC, Boateng J, Beierle JA, Hansbury A, Shrestha H, Bryant C, Zhang H. Placental OPRM1 DNA methylation and associations with neonatal opioid withdrawal syndrome, a pilot study. EXPLORATION OF MEDICINE 2021; 1:124-135. [PMID: 33763662 PMCID: PMC7985727 DOI: 10.37349/emed.2020.00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aims: Epigenetic variation of DNA methylation of the mu-opioid receptor gene (OPRM1) has been identified in the blood and saliva of individuals with opioid use disorder (OUD) and infants with neonatal opioid withdrawal syndrome (NOWS). It is unknown whether epigenetic variation in OPRM1 exists within placental tissue in women with OUD and whether it is associated with NOWS outcomes. In this pilot study, the authors aimed to 1) examine the association between placental OPRM1 DNA methylation levels and NOWS outcomes, and 2) compare OPRM1 methylation levels in opioid-exposed versus non-exposed control placentas. Methods: Placental tissue was collected from eligible opioid (n = 64) and control (n = 29) women after delivery. Placental DNA was isolated and methylation levels at six cytosine-phosphate-guanine (CpG) sites within the OPRM1 promoter were quantified. Methylation levels were evaluated for associations with infant NOWS outcome measures: need for pharmacologic treatment, length of hospital stay (LOS), morphine treatment days, and treatment with two medications. Regression models were created and adjusted for clinical co-variates. Methylation levels between opioid and controls placentas were also compared. Results: The primary opioid exposures were methadone and buprenorphine. Forty-nine (76.6%) of the opioid-exposed infants required pharmacologic treatment, 10 (15.6%) two medications, and average LOS for all opioid-exposed infants was 16.5 (standard deviation 9.7) days. There were no significant associations between OPRM1 DNA methylation levels in the six CpG sites and any NOWS outcome measures. No significant differences were found in methylation levels between the opioid and control samples. Conclusions: No significant associations were found between OPRM1 placental DNA methylation levels and NOWS severity in this pilot cohort. In addition, no significant differences were seen in OPRM1 methylation in opioid versus control placentas. Future association studies examining methylation levels on a genome-wide level are warranted.
Collapse
Affiliation(s)
- Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, Boston, MA 02119, USA
| | - Alice Wang
- Department of Pediatrics, Boston Medical Center, Boston, MA 02119, USA
| | - Breanna C Isley
- Department of Pediatrics, Boston Medical Center, Boston, MA 02119, USA
| | - Jeffery Boateng
- Boston University School of Public Health, Boston, MA 02118, USA
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aaron Hansbury
- Boston University School of Public Health, Boston, MA 02118, USA
| | - Hira Shrestha
- Department of Pediatrics, Boston Medical Center, Boston, MA 02119, USA
| | - Camron Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
11
|
Lashgari NA, Roudsari NM, Zandi N, Pazoki B, Rezaei A, Hashemi M, Momtaz S, Rahimi R, Shayan M, Dehpour AR, Abdolghaffari AH. Current overview of opioids in progression of inflammatory bowel disease; pharmacological and clinical considerations. Mol Biol Rep 2021; 48:855-874. [PMID: 33394234 DOI: 10.1007/s11033-020-06095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023]
Abstract
Inflammatory bowel diseases (IBD) belong to a subgroup of persistent, long-term, progressive, and relapsing inflammatory conditions. IBD may spontaneously develop in the colon, resulting in tumor lesions in inflamed regions of the intestine, such as invasive carcinoma. The benefit of opioids for IBD treatment is still questionable, thereby we investigated databases to provide an overview in this context. This review demonstrates the controversial role of opioids in IBD therapy, their physiological and pharmacological functions in attenuating the IBD symptoms, and in improving inflammatory, oxidative stress, and the quality of life factors in IBD subjects. Data were extracted from clinical, in vitro, and in vivo studies in English, between 1995 and 2019, from PubMed, Google Scholar, Scopus, and Cochrane library. Based on recent reports, there are promising opportunities to target the opioid system and control the IBD symptoms. This study suggests a novel approach for future treatment of functional and inflammatory disorders such as IBD.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nadia Zandi
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Atiyeh Rezaei
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnoosh Hashemi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. .,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran. .,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
12
|
Spinocerebellar ataxia type 23 (SCA23): a review. J Neurol 2020; 268:4630-4645. [PMID: 33175256 DOI: 10.1007/s00415-020-10297-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Spinocerebellar ataxias (SCAs), formerly known as autosomal dominant cerebellar ataxias (ADCAs), are a group of hereditary heterogeneous neurodegenerative diseases. Gait, progressive ataxia, dysarthria, and eye movement disorder are common symptoms of spinocerebellar ataxias. Other symptoms include peripheral neuropathy, cognitive impairment, psychosis, and seizures. Patients may lose their lives due to out of coordinated respiration and/or swallowing. Neurological signs cover pyramidal or extrapyramidal signs, spasm, ophthalmoplegia, hyperactive deep tendon reflexes, and so on. Different subtypes of SCAs present various clinical features. Spinocerebellar ataxia type 23 (SCA23), one subtype of the SCA family, is characterized by mutant prodynorphin (PDYN) gene. Based on literatures, this review details a series of SCA23, to improve a whole understanding of clinicians and point out the potential research direction of this dysfunction, including a history, pathophysiological mechanism, diagnosis and differential diagnosis, epigenetics, penetrance and prevalence, genetic counseling, treatment and prognosis.
Collapse
|
13
|
The Impact of Single-Nucleotide Polymorphism in the ABCB1 Gene on Opioid Dependence in an Egyptian Sample. ADDICTIVE DISORDERS & THEIR TREATMENT 2020. [DOI: 10.1097/adt.0000000000000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Shukla M, Vincent B. The multi-faceted impact of methamphetamine on Alzheimer's disease: From a triggering role to a possible therapeutic use. Ageing Res Rev 2020; 60:101062. [PMID: 32304732 DOI: 10.1016/j.arr.2020.101062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Although it has been initially synthesized for therapeutic purposes and currently FDA-approved and prescribed for obesity, attention-deficit/hyperactivity disorder, narcolepsy and depression, methamphetamine became a recreational drug that is nowadays massively manufactured illegally. Because it is a powerful and extremely addictive psychotropic agent, its abuse has turned out to become a major health problem worldwide. Importantly, the numerous effects triggered by this drug induce neurotoxicity in the brain ultimately leading to serious neurological impairments, tissue damage and neuropsychological disturbances that are reminiscent to most of the symptoms observed in Alzheimer's disease and other pathological manifestations in aging brain. In this context, there is a growing number of compelling evidence linking methamphetamine abuse with a higher probability of developing premature Alzheimer's disease and consequent neurodegeneration. This review proposes to establish a broad assessment of the effects that this drug can generate at the cellular and molecular levels in connection with the development of the age-related Alzheimer's disease. Altogether, the objective is to warn against the long-term effects that methamphetamine abuse may convey on young consumers and the increased risk of developing this devastating brain disorder at later stages of their lives, but also to discuss a more recently emerging concept suggesting a possible use of methamphetamine for treating this pathology under proper and strictly controlled conditions.
Collapse
|
15
|
Savell KE, Tuscher JJ, Zipperly ME, Duke CG, Phillips RA, Bauman AJ, Thukral S, Sultan FA, Goska NA, Ianov L, Day JJ. A dopamine-induced gene expression signature regulates neuronal function and cocaine response. SCIENCE ADVANCES 2020; 6:eaba4221. [PMID: 32637607 PMCID: PMC7314536 DOI: 10.1126/sciadv.aba4221] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/08/2020] [Indexed: 05/21/2023]
Abstract
Drugs of abuse elevate dopamine levels in the nucleus accumbens (NAc) and alter transcriptional programs believed to promote long-lasting synaptic and behavioral adaptations. Here, we leveraged single-nucleus RNA-sequencing to generate a comprehensive molecular atlas of cell subtypes in the NAc, defining both sex-specific and cell type-specific responses to acute cocaine experience in a rat model system. Using this transcriptional map, we identified an immediate early gene expression program that is up-regulated following cocaine experience in vivo and dopamine receptor activation in vitro. Multiplexed induction of this gene program with a large-scale CRISPR-dCas9 activation strategy initiated a secondary synapse-centric transcriptional profile, altered striatal physiology in vitro, and enhanced cocaine sensitization in vivo. Together, these results define the transcriptional response to cocaine with cellular precision and demonstrate that drug-responsive gene programs can potentiate both physiological and behavioral adaptations to drugs of abuse.
