1
|
Takeuchi Y, Masuda T, Kimura N, Sumi K, Jikumaru M, Eura N, Nishino I, Matsubara E. X-linked Myotubular Myopathy Manifesting Carrier with Central and Peripheral Nervous System Involvement. Intern Med 2024; 63:3371-3375. [PMID: 38631855 DOI: 10.2169/internalmedicine.3417-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a rare genetic disorder caused by X-linked mutations in the MTM1 gene. Although heterozygous females are typically asymptomatic, affected cases have recently been reported. We herein report a case of XLMTM manifesting carrier of the pathogenic c.206dupG mutation in MTM1 with uncommon extramuscular symptoms. She developed gaze nystagmus and cognitive impairment in addition to muscle weakness. Electrophysiological studies and brain magnetic resonance imaging indicated the involvement of the central and peripheral nervous systems. XLMTM manifesting carriers may have a wider spectrum of clinical phenotypes than currently assumed. Appropriate follow-up of extramuscular and conventional muscular manifestations is important in such cases.
Collapse
Affiliation(s)
- Yosuke Takeuchi
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Teruaki Masuda
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Noriyuki Kimura
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Kaori Sumi
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Mika Jikumaru
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Nobuyuki Eura
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| |
Collapse
|
2
|
Mai J, Duan J, Chen X, Liu L, Liang D, Fu T, Lu G, Chan WY, Luo X, Wen F, Liao J, Li Z, Lu X. Optical genome mapping: Unraveling complex variations and enabling precise diagnosis in dystrophinopathy. Ann Clin Transl Neurol 2024. [DOI: 10.1002/acn3.52245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/23/2024] [Indexed: 01/06/2025] Open
Abstract
AbstractObjectiveApproximately 7% of individuals with dystrophinopathy remain undiagnosed at the genetic level using conventional genetic tests like multiplex ligation‐dependent probe amplification (MLPA) and next‐generation sequencing (NGS). We used the optical genome mapping (OGM) technology to detect and analyze uncommon mutations or structural variations (SVs) within the DMD gene, thus contributing to more precise clinical diagnoses.MethodsWe herein included eight patients with dystrophinopathy (six males and two females) in whom pathogenic variants of the DMD gene could not be accurately identified using MLPA and NGS. Clinical data were collected for all patients and genetic testing was performed using OGM.ResultsConventional methods (MLPA and NGS) failed to detect pathogenic mutations in six out of eight individuals (four males and two females). OGM testing uncovered rare mutations in the DMD gene in four patients, including a pericentric inversion in chromosome X (one male), a complex rearrangement (one male), and two X–autosome translocations (two females). No mutations were detected in the remaining two male patients. OGM also accurately mapped balanced X–autosome translocations in female patients, defining chromosomal breakpoints. In the other two male patients in whom MLPA suggested non‐contiguous exon duplications or deletions in the DMD gene, OGM characterized one case as a complex rearrangement and the other as a deletion within the DMD gene.InterpretationOGM is a valuable diagnostic tool for dystrophinopathy patients with negative results from conventional genetic tests. It can effectively elucidate complex SVs and pinpoint breakpoints in X–autosomal translocations in female patients, facilitating prompt and appropriate interventions.
Collapse
Affiliation(s)
- Jiahui Mai
- Department of Neurology Shenzhen Children's Hospital of China Medical University No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Jing Duan
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Xiaoyu Chen
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Liqin Liu
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Dachao Liang
- Shenzhen A‐Smart Medical Research Center, Room 516 Shenzhen Research Institute of the Chinese University of Hong Kong 10, 2nd Yuexing Road, Nanshan District Shenzhen 518000 Guangdong China
| | - Tao Fu
- Shenzhen A‐Smart Medical Research Center, Room 516 Shenzhen Research Institute of the Chinese University of Hong Kong 10, 2nd Yuexing Road, Nanshan District Shenzhen 518000 Guangdong China
| | - Gang Lu
- The Chinese University of Hong Kong‐Shandong University (CUHK‐SDU) Joint Laboratory on Reproductive Genetics School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong Hong Kong
| | - Wai Yee Chan
- The Chinese University of Hong Kong‐Shandong University (CUHK‐SDU) Joint Laboratory on Reproductive Genetics School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong Hong Kong
| | - Xufeng Luo
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Feiqiu Wen
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Jianxiang Liao
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| | - Zhuo Li
- Shenzhen A‐Smart Medical Research Center, Room 516 Shenzhen Research Institute of the Chinese University of Hong Kong 10, 2nd Yuexing Road, Nanshan District Shenzhen 518000 Guangdong China
| | - Xinguo Lu
- Department of Neurology Shenzhen Children's Hospital No. 7019 Yitian Road, Futian District Shenzhen 518038 Guangdong PR China
| |
Collapse
|
3
|
Jenkins BM, Dixon LD, Kokesh KJ, Zingariello CD, Vandenborne K, Walter GA, Barnard AM. Skeletal muscle symptoms and quantitative MRI in females with dystrophinopathy. Muscle Nerve 2024; 70:988-999. [PMID: 39221574 PMCID: PMC11493146 DOI: 10.1002/mus.28235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION/AIMS The dystrophinopathies primarily affect males; however, female carriers of pathogenic dystrophin variants can develop skeletal muscle symptoms. This study aimed to evaluate muscle involvement and symptoms in females with dystrophinopathy using quantitative magnetic resonance imaging (MRI), functional assessments, and patient-reported outcomes. METHODS Controls and females with dystrophinopathy with muscle symptoms of pain, weakness, fatigue, or excessive tightness were enrolled in this cross-sectional study. Participants underwent lower extremity MRI to quantify muscle inflammation, replacement by fat, and disease asymmetry. Cardiac MRI, functional ability, muscle symptoms, and serum creatine kinase levels were also evaluated. RESULTS Six pediatric females with dystrophinopathy (mean age: 11.7 years), 11 adult females with dystrophinopathy (mean age: 41.3 years), and seven controls enrolled. The mean fat fraction was increased in females with dystrophinopathy compared to controls in the soleus (0.11 vs. 0.03, p = .0272) and vastus lateralis (0.16 vs. 0.03, p = .004). Magnetic resonance spectroscopy water T2, indicative of muscle inflammation, was elevated in the soleus and/or vastus lateralis in 11 of 17 individuals. North Star Ambulatory Assessment score was lower in the dystrophinopathy group compared to controls (29 vs. 34 points, p = .0428). From cardiac MRI, left ventricle T1 relaxation times were elevated in females with dystrophinopathy compared to controls (1311 ± 55 vs. 1263 ± 25 ms, p < .05), but ejection fraction and circumferential strain did not differ. DISCUSSION Symptomatic females with dystrophinopathy quantitatively demonstrate muscle replacement by fat and inflammation, along with impairments in functional ability and cardiac function. Additional research is needed to evaluate how symptoms and muscle involvement change longitudinally.
Collapse
Affiliation(s)
| | | | - Kevin J Kokesh
- Department of Pediatrics, Division of Pulmonology; University of Florida
| | - Carla D Zingariello
- Department of Pediatrics, Division of Pediatric Neurology; University of Florida
| | | | - Glenn A Walter
- Department of Physiology and Aging; University of Florida
| | | |
Collapse
|
4
|
Luglio A, Maggi E, Riviello FN, Conforti A, Sorrentino U, Zuccarello D. Hereditary Neuromuscular Disorders in Reproductive Medicine. Genes (Basel) 2024; 15:1409. [PMID: 39596609 PMCID: PMC11593801 DOI: 10.3390/genes15111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Neuromuscular disorders (NMDs) encompass a broad range of hereditary and acquired conditions that affect motor units, significantly impacting patients' quality of life and reproductive health. This narrative review aims to explore in detail the reproductive challenges associated with major hereditary NMDs, including Charcot-Marie-Tooth disease (CMT), dystrophinopathies, Myotonic Dystrophy (DM), Facioscapulohumeral Muscular Dystrophy (FSHD), Spinal Muscular Atrophy (SMA), Limb-Girdle Muscular Dystrophy (LGMD), and Amyotrophic Lateral Sclerosis (ALS). Specifically, it discusses the stages of diagnosis and genetic testing, recurrence risk estimation, options for preimplantation genetic testing (PGT) and prenatal diagnosis (PND), the reciprocal influence between pregnancy and disease, potential obstetric complications, and risks to the newborn.
Collapse
Affiliation(s)
- Agnese Luglio
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | | | | | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Ugo Sorrentino
- Department of Women’s and Children’s Health, University Hospital of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Daniela Zuccarello
- Unit of Medical Genetics and Genomics, San Bortolo Hospital, ULSS n.8 “Berica”, 36100 Vicenza, Italy;
| |
Collapse
|
5
|
Xue C, Wang Y, Peng J, Feng S, Guan Y, Hao Y. Unraveling the pathogenic mechanism of a novel filamin a frameshift variant in periventricular nodular heterotopia. Front Pharmacol 2024; 15:1429177. [PMID: 39399465 PMCID: PMC11466872 DOI: 10.3389/fphar.2024.1429177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Background Periventricular nodular heterotopia (PVNH) is a neuronal migration disorder caused by the inability of neurons to move to the cortex. Patients with PVNH often experience epilepsy due to ectopic neuronal discharges. Most cases of PVNH are associated with variations in filamin A (FLNA), which encodes an actin-binding protein. However, the underlying pathological mechanisms remain unclear. Methods Next-generation sequencing was performed to detect variants in the patient with PVNH, and the findings were confirmed using Sanger sequencing. Iterative threading assembly refinement was used to predict the structures of the variant proteins, and the search tool for the retrieval of interacting genes/proteins database was used to determine the interactions between FLNA and motility-related proteins. An induced pluripotent stem cell (iPSC) line was generated as a disease model by reprogramming human peripheral blood mononuclear cells. The FLNA expression in iPSCs was assessed using western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Immunofluorescence analysis was performed to determine the arrangement of F-actin. Results A novel FLNA frameshift variant (NM_001456.3: c.1466delG, p. G489Afs*9) was identified in a patient with PVNH and epilepsy. Bioinformatic analysis indicated that this variation was likely to impair FLNA function. Western blot and qRT-PCR analysis of iPSCs derived from the patient's peripheral blood mononuclear cells revealed the absence of FLNA protein and mRNA. Immunofluorescence analysis suggested an irregular arrangement and disorganization of F-actin compared to that observed in healthy donors. Conclusion Our findings indicate that the frameshift variant of FLNA (NM_001456.3: c.1466delG, p. G489Afs*9) impairs the arrangement and organization of F-actin, potentially influencing cell migration and causing PVNH.
Collapse
Affiliation(s)
- Chunran Xue
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yishu Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Peng
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sisi Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Punan Branch, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
7
|
Naciri I, Andrade-Ludena MD, Yang Y, Kong M, Sun S. An emerging link between lncRNAs and cancer sex dimorphism. Hum Genet 2024; 143:831-842. [PMID: 38095719 PMCID: PMC11176266 DOI: 10.1007/s00439-023-02620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/05/2023] [Indexed: 06/15/2024]
Abstract
The prevalence and progression of cancer differ in males and females, and thus, sexual dimorphism in tumor development directly impacts clinical research and medicine. Long non-coding RNAs (lncRNAs) are increasingly recognized as important players in gene expression and various cellular processes, including cancer development and progression. In recent years, lncRNAs have been implicated in the differences observed in cancer incidence, progression, and treatment responses between men and women. Here, we present a brief overview of the current knowledge regarding the role of lncRNAs in cancer sex dimorphism, focusing on how they affect epigenetic processes in male and female mammalian cells. We discuss the potential mechanisms by which lncRNAs may contribute to sex differences in cancer, including transcriptional control of sex chromosomes, hormonal signaling pathways, and immune responses. We also propose strategies for studying lncRNA functions in cancer sex dimorphism. Furthermore, we emphasize the importance of considering sex as a biological variable in cancer research and the need to investigate the role lncRNAs play in mediating these sex differences. In summary, we highlight the emerging link between lncRNAs and cancer sex dimorphism and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ikrame Naciri
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Maria D Andrade-Ludena
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| | - Sha Sun
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Hoefel AML, Weschenfelder CA, Rosa BF, Donis KC, Saute JAM. Empowerment of genetic information by women at-risk of being carriers of Duchenne and Becker muscular dystrophies. J Community Genet 2024; 15:163-175. [PMID: 38165635 PMCID: PMC11031514 DOI: 10.1007/s12687-023-00695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
The emergence of therapies acting on specific molecular targets for Duchenne and Becker muscular dystrophies (DBMD) led to expanded access of diagnostic DMD analysis. However, it is unclear how much of these advances have also improved healthcare and access to genetic testing for women at-risk of being carriers. This study evaluates the process of genetic counseling and empowerment of genetic information by women from DBMD families. We carried out a cross-sectional study between February and June 2022 in Brazil. The online survey with items regarding sociodemographic data; family history; access to health services; reproductive decisions; and the Genomic Outcome Scale was answered by 123 women recruited from a rare diseases reference service and a nationwide patient advocacy group. Genetic counseling was reported by 77/123 (62.6%) of women and 53.7% reported having performed genetic analysis of DMD. Although the majority knew about the risks for carriers of developing heart disease and muscle weakness, only 35% of potential carriers have had cardiac studies performed at least once in their lives. Country region, type of kinship, number of affected males in the family, age, notion of genetic risk, education level, and participation in advocacy groups were the main factors associated with adequate healthcare access to women and empowerment of genetic information. Education to health professionals and policies to expand access to carrier genetic testing, whether public policies or regulation of pharmaceutical companies' diagnostic programs, is paramount to improve the care of families with DBMD in Brazil.
