1
|
Roger AL, Biswas DD, Huston ML, Le D, Bailey AM, Pucci LA, Shi Y, Robinson-Hamm J, Gersbach CA, ElMallah MK. Respiratory characterization of a humanized Duchenne muscular dystrophy mouse model. Respir Physiol Neurobiol 2024; 326:104282. [PMID: 38782084 PMCID: PMC11472894 DOI: 10.1016/j.resp.2024.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Duchenne muscular dystrophy (DMD) is the most common X-linked disease. DMD is caused by a lack of dystrophin, a critical structural protein in striated muscle. Dystrophin deficiency leads to inflammation, fibrosis, and muscle atrophy. Boys with DMD have progressive muscle weakness within the diaphragm that results in respiratory failure in the 2nd or 3rd decade of life. The most common DMD mouse model - the mdx mouse - is not sufficient for evaluating genetic medicines that specifically target the human DMD (hDMD) gene sequence. Therefore, a novel transgenic mouse carrying the hDMD gene with an exon 52 deletion was created (hDMDΔ52;mdx). We characterized the respiratory function and pathology in this model using whole body plethysmography, histology, and immunohistochemistry. At 6-months-old, hDMDΔ52;mdx mice have reduced maximal respiration, neuromuscular junction pathology, and fibrosis throughout the diaphragm, which worsens at 12-months-old. In conclusion, the hDMDΔ52;mdx exhibits moderate respiratory pathology, and serves as a relevant animal model to study the impact of novel genetic therapies, including gene editing, on respiratory function.
Collapse
Affiliation(s)
- Angela L Roger
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | | | - Davina Le
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Aidan M Bailey
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Logan A Pucci
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Yihan Shi
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | | | - Mai K ElMallah
- Department of Pediatrics, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Luna-Angulo A, Landa-Solís C, Escobar-Cedillo RE, Estrada-Mena FJ, Sánchez-Chapul L, Gómez-Díaz B, Carrillo-Mora P, Avilés-Arnaut H, Jiménez-Hernández L, Jiménez-Hernández DA, Miranda-Duarte A. Pharmacological Treatments and Therapeutic Targets in Muscle Dystrophies Generated by Alterations in Dystrophin-Associated Proteins. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1060. [PMID: 39064489 PMCID: PMC11279157 DOI: 10.3390/medicina60071060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of diseases of genetic origin characterized by progressive skeletal muscle degeneration and weakness. There are several types of MDs, varying in terms of age of onset, severity, and pattern of the affected muscles. However, all of them worsen over time, and many patients will eventually lose their ability to walk. In addition to skeletal muscle effects, patients with MDs may present cardiac and respiratory disorders, generating complications that could lead to death. Interdisciplinary management is required to improve the surveillance and quality of life of patients with an MD. At present, pharmacological therapy is only available for Duchene muscular dystrophy (DMD)-the most common type of MD-and is mainly based on the use of corticosteroids. Other MDs caused by alterations in dystrophin-associated proteins (DAPs) are less frequent but represent an important group within these diseases. Pharmacological alternatives with clinical potential in patients with MDs and other proteins associated with dystrophin have been scarcely explored. This review focuses on drugs and molecules that have shown beneficial effects, mainly in experimental models involving alterations in DAPs. The mechanisms associated with the effects leading to promising results regarding the recovery or maintenance of muscle strength and reduction in fibrosis in the less-common MDs (i.e., with respect to DMD) are explored, and other therapeutic targets that could contribute to maintaining the homeostasis of muscle fibers, involving different pathways, such as calcium regulation, hypertrophy, and maintenance of satellite cell function, are also examined. It is possible that some of the drugs explored here could be used to affordably improve the muscular function of patients until a definitive treatment for MDs is developed.
Collapse
Affiliation(s)
- Alexandra Luna-Angulo
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Carlos Landa-Solís
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, División de Biotecnología, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Rosa Elena Escobar-Cedillo
- Departamento de Electromiografía y Distrofia Muscular, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Francisco Javier Estrada-Mena
- Laboratorio de Biología Molecular, Universidad Panamericana, Facultad de Ciencias de la Salud, Augusto Rodin 498, Ciudad de México 03920, Mexico
| | - Laura Sánchez-Chapul
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Benjamín Gómez-Díaz
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Paul Carrillo-Mora
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Hamlet Avilés-Arnaut
- Facultad de Ciencias Biológicas de la Universidad Autónoma de Nuevo Leon, Av. Universidad s/n Ciudad Universitaria, San Nicolas de los Garza 66455, Mexico
| | | | | | - Antonio Miranda-Duarte
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| |
Collapse
|
3
|
Escobar-Huertas JF, Vaca-González JJ, Guevara JM, Ramirez-Martinez AM, Trabelsi O, Garzón-Alvarado DA. Duchenne and Becker muscular dystrophy: Cellular mechanisms, image analysis, and computational models: A review. Cytoskeleton (Hoboken) 2024; 81:269-286. [PMID: 38224155 DOI: 10.1002/cm.21826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
The muscle is the principal tissue that is capable to transform potential energy into kinetic energy. This process is due to the transformation of chemical energy into mechanical energy to enhance the movements and all the daily activities. However, muscular tissues can be affected by some pathologies associated with genetic alterations that affect the expression of proteins. As the muscle is a highly organized structure in which most of the signaling pathways and proteins are related to one another, pathologies may overlap. Duchenne muscular dystrophy (DMD) is one of the most severe muscle pathologies triggering degeneration and muscle necrosis. Several mathematical models have been developed to predict muscle response to different scenarios and pathologies. The aim of this review is to describe DMD and Becker muscular dystrophy in terms of cellular behavior and molecular disorders and to present an overview of the computational models implemented to understand muscle behavior with the aim of improving regenerative therapy.
Collapse
Affiliation(s)
- J F Escobar-Huertas
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne Cedex, France
| | - Juan Jairo Vaca-González
- Escuela de pregrado, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede la Paz, Cesar, Colombia
| | - Johana María Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Olfa Trabelsi
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne Cedex, France
| | - D A Garzón-Alvarado
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Multi-omics research in sarcopenia: Current progress and future prospects. Ageing Res Rev 2022; 76:101576. [PMID: 35104630 DOI: 10.1016/j.arr.2022.101576] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/13/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Sarcopenia is a systemic disease with progressive and generalized skeletal muscle dysfunction defined by age-related low muscle mass, high content of muscle slow fibers, and low muscle function. Muscle phenotypes and sarcopenia risk are heritable; however, the genetic architecture and molecular mechanisms underlying sarcopenia remain largely unclear. In recent years, significant progress has been made in determining susceptibility loci using genome-wide association studies. In addition, recent advances in omics techniques, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, offer new opportunities to identify novel targets to help us understand the pathophysiology of sarcopenia. However, each individual technology cannot capture the entire view of the biological complexity of this disorder, while integrative multi-omics analyses may be able to reveal new insights. Here, we review the latest findings of multi-omics studies for sarcopenia and provide an in-depth summary of our current understanding of sarcopenia pathogenesis. Leveraging multi-omics data could give us a holistic understanding of sarcopenia etiology that may lead to new clinical applications. This review offers guidance and recommendations for fundamental research, innovative perspectives, and preventative and therapeutic interventions for sarcopenia.