Collapse
Affiliation(s)
- Katherine E. Savell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer J. Tuscher
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Morgan E. Zipperly
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Corey G. Duke
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert A. Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Allison J. Bauman
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saakshi Thukral
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Faraz A. Sultan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nicholas A. Goska
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy J. Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Distress tolerance in methamphetamine and opium abusers with non-drug abuser (A comparative analysis). CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2020. [DOI: 10.1016/j.cegh.2019.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Koijam AS, Chakraborty B, Mukhopadhyay K, Rajamma U, Haobam R. A single nucleotide polymorphism in OPRM1(rs483481) and risk for heroin use disorder. J Addict Dis 2020; 38:214-222. [PMID: 32189578 DOI: 10.1080/10550887.2020.1740070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Opioid receptor mu1 (OPRM1) is the target of many opioid drugs, and it is known to have affinity toward both endogenous and exogenous opioids, opiate and opioid analgesic drugs. The present study was undertaken to explore association of single nucleotide polymorphisms (SNPs) in the OPRM1 gene with heroin use disorder. Ten OPRM1 polymorphisms were analyzed in 132 cases and 147 healthy controls. The SNP rs483481 showed significant allelic, genotypic and haplotypic association (Allelic: p-value = 0.003, OR = 1.75, CI = 1.21-2.55) (Genotypic: p-value = 0.003, OR = 1.72, CI = 1.08-2.75) with heroin use disorder. Allelic and genotypic association remained significant even after multiple testing corrections with 1000 permutations. A significant positive correlation between 'Number of times drug abstained' and 'rs483481-AA genotype' (p-value = 0.002; Pearson correlation = 0.265) was also observed. One-way ANOVA analysis demonstrated significant association of rs483481 with 'number of times drug abstained' (F = 4.86, p-value =0.009). 'A' allele and 'AA' genotype of marker rs483481 seem to confer protective effect while 'G' allele and 'GG' genotype potentiates risk for heroin use disorder. OPRM1 is found to be associated with heroin use disorder in the studied Manipuri cohort. The study suggests that individuals with G allele and GG genotypes at rs483481 could be more vulnerable to heroin dependence, and it could be taken into consideration in prevention and intervention programs.
Collapse
Affiliation(s)
| | - Barnali Chakraborty
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Usha Rajamma
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India.,Centre for Development & Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital (IUCBR&SSH), MG University Campus at Thalappady, Kottayam, Kerala, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Imphal, Manipur, India
| |
Collapse
|
18
|
Abstract
Opioid use disorder (OUD) is a chronic relapsing disorder that, whilst initially driven by activation of brain reward neurocircuits, increasingly engages anti-reward neurocircuits that drive adverse emotional states and relapse. However, successful recovery is possible with appropriate treatment, although with a persisting propensity to relapse. The individual and public health burdens of OUD are immense; 26.8 million people were estimated to be living with OUD globally in 2016, with >100,000 opioid overdose deaths annually, including >47,000 in the USA in 2017. Well-conducted trials have demonstrated that long-term opioid agonist therapy with methadone and buprenorphine have great efficacy for OUD treatment and can save lives. New forms of the opioid receptor antagonist naltrexone are also being studied. Some frequently used approaches have less scientifically robust evidence but are nevertheless considered important, including community preventive strategies, harm reduction interventions to reduce adverse sequelae from ongoing use and mutual aid groups. Other commonly used approaches, such as detoxification alone, lack scientific evidence. Delivery of effective prevention and treatment responses is often complicated by coexisting comorbidities and inadequate support, as well as by conflicting public and political opinions. Science has a crucial role to play in informing public attitudes and developing fuller evidence to understand OUD and its associated harms, as well as in obtaining the evidence today that will improve the prevention and treatment interventions of tomorrow.
Collapse
|
19
|
Mays D, Ahn J, Zhang B, Atkins MB, Goerlitz D, Tercyak KP. Genetic Associations with Indoor Tanning Addiction among non-Hispanic White Young Adult Women. Ann Behav Med 2020; 54:1-9. [PMID: 31185074 DOI: 10.1093/abm/kaz021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Some young people may become addicted to indoor tanning in a manner similar to other forms of addiction, but research on genetic associations with indoor tanning addiction remains limited. PURPOSE To examine if liabilities in genetic addiction reward pathways and psychiatric comorbidity influence the risk of indoor tanning addiction. METHODS This was a cross-sectional study with a community sample of 292 non-Hispanic white young adult women aged 18-30 years who reported indoor tanning in the past year. Self-report measures included indoor tanning frequency, appearance orientation, depressive symptoms, and two screeners of tanning addiction. DNA samples were analyzed for 34 single nucleotide polymorphisms (SNPs) in candidate genes in addiction reward pathways. RESULTS No SNPs were significantly associated with tanning addiction in univariate analyses after multiplicity adjustment. In multivariable analyses adjusting for indoor tanning frequency, appearance orientation, and depressive symptoms, variant genotypes (CC or CT) in two DRD2 dopamine receptor gene SNPs were associated with increased odds of indoor tanning addiction (rs4436578, odds ratio [OR]: 2.30, 95% confidence interval [CI]: 1.11-4.77; rs4648318, OR: 1.95, 95% CI: 1.02-3.72). Variant SNP genotypes interacted with depressive symptoms to increase the risk of indoor tanning addiction: OR: 10.79, 95% CI: 3.25, 35.80, OR: 13.60, 95% CI: 4.13, 44.78, respectively. CONCLUSIONS This study provides preliminary evidence that DRD2 dopamine receptor gene SNPs are associated with indoor tanning addiction and young women with variant genotypes and elevated depressive symptoms may be at higher risk. These preliminary results support a reward-based model for indoor tanning addiction and warrant further investigation.
Collapse
Affiliation(s)
- Darren Mays
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC, USA
| | - Bingsong Zhang
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC, USA
| | - Michael B Atkins
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - David Goerlitz
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Kenneth P Tercyak
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
20
|
Rezaeifar A, Dahmardeh F. The Effect of OPRM1 rs648893 Gene Polymorphism on Opioid Addiction in an Iranian population in Zabol: A Case-Control Study. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2019. [DOI: 10.34172/ijbsm.2019.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Opioid addiction (OA) is a neurologically life-threatening challenge associated with socioeconomic and health concerns for individuals and society. The addictive drugs trigger neuromodulators and neurotransmitters through the opioid receptors and corresponding endogenous peptide ligands. In addition, drug addiction is reportedly related to the mu-opioid receptor (OPRM1) encoding gene and its variants. According to the role of the rs648893 polymorphism of the OPRM1 gene in numerous disorders, it has been suggested as a candidate associated with drug addiction. The present case-control study was conducted to evaluate the role of OPRM1 rs648893 polymorphism in the OA risk. Methods: To this end, the rs648893 polymorphism was genotyped by tetra amplification refractory mutation system-polymerase chain reaction among 160 Iranian subjects consisting of 105 OA cases and 155 controls. Results: According to our findings, there was no significant association between OA and the OPRM1 rs648893 gene polymorphism. Moreover, a marginally insignificant difference was found between OA cases and controls in accordance with the allelic frequencies (P=0.05) Conclusion: In general, our results reported no association between OPRM1 rs648893 gene polymorphism and OA although further research among various ethnicities with larger sample sizes is needed to draw a definite conclusion on the association of rs648893 polymorphism and other OPRM1 intronic variants with opioid and other addictions.
Collapse
Affiliation(s)
- Alireza Rezaeifar
- Department of Clinical Biochemistry, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Dahmardeh
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| |
Collapse
|
21
|
Association Study of OPRM1 Gene in a Sample of Schizophrenia Patients With Alcohol Dependence or Abuse. CANADIAN JOURNAL OF ADDICTION 2019; 10:30-34. [DOI: 10.1097/cxa.0000000000000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Analgesic effect and related amino acids regulation of ginsenoside Rg3 in mouse pain models. Life Sci 2019; 239:117083. [DOI: 10.1016/j.lfs.2019.117083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
|
23
|
Mata X, Renaud G, Mollereau C. The repertoire of family A-peptide GPCRs in archaic hominins. Peptides 2019; 122:170154. [PMID: 31560950 DOI: 10.1016/j.peptides.2019.170154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/30/2022]
Abstract
Given the importance of G-protein coupled receptors in the regulation of many physiological functions, deciphering the relationships between genotype and phenotype in past and present hominin GPCRs is of main interest to understand the evolutionary process that contributed to the present-day variability in human traits and health. Here, we carefully examined the publicly available genomic and protein sequence databases of the archaic hominins (Neanderthal and Denisova) to draw up the catalog of coding variations in GPCRs for peptide ligands, in comparison with living humans. We then searched in the literature the functional changes, phenotypes and risk of disease possibly associated with the detected variants. Our survey suggests that Neanderthal and Denisovan hominins were likely prone to lower risk of obesity, to enhanced platelet aggregation in response to thrombin, to better response to infection, to less anxiety and aggressiveness and to favorable sociability. While some archaic variants were likely advantageous in the past, they might be responsible for maladaptive disorders today in the context of modern life and/or specific regional distribution. For example, an archaic haplotype in the neuromedin receptor 2 is susceptible to confer risk of diabetic nephropathy in type 1 diabetes in present-day Europeans. Paying attention to the pharmacological properties of some of the archaic variants described in this study may be helpful to understand the variability of therapeutic efficacy between individuals or ethnic groups.