Collapse
Affiliation(s)
- Alice Maria Luderitz Hoefel
- Graduate Program in Medicine: Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Cesar Augusto Weschenfelder
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
| | - Bruna Faria Rosa
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
| | - Karina Carvalho Donis
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil
| | - Jonas Alex Morales Saute
- Graduate Program in Medicine: Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, 90035-903, Brazil.
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Department of Internal Medicine, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Sun MX, Jing M, Hua Y, Wang JB, Wang SQ, Chen LL, Ju L, Liu YS. A female patient carrying a novel DMD mutation with non-random X-chromosome inactivation from a DMD family. BMC Med Genomics 2024; 17:46. [PMID: 38303044 PMCID: PMC10832127 DOI: 10.1186/s12920-024-01794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/01/2024] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVE To analyze the clinical phenotype and genetic characteristics of a female proband carrying a novel mutation in the DMD gene with non-random X-chromosome inactivation in a large pedigree with pseudohypertrophic muscular dystrophy. METHODS Clinical information of the female proband, her monozygotic twin sister, and other family members were collected. Potential pathogenic variants were detected with Multiplex Ligation-dependent Probe Amplification (MLPA) and whole-exome sequencing (WES). Methylation-sensitive restriction enzyme (HhaI) was employed for X-chromosome inactivation analysis. RESULTS The proband was a female over 5 years old, displayed clinical manifestations such as elevated creatine kinase (CK) levels and mild calf muscle hypertrophy. Her monozygotic twin sister exhibited normal CK levels and motor ability. Her uncle and cousin had a history of DMD. WES revealed that the proband carried a novel variant in the DMD (OMIM: 300,377) gene: NM_004006.3: c.3051_3053dup; NP_003997.2: p.Tyr1018*. In this pedigree, five out of six female members were carriers of this variant, while the cousin and uncle were hemizygous for this variant. X-chromosome inactivation analysis suggested non-random inactivation in the proband. CONCLUSION The c.3051_3053dup (p.Tyr1018*) variant in the DMD gene is considered to be the pathogenic variant significantly associated with the clinical phenotype of the proband, her cousin, and her uncle within this family. Integrating genetic testing with clinical phenotype assessment can be a valuable tool for physicians in the diagnosis of progressive muscular dystrophies, such as Becker muscular dystrophy (BMD) and Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Ming-Xia Sun
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Miao Jing
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Ying Hua
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China.
| | - Jian-Biao Wang
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Sheng-Quan Wang
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Li-Lan Chen
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Liang Ju
- Department of Cardiology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China.
| |
Collapse
|
10
|
Cannie DE, Syrris P, Protonotarios A, Bakalakos A, Pruny JF, Ditaranto R, Martinez-Veira C, Larrañaga-Moreira JM, Medo K, Bermúdez-Jiménez FJ, Ben Yaou R, Leturcq F, Mezcua AR, Marini-Bettolo C, Cabrera E, Reuter C, Limeres Freire J, Rodríguez-Palomares JF, Mestroni L, Taylor MRG, Parikh VN, Ashley EA, Barriales-Villa R, Jiménez-Jáimez J, Garcia-Pavia P, Charron P, Biagini E, García Pinilla JM, Bourke J, Savvatis K, Wahbi K, Elliott PM. Emery-Dreifuss muscular dystrophy Type 1 is associated with a high risk of malignant ventricular arrhythmias and end-stage heart failure. Eur Heart J 2023; 44:5064-5073. [PMID: 37639473 PMCID: PMC10733739 DOI: 10.1093/eurheartj/ehad561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND AND AIMS Emery-Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterize the cardiac complications of EMD variants. METHODS Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidences in male and female variant-carriers were determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared with consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC). RESULTS Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers [mean (SD) ages 33.4 (13.3) and 43.3 (16.8) years, respectively]. Nine (23.7%) males developed MVA and five (13.2%) developed ESHF during a median (inter-quartile range) follow-up of 65.0 (24.3-109.5) months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median (inter-quartile range) age of 58.6 (53.2-60.4) years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank P = .49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank P = .09). CONCLUSIONS Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease.
Collapse
Affiliation(s)
- Douglas E Cannie
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Inherited Cardiovascular Diseases, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Inherited Cardiovascular Diseases, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Alexandros Protonotarios
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Inherited Cardiovascular Diseases, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Athanasios Bakalakos
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Inherited Cardiovascular Diseases, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Jean-François Pruny
- APHP, Sorbonne Université, Centre de Référence pour les Maladies Cardiaques Héréditaires ou rares, ICAN Institute, Hôpital Pitié-Salpêtrière, Paris, France
| | - Raffaello Ditaranto
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
| | - Cristina Martinez-Veira
- Unidad de Cardiopatías Familiares, Complexo Hospitalario Universitario de A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC/CIBERCV), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | - Jose M Larrañaga-Moreira
- Unidad de Cardiopatías Familiares, Complexo Hospitalario Universitario de A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC/CIBERCV), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | - Kristen Medo
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Francisco José Bermúdez-Jiménez
- Cardiology Department, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria IBS Granada, Granada, Spain
| | - Rabah Ben Yaou
- APHP-Sorbonne Universite, Centre de Référence des Maladies Neuromusculaires, Inserm, Centre de Recherche en Myologie, Institut de Myologie, Hopital Pitie-Salpetriere, Paris, France
| | - France Leturcq
- APHP, Cochin Hospital, Department of Genomic Medicine and Systemic Diseases, University of Paris, Paris, France
| | - Ainhoa Robles Mezcua
- Heart Failure and Familial Cardiomyopathies Unit, Department of Cardiology, IBIMA, Málaga. Spain
- Ciber-Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Chiara Marini-Bettolo
- Department of Cardiology, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Eva Cabrera
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, CIBERCV, Madrid, Spain
| | - Chloe Reuter
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Javier Limeres Freire
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
- Ciber-Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- Inherited Cardiovascular Diseases Unit, Department of Cardiology, Hospital Universitari Vall d´Hebron, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José F Rodríguez-Palomares
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
- Ciber-Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- Inherited Cardiovascular Diseases Unit, Department of Cardiology, Hospital Universitari Vall d´Hebron, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria N Parikh
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Euan A Ashley
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Roberto Barriales-Villa
- Unidad de Cardiopatías Familiares, Complexo Hospitalario Universitario de A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC/CIBERCV), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | - Juan Jiménez-Jáimez
- Cardiology Department, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria IBS Granada, Granada, Spain
| | - Pablo Garcia-Pavia
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, CIBERCV, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Philippe Charron
- APHP, Sorbonne Université, Centre de Référence pour les Maladies Cardiaques Héréditaires ou rares, ICAN Institute, Hôpital Pitié-Salpêtrière, Paris, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
| | - Elena Biagini
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
| | - José M García Pinilla
- Heart Failure and Familial Cardiomyopathies Unit, Department of Cardiology, IBIMA, Málaga. Spain
- Ciber-Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina y Dermatología, Universidad de Malaga, Malaga, Spain
| | - John Bourke
- Department of Cardiology, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Konstantinos Savvatis
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Inherited Cardiovascular Diseases, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
- William Harvey Institute, Queen Mary University London, London, United Kingdom
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Karim Wahbi
- AP-HP, Pitié-Salpêtrière Hospital, Reference Center for Muscle Diseases Paris-Est, Myology Institute, Paris, France
- AP-HP, Cochin Hospital, Cardiology Department, Paris Cedex, France
- Université de Paris, Paris, France; Paris Cardiovascular Research Center (PARCC), INSERM Unit 970, Paris, France
| | - Perry M Elliott
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Inherited Cardiovascular Diseases, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| |
Collapse
|
11
|
Liu C, Ma J, Lu Y, Lu Y, Mai J, Bai L, Wang Y, Zheng Y, Yu M, Zheng Y, Deng J, Meng L, Zhang W, Wang Z, Yuan Y, Xie Z. Clinical, pathological, and genetic characterization in a large Chinese cohort with female dystrophinopathy. Neuromuscul Disord 2023; 33:728-736. [PMID: 37716855 DOI: 10.1016/j.nmd.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/18/2023]
Abstract
We aimed to investigate the clinical, pathological, and genetic characteristics of Chinese female dystrophinopathy and to identify possible correlations among them. One hundred forty genetically and/or pathologically confirmed female DMD variant carriers were enrolled, including 104 asymptomatic carriers and 36 symptomatic carriers. Twenty of 36 symptomatic and 16 of 104 asymptomatic carriers were sporadic with no family history. Muscle pathological analysis was performed in 53 carriers and X chromosome inactivation (XCI) analysis in 19 carriers. In asymptomatic carriers, the median age was 35.0 (range 2.0-58.0) years, and the serum creatine kinase (CK) level was 131 (range 60-15,745) IU/L. The median age, age of onset, and CK level of symptomatic carriers were 15.5 (range 1.8-62.0) years, 6.3 (range 1.0-54.0) years, and 6,659 (range 337-58,340) IU/L, respectively. Four female carriers with X-autosome translocation presented with a Duchenne muscular dystrophy (DMD) phenotype. Skewed XCI was present in 70.0% of symptomatic carriers. Compared to Becker muscular dystrophy (BMD)-like carriers, DMD-like carriers were more likely to have an early onset age, rapidly progressive muscle weakness, delayed walking, elevated CK levels, severe reduction of dystrophin, and skewed XCI. Our study reports the largest series of symptomatic female DMD carriers and suggests that delayed walking, elevated CK levels, severe reduction of dystrophin, X-autosome translocation, and skewed XCI pattern are associated with a severe phenotype in female dystrophinopathy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jiajian Ma
- School of Data Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Yanyu Lu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yunlong Lu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jiahui Mai
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Li Bai
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yikang Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yilei Zheng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yiming Zheng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China.
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
12
|
Politano L. Females with dystrophinopathy: A neglected patient population. Dev Med Child Neurol 2023; 65:1001-1002. [PMID: 36724343 DOI: 10.1111/dmcn.15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 02/03/2023]
Abstract
This commentary is on the original article by Houwen‐van Opstal et al. on pages 1093–1104 of this issue.
Collapse
Affiliation(s)
- Luisa Politano
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
13
|
Kekou K, Svingou M, Vogiatzakis N, Nitsa E, Veltra D, Marinakis NM, Tilemis FN, Tzetis M, Mitrakos A, Tsaroucha C, Selenti N, Papadimas GK, Papadopoulos C, Traeger-Synodinos J, Lochmuller H, Sofocleous C. Retrospective analysis of persistent HyperCKemia with or without muscle weakness in a case series from Greece highlights vast DMD variant heterogeneity. Expert Rev Mol Diagn 2023; 23:999-1010. [PMID: 37754746 DOI: 10.1080/14737159.2023.2264181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Persistent hyperCKemia results from muscle dysfunction often attributed to genetic alterations of muscle-related genes, such as the dystrophin gene (DMD). Retrospective assessment of findings from DMD analysis, in association with persistent HyperCKemia, was conducted. PATIENTS AND METHODS Evaluation of medical records from 1354 unrelated cases referred during the period 1996-2021. Assessment of data concerning the detection of DMD gene rearrangements and nucleotide variants. RESULTS A total of 730 individuals (657 cases, 569 of Greek and 88 of Albanian origins) were identified, allowing an overall estimation of dystrophinopathy incidence at ~1:3800 live male births. The heterogeneous spectrum of 275 distinct DMD alterations comprised exon(s) deletions/duplications, nucleotide variants, and rare events, such as chromosome translocation {t(X;20)}, contiguous gene deletions, and a fused gene involving the DMD and the DOCK8 genes. Ethnic-specific findings include a common founder variant in exon 36 ('Hellenic' variant). CONCLUSIONS Some 50% of hyperCKemia cases were characterized as dystrophinopathies, highlighting that DMD variants may be considered the most common cause of hyperCKemia in Greece. Delineation of the broad genetic and clinical heterogeneity is fundamental for actionable public health decisions and theragnosis, as well as the establishment of guidelines addressing ethical considerations, especially related to the mild asymptomatic patient subgroup.