Collapse
|
5
|
Attias Cohen S, Simaan-Yameen H, Fuoco C, Gargioli C, Seliktar D. Injectable hydrogel microspheres for sustained gene delivery of antisense oligonucleotides to restore the expression of dystrophin protein in duchenne muscular dystrophy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Blaschek A, Rodrigues M, Rawer R, Müller C, Ille L, Schröder S, Idriess M, Müller-Felber W, Vill K. Jumping Mechanography is a Suitable Complementary Method to Assess Motor Function in Ambulatory Boys with Duchenne Muscular Dystrophy. Neuropediatrics 2021; 52:455-461. [PMID: 33706402 DOI: 10.1055/s-0041-1722880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The number of clinical trials for Duchenne muscular dystrophy (DMD) has increased substantially lately, therefore appropriate clinical instruments are needed to measure disease progression and drug efficacy. Jumping mechanography is a medical diagnostic method for motion analysis, which allows to quantify physical parameters. In this study, we compared mechanography with timed function tests (TFTs). METHODS 41 ambulatory DMD patients performed a total of 95 chair rising tests (CRT) and a total of 76 single two-legged jumps (S2LJ) on a mechanography ground reaction force platform. The results were correlated with a 6-minute walk test (6MWT) and the time required to run 10 meters, stand up from a supine position, and climb four stairs, all performed in the same setting. RESULTS Our measurements show a high correlation between mechanography and the TFTs: S2LJ/10-m run, r = 0.62; CRT/10-m run, r = 0.61; S2LJ/standing up from supine, r = 0.48; CRT/standing up from supine, r = 0.58; S2LJ/climb four stairs, r = 0.55; CRT/climb four stairs, r = 0.51. The correlation between mechanography and the 6MWT was only moderate with r = 0.38 for S2LJ/6MWT and r = 0.39 for CRT/6MWT. INTERPRETATION Jumping mechanography is a reliable additional method, which can be used for physical endpoint measurements in clinical trials. We confirmed our assumption, that the method provides additional information concerning performance at movement with higher power output. We suggest using the S2LJ as a first-choice tandem tool combined with the 6MWT. In patients with higher disability, the CRT is an alternative measuring method, because with the progression of the disease this is longer feasible.
Collapse
Affiliation(s)
- Astrid Blaschek
- Department of Paediatric Neurology and Developmental Medicine, LMU - University of Munich, Dr. v. Hauner Children's Hospital, Munich, Germany
| | - Martin Rodrigues
- Department of Paediatric Neurology and Developmental Medicine, LMU - University of Munich, Dr. v. Hauner Children's Hospital, Munich, Germany.,Department of Traumatology, Klinikum Starnberg, Starnberg, Germany
| | | | - Christine Müller
- Department of Paediatric Neurology and Developmental Medicine, LMU - University of Munich, Dr. v. Hauner Children's Hospital, Munich, Germany
| | - Lena Ille
- Department of Paediatric Neurology and Developmental Medicine, LMU - University of Munich, Dr. v. Hauner Children's Hospital, Munich, Germany.,Department for Gynaecology, Städtisches Klinikum München Neuperlach, Munich, Germany
| | - Sebastian Schröder
- Department of Paediatric Neurology and Developmental Medicine, LMU - University of Munich, Dr. v. Hauner Children's Hospital, Munich, Germany
| | - Mohamed Idriess
- Department of Paediatric Neurology and Developmental Medicine, LMU - University of Munich, Dr. v. Hauner Children's Hospital, Munich, Germany
| | - Wolfgang Müller-Felber
- Department of Paediatric Neurology and Developmental Medicine, LMU - University of Munich, Dr. v. Hauner Children's Hospital, Munich, Germany
| | - Katharina Vill
- Department of Paediatric Neurology and Developmental Medicine, LMU - University of Munich, Dr. v. Hauner Children's Hospital, Munich, Germany
| |
Collapse
|
7
|
Sun Z, Xu D, Zhao L, Li X, Li S, Huang X, Li C, Sun L, Liu B, Jiang Z, Zhang L. A new therapeutic effect of fenofibrate in Duchenne muscular dystrophy: The promotion of myostatin degradation. Br J Pharmacol 2021; 179:1237-1250. [PMID: 34553378 DOI: 10.1111/bph.15678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Duchenne muscular dystrophy (DMD) is a degenerative muscle disease with no effective drug treatment. This study investigated the positive effects of fenofibrate on dystrophic muscles. EXPERIMENTAL APPROACH Myostatin expression in serum and muscle tissue of DMD patients and mdx mice were tested. Primary myoblasts isolated from mdx mice were challenged with an inflammatory stimulus and treated with fenofibrate. In animal experiments, 6-week-old male mdx mice were treated with fenofibrate (100 mg/kg) administered orally once per day for 6 weeks. Tests of muscle function plus histology and biochemical analyses of serum were conducted to evaluate the effects of fenofibrate. The expressions of myostatin, MuRF1, and atrogin-1 in skeletal muscle were evaluated by Western blotting and real-time PCR. Total and oxidative myosin heavy chain (MHC) were assessed via immunofluorescence. KEY RESULTS Increased expression of myostatin protein was found in dystrophic muscle of DMD patients and mdx mice. Fenofibrate enhanced myofibre differentiation by downregulating the expression of myostatin protein but not mRNA in primary myoblasts of mdx mice. Fenofibrate significantly improved muscle function while ameliorating muscle damage in mdx mice. These benefits are accompanied by an anti-inflammatory effect. Fenofibrate treatment returned myofibre function by inhibiting the expressions of myostatin, MuRF1, and atrogin-1 protein in the gastrocnemius muscle and diaphragm, while leaving the mRNA level of myostatin unaffected. CONCLUSIONS AND IMPLICATIONS Fenofibrate substantially slows muscle dystrophy by promoting the degradation of myostatin protein, which may indicate a new therapeutic focus for DMD patients.