Collapse
Affiliation(s)
- Xavier Mata
- Laboratoire Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gabriel Renaud
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Catherine Mollereau
- Laboratoire Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
24
|
Szumlinski KK, Coelho MA, Tran T, Stailey N, Lieberman D, Gabriella I, Swauncy I, Brewin LW, Ferdousian S. Who is HOT and who is LOT? Detailed characterization of prescription opioid-induced changes in behavior between 129P3/J and 129S1/SvlmJ mouse substrains. GENES BRAIN AND BEHAVIOR 2019; 19:e12609. [PMID: 31489753 DOI: 10.1111/gbb.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 01/20/2023]
Abstract
Genetic factors are theorized to contribute to the substantial inter-individual variability in opioid abuse/addiction. To advance the behavioral genetics of prescription opioid abuse, our prior work identified the 129S1/SvlmJ (S1) and related 129P3/J (P3) mouse substrains, respectively, as low and high opioid-taking. Herein, we related our prior results to measures of sucrose reward/reinforcement, basal anxiety, opioid-induced place-conditioning, locomotor activity and Straub tail reaction, as well as behavioral and physiological signs of withdrawal. Substrains were also re-examined for higher-dose oxycodone and fentanyl intake under limited-access drinking procedures. S1 mice failed to acquire sucrose self-administration under various operant-conditioning procedures and exhibited lower sucrose intake in the home-cage. However, sucrose intake under limited-access procedures escalated in both substrains with repeated sucrose experience. S1 mice exhibited less spontaneous locomotor activity, as well as less opioid-induced locomotor activity and Straub tail reaction, than P3 mice and failed to exhibit an oxycodone-induced place-preference. The lack of conditioned behavior by S1 mice was unrelated to behavioral signs of withdrawal-induced negative affect or dependence severity, but might reflect high levels of basal anxiety-like behavior. Intriguingly, S1 and P3 mice initially exhibited equivalent oxycodone and fentanyl consumption in the home-cage; however opioid intake escalated only in P3 mice with repeated opioid experience. No sex differences were observed for any of our measures. These data provide additional evidence for robust differences in opioid addiction-related behaviors between P3 and S1 substrains and suggest that anxiety, learning, and/or motivational impairments might confound interpretation of operant- and place-conditioning studies employing the S1 substrain.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California.,Department of Molecular, Developmental and Cell Biology, University of California Santa Barbara, Santa Barbara, California.,The Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California
| | - Michal A Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Tori Tran
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Nicholas Stailey
- Department of Molecular, Developmental and Cell Biology, University of California Santa Barbara, Santa Barbara, California
| | - Dylan Lieberman
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Ivette Gabriella
- Department of Psychology, California State University Dominguez Hills, Carson, California
| | - Isaiah Swauncy
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Lindsey W Brewin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Sami Ferdousian
- Department of Molecular, Developmental and Cell Biology, University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
25
|
Navarro-Mateu F, Quesada MP, Escámez T, Alcaráz MJ, Seiquer de la Peña C, Salmerón D, Huerta JM, Vilagut G, Chirlaque MD, Navarro C, Husky M, Kessler RC, Alonso J, Martínez S. Childhood adversities and 5-HTTLPR polymorphism as risk factors of substance use disorders: retrospective case-control study in Murcia (Spain). BMJ Open 2019; 9:e030328. [PMID: 31488488 PMCID: PMC6731914 DOI: 10.1136/bmjopen-2019-030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To explore the separate and joint associations of childhood adversities and 5-HTTLPR polymorphism as risk factors for substance use disorders among adults. : Design : Retrospective case-control study. SETTING Cases from the substance unit and controls from a representative sample of the adult general population in the metropolitan area of Murcia (Spain). PARTICIPANTS Cases were defined as outpatients 18 years old or older currently in the treatment for alcohol, opioids or cocaine use disorders in the clinical unit. Controls were randomly selected among individuals without substance use disorders who participated in the Psychiatric Enquiry to General Population in Southeast Spain-Murcia (PEGASUS-Murcia) project, a cross-sectional study of a representative sample of the adult general population. In all, 142 cases and 531 controls were interviewed and a subsample of 114 cases (80.3%) and 329 controls (62%) provided a biological sample. EXPOSURE A history of 12 childhood adversities, lifetime mental disorders and sociodemographic variables was assessed with the Composite International Diagnostic Interview (CIDI)version 3.0). Buccal swabs were obtained to genotype the 5-HTTLPR polymorphism with the biallelic and the triallelic classification. MAIN OUTCOME AND MEASURE Multivariable logistic regression models were performed to estimate adjusted ORs and 95% CI. RESULTS Childhood adversities were associated with an elevated risk of substance use disorders (OR=5.77, 95% CI 3.46 to 9.61). Homozygotes for the short allele of the 5-HTTLPR polymorphism also showed the elevated risk of substance use disorders for the biallelic and triallelic classification: (1.97 (1.10 to 3.55) and 2.01 (1.11 to 3.64), respectively). No evidence for gene × environment interactions was found. CONCLUSIONS Childhood adversities and the 5-HTTLPR polymorphism are involved in the aetiology of substance use disorders though findings exploring the existence of a gene-environment interaction were inconclusive.
Collapse
Affiliation(s)
- Fernando Navarro-Mateu
- Unidad de Docencia, Investigación y Formación en Salud Mental, Servicio Murciano de Salud, Murcia, Spain
- Departamento de Psicología Básica y Metodología, Universidad de Murcia, Murcia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Murcia, Spain
| | - Mari Paz Quesada
- Cellular Therapy and Hematopoietic Transplant Unit, Hematology Department, IMIB-Arrixaca, Murcia, Spain
| | - Teresa Escámez
- Biobanco-HUVA-AECC-FFIS, IMIB BIOBANCA-MUR, Murcia, Spain
| | - Mª José Alcaráz
- Fundación para la Formación e Investigación Sanitarias de la Región de Murcia, Murcia, Spain
| | | | - Diego Salmerón
- Departamento de Ciencias Sociosanitarias, Universidad de Murcia, Murcia, Spain
| | - José María Huerta
- CIBER de Epidemiología y Salud Pública (CIBERESP), Murcia, Spain
- Department of Epidemiology, Murcia Health Council, Murcia, Spain
| | - Gemma Vilagut
- CIBER de Epidemiología y Salud Pública (CIBERESP), Murcia, Spain
- Programa de Investigación en Epidemiología y Salud Pública, IMIM (Institut Hospital del Mar d’Investigacions Médiques), Barcelona, Spain
| | - Maria Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Murcia, Spain
- Departamento de Ciencias Sociosanitarias, Universidad de Murcia, Murcia, Spain
- Department of Epidemiology, Murcia Health Council, Murcia, Spain
| | - Carmen Navarro
- CIBER de Epidemiología y Salud Pública (CIBERESP), Murcia, Spain
- Departamento de Ciencias Sociosanitarias, Universidad de Murcia, Murcia, Spain
- Department of Epidemiology, Murcia Health Council, Murcia, Spain
| | - Mathilde Husky
- Laboratoire de Psychologie, Universite de Bordeaux, Bordeaux, France
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA
| | - Jordi Alonso
- CIBER de Epidemiología y Salud Pública (CIBERESP), Murcia, Spain
- Programa de Investigación en Epidemiología y Salud Pública, IMIM (Institut Hospital del Mar d’Investigacions Médiques), Barcelona, Spain
| | | |
Collapse
|
26
|
Abstract
Drug addiction is a worldwide societal problem and public health burden, and results from recreational drug use that develops into a complex brain disorder. The opioid system, one of the first discovered neuropeptide systems in the history of neuroscience, is central to addiction. Recently, opioid receptors have been propelled back on stage by the rising opioid epidemics, revolutions in G protein-coupled receptor research and fascinating developments in basic neuroscience. This Review discusses rapidly advancing research into the role of opioid receptors in addiction, and addresses the key questions of whether we can kill pain without addiction using mu-opioid-receptor-targeting opiates, how mu- and kappa-opioid receptors operate within the neurocircuitry of addiction and whether we can bridge human and animal opioid research in the field of drug abuse.
Collapse
Affiliation(s)
- Emmanuel Darcq
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Brigitte Lina Kieffer
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada. .,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.
| |
Collapse
|
27
|
Katner SN, Bredhold KE, Steagall KB, Bell RL, Neal-Beliveau BS, Cheong MC, Engleman EA. Caenorhabditis elegans as a model system to identify therapeutics for alcohol use disorders. Behav Brain Res 2019; 365:7-16. [PMID: 30802531 DOI: 10.1016/j.bbr.2019.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/15/2019] [Accepted: 02/10/2019] [Indexed: 02/04/2023]
Abstract
Alcohol use disorders (AUDs) cause serious problems in society and few effective treatments are available. Caenorhabditis elegans (C. elegans) is an excellent invertebrate model to study the neurobiological basis of human behavior with a conserved, fully tractable genome, and a short generation time for fast generation of data at a fraction of the cost of other organisms. C. elegans demonstrate movement toward, and concentration-dependent self-exposure to various psychoactive drugs. The discovery of opioid receptors in C. elegans provided the impetus to test the hypothesis that C. elegans may be used as a medications screen to identify new AUD treatments. We tested the effects of naltrexone, an opioid antagonist and effective treatment for AUDs, on EtOH preference in C. elegans. Six-well agar test plates were prepared with EtOH placed in a target zone on one side and water in the opposite target zone of each well. Worms were treated with naltrexone before EtOH preference testing and then placed in the center of each well. Wild-type worms exhibited a concentration-dependent preference for 50, 70 and 95% EtOH. Naltrexone blocked acute EtOH preference, but had no effect on attraction to food or benzaldehyde in wild-type worms. Npr-17 opioid receptor knockout mutants did not display a preference for EtOH. In contrast, npr-17 opioid receptor rescue mutants exhibited significant EtOH preference behavior, which was attenuated by naltrexone. Chronic EtOH exposure induced treatment resistance and compulsive-like behavior. These data indicate that C. elegans can serve as a model system to identify compounds to treat AUDs.