Collapse
Affiliation(s)
- Kyriaki Kekou
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Svingou
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikos Vogiatzakis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Nitsa
- Postgraduate Program in Biostatistics School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Danai Veltra
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- St. Sophia's Children's Hospital, Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- St. Sophia's Children's Hospital, Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, National and Kapodistrian University of Athens, Athens, Greece
| | - Faidon-Nikolaos Tilemis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Tzetis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Mitrakos
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- St. Sophia's Children's Hospital, Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalambia Tsaroucha
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicoletta Selenti
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Giorgos-Konstantinos Papadimas
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Papadopoulos
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Hanns Lochmuller
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Capron C, Januel L, Vieville G, Jaillard S, Kuentz P, Salaun G, Nadeau G, Clement P, Brechard MP, Herve B, Dupont JM, Gruchy N, Chambon P, Abdelhedi F, Dahlen E, Vago P, Harbuz R, Plotton I, Coutton C, Belaud-Rotureau MA, Schluth-Bolard C, Vialard F. Evidence for high breakpoint variability in 46, XX, SRY-positive testicular disorder and frequent ARSE deletion that may be associated with short stature. Andrology 2022; 10:1625-1631. [PMID: 36026611 DOI: 10.1111/andr.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The translocation of SRY onto one of the two X chromosomes results in a 46,XX testicular disorder of sex development; this is supposedly due to non-allelic homologous recombination between the protein kinase X gene (PRKX) and the inverted protein kinase Y pseudogene (PRKY). Although 46,XX SRY-positive men are infertile, the literature data indicate that some of these individuals are of short stature (relative to the general population). We sought to determine whether short stature was linked to additional, more complex chromosomal rearrangements. METHODS Twelve laboratories gathered detailed clinical, anthropomorphic, cytogenetic and genetic data (including chromosome microarray (CMA) data) on patients with 46,XX SRY-positive male syndrome. RESULTS SRY was present (suggesting a der(X)t(X;Y)) in 34 of the 38 cases (89.5%). When considering only the 20 patients with CMA data, we identified several chromosomal rearrangements and breakpoints - especially on the X chromosome. In the five cases for whom the X chromosome breakpoint was located in the pseudoautosomal (PAR) region, there was partial duplication of the derivate X chromosome. In contrast, in the 15 cases for whom the breakpoint was located downstream of the pseudoautosomal region, part of the derivate X chromosome had been deleted (included the arylsulfatase E (ARSE) gene in 11 patients). For patients with vs. without ARSE deletion, the mean height was respectively 167.7 ± 4.5 and 173.1 ± 4.0 cm; this difference was not statistically significant (p = 0.1005). CONCLUSION Although 46,XX SRY-positive male syndromes were mainly due to imbalanced crossover between the X and Y chromosome during meiosis, the breakpoints differed markedly from one patient to another (especially on the X chromosome); this suggests the presence of a replication-based mechanism for recombination between non-homologous sequences. In some patients, the translocation of SRY to the X chromosome was associated with ARSE gene deletion, which might have led to short stature. With a view to explaining this disorder of sex development, whole exome sequencing could be suggested for SRY-negative patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Céline Capron
- Département de Génétique, CHI de Poissy St Germain en Laye, Poissy, France
| | - Louis Januel
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - Gaëlle Vieville
- Département de Génétique et Procréation, Hôpital Couple Enfant, CHU Grenoble, Grenoble Cedex, 38043, France.,INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, Grenoble, France
| | - Sylvie Jaillard
- Cytogénétique et Biologie cellulaire, CHU de Rennes, Rennes, France.,IRSET - INSERM UMR1085 - Equipe Physiologie et physiopathologie du tractus uro-génital, Faculté de Médecine, Université de Rennes 1, Rennes, France
| | - Paul Kuentz
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
| | - Gaëlle Salaun
- CHU Clermont-Ferrand, Cytogénétique Médicale, Clermont-Ferrand, France
| | - Gwenaël Nadeau
- Laboratoire de Cytogénétique, CH de Chambéry, Chambéry, France
| | | | | | - Bérénice Herve
- Département de Génétique, CHI de Poissy St Germain en Laye, Poissy, France
| | | | - Nicolas Gruchy
- Service de Génétique - CHU de Caen - Site Clémenceau, Caen, France.,EA7450, Université Caen Normandie, Caen, France
| | - Pascal Chambon
- UNIROUEN, Inserm U1245, Université de Normandie, Rouen, France.,Département de Génétique, CHU Rouen, Rouen, France
| | - Fatma Abdelhedi
- Service de Génétique Médicale, CHU Hédi Chaker, Sfax, Tunisie.,Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Sfax, Tunisie
| | - Eric Dahlen
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
| | - Philippe Vago
- CHU Clermont-Ferrand, Cytogénétique Médicale, Clermont-Ferrand, France
| | - Radu Harbuz
- Département de Génétique et Procréation, Hôpital Couple Enfant, CHU Grenoble, Grenoble Cedex, 38043, France
| | - Ingrid Plotton
- Service de Médecine de la Reproduction, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.,Laboratoire d'hormonologie et endocrinologie Moléculaire, Hospices Civils de Lyon, Bron, France.,Unité INSERM 1208, Université Lyon 1, Lyon, France
| | - Charles Coutton
- Département de Génétique et Procréation, Hôpital Couple Enfant, CHU Grenoble, Grenoble Cedex, 38043, France.,INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, Grenoble, France
| | - Marc-Antoine Belaud-Rotureau
- Cytogénétique et Biologie cellulaire, CHU de Rennes, Rennes, France.,IRSET - INSERM UMR1085 - Equipe Physiologie et physiopathologie du tractus uro-génital, Faculté de Médecine, Université de Rennes 1, Rennes, France
| | - Caroline Schluth-Bolard
- Service de Génétique, Hospices Civils de Lyon, Lyon, France.,Institut Neuromyogène, Equipe Métabolisme énergétique et développement neuronal, CNRS UMR 5310, INSERM U1217, Université Lyon 1, Lyon, France
| | - François Vialard
- Département de Génétique, CHI de Poissy St Germain en Laye, Poissy, France.,UMR-BREED, INRAE, ENVA, UVSQ, UFR SVS, Montigny le Bretonneux, France
| |
Collapse
|
15
|
Li Z, Lai G. X‑linked adrenoleukodystrophy caused by maternal ABCD1 mutation and paternal X chromosome inactivation. Exp Ther Med 2022; 24:565. [PMID: 35978942 PMCID: PMC9366280 DOI: 10.3892/etm.2022.11502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder. It is caused by defects in the ATP-binding cassette subfamily D member 1 (ABCD1) gene, resulting in impaired peroxisomal β-oxidation of very-long-chain fatty acids (VLCFAs). As an X-linked recessive disease, female X-ALD carriers are typically asymptomatic. In the present study, a 7-year-old girl was diagnosed with cerebral ALD. Brain magnetic resonance imaging revealed asymmetric demyelination of bilateral white matter. Plasma VLCFAs level showed a substantial increase. Whole exome and Sanger sequencing revealed an ABCD1 c.919C>T (p.Q307X) heterozygous pathogenic mutation, which was inherited from the asymptomatic mother. X chromosome inactivation (XCI) analysis revealed that the normal paternal X chromosome was almost completely inactivated. Thus, the maternal ABCD1 mutation and paternal XCI were responsible for causing the disease in the patient. XCI may be one reason female X-ALD carriers can be symptomatic.
Collapse
Affiliation(s)
- Zhen Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Guangrui Lai
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
16
|
Viggiano E. Molecular Research in Medical Genetics. Int J Mol Sci 2022; 23:ijms23126625. [PMID: 35743065 PMCID: PMC9224511 DOI: 10.3390/ijms23126625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
About 19,000-20,000 protein-coding genes in the human genome have been identified [...].
Collapse
Affiliation(s)
- Emanuela Viggiano
- Department of Prevention, Hygiene and Public Health Service, ASL Roma 2, 00157 Rome, Italy
| |
Collapse
|
17
|
Fonova EA, Tolmacheva EN, Kashevarova AA, Sazhenova EA, Nikitina TV, Lopatkina ME, Vasilyeva OY, Zarubin AА, Aleksandrova TN, Yuriev SY, Skryabin NA, Stepanov VA, Lebedev IN. Skewed X-Chromosome Inactivation as a Possible Marker of X-Linked CNV in Women with Pregnancy Loss. Cytogenet Genome Res 2022; 162:97-108. [PMID: 35636401 DOI: 10.1159/000524342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Skewed X-chromosome inactivation (sXCI) can be a marker of lethal genetic variants on the X chromosome in a woman since sXCI modifies the pathological phenotype. The aim of this study was to search for CNVs in women with miscarriages and sXCI. XCI was assayed using the classical method based on the amplification of highly polymorphic exon 1 of the androgen receptor (AR) gene. The XCI status was analysed in 313 women with pregnancy loss and in 87 spontaneously aborted embryos with 46,XX karyotype, as well as in control groups of 135 women without pregnancy loss and 64 embryos with 46,XX karyotype from induced abortions in women who terminated a normal pregnancy. The frequency of sXCI differed significantly between women with miscarriages and women without pregnancy losses (6.3% and 2.2%, respectively; p = 0.019). To exclude primary causes of sXCI, sequencing of the XIST and XACT genes was performed. The XIST and XACT gene sequencing revealed no known pathogenic variants that could lead to sXCI. Molecular karyotyping was performed using aCGH, followed by verification of X-linked CNVs by RT-PCR and MLPA. Microdeletions at Xp11.23 and Xq24 as well as gains of Xq28 were detected in women with sXCI and pregnancy loss.
Collapse
Affiliation(s)
- Elizaveta A Fonova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Ekaterina N Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Anna A Kashevarova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Elena A Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Tatyana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Maria E Lopatkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Oksana Yu Vasilyeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Aleksei А Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Tatyana N Aleksandrova
- Department of Obstetrics and Gynecology, Siberian State Medical University, Tomsk, Russian Federation
| | - Sergey Yu Yuriev
- Department of Obstetrics and Gynecology, Siberian State Medical University, Tomsk, Russian Federation
| | - Nikolay A Skryabin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Vadim A Stepanov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Igor N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| |
Collapse
|
18
|
Xu L, Geng H, Lv X, Wang G, Yan C, Zhang D, Lin P. A female carrier of spinal and bulbar muscular atrophy diagnosed with DNAJB6-related distal myopathy. J Hum Genet 2022; 67:441-444. [PMID: 35165376 DOI: 10.1038/s10038-022-01022-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 11/09/2022]
Abstract
Mutations in the DNAJB6 gene cause limb girdle muscular dystrophy D1 (LGMD D1) and distal myopathy with rimmed vacuoles. With the discovery of new mutations, the phenotypic spectrum of DNAJB6-related myopathy has been extended, making the diagnosis more complicated. In this study, we describe a female carrier of spinal and bulbar muscular atrophy (SBMA) diagnosed with DNAJB6-related distal myopathy. The c.292_294delGAT (p. Asp98del) mutation in the DNAJB6 gene and a 49 CAG repeat expansion in the androgen receptor (AR) gene were identified. According to the clinical manifestations of distal-dominant lower limb involvement, a myogenic pattern in the electrophysiological study, and rimmed vacuoles on muscle pathology, the patient was ultimately diagnosed with DNAJB6-related distal myopathy. A functional study in a zebrafish model indicated that the c.292_294delGAT (p. Asp98del) mutation contributed to muscle structure defects. This study offers useful insights for the differential diagnosis of a condition in which patients carry pathogenic variants in different genes.
Collapse
Affiliation(s)
- Ling Xu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hongzhi Geng
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Emergency, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Xiaoqing Lv
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guangyu Wang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Neurology, Qilu Hospital, Shangdong University, Jinan, Shandong, 250012, China
| | - Dong Zhang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China. .,Department of Neurology, Qilu Hospital, Shangdong University, Jinan, Shandong, 250012, China.
| | - Pengfei Lin
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China. .,Department of Neurology, Qilu Hospital, Shangdong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
19
|
Mechanisms of Choice in X-Chromosome Inactivation. Cells 2022; 11:cells11030535. [PMID: 35159344 PMCID: PMC8833938 DOI: 10.3390/cells11030535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Early in development, placental and marsupial mammals harbouring at least two X chromosomes per nucleus are faced with a choice that affects the rest of their lives: which of those X chromosomes to transcriptionally inactivate. This choice underlies phenotypical diversity in the composition of tissues and organs and in their response to the environment, and can determine whether an individual will be healthy or affected by an X-linked disease. Here, we review our current understanding of the process of choice during X-chromosome inactivation and its implications, focusing on the strategies evolved by different mammalian lineages and on the known and unknown molecular mechanisms and players involved.