Collapse
Affiliation(s)
- Zeren Sun
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Dengqiu Xu
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Sijia Li
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Xiaofei Huang
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Chunjie Li
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Bing Liu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.,Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Jin P, Gao X, Wang M, Qian Y, Yang J, Yang Y, Xu Y, Xu Y, Dong M. Case Report: Identification of Maternal Low-Level Mosaicism in the Dystrophin Gene by Droplet Digital Polymerase Chain Reaction. Front Genet 2021; 12:686993. [PMID: 34276787 PMCID: PMC8280780 DOI: 10.3389/fgene.2021.686993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/27/2021] [Indexed: 01/12/2023] Open
Abstract
Germline mosaicism should be suspected when the same de novo mutations are identified in a second pregnancy with asymptomatic parents. Our study aims to find a feasible approach to reveal the existence of germline mosaicism. Multiplex Ligation-dependent Probe Amplification was performed on a Duchenne muscular dystrophy affected pedigree to detect deletion mutations. Then gap-polymerase chain reaction was performed to amplify the breakpoints junction sequence. Droplet digital polymerase chain reaction was utilized to identify the mutation frequencies in healthy parents. The same deletion in the exon 51 of the dystrophin gene, which was 50,035 bp in size, was detected in the proband and the fetus but not in their parents. Droplet digital polymerase chain reaction analysis of peripheral blood samples revealed mutant alleles of 3.53% in maternal blood cells. We here report a case of maternal low-level mosaicism confirmed by droplet digital polymerase chain reaction in peripheral blood samples, which reveals the existence of germline mosaicism. Gap-polymerase chain reaction combined with droplet digital polymerase chain reaction provide insights into the detection of germline mosaicism.
Collapse
Affiliation(s)
- Pengzhen Jin
- Women's Hospital, School of Medicine Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xiaoyang Gao
- Women's Hospital, School of Medicine Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Miaomiao Wang
- Women's Hospital, School of Medicine Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Yeqing Qian
- Women's Hospital, School of Medicine Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Jingjin Yang
- Women's Hospital, School of Medicine Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Yanmei Yang
- Women's Hospital, School of Medicine Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Yuqing Xu
- Women's Hospital, School of Medicine Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Yanfei Xu
- Women's Hospital, School of Medicine Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Minyue Dong
- Women's Hospital, School of Medicine Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Niu X, Menhart N. Structural Perturbations of Exon-Skipping Edits within the Dystrophin D20:24 Region. Biochemistry 2021; 60:765-779. [PMID: 33656846 DOI: 10.1021/acs.biochem.0c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exon skipping is a disease-modifying therapy in which oligonucleotide analogues mask specific exons, eliminating them from the mature mRNA, and also the cognate protein. That is one possible therapeutic aim, but it can also be used to restore the reading frame for diseases caused by frameshift mutations, which is the case for Duchenne muscular dystrophy (DMD). DMD most commonly arises as a result of large exonic deletions that create a frameshift and abolish protein expression. Loss of dystrophin protein leads to the pathology of the disease, which is severe, causing death generally in the second or third decade of life. Here, the primary aim of exon skipping is restoration of protein expression by reading frame correction. However, the therapeutically expressed protein is missing both the region of the underlying genetic defect and the therapeutically skipped exon. How removing some region from the middle of a protein affects its structure and function is unclear. Many different underlying deletions are known, and exon skipping can be applied in many ways, in some cases in different ways to the same defect. These vary in how severely perturbative they are, with possible clinical consequences. In this study, we examine a systematic, comprehensive panel of exon edits in a region of dystrophin and identify for the first time exon edits that are minimally perturbed and appear to keep the structural stability similar to that of wild-type protein. We also identify factors that appear to be correlated with how perturbative an edit is.
Collapse
Affiliation(s)
- Xin Niu
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Nick Menhart
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|
10
|
Blaschek A, Rodrigues M, Ille L, Idriess M, Well T, Warken B, Müller C, Hannibal I, Tacke M, Müller-Felber W, Vill K. Is Exercise-Induced Fatigue a Problem in Children with Duchenne Muscular Dystrophy? Neuropediatrics 2020; 51:342-348. [PMID: 32369835 DOI: 10.1055/s-0040-1708859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) is a devastating X-linked muscular disorder. The number of studies investigating new therapeutic approaches is substantially increasing. This study aims to investigate the impact and diagnostic value of exercise-induced fatigue in DMD, which has been proposed as a suitable outcome parameter in other conditions like spinal muscular atrophy. PATIENTS AND METHODS A cohort of 55 DMD patients (49 of them treated with steroids and 9 with ataluren) underwent a total of 241 6MWT (mean 4.4 tests/patient) which were retrospectively analyzed. Exercise-induced fatigue was assessed by the ratio between the distance achieved in the sixth minute and the distance in the second minute of the 6MWT. In previous studies a quotient above 1 was defined as a sign of fatigue. RESULTS The average fatigue quotient in the whole cohort of patients was 1.0. In a further analysis no impact of age, steroid therapy, ataluren therapy, overall disability, and distance in the 6-minute walk test (6MWT) on fatigue in DMD patients could be shown. CONCLUSION Our data show that fatigue does not play a relevant role in DMD. Analysis of fatigue is not a useful outcome parameter in DMD studies. For this reason we suggest the 2MWT, which is better accepted by the patients, as an alternative to the commonly 6MWT.
Collapse
Affiliation(s)
- Astrid Blaschek
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Martin Rodrigues
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Lena Ille
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Mohammed Idriess
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Therese Well
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Birgit Warken
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Christine Müller
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Iris Hannibal
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Moritz Tacke
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Wolfgang Müller-Felber
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Katharina Vill
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
11
|
In Vivo Genome Engineering for the Treatment of Muscular Dystrophies. CURRENT STEM CELL REPORTS 2020. [DOI: 10.1007/s40778-020-00173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Bruter AV, Kalashnikova MV, Prytyko AP, Belyavsky AV. Maintenance of Plasmid Expression in vivo Depends Primarily on the CpG Contents of the Vector and Transgene. Mol Biol 2020; 54:427-435. [DOI: 10.1134/s0026893320030048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2025]
|
13
|
Heterogenetic parabiosis between healthy and dystrophic mice improve the histopathology in muscular dystrophy. Sci Rep 2020; 10:7075. [PMID: 32341395 PMCID: PMC7184587 DOI: 10.1038/s41598-020-64042-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/09/2020] [Indexed: 11/10/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease, characterized by mutations in the X-linked dystrophin, that has several therapeutic options but no curative treatment. Transplantation of muscle progenitor cells for treatment of DMD has been widely investigated; however, its application is hindered by limited cell survival due to the harmful dystrophic microenvironment. An alternative approach to utilize progenitor cells and circulatory factors and to improve the dystrophic muscle pathology and microenvironment is through parabiotic pairing, where mice are surgically sutured to create a joint circulatory system. Parabiotic mice were generated by surgically joining wild type (WT) mice expressing green fluorescent protein (GFP) with mdx mice. These mice developed a common circulation (approximately 50% green cells in the blood of mdx mice) 2-weeks after parabiotic pairing. We observed significantly improved dystrophic muscle pathology, including decreased inflammation, necrotic fibers and fibrosis in heterogenetic parabionts. Importantly, the GFP + cells isolated from the mdx mice (paired with GFP mice) underwent myogenic differentiation in vitro and expressed markers of mesenchymal stem cells and macrophages, which may potentially be involved in the improvement of dystrophic muscle pathology. These observations suggest that changing the dystrophic microenvironment can be a new approach to treat DMD.