Collapse
Affiliation(s)
- Simon N Katner
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA.
| | | | - Kevin B Steagall
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA
| | - Richard L Bell
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA
| | | | - Mi C Cheong
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Eric A Engleman
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA
| |
Collapse
|
28
|
Park CI, Hwang SS, Kim HW, Kang JI, Lee SH, Kim SJ. Association of opioid receptor gene polymorphisms with drinking severity and impulsivity related to alcohol use disorder in a Korean population. CNS Neurosci Ther 2019; 26:30-38. [PMID: 31004399 PMCID: PMC6930822 DOI: 10.1111/cns.13138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Aims Recent evidence suggests that the opioid system is implicated in the pathophysiology of alcohol use disorder (AUD). We aimed to examine the genetic influence of opioid receptors on susceptibility to AUD and its clinical and psychological characteristics including harmful drinking behavior and various aspects of impulsivity in AUD patients. Methods Three μ‐opioid receptor gene (OPRM1) variants and two κ‐opioid receptor gene (OPRK1) variants were examined in 314 male patients with AUD and 324 male controls. We applied the Alcohol Use Disorders Identification Test (AUDIT), Obsessive Compulsive Drinking Scale (OCDS), and Alcohol Dependence Scale. AUD patients also completed the stop‐signal task, delay discounting task, balloon analogue risk task, and the Barratt Impulsiveness Scale version 11 (BIS‐11). Results No significant differences in genotype distributions or haplotype frequencies were found between AUD patients and controls. However, OPRK1 SNP rs6473797 was significantly related to the severity of alcohol‐related symptoms as measured by AUDIT and OCDS and a haplotype containing rs6473797 was also related to OCDS scores in AUD patients. For other psychological traits, OPRM1 SNP rs495491 was significantly associated with scores on the motor subfactor of the BIS‐11. Conclusion Genetic variations in opioid receptors may contribute to symptom severity and impulsivity in AUD patients.
Collapse
Affiliation(s)
- Chun Il Park
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Syung Shick Hwang
- Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae Won Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Medical Education, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee In Kang
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Joo Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Abstract
Neonatal abstinence syndrome (NAS) due to in-utero opioid exposure is a growing epidemic with significant variability in clinical presentation and severity. Currently, NAS severity cannot be predicted based on clinical factors alone. To date, small studies have identified genetic variants in opioid receptor and stress response genes that are associated with differences in NAS pharmacologic treatment rates and length of hospitalization. In addition, epigenetic variation in the mu opioid receptor (OPRM1) gene has been associated with differences in NAS hospitalization outcomes. Examination of maternal genetic and epigenetic profiles may assist in prediction of NAS severity. Large-scale genomic studies are needed to elucidate the genetic architecture of and epigenetic modification related to NAS in order to develop more tailored personalized treatments for NAS.
Collapse
Affiliation(s)
- Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA; Grayken Center for Addiction Medicine, Boston Medical Center, Boston, MA, USA.
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA, USA.
| |
Collapse
|
30
|
Szymaszkiewicz A, Storr M, Fichna J, Zielinska M. Enkephalinase inhibitors, potential therapeutics for the future treatment of diarrhea predominant functional gastrointestinal disorders. Neurogastroenterol Motil 2019; 31:e13526. [PMID: 30549162 DOI: 10.1111/nmo.13526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/20/2018] [Accepted: 11/12/2018] [Indexed: 02/08/2023]
Abstract
The endogenous opioid system (EOS) is considered being a crucial element involved in the pathophysiology of irritable bowel syndrome (IBS) as it regulates gastrointestinal (GI) homeostasis through modulation of motility and water and ion secretion/absorption. Along with opioid receptors (ORs), the following components of EOS can be distinguished: 1. endogenous opioid peptides (EOPs), namely enkephalins, endorphins, endomorphins and dynorphins, and 2. peptidases, which regulate the metabolism (synthesis and degradation) of EOPs. Enkephalins, which are δ-opioid receptors agonists, induce significant effects in the GI tract as they act as potent pro-absorptive neurotransmitters. The action of enkephalins and other EOPs is limited, since EOPs are easily and rapidly inactivated by a natural metalloendopeptidase (enkephalinase/neprilysin) and aminopeptidase N. Studies show that the activity of EOPs can be enhanced by inhibition of these enzymes. In this review, we discuss the antidiarrheal and antinociceptive potential of enkephalinase inhibitors. Furthermore, our review is to answer the question whether enkephalinase inhibitors may be helpful in the future treatment of diarrhea predominant functional GI disorders.
Collapse
Affiliation(s)
- Agata Szymaszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Martin Storr
- Department of Medicine, Ludwig Maximilians University Munich, Munich, Germany.,Center of Endoscopy, Starnberg, Germany
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielinska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
31
|
Yuferov V, Randesi M, Butelman ER, van den Brink W, Blanken P, van Ree JM, Ott J, Kreek MJ. Association of variants of prodynorphin promoter 68-bp repeats in caucasians with opioid dependence diagnosis: Effect on age trajectory of heroin use. Neurosci Lett 2019; 704:100-105. [PMID: 30936032 DOI: 10.1016/j.neulet.2019.03.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
The dynorphin/kappa opioid receptor (Dyn/KOR) system is involved in reward processing and dysphoria/anhedonia. Exposure to mu-opioid receptor agonists such as heroin increases expression of the prodynorphin gene (PDYN) in the brain. In this study in a Caucasian cohort, we examined the association of the functional PDYN 68-bp repeat polymorphism with opioid use disorders. In this case-control study, 554 subjects with Caucasian ancestry (142 healthy controls, 153 opioid-exposed, but never opioid dependent, NOD, and 259 with an opioid dependence diagnosis, OD) were examined for association of the PDYN 68-bp repeats with the diagnosis of opioid dependence (DSM-IV criteria), with a dimensional measure of heroin exposure (KMSK scale), and age trajectory parameters of heroin use (age of heroin first use, and age of onset of heaviest use). The PDYN 68-bp repeat genotype (classified as: "short-short" [SS], "long-long" [LL], and "short-long" [SL], based on the number of repeats) was not associated with categorical opioid dependence diagnoses. However, the LL genotype was associated with later age of first heroin use than the SS + SL genotype (19 versus 18 years; p < 0.01). This was also confirmed by a significant positive correlation between the number of repeats and the age of first use of heroin, in volunteers with OD (Spearman r = 0.16; p = 0.01). This suggests that the functional PDYN 68-bp repeat genotype is associated with the age of first use of heroin in Caucasians diagnosed with opioid dependence.
Collapse
Affiliation(s)
- Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Ave, New York, NY, 10065, USA.
| | - Matthew Randesi
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Ave, New York, NY, 10065, USA
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Ave, New York, NY, 10065, USA
| | - Wim van den Brink
- Amsterdam Institute for Addiction Research, Department of Psychiatry, University of Amsterdam, PO Box 22660, Amsterdam, the Netherlands
| | - Peter Blanken
- Parnassia Addiction Research Centre, the Hague, the Netherlands
| | - Jan M van Ree
- Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Jürg Ott
- Laboratory of Statistical Genetics, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Ave, New York, NY, 10065, USA
| |
Collapse
|
32
|
Becker JB, Chartoff E. Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology 2019; 44:166-183. [PMID: 29946108 PMCID: PMC6235836 DOI: 10.1038/s41386-018-0125-6] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/27/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
There is increasing evidence in humans and laboratory animals for biologically based sex differences in every phase of drug addiction: acute reinforcing effects, transition from occasional to compulsive use, withdrawal-associated negative affective states, craving, and relapse. There is also evidence that many qualitative aspects of the addiction phases do not differ significantly between males and females, but one sex may be more likely to exhibit a trait than the other, resulting in population differences. The conceptual framework of this review is to focus on hormonal, chromosomal, and epigenetic organizational and contingent, sex-dependent mechanisms of four neural systems that are known-primarily in males-to be key players in addiction: dopamine, mu-opioid receptors (MOR), kappa opioid receptors (KOR), and brain-derived neurotrophic factor (BDNF). We highlight data demonstrating sex differences in development, expression, and function of these neural systems as they relate-directly or indirectly-to processes of reward and addictive behavior, with a focus on psychostimulants and opioids. We identify gaps in knowledge about how these neural systems interact with sex to influence addictive behavior, emphasizing throughout that the impact of sex can be highly nuanced and male/female data should be reported regardless of the outcome.