Collapse
|
20
|
Gaina G, Vossen RHAM, Manole E, Plesca DA, Ionica E. Combining Protein Expression and Molecular Data Improves Mutation Characterization of Dystrophinopathies. Front Neurol 2021; 12:718396. [PMID: 34950096 PMCID: PMC8689184 DOI: 10.3389/fneur.2021.718396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Duchenne and Becker muscular dystrophy are X-linked recessive inherited disorders characterized by progressive weakness due to skeletal muscle degeneration. Different mutations in the DMD gene, which encodes for dystrophin protein, are responsible for these disorders. The aim of our study was to investigate the relationship between type, size, and location of the mutation that occurs in the DMD gene and their effect on dystrophin protein expression in a cohort of 40 male dystrophinopathy patients and nine females, possible carriers. We evaluated the expression of dystrophin by immunofluorescence and immunoblotting. The mutational spectrum of the DMD gene was established by MLPA for large copy number variants, followed by HRM analysis for point mutations and sequencing of samples with an abnormal melting profile. MLPA revealed 30 deletions (75%) and three duplications (7.5%). HRM analysis accounted for seven-point mutations (17.5%). We also report four novel small mutations (c. 8507G>T, c.3021delG, c.9563_9563+1insAGCATGTTTATGATACAGCA, c.7661-60T>A) in DMD gene. Our work shows that the DNA translational open reading frame and the location of the mutation both influence the expression of dystrophin and disease severity phenotype. The proposed algorithm used in this study demonstrates its accuracy for the characterization of dystrophinopathy patients.
Collapse
Affiliation(s)
- Gisela Gaina
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, Bucharest, Romania
- *Correspondence: Gisela Gaina ;
| | - Rolf H. A. M. Vossen
- Center for Human and Clinical Genetics, Leiden Genome Technology Center, Leiden, Netherlands
| | - Emilia Manole
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, Bucharest, Romania
- Colentina Clinical Hospital, Bucharest, Romania
| | - Doina Anca Plesca
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Clinical Pediatrics, Victor Gomoiu Children Clinical Hospital, Bucharest, Romania
| | - Elena Ionica
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
21
|
Apkon S, Kinnett K, Cripe L, Duan D, Jackson JL, Kornegay JN, Mah ML, Nelson SF, Rao V, Scavina M, Wong BL, Flanigan KM. Parent Project Muscular Dystrophy Females with Dystrophinopathy Conference, Orlando, Florida June 26 - June 27, 2019. J Neuromuscul Dis 2021; 8:315-322. [PMID: 33361607 PMCID: PMC10497321 DOI: 10.3233/jnd-200555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Susan Apkon
- Department of Physical Medicine and Rehabilitation, University of Colorado Denver and Children’s Hospital Colorado, Aurora, CO, USA
| | - Kathi Kinnett
- Parent Project Muscular Dystrophy, Hackensack, NJ, USA
| | - Linda Cripe
- The Heart Center, Nationwide Children’s Hospital and the Ohio State University, Columbus, OH, USA
| | - Dongsheng Duan
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jamie L. Jackson
- Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children’s Hospital; Assistant Professor of Pediatrics and Psychology, The Ohio State University, Columbus, OH, USA
| | - Joe N. Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX, USA
| | - May Ling Mah
- The Heart Center, Nationwide Children’s Hospital and the Ohio State University, Columbus, OH, USA
| | - Stanley F. Nelson
- Department of Human Genetics, Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Vamshi Rao
- Department of Pediatrics, Division of Neurology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Mena Scavina
- Department of Neurology, Nemours/duPont Hospital for Children, Wilmington, DE, USA
| | - Brenda L. Wong
- Department of Pediatrics and Neurology, University of Massachusetts Medical School, Worcester, MA USA
| | - Kevin M. Flanigan
- Center for Gene Therapy, Nationwide Children’s Hospital and Departments of Pediatrics and Neurology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Miao W, Ma Z, Tang Z, Yu L, Liu S, Huang T, Wang P, Wu T, Song Z, Zhang H, Li Y, Zhou L. Integrative ATAC-seq and RNA-seq Analysis of the Longissimus Muscle of Luchuan and Duroc Pigs. Front Nutr 2021; 8:742672. [PMID: 34660666 PMCID: PMC8511529 DOI: 10.3389/fnut.2021.742672] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
Luchuan pig is a typical obese pig breed in China, and the diameter and area of its longissimus dorsi muscle fibers are significantly smaller than those of Duroc (lean) pig. Skeletal muscle fiber characteristics are related to meat quality of livestock. There is a significant correlation between the quality of different breeds of pork and the characteristics of muscle fiber, which is an important factor affecting the quality of pork. The diameter and area of muscle fibers are related to muscle growth and development. Therefore, we used the assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) analysis to investigate the potential mechanism underlying the difference in skeletal muscle growth and development between the two types of pigs. First, transposase-accessible chromatin was analyzed to map the landscape of open chromatin regions and transcription factor binding sites. We identified several transcription factors that potentially affected muscle growth and development, including TFAP4, MAX, NHLH1, FRX5, and TGIF1. We also found that transcription factors with basic helix-loop-helix structures had a preference for binding to genes involved in muscle development. Then, by integrating ATAC-seq and RNA-seq, we found that the Wnt signaling pathway, the mTOR signaling pathway, and other classical pathways regulate skeletal muscle development. In addition, some pathways that might regulate skeletal muscle growth, such as parathyroid hormone synthesis, secretion, and action, synthesis and degradation of ketone bodies, and the thyroid hormone signaling pathway, which were significantly enriched. After further study, we identified a number of candidate genes (ASNS, CARNS1, G0S2, PPP1R14C, and SH3BP5) that might be associated with muscle development. We also found that the differential regulation of chromatin openness at the level of some genes was contrary to the differential regulation at the level of transcription, suggesting that transcription factors and transcriptional repressors may be involved in the regulation of gene expression. Our study provided an in-depth understanding of the mechanism behind the differences in muscle fibers from two species of pig and provided an important foundation for further research on improving the quality of pork.
Collapse
Affiliation(s)
- Weiwei Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zeqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhanyang Tang
- Tilapia Seed Farm, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tengda Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Peng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Haojie Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
23
|
Cullom C, Vo V, McCabe MD. Orthotopic Heart Transplantation in Manifesting Carrier of Duchenne Muscular Dystrophy. J Cardiothorac Vasc Anesth 2021; 36:2593-2599. [PMID: 34670720 DOI: 10.1053/j.jvca.2021.09.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Affiliation(s)
| | - Victoria Vo
- Department of Anesthesiology, Loma Linda University, Loma Lina, CA
| | - Melissa D McCabe
- Department of Anesthesiology, Loma Linda University, Loma Lina, CA.
| |
Collapse
|
24
|
Molecular Mechanisms of Skewed X-Chromosome Inactivation in Female Hemophilia Patients-Lessons from Wide Genome Analyses. Int J Mol Sci 2021; 22:ijms22169074. [PMID: 34445777 PMCID: PMC8396640 DOI: 10.3390/ijms22169074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/24/2023] Open
Abstract
Introduction: Hemophilia A (HA) is an X-linked bleeding disorder caused by factor VIII (FVIII) deficiency or dysfunction due to F8 gene mutations. HA carriers are usually asymptomatic because their FVIII levels correspond to approximately half of the concentration found in healthy individuals. However, in rare cases, a carrier may exhibit symptoms of moderate to severe HA primarily due to skewed inactivation of her non-hemophilic X chromosome. Aim: The aim of the study was to investigate X-chromosome inactivation (XCI) patterns in HA carriers, with special emphasis on three karyotypically normal HA carriers presenting with moderate to severe HA phenotype due to skewed XCI, in an attempt to elucidate the molecular mechanism underlying skewed XCI in these symptomatic HA carriers. The study was based on the hypothesis that the presence of a pathogenic mutation on the non-hemophilic X chromosome is the cause of extreme inactivation of that X chromosome. Methods: XCI patterns were studied by PCR analysis of the CAG repeat region in the HUMARA gene. HA carriers that demonstrated skewed XCI were further studied by whole-exome sequencing (WES) followed by X chromosome-targeted bioinformatic analysis. Results: All three HA carriers presenting with the moderate to severe HA phenotype due to skewed XCI were found to carry pathogenic mutations on their non-hemophilic X chromosomes. Patient 1 was diagnosed with a frameshift mutation in the PGK1 gene that was associated with familial XCI skewing in three generations. Patient 2 was diagnosed with a missense mutation in the SYTL4 gene that was associated with familial XCI skewing in two generations. Patient 3 was diagnosed with a nonsense mutation in the NKAP gene that was associated with familial XCI skewing in two generations. Conclusion: Our results indicate that the main reason for skewed XCI in our female HA patients was negative selection against cells with a disadvantage caused by an additional deleterious mutation on the silenced X chromosome, thus complicating the phenotype of a monogenic X-linked disease. Based on our study, we are currently offering the X inactivation test to symptomatic hemophilia carriers and plan to expand this approach to symptomatic carriers of other X-linked diseases, which can be further used in pregnancy planning.
Collapse
|
25
|
Viggiano E, Politano L. X Chromosome Inactivation in Carriers of Fabry Disease: Review and Meta-Analysis. Int J Mol Sci 2021; 22:ijms22147663. [PMID: 34299283 PMCID: PMC8304911 DOI: 10.3390/ijms22147663] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Anderson-Fabry disease is an X-linked inborn error of glycosphingolipid catabolism caused by a deficiency of α-galactosidase A. The incidence ranges between 1: 40,000 and 1:117,000 of live male births. In Italy, an estimate of incidence is available only for the north-western Italy, where it is of approximately 1:4000. Clinical symptoms include angiokeratomas, corneal dystrophy, and neurological, cardiac and kidney involvement. The prevalence of symptomatic female carriers is about 70%, and in some cases, they can exhibit a severe phenotype. Previous studies suggest a correlation between skewed X chromosome inactivation and symptoms in carriers of X-linked disease, including Fabry disease. In this review, we briefly summarize the disease, focusing on the clinical symptoms of carriers and analysis of the studies so far published in regards to X chromosome inactivation pattern, and manifesting Fabry carriers. Out of 151 records identified, only five reported the correlation between the analysis of XCI in leukocytes and the related phenotype in Fabry carriers, in particular evaluating the Mainz Severity Score Index or cardiac involvement. The meta-analysis did not show any correlation between MSSI or cardiac involvement and skewed XCI, likely because the analysis of XCI in leukocytes is not useful for predicting the phenotype in Fabry carriers.
Collapse
Affiliation(s)
- Emanuela Viggiano
- Department of Prevention, UOC Hygiene Service and Public Health, ASL Roma 2, 00142 Rome, Italy
- Correspondence: (E.V.); (L.P.)
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, Luigi Vanvitelli University, 80138 Naples, Italy
- Correspondence: (E.V.); (L.P.)
| |
Collapse
|
26
|
Brand BA, Blesson AE, Smith-Hicks CL. The Impact of X-Chromosome Inactivation on Phenotypic Expression of X-Linked Neurodevelopmental Disorders. Brain Sci 2021; 11:brainsci11070904. [PMID: 34356138 PMCID: PMC8305405 DOI: 10.3390/brainsci11070904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022] Open
Abstract
Nearly 20% of genes located on the X chromosome are associated with neurodevelopmental disorders (NDD) due to their expression and role in brain functioning. Given their location, several of these genes are either subject to or can escape X-chromosome inactivation (XCI). The degree to which genes are subject to XCI can influence the NDD phenotype between males and females. We provide a general review of X-linked NDD genes in the context of XCI and detailed discussion of the sex-based differences related to MECP2 and FMR1, two common X-linked causes of NDD that are subject to XCI. Understanding the effects of XCI on phenotypic expression of NDD genes may guide the development of stratification biomarkers in X-linked disorders.
Collapse
Affiliation(s)
- Boudewien A Brand
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA; (B.A.B.); (A.E.B.)
| | - Alyssa E Blesson
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA; (B.A.B.); (A.E.B.)
| | - Constance L. Smith-Hicks
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Correspondence:
| |
Collapse
|
27
|
Chen J, Zheng H, Wang Z, Wang J, He F, Zhang C, Xiong F. A female carrier of a novel DMD mutation with slightly skewed X-chromosome inactivation shows a suspected case of Becker muscular dystrophy in a Chinese family. Mol Genet Genomics 2021; 296:541-549. [PMID: 33566169 DOI: 10.1007/s00438-020-01757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are both caused by mutations in DMD gene effecting the expression of dystrophin. Generally female carriers are asymptomatic; however, it has been suggested that carriers may exhibit symptoms. We investigated a 6-year-old Chinese girl exhibiting a suspected BMD phenotype, including persistently elevated creatine kinase and creatine kinase isoenzyme levels. The proband harbored a novel heterozygous mutation, c.3458_3459insAA, within exon 26 of the DMD gene inherited from her mother who had a completely normal phenotype and presented with mosaicism in her lymphocytes with 45, X [17%]/46, XX [83%]. In addition, X-chromosome inactivation (XCI) patterns in the peripheral blood of the child were slightly skewed: proband with 62% (mutant allele)/38% (normal allele) when compared with her mother with 32/68%. Amplification of regions of the cDNA revealed different ratios for the expression of these alleles: proband with 50/50% and her mother with 20/80%. Real-time PCR showed that mRNA expression was significantly decreased in both. We proposed that a frameshift or nonsense mutation may contribute to the development of symptoms in carriers. These phenotypes correlate with nonrandom XCI patterns and are compounded by the locus of the mutation. For incompletely skewed XCI patterns, although the mutant allele could suppress the expression of a normal allele, carriers would remain asymptomatic as long as there was adequate compensation from the normal allele. We also proposed a mechanism where mRNA from the mutant allele may be unstable and easily degraded, allowing for phenotypic compensation by the wildtype allele.