Collapse
|
14
|
Expectations and anxieties of Duchenne muscular dystrophy patients and their families during the first-in-human clinical trial of NS-065/NCNP-01. Brain Dev 2020; 42:348-356. [PMID: 31992520 DOI: 10.1016/j.braindev.2020.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a recessive X-linked genetic disease caused by a mutation in the dystrophin gene. The new drug NS-065/NCNP-01 utilizing exon-skipping therapy targeting specific deletions has been used in a first-in-human trial for the treatment of DMD. We surveyed 10 pairs of DMD participants and their parents within this clinical trial via an iPad survey form and through interviews regarding their understanding of the trial, expectations, anxieties, and reasons for participating in the trial. Approximately half of the participants actively decided to participate of their own volition, and none considered quitting the trial. This indicates that participants participated more positively in this clinical trial than previously expected. However, some potential concerns were also revealed, with one being that the desire to please those around them might be more important to the DMD participants than the effects of the drug. Another issue is the possibility of biased information originating from the study subjects' parents; while seven out of 10 of the parents told their children that the study drug might work, only four of these parents also explained that it might not work. Only two study participants received an explanation concerning the drug's side effects from their parents. This result implies that caution should be taken when family expectations are high, and there is a possibility that subjects will be given biased information from their parents.
Collapse
|
15
|
Capitanio D, Moriggi M, Torretta E, Barbacini P, De Palma S, Viganò A, Lochmüller H, Muntoni F, Ferlini A, Mora M, Gelfi C. Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: changes contributing to preserve muscle function in Becker muscular dystrophy patients. J Cachexia Sarcopenia Muscle 2020; 11:547-563. [PMID: 31991054 PMCID: PMC7113522 DOI: 10.1002/jcsm.12527] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/08/2019] [Accepted: 11/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are characterized by muscle wasting leading to loss of ambulation in the first or third decade, respectively. In DMD, the lack of dystrophin hampers connections between intracellular cytoskeleton and cell membrane leading to repeated cycles of necrosis and regeneration associated with inflammation and loss of muscle ordered structure. BMD has a similar muscle phenotype but milder. Here, we address the question whether proteins at variance in BMD compared with DMD contribute to the milder phenotype in BMD, thus identifying a specific signature to be targeted for DMD treatment. METHODS Proteins extracted from skeletal muscle from DMD/BMD patients and young healthy subjects were either reduced and solubilized prior two-dimensional difference in gel electrophoresis/mass spectrometry differential analysis or tryptic digested prior label-free liquid chromatography with tandem mass spectrometry. Statistical analyses of proteins and peptides were performed by DeCyder and Perseus software and protein validation and verification by immunoblotting. RESULTS Proteomic results indicate minor changes in the extracellular matrix (ECM) protein composition in BMD muscles with retention of mechanotransduction signalling, reduced changes in cytoskeletal and contractile proteins. Conversely, in DMD patients, increased levels of several ECM cytoskeletal and contractile proteins were observed whereas some proteins of fast fibres and of Z-disc decreased. Detyrosinated alpha-tubulin was unchanged in BMD and increased in DMD although neuronal nitric oxide synthase was unchanged in BMD and greatly reduced in DMD. Metabolically, the tissue is characterized by a decrement of anaerobic metabolism both in DMD and BMD compared with controls, with increased levels of the glycogen metabolic pathway in BMD. Oxidative metabolism is severely compromised in DMD with impairment of malate shuttle; conversely, it is active in BMD supporting the tricarboxylic acid cycle and respiratory chain. Adipogenesis characterizes DMD, whereas proteins involved in fatty acids beta-oxidation are increased in BMD. Proteins involved in protein/amino acid metabolism, cell development, calcium handling, endoplasmic reticulum/sarcoplasmic reticulum stress response, and inflammation/immune response were increased in DMD. Both disorders are characterized by the impairment of N-linked protein glycosylation in the endoplasmic reticulum. Authophagy was decreased in DMD whereas it was retained in BMD. CONCLUSIONS The mechanosensing and metabolic disruption are central nodes of DMD/BMD phenotypes. The ECM proteome composition and the metabolic rewiring in BMD lead to preservation of energy levels supporting autophagy and cell renewal, thus promoting the retention of muscle function. Conversely, DMD patients are characterized by extracellular and cytoskeletal protein dysregulation and by metabolic restriction at the level of α-ketoglutarate leading to shortage of glutamate-derived molecules that over time triggers lipogenesis and lipotoxicity.
Collapse
Affiliation(s)
- Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Sara De Palma
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Agnese Viganò
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Alessandra Ferlini
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London, UK.,Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
16
|
Mizobuti DS, Fogaça AR, Moraes FDSR, Moraes LHR, Mâncio RD, Hermes TDA, Macedo AB, Valduga AH, de Lourenço CC, Pereira ECL, Minatel E. Coenzyme Q10 supplementation acts as antioxidant on dystrophic muscle cells. Cell Stress Chaperones 2019; 24:1175-1185. [PMID: 31620981 PMCID: PMC6882990 DOI: 10.1007/s12192-019-01039-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022] Open
Abstract
Increased oxidative stress is a frequent feature in Duchenne muscular dystrophy (DMD). High reactive oxygen species (ROS) levels, associated with altered enzyme antioxidant activity, have been reported in dystrophic patients and mdx mice, an experimental model of DMD. In this study, we investigated the effects of coenzyme Q10 (CoQ10) on oxidative stress marker levels and calcium concentration in primary cultures of dystrophic muscle cells from mdx mice. Primary cultures of skeletal muscle cells from C57BL/10 and mdx mice were treated with coenzyme Q10 (5 μM) for 24 h. The untreated mdx and C57BL/10 muscle cells were used as controls. The MTT and live/dead cell assays showed that CoQ10 presented no cytotoxic effect on normal and dystrophic muscle cells. Intracellular calcium concentration, H2O2 production, 4-HNE, and SOD-2 levels were higher in mdx muscle cells. No significant difference in the catalase, GPx, and Gr levels was found between experimental groups. This study demonstrated that CoQ10 treatment was able to reduce levels of oxidative stress markers, such as H2O2, acting as an antioxidant, as well as decreasing abnormal intracellular calcium influx in dystrophic muscles cells. This study demonstrated that CoQ10 treatment was able to reduce levels of oxidative stress markers, such as H2O2, acting as an antioxidant, as well as decreasing abnormal intracellular calcium influx in dystrophic muscles cells. Our findings also suggest that the decrease of oxidative stress reduces the need for upregulation of antioxidant pathways, such as SOD and GSH.