Collapse
Affiliation(s)
- Jill B Becker
- Department of Psychology and the Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Elena Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
33
|
Xu C, Liu G, Ji H, Chen W, Dai D, Chen Z, Zhou D, Xu L, Hu H, Cui W, Chang L, Zha Q, Li L, Duan S, Wang Q. Elevated methylation of OPRM1 and OPRL1 genes in Alzheimer's disease. Mol Med Rep 2018; 18:4297-4302. [PMID: 30152845 PMCID: PMC6172396 DOI: 10.3892/mmr.2018.9424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
Previous studies have suggested that increased opioid receptor κ1 (OPRK1) and opioid receptor δ1 (OPRD1) methylation levels are involved in Alzheimer's disease (AD). In the present study, the methylation levels of two opioid receptor genes, opioid receptor µ1 (OPRM1) and opioid related nociceptin receptor 1 (OPRL1), were analyzed for their association with AD. Gene methylation levels were measured using bisulfite pyrosequencing in DNA samples derived from blood samples of 51 AD patients and 63 controls. The results indicated that there were significantly elevated promoter methylation levels of OPRM1 and OPRL1 in AD (OPRM1: P=0.007; OPRL1: P=2.987×10−6). Dual-luciferase reporter gene assays demonstrated that the promoter fragments of these two genes were able to promote gene expression (OPRM1: Fold-change=2.616, P=0.003; OPRL1: Fold change=11.395, P=0.007). In addition, receiver operating characteristic analyses further indicated that a methylation panel of four opioid receptor genes (area under the curve=0.848, sensitivity=0.723, and specificity=0.879) performed well in the prediction of AD. These results suggested that opioid receptor genes may be used as potential methylation biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Chunshuang Xu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Guili Liu
- Department of Science and Education, Ningbo No. 9 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Huihui Ji
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Weihua Chen
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Dongjun Dai
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhongming Chen
- Geriatrics Department, Ningbo Kangning Hospital, Ningbo, Zhejiang 315200, P.R. China
| | - Dongsheng Zhou
- Geriatrics Department, Ningbo Kangning Hospital, Ningbo, Zhejiang 315200, P.R. China
| | - Lei Xu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Haochang Hu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lan Chang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qin Zha
- Department of Science and Education, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315200, P.R. China
| | - Liping Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qinwen Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
34
|
Chronic Oxycodone Self-administration Altered Reward-related Genes in the Ventral and Dorsal Striatum of C57BL/6J Mice: An RNA-seq Analysis. Neuroscience 2018; 393:333-349. [PMID: 30059705 DOI: 10.1016/j.neuroscience.2018.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
Abstract
Prescription opioid abuse, for example of oxycodone, is a pressing public health issue. This study focuses on how chronic oxycodone self-administration (SA) affects the reward pathways in the mouse brain. In this study, we tested the hypothesis that the expression of reward-related genes in the ventral and dorsal striatum, areas involved in different aspects of opioid addiction models, was altered within 1 h after chronic oxycodone SA, using transcriptome-wide sequencing (RNA-seq). Based on results from earlier human genetic and rodent preclinical studies, we focused on a set of genes that may be associated with the development of addictive diseases and the rewarding effect of drugs of abuse, primarily in the opioid, stress response and classical neurotransmitter systems. We found that 32 transcripts in the ventral striatum, and 7 in the dorsal striatum, were altered significantly in adult mice that had self-administered oxycodone (n = 5) for 14 consecutive days (4 h/day) compared with yoked saline controls (n = 5). The following 5 genes in the ventral striatum showed experiment-wise significant changes: proopiomelanocortin (Pomc) and serotonin 5-HT-2A receptor (Htr2a) were upregulated; serotonin receptor 7 (Htr7), galanin receptor1 (Galr1) and glycine receptor 1 (Glra1) were downregulated. Some genes detected by RNA-seq were confirmed by quantitative polymerase chain reaction (qPCR). Conclusion: A RNA-seq study shows that chronic oxycodone SA alters the expression of several reward-related genes in the dorsal and ventral striatum. These results suggest potential mechanisms underlying neuronal adaptation to chronic oxycodone self-exposure, of relevance to our mechanistic understanding of prescription opioid abuse.
Collapse
|
35
|
Nummenmaa L, Tuominen L. Opioid system and human emotions. Br J Pharmacol 2018; 175:2737-2749. [PMID: 28394427 PMCID: PMC6016642 DOI: 10.1111/bph.13812] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/07/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
Emotions are states of vigilant readiness that guide human and animal behaviour during survival-salient situations. Categorical models of emotions posit neurally and physiologically distinct basic human emotions (anger, fear, disgust, happiness, sadness and surprise) that govern different survival functions. Opioid receptors are expressed abundantly in the mammalian emotion circuit, and the opioid system modulates a variety of functions related to arousal and motivation. Yet, its specific contribution to different basic emotions has remained poorly understood. Here, we review how the endogenous opioid system and particularly the μ receptor contribute to emotional processing in humans. Activation of the endogenous opioid system is consistently associated with both pleasant and unpleasant emotions. In general, exogenous opioid agonists facilitate approach-oriented emotions (anger, pleasure) and inhibit avoidance-oriented emotions (fear, sadness). Opioids also modulate social bonding and affiliative behaviour, and prolonged opioid abuse may render both social bonding and emotion recognition circuits dysfunctional. However, there is no clear evidence that the opioid system is able to affect the emotions associated with surprise and disgust. Taken together, the opioid systems contribute to a wide array of positive and negative emotions through their general ability to modulate the approach versus avoidance motivation associated with specific emotions. Because of the protective effects of opioid system-mediated prosociality and positive mood, the opioid system may constitute an important factor contributing to psychological and psychosomatic resilience. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Lauri Nummenmaa
- Turku PET Centre and Department of PsychologyUniversity of TurkuTurkuFinland
| | - Lauri Tuominen
- Department of PsychiatryMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
36
|
Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Karpyak VM, Yakovleva T, Bakalkin G. Downregulation of the neuronal opioid gene expression concomitantly with neuronal decline in dorsolateral prefrontal cortex of human alcoholics. Transl Psychiatry 2018; 8:122. [PMID: 29925858 PMCID: PMC6010434 DOI: 10.1038/s41398-017-0075-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/02/2017] [Accepted: 11/01/2017] [Indexed: 01/03/2023] Open
Abstract
Molecular changes in cortical areas of addicted brain may underlie cognitive impairment and loss of control over intake of addictive substances and alcohol. Prodynorphin (PDYN) gives rise to dynorphin (DYNs) opioid peptides which target kappa-opioid receptor (KOR). DYNs mediate alcohol-induced impairment of learning and memory, while KOR antagonists block excessive, compulsive-like drug and alcohol self-administration in animal models. In human brain, the DYN/KOR system may undergo adaptive changes, which along with neuronal loss, may contribute to alcohol-associated cognitive deficit. We addressed this hypothesis by comparing the expression levels and co-expression (transcriptionally coordinated) patterns of PDYN and KOR (OPRK1) genes in dorsolateral prefrontal cortex (dlPFC) between human alcoholics and controls. Postmortem brain specimens of 53 alcoholics and 55 controls were analyzed. PDYN was found to be downregulated in dlPFC of alcoholics, while OPRK1 transcription was not altered. PDYN downregulation was confined to subgroup of subjects carrying C, a high-risk allele of PDYN promoter SNP rs1997794 associated with alcoholism. Changes in PDYN expression did not depend on the decline in neuronal proportion in alcoholics, and thereby may be attributed to transcriptional adaptations in alcoholic brain. Absolute expression levels of PDYN were lower compared to those of OPRK1, suggesting that PDYN expression is a limiting factor in the DYN/KOR signaling, and that the PDYN downregulation diminishes efficacy of DYN/KOR signaling in dlPFC of human alcoholics. The overall outcome of the DYN/KOR downregulation may be disinhibition of neurotransmission, which when overactivated could contribute to formation of alcohol-related behavior.
Collapse
Affiliation(s)
- Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24, Uppsala, Sweden.
| | - Daniil Sarkisyan
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Olga Kononenko
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Hiroyuki Watanabe
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Victor M. Karpyak
- 0000 0004 0459 167Xgrid.66875.3aDepartment of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Tatiana Yakovleva
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
37
|
Erga AH, Dalen I, Ushakova A, Chung J, Tzoulis C, Tysnes OB, Alves G, Pedersen KF, Maple-Grødem J. Dopaminergic and Opioid Pathways Associated with Impulse Control Disorders in Parkinson's Disease. Front Neurol 2018. [PMID: 29541058 PMCID: PMC5835501 DOI: 10.3389/fneur.2018.00109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Introduction Impulse control disorders (ICDs) are frequent non-motor symptoms in Parkinson’s disease (PD), with potential negative effects on the quality of life and social functioning. ICDs are closely associated with dopaminergic therapy, and genetic polymorphisms in several neurotransmitter pathways may increase the risk of addictive behaviors in PD. However, clinical differentiation between patients at risk and patients without risk of ICDs is still troublesome. The aim of this study was to investigate if genetic polymorphisms across several neurotransmitter pathways were associated with ICD status in patients with PD. Methods Whole-exome sequencing data were available for 119 eligible PD patients from the Norwegian ParkWest study. All participants underwent comprehensive neurological, neuropsychiatric, and neuropsychological assessments. ICDs were assessed using the self-report short form version of the Questionnaire for Impulsive-Compulsive Disorders in PD. Single-nucleotide polymorphisms (SNPs) from 17 genes were subjected to regression with elastic net penalization to identify candidate variants associated with ICDs. The area under the curve of receiver-operating characteristic curves was used to evaluate the level of ICD prediction. Results Among the 119 patients with PD included in the analysis, 29% met the criteria for ICD and 63% were using dopamine agonists (DAs). Eleven SNPs were associated with ICDs, and the four SNPs with the most robust performance significantly increased ICD predictability (AUC = 0.81, 95% CI 0.73–0.90) compared to clinical data alone (DA use and age; AUC = 0.65, 95% CI 0.59–0.78). The strongest predictive factors were rs5326 in DRD1, which was associated with increased odds of ICDs, and rs702764 in OPRK1, which was associated with decreased odds of ICDs. Conclusion Using an advanced statistical approach, we identified SNPs in nine genes, including a novel polymorphism in DRD1, with potential application for the identification of PD patients at risk for ICDs.