Collapse
Affiliation(s)
- Jianfan Chen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhongju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Fei He
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, People's Republic of China
| | - Cheng Zhang
- Department of Neurology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
28
|
Vang P, Baumann CW, Barok R, Larson AA, Dougherty BJ, Lowe DA. Impact of estrogen deficiency on diaphragm and leg muscle contractile function in female mdx mice. PLoS One 2021; 16:e0249472. [PMID: 33788896 PMCID: PMC8011782 DOI: 10.1371/journal.pone.0249472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
Female carriers of Duchenne muscular dystrophy (DMD) presenting with DMD symptomology similar to males with DMD, such as skeletal muscle weakness and cardiomyopathy, are termed manifesting carriers. There is phenotypic variability among manifesting carriers including the age of onset, which can range from the first to fourth decade of life. In females, estrogen levels typically begin to decline during the fourth decade of life and estrogen deficiency contributes to loss of muscle strength and recovery of strength following injury. Thus, we questioned whether the decline of estrogen impacts the development of DMD symptoms in females. To address this question, we studied 6-8 month-old homozygous mdx female mice randomly assigned to a sham or ovariectomy (OVX) surgical group. In vivo whole-body plethysmography assessed ventilatory function and diaphragm muscle strength was measured in vitro before and after fatigue. Anterior crural muscles were analyzed in vivo for contractile function, fatigue, and in response to eccentric contraction (ECC)-induced injury. For the latter, 50 maximal ECCs were performed by the anterior crural muscles to induce injury. Body mass, uterine mass, hypoxia-hypercapnia ventilatory response, and fatigue index were analyzed by a pooled unpaired t-test. A two-way ANOVA was used to analyze ventilatory measurements. Fatigue and ECC-injury recovery experiments were analyzed by a two-way repeated-measures ANOVA. Results show no differences between sham and OVX mdx mice in ventilatory function, strength, or recovery of strength after fatigue in the diaphragm muscle or anterior crural muscles (p ≥ 0.078). However, OVX mice had significantly greater eccentric torque loss and blunted recovery of strength after ECC-induced injury compared to sham mice (p ≤ 0.019). Although the results show that loss of estrogen has minimal impact on skeletal muscle contractile function in female mdx mice, a key finding suggests that estrogen is important in muscle recovery in female mdx mice after injury.
Collapse
Affiliation(s)
- Pangdra Vang
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cory W. Baumann
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rebecca Barok
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Alexie A. Larson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brendan J. Dougherty
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dawn A. Lowe
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
29
|
Zheng WB, Dai Y, Hu J, Zhao DC, Wang O, Jiang Y, Xia WB, Xing XP, Li M. Effects of Bisphosphonates on Osteoporosis Induced by Duchenne Muscular Dystrophy: A Prospective Study. Endocr Pract 2021; 26:1477-1485. [PMID: 33471740 DOI: 10.4158/ep-2020-0073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/24/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) is a severe X-linked progressive neuromuscular disease that brings a significantly increased risk of osteoporosis and bone fractures. We prospectively evaluated the effects of oral and intravenous bisphosphonates on the bones of children with DMD. METHODS This study included a total of 52 children with DMD. They were divided into zoledronic acid (ZOL), alendronate (ALN), and control groups according to bone mineral density (BMD) and history of fragility fractures. For 2 years, all patients took calcium, vitamin D, and calcitriol. Meanwhile, 17 patients received infusions of ZOL, and 18 patients received ALN. BMD, serum levels of alkaline phosphatase (ALP) and the cross-linked C-telopeptide of type I collagen (β-CTX) were evaluated. RESULTS After 24 months of treatment, the percentage changes in lumbar spine BMD were 23.2 ± 9.7% and 23.6 ± 8.8% in the ZOL and ALN groups (all P<.01 vs. baseline). The increases did not differ between the ZOL and ALN groups, but were significantly larger than those of the control group (P<.01). Serum β-CTX and ALP levels, respectively, were decreased by 44.4 ± 18.0% and 31.9 ± 26.7% in the ZOL group and by 36.0 ± 20.3% and 25.8 ± 14.4% in the ALN group (all P<.01 vs. baseline). CONCLUSION Zoledronic acid and alendronate had similar protective effects to increase bone mineral density and reduce bone resorption in children with DMD, which were superior to treatment of calcium, vitamin D, and calcitriol. ABBREVIATIONS 25OHD = 25 hydroxyvitamin D; ALN = alendro-nate; ALP = alkaline phosphatase; ALT = alanine aminotransferase; BMD = bone mineral density; BP = bisphosphonate; Ca = calcium; β-CTX = cross-linked C-telopeptide of type I collagen; DMD = Duchenne muscular dystrophy; FN = femoral neck; GC = glucocorticoid; LS = lumbar spine; ZOL = zoledronic acid.
Collapse
Affiliation(s)
- Wen-Bin Zheng
- From the (1)Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, and the
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Hu
- From the (1)Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, and the
| | - Di-Chen Zhao
- From the (1)Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, and the
| | - Ou Wang
- From the (1)Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, and the
| | - Yan Jiang
- From the (1)Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, and the
| | - Wei-Bo Xia
- From the (1)Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, and the
| | - Xiao-Ping Xing
- From the (1)Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, and the
| | - Mei Li
- From the (1)Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, and the.
| |
Collapse
|
30
|
Luce L, Abelleyro MM, Carcione M, Mazzanti C, Rossetti L, Radic P, Szijan I, Menazzi S, Francipane L, Nevado J, Lapunzina P, De Brasi C, Giliberto F. Analysis of complex structural variants in the DMD gene in one family. Neuromuscul Disord 2021; 31:253-263. [PMID: 33451931 DOI: 10.1016/j.nmd.2020.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 11/24/2022]
Abstract
This work describes a family with Duchenne muscular dystrophy (DMD) with a rare case of a symptomatic pregnant woman. The main aim was to perform prenatal molecular diagnosis to provide genetic counseling. The secondary aim was to suggest the molecular mechanisms causing the complex structural variant (cxSV) identified. To accomplish this, we used a multi-technique algorithm including segregation analysis, Multiplex Ligation-dependent Probe Amplification, PCR, X-chromosome inactivation studies, microarrays, whole genome sequencing and bioinformatics. We identified a duplication of exons 38-43 in the DMD gene in all affected and obligate carrier members, proving that this was the DMD-causing mutation. We also observed a skewed X-chromosome inactivation in the symptomatic woman that explained her symptomatology. In addition, we identified a cxSV (duplication of exons 38-43 and deletion of exons 45-54) in the affected boy. The molecular characterization and bioinformatic analyses of the breakpoint junctions allowed us to identify Double Strand Breaks stimulator motifs and suggested the replication-dependent Fork Stalling and Template Switching as the most probable mechanisms leading to the duplication. In addition, the de novo deletion might have been the result of a germline inter-chromosome non-allelic recombination involving the Non-Homologous End Joining mechanism. In conclusion, the diagnostic strategy used allowed us to provide accurate molecular diagnosis and genetic counseling. In addition, the familial molecular diagnosis together with the in-depth characterization of the cxSV helped to determine the chronology of the molecular events, and propose and understand the molecular mechanisms involved in the generation of this complex rearrangement.
Collapse
Affiliation(s)
- Leonela Luce
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética, Laboratorio de Distrofinopatías, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín M Abelleyro
- CONICET-Academia Nacional de Medicina, Instituto de Medicina Experimental (IMEX), Buenos Aires, Argentina
| | - Micaela Carcione
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética, Laboratorio de Distrofinopatías, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Chiara Mazzanti
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética, Laboratorio de Distrofinopatías, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Liliana Rossetti
- CONICET-Academia Nacional de Medicina, Instituto de Medicina Experimental (IMEX), Buenos Aires, Argentina
| | - Pamela Radic
- CONICET-Academia Nacional de Medicina, Instituto de Medicina Experimental (IMEX), Buenos Aires, Argentina
| | - Irene Szijan
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética, Laboratorio de Distrofinopatías, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sebastián Menazzi
- Hospital de Clínicas "José de San Martín", División de Genética, Universidad de Buenos Aires, Buenos Aires Argentina
| | - Liliana Francipane
- Hospital de Clínicas "José de San Martín", División de Genética, Universidad de Buenos Aires, Buenos Aires Argentina
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain; Centro de Investigaciones Biomédicas en Red para Enfermedades Raras (CIBERER), Madrid, Spain; ITHACA-ERN (European Reference Network), La Paz University Hospital, Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain; Centro de Investigaciones Biomédicas en Red para Enfermedades Raras (CIBERER), Madrid, Spain; ITHACA-ERN (European Reference Network), La Paz University Hospital, Madrid, Spain
| | - Carlos De Brasi
- CONICET-Academia Nacional de Medicina, Instituto de Medicina Experimental (IMEX), Buenos Aires, Argentina
| | - Florencia Giliberto
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética, Laboratorio de Distrofinopatías, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166063. [PMID: 33412266 DOI: 10.1016/j.bbadis.2020.166063] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% of cases of SMA result from deletions of or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. The spectrum of SMA is broad, ranging from prenatal death to infant mortality to survival into adulthood. All tissues, including brain, spinal cord, bone, skeletal muscle, heart, lung, liver, pancreas, gastrointestinal tract, kidney, spleen, ovary and testis, are directly and/or indirectly affected in SMA. Accumulating evidence on impaired mitochondrial biogenesis and defects in X chromosome-linked modifying factors, coupled with the sexual dimorphic nature of many tissues, point to sex-specific vulnerabilities in SMA. Here we review the role of sex in the pathogenesis of SMA.
Collapse
|
32
|
Souza LS, Almeida CF, Yamamoto GL, Pavanello RDCM, Gurgel-Giannetti J, da Costa SS, Anequini IP, do Carmo SA, Wang JYT, Scliar MDO, Castelli EC, Otto PA, Zanoteli E, Vainzof M. Manifesting carriers of X-linked myotubular myopathy: Genetic modifiers modulating the phenotype. NEUROLOGY-GENETICS 2020; 6:e513. [PMID: 33062893 PMCID: PMC7524580 DOI: 10.1212/nxg.0000000000000513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
Objective To analyze the modulation of the phenotype in manifesting carriers of recessive X-linked myotubular myopathy (XLMTM), searching for possible genetic modifiers. Methods Twelve Brazilian families with XLMTM were molecularly and clinically evaluated. In 2 families, 4 of 6 and 2 of 5 manifesting female carriers were identified. These females were studied for X chromosome inactivation. In addition, whole-exome sequencing was performed, looking for possible modifier variants. We also determined the penetrance rate among carriers of the mutations responsible for the condition. Results Mutations in the MTM1 gene were identified in all index patients from the 12 families, being 4 of them novel. In the heterozygotes, X chromosome inactivation was random in 3 of 4 informative manifesting carriers. The disease penetrance rate was estimated to be 30%, compatible with incomplete penetrance. Exome comparative analyses identified variants within a segment of 4.2 Mb on chromosome 19, containing the killer cell immunoglobulin-like receptor cluster of genes that were present in all nonmanifesting carriers and absent in all manifesting carriers. We hypothesized that these killer cell immunoglobulin-like receptor variants may modulate the phenotype, acting as a protective factor in the nonmanifesting carriers. Conclusions Affected XLMTM female carriers have been described with a surprisingly high frequency for a recessive X-linked disease, raising the question about the pattern of inheritance or the role of modifier factors acting on the disease phenotype. We demonstrated the possible existence of genetic mechanisms and variants accountable for the clinical manifestation in these women, which can become future targets for therapies.