Collapse
Affiliation(s)
- Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Aline Reis Fogaça
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Fernanda Dos Santos Rapucci Moraes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Luis Henrique Rapucci Moraes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Rafael Dias Mâncio
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Túlio de Almeida Hermes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Aline Barbosa Macedo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Amanda Harduim Valduga
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Caroline Caramano de Lourenço
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Elaine Cristina Leite Pereira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
- Faculdade de Ceilandia, Universidade de Brasília (UnB), Brasília, Distrito Federal, 72220-275, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil.
| |
Collapse
|
17
|
More than a messenger: Alternative splicing as a therapeutic target. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194395. [PMID: 31271898 DOI: 10.1016/j.bbagrm.2019.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Abstract
Alternative splicing of pre-mRNA is an essential post- and co-transcriptional mechanism of gene expression regulation that produces multiple mature mRNA transcripts from a single gene. Genetic mutations that affect splicing underlie numerous devastating diseases. The complexity of splicing regulation allows for multiple therapeutic approaches to correct disease-associated mis-splicing events. In this review, we first highlight recent findings from therapeutic strategies that have used splice switching antisense oligonucleotides and small molecules that bind directly to RNA. Second, we summarize different genetic and chemical approaches to target components of the spliceosome to correct splicing defects in pathological conditions. Finally, we present an overview of compounds that target kinases and accessory pathways that intersect with the splicing machinery. Advancements in the understanding of disease-specific defects caused by mis-regulation of alternative splicing will certainly increase the development of therapeutic options for the clinic. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
|
18
|
Von den Hoff JW, Carvajal Monroy PL, Ongkosuwito EM, van Kuppevelt TH, Daamen WF. Muscle fibrosis in the soft palate: Delivery of cells, growth factors and anti-fibrotics. Adv Drug Deliv Rev 2019; 146:60-76. [PMID: 30107211 DOI: 10.1016/j.addr.2018.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/29/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The healing of skeletal muscle injuries after major trauma or surgical reconstruction is often complicated by the development of fibrosis leading to impaired function. Research in the field of muscle regeneration is mainly focused on the restoration of muscle mass while far less attention is paid to the prevention of fibrosis. In this review, we take as an example the reconstruction of the muscles in the soft palate of cleft palate patients. After surgical closure of the soft palate, muscle function during speech is often impaired by a shortage of muscle tissue as well as the development of fibrosis. We will give a short overview of the most common approaches to generate muscle mass and then focus on strategies to prevent fibrosis. These include anti-fibrotic strategies that have been developed for muscle and other organs by the delivery of small molecules, decorin and miRNAs. Anti-fibrotic compounds should be delivered in aligned constructs in order to obtain the organized architecture of muscle tissue. The available techniques for the preparation of aligned muscle constructs will be discussed. The combination of approaches to generate muscle mass with anti-fibrotic components in an aligned muscle construct may greatly improve the functional outcome of regenerative therapies for muscle injuries.
Collapse
Affiliation(s)
- Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Paola L Carvajal Monroy
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, P.O. Box 2060, 3000CB Rotterdam, The Netherlands.
| | - Edwin M Ongkosuwito
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Piga D, Salani S, Magri F, Brusa R, Mauri E, Comi GP, Bresolin N, Corti S. Human induced pluripotent stem cell models for the study and treatment of Duchenne and Becker muscular dystrophies. Ther Adv Neurol Disord 2019; 12:1756286419833478. [PMID: 31105767 PMCID: PMC6501480 DOI: 10.1177/1756286419833478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Duchenne and Becker muscular dystrophies are the most common muscle diseases and are both currently incurable. They are caused by mutations in the dystrophin gene, which lead to the absence or reduction/truncation of the encoded protein, with progressive muscle degeneration that clinically manifests in muscle weakness, cardiac and respiratory involvement and early death. The limits of animal models to exactly reproduce human muscle disease and to predict clinically relevant treatment effects has prompted the development of more accurate in vitro skeletal muscle models. However, the challenge of effectively obtaining mature skeletal muscle cells or satellite stem cells as primary cultures has hampered the development of in vitro models. Here, we discuss the recently developed technologies that enable the differentiation of skeletal muscle from human induced pluripotent stem cells (iPSCs) of Duchenne and Becker patients. These systems recapitulate key disease features including inflammation and scarce regenerative myogenic capacity that are partially rescued by genetic and pharmacological therapies and can provide a useful platform to study and realize future therapeutic treatments. Implementation of this model also takes advantage of the developing genome editing field, which is a promising approach not only for correcting dystrophin, but also for modulating the underlying mechanisms of skeletal muscle development, regeneration and disease. These data prove the possibility of creating an accurate Duchenne and Becker in vitro model starting from iPSCs, to be used for pathogenetic studies and for drug screening to identify strategies capable of stopping or reversing muscular dystrophinopathies and other muscle diseases.
Collapse
Affiliation(s)
- Daniela Piga
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Sabrina Salani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Francesca Magri
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Roberta Brusa
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Eleonora Mauri
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
20
|
Thompson BR, Soller KJ, Vetter A, Yang J, Veglia G, Bowser MT, Metzger JM. Cytoplasmic nucleic acid-based XNAs directly enhance live cardiac cell function by a Ca 2+ cycling-independent mechanism via the sarcomere. J Mol Cell Cardiol 2019; 130:1-9. [PMID: 30849419 DOI: 10.1016/j.yjmcc.2019.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/05/2019] [Accepted: 02/27/2019] [Indexed: 11/19/2022]
Abstract
Nucleic acid - protein interactions are critical for regulating gene activation in the nucleus. In the cytoplasm, however, potential nucleic acid-protein functional interactions are less clear. The emergence of a large and expanding number of non-coding RNAs and DNA fragments raises the possibility that the cytoplasmic nucleic acids may interact with cytoplasmic cellular components to directly alter key biological processes within the cell. We now show that both natural and synthetic nucleic acids, collectively XNAs, when introduced to the cytoplasm of live cell cardiac myocytes, markedly enhance contractile function via a mechanism that is independent of new translation, activation of the TLR-9 pathway or by altered intracellular Ca2+ cycling. Findings show a steep XNA oligo length-dependence, but not sequence dependence or nucleic acid moiety dependence, for cytoplasmic XNAs to hasten myocyte relaxation. XNAs localized to the sarcomere in a striated pattern and bound the cardiac troponin regulatory complex with high affinity in an electrostatic-dependent manner. Mechanistically, XNAs phenocopy PKA-based modified troponin to cause faster relaxation. Collectively, these data support a new role for cytoplasmic nucleic acids in directly modulating live cell cardiac performance and raise the possibility that cytoplasmic nucleic acid - protein interactions may alter functionally relevant pathways in other cell types.