Collapse
Affiliation(s)
- Aleksander H Erga
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Ingvild Dalen
- Department of Research, Section of Biostatistics, Stavanger University Hospital, Stavanger, Norway
| | - Anastasia Ushakova
- Department of Research, Section of Biostatistics, Stavanger University Hospital, Stavanger, Norway
| | - Janete Chung
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ole Bjørn Tysnes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Guido Alves
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Neurology, Stavanger University Hospital, Stavanger, Norway.,Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | - Kenn Freddy Pedersen
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Jodi Maple-Grødem
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,The Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| |
Collapse
|
38
|
Jimenez SM, Healy AF, Coelho MA, Brown CN, Kippin TE, Szumlinski KK. Variability in prescription opioid intake and reinforcement amongst 129 substrains. GENES BRAIN AND BEHAVIOR 2017; 16:709-724. [PMID: 28523735 DOI: 10.1111/gbb.12393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/28/2022]
Abstract
Opioid abuse in the United States has reached epidemic proportions, with treatment admissions and deaths associated with prescription opioid abuse quadrupling over the past 10 years. Although genetics are theorized to contribute substantially to inter-individual variability in the development, severity and treatment outcomes of opioid abuse/addiction, little direct preclinical study has focused on the behavioral genetics of prescription opioid reinforcement and drug-taking. Herein, we employed different 129 substrains of mice currently available from The Jackson Laboratory (129S1/SvlmJ, 129X1/SvJ, 129S4/SvJaeJ and 129P3/J) as a model system of genetic variation and assayed mice for oral opioid intake and reinforcement, as well as behavioral and somatic signs of dependence. All substrains exhibited a dose-dependent increase in oral oxycodone and heroin preference and intake under limited-access procedures and all, but 129S1/SvlmJ mice, exhibited oxycodone reinforcement. Relative to the other substrains, 129P3/J mice exhibited higher heroin and oxycodone intake. While 129X1/SvJ exhibited the highest anxiety-like behavior during natural opioid withdrawal, somatic and behavior signs of precipitated withdrawal were most robust in 129P3/J mice. These results demonstrate the feasibility and relative sensitivity of our oral opioid self-administration procedures for detecting substrain differences in drug reinforcement/intake among 129 mice, of relevance to the identification of genetic variants contributing to high vs. low oxycodone reinforcement and intake.
Collapse
Affiliation(s)
- S M Jimenez
- Department of Psychological and Brain Sciences, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA
| | - A F Healy
- Department of Psychological and Brain Sciences, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA
| | - M A Coelho
- Department of Psychological and Brain Sciences, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA
| | - C N Brown
- Department of Psychological and Brain Sciences, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA
| | - T E Kippin
- Department of Psychological and Brain Sciences, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA.,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA.,Institute for Collaborative Biotechnology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - K K Szumlinski
- Department of Psychological and Brain Sciences, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA.,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, Santa Barbara, CA, USA
| |
Collapse
|
39
|
Poznanski P, Lesniak A, Korostynski M, Szklarczyk K, Lazarczyk M, Religa P, Bujalska-Zadrozny M, Sadowski B, Sacharczuk M. Delta-opioid receptor antagonism leads to excessive ethanol consumption in mice with enhanced activity of the endogenous opioid system. Neuropharmacology 2017; 118:90-101. [PMID: 28322978 DOI: 10.1016/j.neuropharm.2017.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
The opioid system modulates the central reinforcing effects of ethanol and participates in the etiology of addiction. However, the pharmacotherapy of ethanol dependence targeted on the opioid system is little effective and varies due to individual patients' sensitivity. In the present study, we used two mouse lines with high (HA) and low (LA) activity of the endogenous opioid system to analyze the effect of opioid receptor blockade on ethanol drinking behavior. We found that LA and HA lines characterized by divergent magnitudes of swim stress-induced analgesia also differ in ethanol intake and preference. Downregulation of the opioid system in LA mice was associated with increased ethanol consumption. Treatment with a non-selective opioid receptor antagonist (naloxone) had no effect on ethanol intake in this line. Surprisingly, in HA mice, the blockage of opioid receptors led to excessive ethanol consumption. Moreover, naloxone selectively induced high levels of anxiety- and depressive-like behaviors in HA mice which was attenuated by ethanol. With the use of specific opioid receptor antagonists we showed that the naloxone-induced increase in ethanol drinking in HA mice is mediated mainly by δ and to a lower extent by μ opioid receptors. The effect of δ-opioid receptor antagonism was abolished in HA mice carrying a C320T transition in the δ-opioid receptor gene (EU446125.1), which impairs this receptor's function. Our results indicate that high activity of the opioid system plays a protective role against ethanol dependence. Therefore, its blockage with opioid receptor antagonists may lead to a profound increase in ethanol consumption.
Collapse
Affiliation(s)
- Piotr Poznanski
- Laboratory of Neurogenomics and Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A Str., 05-552 Magdalenka, Poland
| | - Anna Lesniak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Michal Korostynski
- Department of Molecular Neuropharmacology, Institute of Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland
| | - Klaudia Szklarczyk
- Department of Molecular Neuropharmacology, Institute of Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland
| | - Marzena Lazarczyk
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Religa
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Bogdan Sadowski
- Laboratory of Neurogenomics and Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A Str., 05-552 Magdalenka, Poland
| | - Mariusz Sacharczuk
- Laboratory of Neurogenomics and Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A Str., 05-552 Magdalenka, Poland; Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland; Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
40
|
Reed B, Butelman ER, Kreek MJ. Endogenous opioid system in addiction and addiction-related behaviors. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Vassoler FM, Oliver DJ, Wyse C, Blau A, Shtutman M, Turner JR, Byrnes EM. Transgenerational attenuation of opioid self-administration as a consequence of adolescent morphine exposure. Neuropharmacology 2017; 113:271-280. [PMID: 27729240 PMCID: PMC5248554 DOI: 10.1016/j.neuropharm.2016.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 01/13/2023]
Abstract
The United States is in the midst of an opiate epidemic, with abuse of prescription and illegal opioids increasing steadily over the past decade. While it is clear that there is a genetic component to opioid addiction, there is a significant portion of heritability that cannot be explained by genetics alone. The current study was designed to test the hypothesis that maternal exposure to opioids prior to pregnancy alters abuse liability in subsequent generations. Female adolescent Sprague Dawley rats were administered morphine at increasing doses (5-25 mg/kg, s.c.) or saline for 10 days (P30-39). During adulthood, animals were bred with drug-naïve colony males. Male and female adult offspring (F1 animals) were tested for morphine self-administration acquisition, progressive ratio, extinction, and reinstatement at three doses of morphine (0.25, 0.75, 1.25 mg/kg/infusion). Grandoffspring (F2 animals, from the maternal line) were also examined. Additionally, gene expression changes within the nucleus accumbens were examined with RNA deep sequencing (PacBio) and qPCR. There were dose- and sex-dependent effects on all phases of the self-administration paradigm that indicate decreased morphine reinforcement and attenuated relapse-like behavior. Additionally, genes related to synaptic plasticity, as well as myelin basic protein (MBP), were dysregulated. Some, but not all, effects persisted into the subsequent (F2) generation. The results demonstrate that even limited opioid exposure during adolescence can have lasting effects across multiple generations, which has implications for mechanisms of the transmission of drug abuse liability in humans.
Collapse
Affiliation(s)
- Fair M Vassoler
- Cummings School at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA.
| | - David J Oliver
- University of South Carolina College of Pharmacy, 773 Sumter St, Columbia, SC 29208, USA
| | - Cristina Wyse
- Cummings School at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Ashley Blau
- Cummings School at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Michael Shtutman
- University of South Carolina College of Pharmacy, 773 Sumter St, Columbia, SC 29208, USA
| | - Jill R Turner
- University of South Carolina College of Pharmacy, 773 Sumter St, Columbia, SC 29208, USA
| | - Elizabeth M Byrnes
- Cummings School at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| |
Collapse
|
42
|
Wachman EM, Hayes MJ, Sherva R, Brown MS, Shrestha H, Logan BA, Heller NA, Nielsen DA, Farrer LA. Association of maternal and infant variants in PNOC and COMT genes with neonatal abstinence syndrome severity. Am J Addict 2017; 26:42-49. [PMID: 27983768 PMCID: PMC5206487 DOI: 10.1111/ajad.12483] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVES There is significant variability in severity of neonatal abstinence syndrome (NAS) due to in utero opioid exposure. Our previous study identified single nucleotide polymorphisms (SNPs) in the prepronociceptin (PNOC) and catechol-O-methyltransferase (COMT) genes that were associated with differences in NAS outcomes. This study looks at the same SNPs in PNOC and COMT in an independent cohort in an attempt to replicate previous findings. METHODS For the replication cohort, full-term opioid-exposed newborns and their mothers (n = 113 pairs) were studied. A DNA sample was obtained and genotyped for five SNPs in the PNOC and COMT genes. The association of each SNP with NAS outcomes (length of hospitalization, need for pharmacologic treatment, and total opioid days) was evaluated, with an experiment-wise significance level set at α < .003 and point-wise level of α < .05. SNP associations in a combined cohort of n = 199 pairs (replication cohort plus 86 pairs previously reported), were also examined. RESULTS In the replication cohort, mothers with the COMT rs4680 G allele had infants with a reduced risk for treatment with two medications for NAS (adjusted OR = .5, p = .04), meeting point-wise significance. In the combined cohort, infants with the PNOC rs4732636 A allele had a reduced need for medication treatment (adjusted OR 2.0, p = .04); mothers with the PNOC rs351776 A allele had infants who were treated more often with two medications (adjusted OR 2.3, p = .004) with longer hospitalization by 3.3 days (p = .01). Mothers with the COMT rs740603 A allele had infants who were less often treated with any medication (adjusted OR .5, p = .02). Though all SNP associations all met point wise and clinical significance, they did not meet the experiment-wise significance threshold. CONCLUSIONS AND SCIENTIFIC SIGNIFICANCE We found differences in NAS outcomes depending on PNOC and COMT SNP genotype. This has important implications for identifying infants at risk for severe NAS who could benefit from tailored treatment regimens. Further testing in a larger sample is warranted. This has important implications for prenatal prediction and personalized treatment regimens for infants with NAS. (Am J Addict 2017;26:42-49).