Collapse
Affiliation(s)
- Lucas Santos Souza
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Camila Freitas Almeida
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Guilherme Lopes Yamamoto
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Rita de Cássia Mingroni Pavanello
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Juliana Gurgel-Giannetti
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Silvia Souza da Costa
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Isabela Pessa Anequini
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Silvana Amanda do Carmo
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Jaqueline Yu Ting Wang
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Marília de Oliveira Scliar
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Erick C Castelli
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Paulo Alberto Otto
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Edmar Zanoteli
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| | - Mariz Vainzof
- Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil
| |
Collapse
|
33
|
Comprehensive Analysis of Long Non-coding RNA-Associated Competing Endogenous RNA Network in Duchenne Muscular Dystrophy. Interdiscip Sci 2020; 12:447-460. [PMID: 32876881 DOI: 10.1007/s12539-020-00388-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is one of the most severe neuromuscular disorders. Long non-coding RNAs (lncRNAs) are a group of non-coding transcripts, which could regulate messenger RNA (mRNA) by binding the mutual miRNAs, thus acting as competing endogenous RNAs (ceRNAs). So far, the role of lncRNA in DMD pathogenesis remains unclear. In the current study, expression profile from a total of 33 DMD patients and 12 healthy people were downloaded from Gene Expression Omnibus (GEO) database (GSE38417 and GSE109178). Differentially expressed (DE) lncRNAs were discovered and targeted mRNAs were predicted. The ceRNA network of lncRNAs-miRNAs-mRNAs was then constructed. Genome Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the putative mRNAs in the ceRNA network were performed through Database for Annotation, Visualization and Integration Discovery (DAVID) website. Topological property of the network was analyzed using Cytoscape to disclose the hub lncRNAs. According to our assessments, 19 common DElncRNAs and 846 common DEmRNAs were identified in DMD compared to controls. The created ceRNA network contained 6 lncRNA nodes, 69 mRNA nodes, 27 miRNA nodes and 102 edges, while four hub lncRNAs (XIST, AL132709, LINC00310, ALDH1L1-AS2) were uncovered. In conclusion, our latest bioinformatic analysis demonstrated that lncRNA is likely involved in DMD. This work highlights the importance of lncRNA and provides new insights for exploring the molecular mechanism of DMD. The created ceRNA network contained 6 lncRNA nodes, 69 mRNA nodes, 27 miRNA nodes and 102 edges, while four hub lncRNAs (XIST, AL132709, LINC00310, ALDH1L1-AS2) were uncovered. Remarkably, KEGG analysis indicated that targeted mRNAs in the network were mainly enriched in "microRNAs in cancer" and "proteoglycans in cancer". Our study may offer novel perspectives on the pathogenesis of DMD from the point of lncRNAs. This work might be also conducive for exploring the molecular mechanism of increased incidence of tumorigenesis reported in DMD patients and experimental models.
Collapse
|
34
|
Lim KRQ, Sheri N, Nguyen Q, Yokota T. Cardiac Involvement in Dystrophin-Deficient Females: Current Understanding and Implications for the Treatment of Dystrophinopathies. Genes (Basel) 2020; 11:genes11070765. [PMID: 32650403 PMCID: PMC7397028 DOI: 10.3390/genes11070765] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive condition caused primarily by out-of-frame mutations in the dystrophin gene. In males, DMD presents with progressive body-wide muscle deterioration, culminating in death as a result of cardiac or respiratory failure. A milder form of DMD exists, called Becker muscular dystrophy (BMD), which is typically caused by in-frame dystrophin gene mutations. It should be emphasized that DMD and BMD are not exclusive to males, as some female dystrophin mutation carriers do present with similar symptoms, generally at reduced levels of severity. Cardiac involvement in particular is a pressing concern among manifesting females, as it may develop into serious heart failure or could predispose them to certain risks during pregnancy or daily life activities. It is known that about 8% of carriers present with dilated cardiomyopathy, though it may vary from 0% to 16.7%, depending on if the carrier is classified as having DMD or BMD. Understanding the genetic and molecular mechanisms underlying cardiac manifestations in dystrophin-deficient females is therefore of critical importance. In this article, we review available information from the literature on this subject, as well as discuss the implications of female carrier studies on the development of therapies aiming to increase dystrophin levels in the heart.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
| | - Narin Sheri
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
- Correspondence: ; Tel.: +1-780-492-1102
| |
Collapse
|
35
|
Perrino C, Ferdinandy P, Bøtker HE, Brundel BJJM, Collins P, Davidson SM, den Ruijter HM, Engel FB, Gerdts E, Girao H, Gyöngyösi M, Hausenloy DJ, Lecour S, Madonna R, Marber M, Murphy E, Pesce M, Regitz-Zagrosek V, Sluijter JPG, Steffens S, Gollmann-Tepeköylü C, Van Laake LW, Van Linthout S, Schulz R, Ytrehus K. Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2020; 117:367-385. [PMID: 32484892 DOI: 10.1093/cvr/cvaa155] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/29/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Ischaemic heart disease (IHD) is a complex disorder and a leading cause of death and morbidity in both men and women. Sex, however, affects several aspects of IHD, including pathophysiology, incidence, clinical presentation, diagnosis as well as treatment and outcome. Several diseases or risk factors frequently associated with IHD can modify cellular signalling cascades, thus affecting ischaemia/reperfusion injury as well as responses to cardioprotective interventions. Importantly, the prevalence and impact of risk factors and several comorbidities differ between males and females, and their effects on IHD development and prognosis might differ according to sex. The cellular and molecular mechanisms underlying these differences are still poorly understood, and their identification might have important translational implications in the prediction or prevention of risk of IHD in men and women. Despite this, most experimental studies on IHD are still undertaken in animal models in the absence of risk factors and comorbidities, and assessment of potential sex-specific differences are largely missing. This ESC WG Position Paper will discuss: (i) the importance of sex as a biological variable in cardiovascular research, (ii) major biological mechanisms underlying sex-related differences relevant to IHD risk factors and comorbidities, (iii) prospects and pitfalls of preclinical models to investigate these associations, and finally (iv) will provide recommendations to guide future research. Although gender differences also affect IHD risk in the clinical setting, they will not be discussed in detail here.
Collapse
Affiliation(s)
- Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary.,Pharmahungary Group, Hajnoczy str. 6., H-6722 Szeged, Hungary
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, 1108 HV, the Netherlands
| | - Peter Collins
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, South Kensington Campus, London SW7 2AZ, UK.,Royal Brompton Hospital, Sydney St, Chelsea, London SW3 6NP, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, UK
| | - Hester M den Ruijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), Schwabachanlage 12, 91054 Erlangen, Germany
| | - Eva Gerdts
- Department for Clinical Science, University of Bergen, PO Box 7804, 5020 Bergen, Norway
| | - Henrique Girao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, and Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, Chris Barnard Building, University of Cape Town, Private Bag X3 7935 Observatory, Cape Town, South Africa
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School in Houston, 6410 Fannin St #1014, Houston, TX 77030, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS Via Parea, 4, I-20138 Milan, Italy
| | - Vera Regitz-Zagrosek
- Berlin Institute of Gender in Medicine, Center for Cardiovascular Research, DZHK, partner site Berlin, Geschäftsstelle Potsdamer Str. 58, 10785 Berlin, Germany.,University of Zürich, Rämistrasse 71, 8006 Zürich, Germany
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands.,Circulatory Health Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Can Gollmann-Tepeköylü
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstr.35, A - 6020 Innsbruck, Austria
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Ludwigstraße 23, 35390 Giessen, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9037 Tromsø, Norway
| |
Collapse
|
36
|
Meyers TA, Heitzman JA, Townsend D. DMD carrier model with mosaic dystrophin expression in the heart reveals complex vulnerability to myocardial injury. Hum Mol Genet 2020; 29:944-954. [PMID: 31976522 PMCID: PMC7158376 DOI: 10.1093/hmg/ddaa015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/26/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease that causes progressive muscle wasting and cardiomyopathy. This X-linked disease results from mutations of the DMD allele on the X-chromosome resulting in the loss of expression of the protein dystrophin. Dystrophin loss causes cellular dysfunction that drives the loss of healthy skeletal muscle and cardiomyocytes. As gene therapy strategies strive toward dystrophin restoration through micro-dystrophin delivery or exon skipping, preclinical models have shown that incomplete restoration in the heart results in heterogeneous dystrophin expression throughout the myocardium. This outcome prompts the question of how much dystrophin restoration is sufficient to rescue the heart from DMD-related pathology. Female DMD carrier hearts can shed light on this question, due to their mosaic cardiac dystrophin expression resulting from random X-inactivation. In this work, a dystrophinopathy carrier mouse model was derived by breeding male or female dystrophin-null mdx mice with a wild type mate. We report that these carrier hearts are significantly susceptible to injury induced by one or multiple high doses of isoproterenol, despite expressing ~57% dystrophin. Importantly, only carrier mice with dystrophic mothers showed mortality after isoproterenol. These findings indicate that dystrophin restoration in approximately half of the heart still allows for marked vulnerability to injury. Additionally, the discovery of divergent stress-induced mortality based on parental origin in mice with equivalent dystrophin expression underscores the need for better understanding of the epigenetic, developmental, and even environmental factors that may modulate vulnerability in the dystrophic heart.
Collapse
Affiliation(s)
- Tatyana A Meyers
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Jackie A Heitzman
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
37
|
Park J, Jang W, Han JY. Differing disease phenotypes of Duchenne muscular dystrophy and Moyamoya disease in female siblings of a Korean family. Mol Genet Genomic Med 2019; 7:e862. [PMID: 31347299 PMCID: PMC6732268 DOI: 10.1002/mgg3.862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/06/2019] [Accepted: 07/05/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Variable disease phenotypes can be influenced by several factors such as allelic variation, environmental factors, genetic modifiers, and genotype-environment interaction. Herein to the best of our knowledge, this is the first report of the coexistence of DMD and RNF213 gene mutations in a Korean family with differing disease phenotypes of Duchenne muscular dystrophy (DMD) and Moyamoya disease (MMD) in each female sibling. METHODS Deletion or duplication of the exon in DMD was screened using multiplex ligation-dependent probe amplification (MLPA). Subsequently, single exon deletion or duplication identified by MLPA was confirmed by Sanger sequencing. On the other hand, a common missense mutation [NM_001256071.2:c.14429G>A (p.Arg4810Lys)] related to MMD in exon 60 of RNF213 was also identified by Sanger sequencing. RESULTS Three female family members carried the same disease-causing mutations, c.9953_9954delAG of DMD and c.14429G>A of RNF213. Two (II-2 and II-3) of these siblings suffer from the disease but exhibited different DMD or MMD symptoms, while the mother (I-2) seemed almost unaffected. CONCLUSION This report illustrates the difficulty that might be encountered in the interpretation of complex clinical manifestations when different genetic defects affecting neuromuscular and vascular diseases coexist.
Collapse
Affiliation(s)
- Joonhong Park
- Department of Laboratory Medicine, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Woori Jang
- Department of Laboratory MedicineInha University School of MedicineIncheonRepublic of Korea
| | - Ji Yoon Han
- Department of Pediatrics, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| |
Collapse
|
38
|
Zhang K, Yang X, Lin G, Han Y, Li J. Molecular genetic testing and diagnosis strategies for dystrophinopathies in the era of next generation sequencing. Clin Chim Acta 2019; 491:66-73. [PMID: 30660698 DOI: 10.1016/j.cca.2019.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive, inherited neuromuscular disorders, caused by pathogenic variants in the dystrophin gene that encodes the dystrophin protein. A number of mutations have been identified in the past years, producing dystrophin diversity and resulting in mild to severe phenotypes in patients. Mutations in the dystrophin gene can be characterized by laboratory testing to confirm a clinical diagnosis of DMD/BMD. Traditional genetic diagnostic strategy for DMD/BMD involves the initial detection of large mutations, followed by the detection of smaller mutations, where two or more analytical methods are employed. With the development of next generation sequencing (NGS) technology, comprehensive mutational screening for all variant types can be performed on a single platform in patients and carriers, although further optimization and validation are required. Furthermore, the discovery of cell-free fetal DNA (cffDNA) in maternal plasma provides basis for noninvasive prenatal diagnosis of DMD/BMD. Here, we discuss the correlation between genotype and phenotype, the current methods of molecular genetic testing and genetic diagnostic strategy for probands and female carriers of DMD/BMD, the diagnostic ability of a comprehensive targeted NGS strategy and the possibility of it replacing conventional methods.