Collapse
Affiliation(s)
- Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Kailey J Soller
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States of America
| | - Anthony Vetter
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Jing Yang
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States of America
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Michael T Bowser
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States of America
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America.
| |
Collapse
|
21
|
Korinthenberg R. A new era in the management of Duchenne muscular dystrophy. Dev Med Child Neurol 2019; 61:292-297. [PMID: 30556126 DOI: 10.1111/dmcn.14129] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 12/27/2022]
Abstract
The management of Duchenne muscular dystrophy (DMD) has changed considerably over the last few decades. Standards of care have recently been updated, based on systematic reviews of the literature and structured, case-based consensus discussions of experts. Besides addressing muscular function, these recommendations cover most areas of organ involvement and psychosocial issues. Studies employing animal models investigating basic disease mechanisms have increased considerably. Development of valid functional outcome measures enabled high-evidence, clinical trials in males with DMD. Stop codon readthrough with ataluren has revealed some effect in patients with moderate disability and has been approved for males with suitable mutations who are still ambulant. Exon 51 skipping with eteplirsen demonstrated a structural and functional effect in a small group of patients and received restricted approval in the USA. Further trials investigating a broad range of mechanisms are underway. However, much more work is needed to develop more active treatments that stop disease progression. Likewise, the distribution of complex and expensive therapies to underprivileged patients and those in poorer regions must be improved. WHAT THIS PAPER ADDS: Updated standards of care covering most clinical aspects of Duchenne muscular dystrophy (DMD) are available. Adequately controlled clinical trials have allowed initial approval of disease-modifying drugs for small groups of patients. Scientific, economic, and political efforts are needed to make effective therapies available more quickly. Effective therapies should be made available more quickly to patients in low-income regions.
Collapse
Affiliation(s)
- Rudolf Korinthenberg
- Department of Neuropediatrics and Muscular Disorders, Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, Robinson-Hamm JN, Bulaklak K, Castellanos Rivera RM, Collier JH, Asokan A, Gersbach CA. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med 2019; 25:427-432. [PMID: 30778238 PMCID: PMC6455975 DOI: 10.1038/s41591-019-0344-3] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a monogenic disorder and a candidate for therapeutic genome editing. There have been several recent reports of genome editing in preclinical models of Duchenne muscular dystrophy1-6, however, the long-term persistence and safety of these genome editing approaches have not been addressed. Here we show that genome editing and dystrophin protein restoration is sustained in the mdx mouse model of Duchenne muscular dystrophy for 1 year after a single intravenous administration of an adeno-associated virus that encodes CRISPR (AAV-CRISPR). We also show that AAV-CRISPR is immunogenic when administered to adult mice7; however, humoral and cellular immune responses can be avoided by treating neonatal mice. Additionally, we describe unintended genome and transcript alterations induced by AAV-CRISPR that should be considered for the development of AAV-CRISPR as a therapeutic approach. This study shows the potential of AAV-CRISPR for permanent genome corrections and highlights aspects of host response and alternative genome editing outcomes that require further study.
Collapse
Affiliation(s)
- Christopher E Nelson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew P Gemberling
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Matthew L Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew A Waller
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Joel D Bohning
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Jacqueline N Robinson-Hamm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Karen Bulaklak
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | | | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
23
|
Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Semin Perinatol 2018; 42:487-500. [PMID: 30482590 DOI: 10.1053/j.semperi.2018.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy carries the potential to treat more than 10,000 human monogenic diseases and benefit an even greater number of complex polygenic conditions. The repurposing of CRISPR/Cas9, an ancient bacterial immune defense system, into a gene-editing technology has armed researchers with a revolutionary tool for gene therapy. However, as the breadth of research and clinical applications of this technology continues to expand, outstanding technical challenges and ethical considerations will need to be addressed before clinical applications become commonplace. Here, we review CRISPR/Cas9 technology and discuss its benefits and limitations in research and the clinical context, as well as ethical considerations surrounding the use of CRISPR gene editing.
Collapse
Affiliation(s)
- Fani Memi
- Department of Cell and Developmental Biology, University College London, 21 University Street, WC1E 6DE London, UK.
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, 300 George, 7(th) Floor, New Haven, CT 06511, United States.
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, 300 George, 7(th) Floor, New Haven, CT 06511, United States.
| |
Collapse
|
24
|
|
25
|
Stein CA. Eteplirsen Approved for Duchenne Muscular Dystrophy: The FDA Faces a Difficult Choice. Mol Ther 2018; 24:1884-1885. [PMID: 27916994 DOI: 10.1038/mt.2016.188] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
26
|
Monitoring disease activity noninvasively in the mdx model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2018; 115:7741-7746. [PMID: 29987034 DOI: 10.1073/pnas.1802425115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare, muscle degenerative disease resulting from the absence of the dystrophin protein. DMD is characterized by progressive loss of muscle fibers, muscle weakness, and eventually loss of ambulation and premature death. Currently, there is no cure for DMD and improved methods of disease monitoring are crucial for the development of novel treatments. In this study, we describe a new method of assessing disease progression noninvasively in the mdx model of DMD. The reporter mice, which we term the dystrophic Degeneration Reporter strains, contain an inducible CRE-responsive luciferase reporter active in mature myofibers. In these mice, muscle degeneration is reflected in changes in the level of luciferase expression, which can be monitored using noninvasive, bioluminescence imaging. We monitored the natural history and disease progression in these dystrophic report mice and found that decreases in luciferase signals directly correlated with muscle degeneration. We further demonstrated that this reporter strain, as well as a previously reported Regeneration Reporter strain, successfully reveals the effectiveness of a gene therapy treatment following systemic administration of a recombinant adeno-associated virus-6 (rAAV-6) encoding a microdystrophin construct. Our data demonstrate the value of these noninvasive imaging modalities for monitoring disease progression and response to therapy in mouse models of muscular dystrophy.