Collapse
Affiliation(s)
- Elisha M Wachman
- Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts
| | - Marie J Hayes
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| | - Richard Sherva
- Department of Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts
| | - Mark S Brown
- Department of Pediatrics, Eastern Maine Medical Center, Bangor, Maine
| | - Hira Shrestha
- Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts
| | - Beth A Logan
- Department of Transplant Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nicole A Heller
- Department of Psychology, Siena College, Loudonville, New York
| | - David A Nielsen
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas
| | - Lindsay A Farrer
- Department of Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
43
|
Chen T, Yuan SJ, Yu XQ, Jiao LB, Hu W, Chen WL, Xie B. Effect of toad skin extracts on the pain behavior of cancer model mice and its peripheral mechanism of action. Int Immunopharmacol 2017; 42:90-99. [DOI: 10.1016/j.intimp.2016.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/01/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
|
44
|
Kalsi G, Euesden J, Coleman JRI, Ducci F, Aliev F, Newhouse SJ, Liu X, Ma X, Wang Y, Collier DA, Asherson P, Li T, Breen G. Genome-Wide Association of Heroin Dependence in Han Chinese. PLoS One 2016; 11:e0167388. [PMID: 27936112 PMCID: PMC5147879 DOI: 10.1371/journal.pone.0167388] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/14/2016] [Indexed: 02/05/2023] Open
Abstract
Drug addiction is a costly and recurring healthcare problem, necessitating a need to understand risk factors and mechanisms of addiction, and to identify new biomarkers. To date, genome-wide association studies (GWAS) for heroin addiction have been limited; moreover they have been restricted to examining samples of European and African-American origin due to difficulty of recruiting samples from other populations. This is the first study to test a Han Chinese population; we performed a GWAS on a homogeneous sample of 370 Han Chinese subjects diagnosed with heroin dependence using the DSM-IV criteria and 134 ethnically matched controls. Analysis using the diagnostic criteria of heroin dependence yielded suggestive evidence for association between variants in the genes CCDC42 (coiled coil domain 42; p = 2.8x10-7) and BRSK2 (BR serine/threonine 2; p = 4.110−6). In addition, we found evidence for risk variants within the ARHGEF10 (Rho guanine nucleotide exchange factor 10) gene on chromosome 8 and variants in a region on chromosome 20q13, which is gene-poor but has a concentration of mRNAs and predicted miRNAs. Gene-based association analysis identified genome-wide significant association between variants in CCDC42 and heroin addiction. Additionally, when we investigated shared risk variants between heroin addiction and risk of other addiction-related and psychiatric phenotypes using polygenic risk scores, we found a suggestive relationship with variants predicting tobacco addiction, and a significant relationship with variants predicting schizophrenia. Our genome wide association study of heroin dependence provides data in a novel sample, with functionally plausible results and evidence of genetic data of value to the field.
Collapse
Affiliation(s)
- Gursharan Kalsi
- Institute of Psychiatry, Psychology and Neuroscience, MRC SGDP Centre, King’s College London, United Kingdom
| | - Jack Euesden
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Jonathan R. I. Coleman
- Institute of Psychiatry, Psychology and Neuroscience, MRC SGDP Centre, King’s College London, United Kingdom
| | - Francesca Ducci
- Institute of Psychiatry, Psychology and Neuroscience, MRC SGDP Centre, King’s College London, United Kingdom
| | - Fazil Aliev
- Department of Actuarial Sciences and Risk Management, Faculty of Business, Karabuk University, Karabuk, Turkey
| | - Stephen J. Newhouse
- Institute of Psychiatry, Psychology and Neuroscience, MRC SGDP Centre, King’s College London, United Kingdom
| | - Xiehe Liu
- Mental Health Center, West China Hospital, Sichuan University, Sichuan, People’s Republic of China
- Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, People’s Republic of China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital, Sichuan University, Sichuan, People’s Republic of China
- Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, People’s Republic of China
| | - Yingcheng Wang
- Mental Health Center, West China Hospital, Sichuan University, Sichuan, People’s Republic of China
- Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, People’s Republic of China
| | - David A. Collier
- Institute of Psychiatry, Psychology and Neuroscience, MRC SGDP Centre, King’s College London, United Kingdom
- Lilly UK, Erl Wood Manor, Windlesham, Surrey, United Kingdom
| | - Philip Asherson
- Institute of Psychiatry, Psychology and Neuroscience, MRC SGDP Centre, King’s College London, United Kingdom
| | - Tao Li
- Department of Psychiatry, West China Hospital, School of Medicine, Sichuan University, Sichuan, People’s Republic of China
| | - Gerome Breen
- Institute of Psychiatry, Psychology and Neuroscience, MRC SGDP Centre, King’s College London, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Variants of opioid system genes are associated with non-dependent opioid use and heroin dependence. Drug Alcohol Depend 2016; 168:164-169. [PMID: 27664554 PMCID: PMC6842569 DOI: 10.1016/j.drugalcdep.2016.08.634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 08/20/2016] [Accepted: 08/29/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Heroin addiction is a chronic, relapsing brain disease. Genetic factors are involved in the development of drug addiction. The aim of this study was to determine whether specific variants in genes of the opioid system are associated with non-dependent opioid use and heroin dependence. METHODS Genetic information from four subject groups was collected: non-dependent opioid users (NOD) [n=163]; opioid-dependent (OD) patients in methadone maintenance treatment (MMT) [n=143]; opioid-dependent MMT-resistant patients in heroin-assisted treatment (HAT) [n=138]; and healthy controls with no history of opioid use (HC) [n=153]. Eighty-two variants in eight opioid system genes were studied. To establish the role of these genes in (a) non-dependent opioid use, and (b) heroin dependence, the following groups were compared: HC vs. NOD; HC vs. OD (MMT+HAT); and NOD vs. OD (MMT+HAT). RESULTS Five unique SNPs in four genes showed nominally significant associations with non-dependent opioid use and heroin dependence. The association of the delta opioid receptor (OPRD1) intronic SNP rs2236861 with non-dependent opioid use (HC vs. NOD) remained significant after correction for multiple testing (OR=0.032; pcorrected=0.015). This SNP exhibited a significant gene-gene interaction with prepronociceptin (PNOC) SNP rs2722897 (OR=5.24; pcorrected=0.041) (HC vs. NOD). CONCLUSIONS This study identifies several new and some previously reported associations of variants with heroin dependence and with non-dependent opioid use, an important and difficult to obtain group not extensively studied previously. Further studies are warranted to confirm and elucidate the potential roles of these variants in the vulnerability to illicit drug use and drug addiction.
Collapse
|
46
|
Muñoa I, Urizar I, Casis L, Irazusta J, Subirán N. The epigenetic regulation of the opioid system: new individualized prompt prevention and treatment strategies. J Cell Biochem 2016; 116:2419-26. [PMID: 25974312 DOI: 10.1002/jcb.25222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/18/2022]
Abstract
The most well-known physiological effect associated with opiod system is their efficacy in pain reduction or analgesia, although their effect on a variety of other physiological and physiophological functions has become apparent in recent years. This review is an attempt to clarify in more detail the epigenetic regulation of opioid system to understand with more precision their transcriptional and posttranscriptional regulation in multiple pyisiological and pharmacological contexts. The opioid receptors show an epigenetic regulation and opioid peptide precursors by methylation, chromatin remodeling and microRNA. Although the opioid receptor promoters have similarity between them, they use different epigenetic regulation forms and they exhibit different pattern of expression during the cell differentiation. DNA methylation is also confirmed in opioid peptide precursors, being important for gene expression and tissue specificity. Understanding the epigenetic basis of those physiological and physiopathological procesess is essential for the development of individualized prompt prevention and treatment strategies.
Collapse
Affiliation(s)
- Iraia Muñoa
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Itziar Urizar
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Luis Casis
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Jon Irazusta
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
47
|
Etiological theories of addiction: A comprehensive update on neurobiological, genetic and behavioural vulnerability. Pharmacol Biochem Behav 2016; 148:59-68. [PMID: 27306332 DOI: 10.1016/j.pbb.2016.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 06/01/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
Abstract
Currently, about 246 million people around the world have used an illicit drug. The reasons for this use are multiple: e.g. to augment the sensation of pleasure or to reduce the withdrawal and other aversive effects of a given substance. This raises the problem of addiction, which remains a disease of modern society. This review offers a comprehensive update of the different theories about the etiology of addictive behaviors with emphasis on the neurobiological, environmental, psychopathological, behavioural and genetic aspects of addictions, discussed from an evolutionary perspective. The main conclusion of this review is that vulnerability to drug addiction suggests an interaction between many brain systems (including the reward, decision-making, serotonergic, oxytocin, interoceptive insula, CRF, norepinephrine, dynorphin/KOR, orexin and vasopressin systems), genetic predisposition, sociocultural context, impulsivity and drugs types. Further advances in biological and psychological science are needed to address the problems of addiction at its roots.
Collapse
|
48
|
Regan PM, Langford TD, Khalili K. Regulation and Functional Implications of Opioid Receptor Splicing in Opioid Pharmacology and HIV Pathogenesis. J Cell Physiol 2016; 231:976-85. [PMID: 26529364 PMCID: PMC4728022 DOI: 10.1002/jcp.25237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
Abstract
Despite the identification and characterization of four opioid receptor subtypes and the genes from which they are encoded, pharmacological data does not conform to the predications of a four opioid receptor model. Instead, current studies of opioid pharmacology suggest the existence of additional receptor subtypes; however, no additional opioid receptor subtype has been identified to date. It is now understood that this discrepancy is due to the generation of multiple isoforms of opioid receptor subtypes. While several mechanisms are utilized to generate these isoforms, the primary mechanism involves alternative splicing of the pre-mRNA transcript. Extensive alternative splicing patterns for opioid receptors have since been identified and discrepancies in opioid pharmacology are now partially attributed to variable expression of these isoforms. Recent studies have been successful in characterizing the localization of these isoforms as well as their specificity in ligand binding; however, the regulation of opioid receptor splicing specificity is poorly characterized. Furthermore, the functional significance of individual receptor isoforms and the extent to which opioid- and/or HIV-mediated changes in the opioid receptor isoform profile contributes to altered opioid pharmacology or the well-known physiological role of opioids in the exacerbation of HIV neurocognitive dysfunction is unknown. As such, the current review details constitutive splicing mechanisms as well as the specific architecture of opioid receptor genes, transcripts, and receptors in order to highlight the current understanding of opioid receptor isoforms, potential mechanisms of their regulation and signaling, and their functional significance in both opioid pharmacology and HIV-associated neuropathology.