Collapse
Affiliation(s)
- Kuo Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Xin Yang
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong 264000, People's Republic of China
| | - Guigao Lin
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Yanxi Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.
| |
Collapse
|
39
|
Eisen B, Ben Jehuda R, Cuttitta AJ, Mekies LN, Shemer Y, Baskin P, Reiter I, Willi L, Freimark D, Gherghiceanu M, Monserrat L, Scherr M, Hilfiker-Kleiner D, Arad M, Michele DE, Binah O. Electrophysiological abnormalities in induced pluripotent stem cell-derived cardiomyocytes generated from Duchenne muscular dystrophy patients. J Cell Mol Med 2019; 23:2125-2135. [PMID: 30618214 PMCID: PMC6378185 DOI: 10.1111/jcmm.14124] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 01/09/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X‐linked progressive muscle degenerative disease, caused by mutations in the dystrophin gene and resulting in death because of respiratory or cardiac failure. To investigate the cardiac cellular manifestation of DMD, we generated induced pluripotent stem cells (iPSCs) and iPSC‐derived cardiomyocytes (iPSC‐CMs) from two DMD patients: a male and female manifesting heterozygous carrier. Dystrophin mRNA and protein expression were analysed by qRT‐PCR, RNAseq, Western blot and immunofluorescence staining. For comprehensive electrophysiological analysis, current and voltage clamp were used to record transmembrane action potentials and ion currents, respectively. Microelectrode array was used to record extracellular electrograms. X‐inactive specific transcript (XIST) and dystrophin expression analyses revealed that female iPSCs underwent X chromosome reactivation (XCR) or erosion of X chromosome inactivation, which was maintained in female iPSC‐CMs displaying mixed X chromosome expression of wild type (WT) and mutated alleles. Both DMD female and male iPSC‐CMs presented low spontaneous firing rate, arrhythmias and prolonged action potential duration. DMD female iPSC‐CMs displayed increased beat rate variability (BRV). DMD male iPSC‐CMs manifested decreased If density, and DMD female and male iPSC‐CMs showed increased ICa,L density. Our findings demonstrate cellular mechanisms underlying electrophysiological abnormalities and cardiac arrhythmias in DMD.
Collapse
Affiliation(s)
- Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ronen Ben Jehuda
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Biotechnology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ashley J Cuttitta
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lucy N Mekies
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Irina Reiter
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lubna Willi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dov Freimark
- Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
40
|
Copy Number Variants Account for a Tiny Fraction of Undiagnosed Myopathic Patients. Genes (Basel) 2018; 9:genes9110524. [PMID: 30373198 PMCID: PMC6267442 DOI: 10.3390/genes9110524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have led to an increase in the diagnosis of heterogeneous genetic conditions. However, over 50% of patients with a genetically inherited disease are still without a diagnosis. In these cases, different hypotheses are usually postulated, including variants in novel genes or elusive mutations. Although the impact of copy number variants (CNVs) in neuromuscular disorders has been largely ignored to date, missed CNVs are predicted to have a major role in disease causation as some very large genes, such as the dystrophin gene, have prone-to-deletion regions. Since muscle tissues express several large disease genes, the presence of elusive CNVs needs to be comprehensively assessed following an accurate and systematic approach. In this multicenter cohort study, we analyzed 234 undiagnosed myopathy patients using a custom array comparative genomic hybridization (CGH) that covers all muscle disease genes at high resolution. Twenty-two patients (9.4%) showed non-polymorphic CNVs. In 12 patients (5.1%), the identified CNVs were considered responsible for the observed phenotype. An additional ten patients (4.3%) presented candidate CNVs not yet proven to be causative. Our study indicates that deletions and duplications may account for 5⁻9% of genetically unsolved patients. This strongly suggests that other mechanisms of disease are yet to be discovered.
Collapse
|
41
|
Gestational Outcomes of Pregnant Women Who Have Had Invasive Prenatal Testing for the Prenatal Diagnosis of Duchenne Muscular Dystrophy. J Pregnancy 2018; 2018:9718316. [PMID: 30151283 PMCID: PMC6091284 DOI: 10.1155/2018/9718316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 07/03/2018] [Indexed: 11/18/2022] Open
Abstract
Aim To show the importance of prenatal diagnosis of Duchenne Muscular Dystrophy (DMD) and to demonstrate the effect of DMD gene mutations on gestational outcomes. Materials and Methods We retrospectively evaluated 89 pregnancies in 81 individuals who were referred to Hacettepe University for prenatal diagnosis of DMD between January 2000 and December 2015. Prenatal diagnostic methods (chorionic villus sampling (CVS): 66, amniocentesis (AC): 23) were compared for test results, demographic features, and obstetric outcomes of pregnancies. The female fetuses were divided into two groups according to the DMD status (healthy or carrier) to understand the effect of DMD gene mutations on obstetric outcomes. Results Eight prenatally diagnosed disease-positive fetuses were terminated. There was no statistically significant difference between the CVS and AC groups in terms of study variables. There were 46 male fetuses (51.6%) and 43 female fetuses (48.4%). Fifteen of the female fetuses were carriers (34.8%). Median birthweight values were statistically insignificantly lower in the carrier group. Conclusion Pregnancies at risk for DMD should be prenatally tested to prevent the effect of disease on families and DMD carrier fetuses had obstetric outcomes similar to DMD negative female fetuses.
Collapse
|
42
|
Chen JK, Liu P, Hu LQ, Xie Q, Huang QF, Liu HL. A foetus with 18p11.32-q21.2 duplication and Xp22.33-p11.1 deletion derived from a maternal reciprocal translocation t(X;18)(q13;q21.3). Mol Cytogenet 2018; 11:37. [PMID: 29946361 PMCID: PMC6001049 DOI: 10.1186/s13039-018-0381-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/27/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Non-invasive prenatal testing (NIPT) evaluates circulating cell-free DNA (cfDNA) and has been widely applied, with highly accurate results for detecting foetal trisomies 21, 18 and 13. Recently, increasing attention has been paid to the clinical application of the non-invasive detection of foetal sub-chromosomal duplications and deletions beyond common aneuploidies. CASE PRESENTATION A 32-year-old healthy pregnant woman was referred to the Medical Genetic Centre of Ganzhou Maternal and Child Health Care Hospital. As routine practice, ultrasound examination at a gestational age of 16 weeks showed that the foetus is normal. To avoid invasive prenatal diagnosis procedures, an NIPT was offered to further screen for common foetal chromosomal abnormalities. The result showed that there was an approximately 50.94 Mb duplication in p11.32-q21.2 of chromosome 18 and an approximately 58.46 Mb deletion in p22.33-p11.1 of chromosome X. In addition, the chromosome karyotypes of the parents and foetus were also analysed. Chromosome karyotype analysis results showed that foetal karyotype was 46,X,der(18), the maternal karyotype was 46,XX,t(X;18)(q13;q21.3), and the paternal karyotype revealed no obvious abnormality. CONCLUSION In this case, we successfully detected a healthy pregnant woman with balanced translocation X;18(q13;q21.3) and described the foetal karyotype as 46,X,der(18)t(X;18)(q11;q21.1)mat. Our report illustrated these cases which present complex X;autosome balance translocation and X;autosome unbalance translocation which may contribute to severe clinical phenotypes. In addition, our report also proved that the interruption of genes in the Xq critical region is not only reason of primary infertility. Finally, we prompted that NIPT might play a role in the first trimester screening of sub-chromosomal rearrangement.
Collapse
Affiliation(s)
- Jun-Kun Chen
- Medical Genetic Centre of Ganzhou Maternal and Child Health Care Hospital, Ganzhou, 341000 China
| | - Ping Liu
- Medical Genetic Centre of Ganzhou Maternal and Child Health Care Hospital, Ganzhou, 341000 China
| | - Li-Qin Hu
- Medical Genetic Centre of Ganzhou Maternal and Child Health Care Hospital, Ganzhou, 341000 China
| | - Qing Xie
- Medical Genetic Centre of Ganzhou Maternal and Child Health Care Hospital, Ganzhou, 341000 China
| | | | - Hai-Liang Liu
- CapitalBio Genomics Co., Ltd., Dongguan, 532808 China
| |
Collapse
|
43
|
Ishizaki M, Kobayashi M, Adachi K, Matsumura T, Kimura E. Female dystrophinopathy: Review of current literature. Neuromuscul Disord 2018; 28:572-581. [PMID: 29801751 DOI: 10.1016/j.nmd.2018.04.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/10/2018] [Accepted: 04/06/2018] [Indexed: 01/16/2023]
Abstract
Skeletal muscle or cardiac symptoms are known to appear in a certain proportion of female patients carrying the dystrophin gene mutation. There is limited high-quality evidence to guide the treatment of female carriers of Duchenne muscular dystrophy/Becker muscular dystrophy (DMD/BMD). The available evidence is mainly based on expert opinions and clinical experience. To improve this situation, we reviewed 1002 reports published from 1967 to 2017 to assess the following themes: epidemiology, clinical symptoms, cardiomyopathy, burdens on parents or caregivers, pregnancy or delivery, and prognosis. We aimed to provide guidance for the provision of support, care, and education for patients, caregivers, and health care professionals. There were 271 reports before 1987, and 731 reports after 1987 when dystrophin was first recognized. In this review, we mainly selected 37 papers that were reported after 1987. In seven large research papers, the incidence of skeletal muscle damage among female carriers, including asymptomatic carriers, was reported as 2.5%-19%, and the incidence of dilated cardiomyopathy was 7.3%-16.7% for DMD and 0%-13.3% for BMD. We integrated and summarized the genetically definite manifesting carriers with skeletal muscle symptoms from 10 case series. In combined data, among 93 manifesting carriers, 16 (17.2%) presented with cardiac abnormalities. The frequency of manifesting carriers complicated by cardiomyopathy increased with age. Reports on cardiac magnetic resonance in female carriers and the burden on caregivers are increasing, whereas literatures concerning pregnancy, delivery, and prognosis in female carriers are limited. This represents a future direction for research.
Collapse
Affiliation(s)
- Masatoshi Ishizaki
- Department of Neurology, National Hospital Organization, Kumamoto Saishunso Hospital, Kumamoto, Japan.
| | - Michio Kobayashi
- Department of Neurology, National Hospital Organization, Akita National Hospital, Akita, Japan
| | - Katsuhito Adachi
- Department of Internal Medicine, National Hospital Organization, Tokushima National Hospital, Tokushima, Japan
| | - Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization, Toneyama National Hospital, Osaka, Japan
| | - En Kimura
- Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
44
|
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disorder caused by a deficient or defective synthesis of dystrophin protein. DMD is the most common form of muscular dystrophy with an incidence of about 1 in 5000 live boys. Though primarily resulting in progressive muscle weakness, it affects various other organs as well. Heart, brain and smooth muscles are commonly involved, because of expression of dystrophin in these organs. The management of DMD requires a multidisciplinary liaison, anticipatory management and prevention of the complications. Consensus based international recommendation for management of DMD have been published in the year 2010, recognizing DMD as a multi-systemic and progressive disease. The proper management of a boy with DMD can improve ambulation, independence, quality of life and delay disease - related complications. A lot can be done to comfort affected children and their care givers even in a resource limited setting. This review discusses these options and also the current understanding of the disease.
Collapse
|
45
|
Development of ultra-deep targeted RNA sequencing for analyzing X-chromosome inactivation in female Dent disease. J Hum Genet 2018; 63:589-595. [DOI: 10.1038/s10038-018-0415-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 11/08/2022]
|
46
|
Szigyarto CAK, Spitali P. Biomarkers of Duchenne muscular dystrophy: current findings. Degener Neurol Neuromuscul Dis 2018; 8:1-13. [PMID: 30050384 PMCID: PMC6053903 DOI: 10.2147/dnnd.s121099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous biomarkers have been unveiled in the rapidly evolving biomarker discovery field, with an aim to improve the clinical management of disorders. In rare diseases, such as Duchenne muscular dystrophy, this endeavor has created a wealth of knowledge that, if effectively exploited, will benefit affected individuals, with respect to health care, therapy, improved quality of life and increased life expectancy. The most promising findings and molecular biomarkers are inspected in this review, with an aim to provide an overview of currently known biomarkers and the technological developments used. Biomarkers as cells, genetic variations, miRNAs, proteins, lipids and/or metabolites indicative of disease severity, progression and treatment response have the potential to improve development and approval of therapies, clinical management of DMD and patients’ life quality. We highlight the complexity of translating research results to clinical use, emphasizing the need for biomarkers, fit for purpose and describe the challenges associated with qualifying biomarkers for clinical applications.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Division of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden, .,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden,
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands,
| |
Collapse
|
47
|
Viggiano E, Picillo E, Ergoli M, Cirillo A, Del Gaudio S, Politano L. Skewed X-chromosome inactivation plays a crucial role in the onset of symptoms in carriers of Becker muscular dystrophy. J Gene Med 2017; 19. [PMID: 28316128 DOI: 10.1002/jgm.2952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Becker muscular dystrophy (BMD) is an X-linked recessive disorder affecting approximately 1: 18.000 male births. Female carriers are usually asymptomatic, although 2.5-18% may present muscle or heart symptoms. In the present study, the role of the X chromosome inactivation (XCI) on the onset of symptoms in BMD carriers was analysed and compared with the pattern observed in Duchenne muscular dystrophy (DMD) carriers. METHODS XCI was determined on the lymphocytes of 36 BMD carriers (both symptomatic and not symptomatic) from 11 families requiring genetic advice at the Cardiomyology and Medical Genetics of the Second University of Naples, using the AR methylation-based assay. Carriers were subdivided into two groups, according to age above or below 50 years. Seven females from the same families known as noncarriers were used as controls. A Student's t-test for nonpaired data was performed to evaluate the differences observed in the XCI values between asymptomatic and symptomatic carriers, and carriers aged above or below 50 years. A Pearson correlation test was used to evaluate the inheritance of the XCI pattern in 19 mother-daughter pairs. RESULTS The results showed that symptomatic BMD carriers had a skewed XCI with a preferential inactivation of the X chromosome carrying the normal allele, whereas the asymptomatic carriers and controls showed a random XCI. No concordance concerning the XCI pattern was observed between mothers and related daughters. CONCLUSIONS The data obtained in the present study suggest that the onset of symptoms in BMD carriers is related to a skewed XCI, as observed in DMD carriers. Furthermore, they showed no concordance in the XCI pattern inheritance.