Collapse
|
27
|
Begam M, Collier AF, Mueller AL, Roche R, Galen SS, Roche JA. Diltiazem improves contractile properties of skeletal muscle in dysferlin-deficient BLAJ mice, but does not reduce contraction-induced muscle damage. Physiol Rep 2018; 6:e13727. [PMID: 29890050 PMCID: PMC5995314 DOI: 10.14814/phy2.13727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/06/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
B6.A-Dysfprmd /GeneJ (BLAJ) mice model human limb-girdle muscular dystrophy 2B (LGMD2B), which is linked to mutations in the dysferlin (DYSF) gene. We tested the hypothesis that, the calcium ion (Ca2+ ) channel blocker diltiazem (DTZ), reduces contraction-induced skeletal muscle damage, in BLAJ mice. We randomly assigned mice (N = 12; 3-4 month old males) to one of two groups - DTZ (N = 6) or vehicle (VEH, distilled water, N = 6). We conditioned mice with either DTZ or VEH for 1 week, after which, their tibialis anterior (TA) muscles were tested for contractile torque and susceptibility to injury from forced eccentric contractions. We continued dosing with DTZ or VEH for 3 days following eccentric contractions, and then studied torque recovery and muscle damage. We analyzed contractile torque before eccentric contractions, immediately after eccentric contractions, and at 3 days after eccentric contractions; and counted damaged fibers in the injured and uninjured TA muscles. We found that DTZ improved contractile torque before and immediately after forced eccentric contractions, but did not reduce delayed-onset muscle damage that was observed at 3 days after eccentric contractions.
Collapse
Affiliation(s)
- Morium Begam
- Physical Therapy ProgramDepartment of Health Care SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Alyssa F. Collier
- Program in Physical TherapyWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Amber L. Mueller
- Program in Molecular MedicineUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Renuka Roche
- Eastern Michigan University School of Health SciencesYpsilantiMichigan
| | - Sujay S. Galen
- Physical Therapy ProgramDepartment of Health Care SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Joseph A. Roche
- Physical Therapy ProgramDepartment of Health Care SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| |
Collapse
|
28
|
Hildyard JC, Taylor-Brown F, Massey C, Wells DJ, Piercy RJ. Determination of qPCR Reference Genes Suitable for Normalizing Gene Expression in a Canine Model of Duchenne Muscular Dystrophy. J Neuromuscul Dis 2018; 5:177-191. [DOI: 10.3233/jnd-170267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- John C.W. Hildyard
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, UK
| | - Frances Taylor-Brown
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, UK
| | - Claire Massey
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, UK
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, UK
| |
Collapse
|
29
|
Bier A, Berenstein P, Kronfeld N, Morgoulis D, Ziv-Av A, Goldstein H, Kazimirsky G, Cazacu S, Meir R, Popovtzer R, Dori A, Brodie C. Placenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in Duchenne muscular dystrophy. Biomaterials 2018; 174:67-78. [PMID: 29783118 DOI: 10.1016/j.biomaterials.2018.04.055] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a degenerative lethal, X-linked disease of skeletal and cardiac muscles caused by mutations in the dystrophin gene. Cell therapy using different cell types, including mesenchymal stromal cells (MSCs), has been considered as a potential approach for the treatment of DMD. MSCs can be obtained from autologous sources such as bone marrow and adipose tissues or from allogeneic placenta and umbilical cord. The safety and therapeutic impact of these cells has been demonstrated in pre-clinical and clinical studies and their functions are attributed to paracrine effects that are mediated by secreted cytokines and extracellular vesicles. Here, we studied the therapeutic effects of placenta-derived MSCs (PL-MSCs) and their secreted exosomes using mouse and human myoblasts from healthy controls, Duchenne patients and mdx mice. Treatment of myoblasts with conditioned medium or exosomes secreted by PL-MSCs increased the differentiation of these cells and decreased the expression of fibrogenic genes in DMD patient myoblasts. In addition, these treatments also increased the expression of utrophin in these cells. Using a quantitative miR-29c reporter, we demonstrated that the PL-MSC effects were partly mediated by the transfer of exosomal miR-29c. Intramuscular transplantation of PL-MSCs in mdx mice resulted in decreased creatine kinase levels. PL-MSCs significantly decreased the expression of TGF-β and the level of fibrosis in the diaphragm and cardiac muscles, inhibited inflammation and increased utrophin expression. In vivo imaging analyses using MSCs labeled with gold nanoparticles or fluorescent dyes demonstrated localization of the cells in the muscle tissues up to 3 weeks post treatment. Altogether, these results demonstrate that PL-MSCs and their secreted exosomes have important clinical applications in cell therapy of DMD partly via the targeted delivery of exosomal miR-29c.
Collapse
Affiliation(s)
- Ariel Bier
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Peter Berenstein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Noam Kronfeld
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Daria Morgoulis
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Amotz Ziv-Av
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hodaya Goldstein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Gila Kazimirsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Simona Cazacu
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Rinat Meir
- Faculty of Engineering & Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Rachela Popovtzer
- Faculty of Engineering & Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Amir Dori
- Department of Neurology, Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat-Gan and Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Chaya Brodie
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel; Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA; ExoStem Biotec, Israel.
| |
Collapse
|
30
|
Liang WC, Wang CH, Chou PC, Chen WZ, Jong YJ. The natural history of the patients with Duchenne muscular dystrophy in Taiwan: A medical center experience. Pediatr Neonatol 2018; 59:176-183. [PMID: 28903883 DOI: 10.1016/j.pedneo.2017.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/24/2016] [Accepted: 02/15/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is the most common hereditary muscular dystrophy and caused by DMD gene mutation. In addition to progressive proximal muscle weakness, respiratory, orthopedic, and gastrointestinal complications are often observed in DMD. The natural history of patients with DMD in Taiwan has not been reported thus far. METHODS Medical records of 39 patients who received a diagnosis of DMD between 1999 and 2016 at Kaohsiung Medical University Hospital were reviewed. The diagnosis of DMD was confirmed through muscle biopsy or DMD genetic analysis. RESULTS The mean onset age and mean follow-up period were 2.75 years and 6.76 years, respectively. Seventeen patients (43.5%) had a family history of DMD. The mean full intelligence quotient of the patients was 71.08, and the mean age of walking ability loss was 9.7 years (25 patients). The mean onset age of respiratory insufficiency was 10.64 years with a decline rate of 5.18% per year (25 patients). The mean onset age of cardiomyopathy was 14.69 years (seven patients). The mean onset age of scoliosis was 13.29 years with a progression rate of 11.48° per year (14 patients). Eleven (28.2%) and eight (20.5%) patients had deletions and duplications of DMD, respectively. Fourteen patients (35.9%) had point mutations or small deletions or insertions. Five patients received only multiplex ligation-dependent probe amplification (MLPA) analysis and exhibited neither deletion nor duplication. No mutation was identified in one patient through both MLPA and exon sequencing. CONCLUSION The clinical phenotypes and disease course in our cohort were consistent with that reported in previous studies. However, the proportion of point mutations or small deletions or insertions in our study was considerably higher than that in reports from other populations. Cardiac ejection fraction was found not a reliable biomarker for identifying cardiac problems, discovering a better parameter is necessary.