Collapse
Affiliation(s)
- Patrick M. Regan
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - T. Dianne Langford
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kamel Khalili
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
49
|
Expression levels of OPRM1 and PDYN in human SH-SY5Y cells treated with morphine and methadone. Life Sci 2016; 150:39-41. [DOI: 10.1016/j.lfs.2016.02.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 11/23/2022]
|
50
|
Schwantes-An TH, Zhang J, Chen LS, Hartz SM, Culverhouse RC, Chen X, Coon H, Frank J, Kamens HM, Konte B, Kovanen L, Latvala A, Legrand LN, Maher BS, Melroy WE, Nelson EC, Reid MW, Robinson JD, Shen PH, Yang BZ, Andrews JA, Aveyard P, Beltcheva O, Brown SA, Cannon DS, Cichon S, Corley RP, Dahmen N, Degenhardt L, Foroud T, Gaebel W, Giegling I, Glatt SJ, Grucza RA, Hardin J, Hartmann AM, Heath AC, Herms S, Hodgkinson CA, Hoffmann P, Hops H, Huizinga D, Ising M, Johnson EO, Johnstone E, Kaneva RP, Kendler KS, Kiefer F, Kranzler HR, Krauter KS, Levran O, Lucae S, Lynskey MT, Maier W, Mann K, Martin NG, Mattheisen M, Montgomery GW, Müller-Myhsok B, Murphy MF, Neale MC, Nikolov MA, Nishita D, Nöthen MM, Nurnberger J, Partonen T, Pergadia ML, Reynolds M, Ridinger M, Rose RJ, Rouvinen-Lagerström N, Scherbaum N, Schmäl C, Soyka M, Stallings MC, Steffens M, Treutlein J, Tsuang M, Wall TL, Wodarz N, Yuferov V, Zill P, Bergen AW, Chen J, Cinciripini PM, Edenberg HJ, Ehringer MA, Ferrell RE, Gelernter J, Goldman D, Hewitt JK, Hopfer CJ, Iacono WG, Kaprio J, Kreek MJ, Kremensky IM, Madden PAF, McGue M, Munafò MR, Philibert RA, Rietschel M, Roy A, Rujescu D, Saarikoski ST, Swan GE, Todorov AA, Vanyukov MM, Weiss RB, Bierut LJ, Saccone NL. Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts. Behav Genet 2016; 46:151-69. [PMID: 26392368 PMCID: PMC4752855 DOI: 10.1007/s10519-015-9737-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
The mu1 opioid receptor gene, OPRM1, has long been a high-priority candidate for human genetic studies of addiction. Because of its potential functional significance, the non-synonymous variant rs1799971 (A118G, Asn40Asp) in OPRM1 has been extensively studied, yet its role in addiction has remained unclear, with conflicting association findings. To resolve the question of what effect, if any, rs1799971 has on substance dependence risk, we conducted collaborative meta-analyses of 25 datasets with over 28,000 European-ancestry subjects. We investigated non-specific risk for "general" substance dependence, comparing cases dependent on any substance to controls who were non-dependent on all assessed substances. We also examined five specific substance dependence diagnoses: DSM-IV alcohol, opioid, cannabis, and cocaine dependence, and nicotine dependence defined by the proxy of heavy/light smoking (cigarettes-per-day >20 vs. ≤ 10). The G allele showed a modest protective effect on general substance dependence (OR = 0.90, 95% C.I. [0.83-0.97], p value = 0.0095, N = 16,908). We observed similar effects for each individual substance, although these were not statistically significant, likely because of reduced sample sizes. We conclude that rs1799971 contributes to mechanisms of addiction liability that are shared across different addictive substances. This project highlights the benefits of examining addictive behaviors collectively and the power of collaborative data sharing and meta-analyses.
Collapse
Affiliation(s)
- Tae-Hwi Schwantes-An
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, US National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Juan Zhang
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA
- Key Laboratory of Brain Function and Disease, School of Life Sciences, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert C Culverhouse
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiangning Chen
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Helen M Kamens
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bettina Konte
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Leena Kovanen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Antti Latvala
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
| | - Lisa N Legrand
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Brion S Maher
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Whitney E Melroy
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mark W Reid
- Oregon Research Institute, Eugene, OR, 97403, USA
| | - Jason D Robinson
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pei-Hong Shen
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University, New Haven, CT, 06516, USA
| | | | - Paul Aveyard
- Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, United Kingdom
| | - Olga Beltcheva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Sandra A Brown
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dale S Cannon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Sven Cichon
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Robin P Corley
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
| | - Norbert Dahmen
- Ökumenisches Hainich-Klinikum, Mühlhausen/Thüringen, Germany
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Randwick, NSW, 2031, Australia
- School of Population and Global Health, University of Melbourne, Melbourne, 3010, Australia
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Ina Giegling
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Stephen J Glatt
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Richard A Grucza
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jill Hardin
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Annette M Hartmann
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stefan Herms
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Colin A Hodgkinson
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Per Hoffmann
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Division of Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4003, Switzerland
| | - Hyman Hops
- Oregon Research Institute, Eugene, OR, 97403, USA
| | - David Huizinga
- Institute of Behavioral Science, University of Colorado, Boulder, CO, 80309, USA
| | - Marcus Ising
- Max-Planck-Institute of Psychiatry, 80804, Munich, Germany
| | - Eric O Johnson
- Behavioral Health Research Division, Research Triangle Institute International, Durham, NC, 27709, USA
| | - Elaine Johnstone
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Radka P Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Kenneth S Kendler
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Henry R Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ken S Krauter
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Orna Levran
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | - Susanne Lucae
- Max-Planck-Institute of Psychiatry, 80804, Munich, Germany
| | - Michael T Lynskey
- Addictions Department, Institute of Psychiatry, King's College London, London, SE5 8BB, UK
| | | | - Karl Mann
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Nicholas G Martin
- Department of Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, 4029, Australia
| | - Manuel Mattheisen
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Harvard School of Public Health, Boston, MA, 02115, USA
- Aarhus University, Aarhus, 8000, Denmark
| | - Grant W Montgomery
- Department of Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, 4029, Australia
| | | | - Michael F Murphy
- Childhood Cancer Research Group, University of Oxford, Oxford, OX3 7LG, UK
| | - Michael C Neale
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Momchil A Nikolov
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Denise Nishita
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Markus M Nöthen
- Department. of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
| | - John Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Timo Partonen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Michele L Pergadia
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maureen Reynolds
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Monika Ridinger
- Department of Psychiatry, University Medical Center Regensburg, University of Regensburg, 8548, Regensburg, Germany
- Psychiatric Hospital, Konigsfelden, Windisch, Switzerland
| | - Richard J Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Noora Rouvinen-Lagerström
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Norbert Scherbaum
- Addiction Research Group at the Department of Psychiatry and Psychotherapy, LVR Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Christine Schmäl
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Michael Soyka
- Department of Psychiatry, University of Munich, 3860, Munich, Germany
- Private Hospital Meiringen, Meiringen, Switzerland
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Psychology & Neuroscience, University of Colorado, Boulder, CO, 80309, USA
| | - Michael Steffens
- Research Department, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Ming Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tamara L Wall
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Norbert Wodarz
- Department of Psychiatry, University Medical Center Regensburg, University of Regensburg, 8548, Regensburg, Germany
| | - Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | | | - Andrew W Bergen
- Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - Jingchun Chen
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Paul M Cinciripini
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80309, USA
| | - Robert E Ferrell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, CT, 06516, USA
- Department of Genetics, Yale University, New Haven, CT, 06516, USA
- Department of Neurobiology, Yale University, New Haven, CT, 06516, USA
| | - David Goldman
- Section of Human Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
- Department of Psychology & Neuroscience, University of Colorado, Boulder, CO, 80309, USA
| | - Christian J Hopfer
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jaakko Kaprio
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
- Institute for Molecular Medicine FIMM, University of Helsinki, 00014, Helsinki, Finland
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, 10065, USA
| | - Ivo M Kremensky
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University-Sofia, 1431, Sofia, Bulgaria
| | - Pamela A F Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, UK Centre for Tobacco and Alcohol Studies, and School of Experimental Psychology, University of Bristol, Bristol, BS8 1TU, UK
| | | | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159, Mannheim, Germany
| | - Alec Roy
- Psychiatry Service, Department of Veteran Affairs, New Jersey VA Health Care System, East Orange, NJ, 07018, USA
| | - Dan Rujescu
- Department of Psychiatry, Universitätsklinikum Halle (Saale), 06112, Halle (Saale), Germany
| | - Sirkku T Saarikoski
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Gary E Swan
- Department of Medicine, Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Alexandre A Todorov
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael M Vanyukov
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8232, St. Louis, MO, 63110, USA.
| |
Collapse
|