Collapse
Affiliation(s)
- Emanuela Viggiano
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Esther Picillo
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Manuela Ergoli
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Alessandra Cirillo
- Section of Biotechnology and Molecular Biology 'A. Cascino', Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Stefania Del Gaudio
- Section of Biotechnology and Molecular Biology 'A. Cascino', Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Luisa Politano
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| |
Collapse
|
48
|
Affected female carriers of MTM1 mutations display a wide spectrum of clinical and pathological involvement: delineating diagnostic clues. Acta Neuropathol 2017; 134:889-904. [PMID: 28685322 DOI: 10.1007/s00401-017-1748-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/24/2017] [Accepted: 07/02/2017] [Indexed: 01/14/2023]
Abstract
X-linked myotubular myopathy (XLMTM), a severe congenital myopathy, is caused by mutations in the MTM1 gene located on the X chromosome. A majority of affected males die in the early postnatal period, whereas female carriers are believed to be usually asymptomatic. Nevertheless, several affected females have been reported. To assess the phenotypic and pathological spectra of carrier females and to delineate diagnostic clues, we characterized 17 new unrelated affected females and performed a detailed comparison with previously reported cases at the clinical, muscle imaging, histological, ultrastructural and molecular levels. Taken together, the analysis of this large cohort of 43 cases highlights a wide spectrum of clinical severity ranging from severe neonatal and generalized weakness, similar to XLMTM male, to milder adult forms. Several females show a decline in respiratory function. Asymmetric weakness is a noteworthy frequent specific feature potentially correlated to an increased prevalence of highly skewed X inactivation. Asymmetry of growth was also noted. Other diagnostic clues include facial weakness, ptosis and ophthalmoplegia, skeletal and joint abnormalities, and histopathological signs that are hallmarks of centronuclear myopathy such as centralized nuclei and necklace fibers. The histopathological findings also demonstrate a general disorganization of muscle structure in addition to these specific hallmarks. Thus, MTM1 mutations in carrier females define a specific myopathy, which may be independent of the presence of an XLMTM male in the family. As several of the reported affected females carry large heterozygous MTM1 deletions not detectable by Sanger sequencing, and as milder phenotypes present as adult-onset limb-girdle myopathy, the prevalence of this myopathy is likely to be greatly underestimated. This report should aid diagnosis and thus the clinical management and genetic counseling of MTM1 carrier females. Furthermore, the clinical and pathological history of this cohort may be useful for therapeutic projects in males with XLMTM, as it illustrates the spectrum of possible evolution of the disease in patients surviving long term.
Collapse
|
49
|
Papa AA, D'Ambrosio P, Petillo R, Palladino A, Politano L. Heart transplantation in patients with dystrophinopathic cardiomyopathy: Review of the literature and personal series. Intractable Rare Dis Res 2017; 6:95-101. [PMID: 28580208 PMCID: PMC5451754 DOI: 10.5582/irdr.2017.01024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cardiomyopathy associated with dystrophinopathies [Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), X-linked dilated cardiomyopathy (XL-dCM) and cardiomyopathy of Duchenne/Becker (DMD/BMD) carriers] is an increasing recognized manifestation of these neuromuscular disorders and notably contributes to their morbidity and mortality. Dystrophinopathic cardiomyopathy (DCM) is the result of the dystrophin protein deficiency at the myocardium level, parallel to the deficiency occurring at the skeletal muscle level. It begins as a "presymptomatic" stage in the first decade of life and evolves in a stepwise manner toward pictures of overt cardiomyopathy (hypertrophic stage, arrhythmogenic stage and dilated cardiomyopathy). The final stage caused by the extensive loss of cardiomyocytes results in an irreversible cardiac failure, characterized by frequent episodes of acute congestive heart failure (CHF), despite a correct pharmacological treatment. The picture of a severe dilated cardiomyopathy with intractable heart failure is typical of BMD, XL-dCM and cardiomyopathy of DMD/BMD carriers, while it is less frequently observed in patients with DMD. Heart transplantation (HT) is the only curative therapy for patients with dystrophinopathic end-stage heart failure who remain symptomatic despite an optimal medical therapy. However, no definitive figures exist in literature concerning the number of patients with DCM transplanted, and their outcome. This overview is to summarize the clinical outcomes so far published on the topic, to report the personal series of dystrophinopathic patients receiving heart transplantation and finally to provide evidence that heart transplantation is a safe and effective treatment for selected patients with end-stage DCM.
Collapse
Affiliation(s)
- Andrea Antonio Papa
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paola D'Ambrosio
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberta Petillo
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Alberto Palladino
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Address correspondence to: Prof. Luisa Politano, Cardiomiologia e Genetica Medica, Dipartimento di Medicina Sperimentale, Primo Policlinico, Piazza Miraglia, Napoli 80138, Italy. E-mail:
| |
Collapse
|
50
|
El Chehadeh S, Touraine R, Prieur F, Reardon W, Bienvenu T, Chantot-Bastaraud S, Doco-Fenzy M, Landais E, Philippe C, Marle N, Callier P, Mosca-Boidron AL, Mugneret F, Le Meur N, Goldenberg A, Guerrot AM, Chambon P, Satre V, Coutton C, Jouk PS, Devillard F, Dieterich K, Afenjar A, Burglen L, Moutard ML, Addor MC, Lebon S, Martinet D, Alessandri JL, Doray B, Miguet M, Devys D, Saugier-Veber P, Drunat S, Aral B, Kremer V, Rondeau S, Tabet AC, Thevenon J, Thauvin-Robinet C, Perreton N, Des Portes V, Faivre L. Xq28 duplication includingMECP2in six unreported affected females: what can we learn for diagnosis and genetic counselling? Clin Genet 2017; 91:576-588. [DOI: 10.1111/cge.12898] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 11/27/2022]
Affiliation(s)
- S. El Chehadeh
- FHU TRANSLAD, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs» de l'Est; Centre de Génétique, CHU de Dijon; Dijon France
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs» de l'Est; Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre; Strasbourg France
| | - R. Touraine
- Service de Génétique Clinique Chromosomique et Moléculaire; CHU de Saint-Etienne; Saint-Étienne France
| | - F. Prieur
- Service de Génétique Clinique Chromosomique et Moléculaire; CHU de Saint-Etienne; Saint-Étienne France
| | - W. Reardon
- Clinical Genetics, Division National Centre for Medical Genetics; Our Lady's Children's Hospital; Dublin Ireland
| | - T. Bienvenu
- AP-HP, Laboratoire de Génétique et Biologie Moléculaires, HU Paris Centre, Site Cochin, France; Université Paris Descartes; Institut Cochin, INSERM U1016; Paris France
| | - S. Chantot-Bastaraud
- Service de Génétique et Embryologie Médicales; CHU Paris Est - Hôpital d'Enfants Armand-Trousseau; Paris France
| | - M. Doco-Fenzy
- Service de Génétique, EA3801; SFR-CAP Santé, CHU de Reims; Reims France
| | - E. Landais
- PRBI, Pôle de Biologie Médicale; CHU de Reims; Reims France
| | - C. Philippe
- Laboratoire de Génétique Médicale; Hôpitaux de Brabois CHRU; Vandoeuvre les Nancy France
| | - N. Marle
- Service de Cytogénétique; CHU de Dijon; Dijon France
| | - P. Callier
- Service de Cytogénétique; CHU de Dijon; Dijon France
| | | | - F. Mugneret
- Service de Cytogénétique; CHU de Dijon; Dijon France
| | - N. Le Meur
- Etablissement Français du Sang; CHU de Rouen; Rouen France
| | - A. Goldenberg
- Service de Génétique et Inserm U1079, Centre Normand de Génomique Médicale et Médecine Personnalisée, CHU de Rouen; Inserm et Université de Rouen; Rouen France
| | - A.-M. Guerrot
- Service de Génétique et Inserm U1079, Centre Normand de Génomique Médicale et Médecine Personnalisée, CHU de Rouen; Inserm et Université de Rouen; Rouen France
| | - P. Chambon
- Laboratoire D'histologie, Cytogénétique et Biologie de la Reproduction; CHU de Rouen; Rouen France
| | - V. Satre
- Département de Génétique et Procréation, CHU Grenoble Alpes; Université Grenoble Alpes; Grenoble France
| | - C. Coutton
- Département de Génétique et Procréation, CHU Grenoble Alpes; Université Grenoble Alpes; Grenoble France
| | - P.-S. Jouk
- Département de Génétique et Procréation, CHU Grenoble Alpes; Université Grenoble Alpes; Grenoble France
| | - F. Devillard
- Département de Génétique et Procréation, CHU Grenoble Alpes; Université Grenoble Alpes; Grenoble France
| | - K. Dieterich
- Département de Génétique et Procréation, CHU Grenoble Alpes; Université Grenoble Alpes; Grenoble France
| | - A. Afenjar
- Service de Génétique; CHU Paris Est - Hôpital d'Enfants Armand-Trousseau; Paris France
| | - L. Burglen
- Service de Génétique; CHU Paris Est - Hôpital d'Enfants Armand-Trousseau; Paris France
| | - M.-L. Moutard
- Unité de neuropédiatrie et pathologie du développement; CHU Paris Est - Hôpital d'Enfants Armand-Trousseau; Paris France
| | - M.-C. Addor
- Service de Génétique Médicale; Centre Hospitalier Universitaire Vaudois CHUV; Lausanne Switzerland
| | - S. Lebon
- Unité de Neuropédiatrie; Centre Hospitalier Universitaire Vaudois CHUV; Lausanne Switzerland
| | - D. Martinet
- Laboratoire de Cytogénétique Constitutionnelle et Prénatale; Centre Hospitalier Universitaire Vaudois CHUV; Lausanne Switzerland
| | - J.-L. Alessandri
- Pôle Enfants; CHU de la Réunion - Hôpital Félix Guyon; Saint-Denis France
| | - B. Doray
- Service de Génétique; CHU de la Réunion - Hôpital Félix Guyon; Saint-Denis France
| | - M. Miguet
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs» de l'Est; Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre; Strasbourg France
| | - D. Devys
- Laboratoire de Diagnostic Génétique; CHU de Strasbourg - Hôpital Civil; Strasbourg France
| | - P. Saugier-Veber
- Laboratoire de Génétique Moléculaire; Faculté de Médecine et de Pharmacie; Rouen France
| | - S. Drunat
- Laboratoire de Biologie Moléculaire; Hôpital Robert Debré; Paris France
| | - B. Aral
- Service de Biologie Moléculaire; CHU de Dijon; Dijon France
| | - V. Kremer
- Laboratoire de Cytogénétique, Hôpitaux Universitaires de Strasbourg; Hôpital de Hautepierre; Strasbourg France
| | - S. Rondeau
- Service de Pédiatrie Néonatale et Réanimation; CHU de Rouen; Rouen France
| | - A.-C. Tabet
- Laboratoire de Cytogénétique; Hôpital Robert Debré; Paris France
| | - J. Thevenon
- FHU TRANSLAD, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs» de l'Est; Centre de Génétique, CHU de Dijon; Dijon France
- GAD, EA4271, Génétique et Anomalies du Développement; Université de Bourgogne; Dijon France
| | - C. Thauvin-Robinet
- FHU TRANSLAD, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs» de l'Est; Centre de Génétique, CHU de Dijon; Dijon France
- GAD, EA4271, Génétique et Anomalies du Développement; Université de Bourgogne; Dijon France
| | - N. Perreton
- EPICIME-CIC 1407 de Lyon, Inserm; Service de Pharmacologie Clinique, CHU-Lyon; Bron France
| | - V. Des Portes
- Service de Neurologie Pédiatrique; CHU de Lyon-GH Est; Bron France
| | - L. Faivre
- FHU TRANSLAD, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs» de l'Est; Centre de Génétique, CHU de Dijon; Dijon France
- GAD, EA4271, Génétique et Anomalies du Développement; Université de Bourgogne; Dijon France
| |
Collapse
|