Collapse
Affiliation(s)
- Wen-Chen Liang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Hua Wang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Ching Chou
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Zi Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuh-Jyh Jong
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
31
|
Mertz L. A CRISPR Approach for a Common Inherited Disease: Researchers at Duke University Hope Gene Editing Can Eliminate Mutations That Lead to Duchenne Muscular Dystrophy. IEEE Pulse 2018; 9:12-14. [PMID: 29553934 DOI: 10.1109/mpul.2018.2790905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene editing and CRISPR (a group of repeated DNA sequences in bacteria) typically target disease-causing mutated genes by eliminating the bad gene altogether, by correcting the problem DNA to restore proper gene functioning, or by modifying a different gene to compensate for the faulty gene's lost function. One research group at Duke University in Durham, North Carolina, however, is using a different strategy to fight one of the most common inherited genetic diseases: Duchenne muscular dystrophy (DMD).
Collapse
|
32
|
Guiraud S, Roblin D, Kay DE. The potential of utrophin modulators for the treatment of Duchenne muscular dystrophy. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1438261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon Guiraud
- Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Davies. E. Kay
- Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Crispi V, Matsakas A. Duchenne muscular dystrophy: genome editing gives new hope for treatment. Postgrad Med J 2018; 94:296-304. [DOI: 10.1136/postgradmedj-2017-135377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive wasting disease of skeletal and cardiac muscles, representing one of the most common recessive fatal inherited genetic diseases with 1:3500–1:5000 in yearly incidence. It is caused by mutations in the DMD gene that encodes the membrane-associated dystrophin protein. Over the years, many have been the approaches to management of DMD, but despite all efforts, no effective treatment has yet been discovered. Hope for the development of potential therapeutics has followed the recent advances in genome editing and gene therapy. This review gives an overview to DMD and summarises current lines of evidence with regard to treatment and disease management alongside the appropriate considerations.
Collapse
|
34
|
Savino W, Pinto-Mariz F, Mouly V. Flow Cytometry-Defined CD49d Expression in Circulating T-Lymphocytes Is a Biomarker for Disease Progression in Duchenne Muscular Dystrophy. Methods Mol Biol 2018; 1687:219-227. [PMID: 29067667 DOI: 10.1007/978-1-4939-7374-3_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Duchenne muscular dystrophy (DMD) affects 1:3500-1:5000 male births, and is caused by X-linked mutations in the dystrophin gene, manifested by progressive muscle weakness and wasting due to the absence of dystrophin protein, leading to degeneration of skeletal muscle. DMD patients are clinically heterogeneous and the functional phenotype often cannot be correlated with the genotype. Therefore, defined reliable noninvasive biomarkers aiming at predicting if a given DMD child will progress more or less rapidly will be instrumental to better design inclusion of defined patients for future therapeutic assays. We recently showed that CD49d expression levels in blood-derived T-cell subsets can predict disease progression in DMD patients. Herein we describe in detail the methodology to be applied for defining, through four-color flow cytometry, the membrane expression levels of the CD49d (the α4 chain of the integrins α4β1 and α4β7) in circulating CD4+ and CD8+ T cell subsets. Since we have also shown that this molecule can also be placed as a potential target for therapeutics in DMD, we also describe the cell migration functional assay that can be applied to test potential CD49d inhibitors that can modulate their ability to cross endothelial or extracellular matrix (ECM) barriers.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil. .,Fiocruz-Inserm-UPMC Franco-Brazilian International Laboratory on Cell Therapy and Immunotherapy, Pierre and Marie Curie University, Sorbonne Universities, Paris, France. .,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| | - Fernanda Pinto-Mariz
- Institute of Pediatrics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vincent Mouly
- Fiocruz-Inserm-UPMC Franco-Brazilian International Laboratory on Cell Therapy and Immunotherapy, Pierre and Marie Curie University, Sorbonne Universities, Paris, France.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.,Center for Research in Myology, Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, 47 Boulevard de l'hôpital, 75013, Paris, France
| |
Collapse
|
35
|
Wilson K, Faelan C, Patterson-Kane JC, Rudmann DG, Moore SA, Frank D, Charleston J, Tinsley J, Young GD, Milici AJ. Duchenne and Becker Muscular Dystrophies: A Review of Animal Models, Clinical End Points, and Biomarker Quantification. Toxicol Pathol 2017; 45:961-976. [PMID: 28974147 DOI: 10.1177/0192623317734823] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are neuromuscular disorders that primarily affect boys due to an X-linked mutation in the DMD gene, resulting in reduced to near absence of dystrophin or expression of truncated forms of dystrophin. Some newer therapeutic interventions aim to increase sarcolemmal dystrophin expression, and accurate dystrophin quantification is critical for demonstrating pharmacodynamic relationships in preclinical studies and clinical trials. Current challenges with measuring dystrophin include the variation in protein expression within individual muscle fibers and across whole muscle samples, the presence of preexisting dystrophin-positive revertant fibers, and trace amounts of residual dystrophin. Immunofluorescence quantification of dystrophin can overcome many of these challenges, but manual quantification of protein expression may be complicated by variations in the collection of images, reproducible scoring of fluorescent intensity, and bias introduced by manual scoring of typically only a few high-power fields. This review highlights the pathology of DMD and BMD, discusses animal models of DMD and BMD, and describes dystrophin biomarker quantitation in DMD and BMD, with several image analysis approaches, including a new automated method that evaluates protein expression of individual muscle fibers.
Collapse
Affiliation(s)
- Kristin Wilson
- 1 Flagship Biosciences, Inc., Westminster, Colorado, USA
| | - Crystal Faelan
- 1 Flagship Biosciences, Inc., Westminster, Colorado, USA
| | | | | | - Steven A Moore
- 2 Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Diane Frank
- 3 Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Jay Charleston
- 3 Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Jon Tinsley
- 4 Summit Therapeutics, Abingdon, United Kingdom
| | - G David Young
- 1 Flagship Biosciences, Inc., Westminster, Colorado, USA
| | | |
Collapse
|
36
|
Lee TM, Hsu DT, Kantor P, Towbin JA, Ware SM, Colan SD, Chung WK, Jefferies JL, Rossano JW, Castleberry CD, Addonizio LJ, Lal AK, Lamour JM, Miller EM, Thrush PT, Czachor JD, Razoky H, Hill A, Lipshultz SE. Pediatric Cardiomyopathies. Circ Res 2017; 121:855-873. [PMID: 28912187 DOI: 10.1161/circresaha.116.309386] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pediatric cardiomyopathies are rare diseases with an annual incidence of 1.1 to 1.5 per 100 000. Dilated and hypertrophic cardiomyopathies are the most common; restrictive, noncompaction, and mixed cardiomyopathies occur infrequently; and arrhythmogenic right ventricular cardiomyopathy is rare. Pediatric cardiomyopathies can result from coronary artery abnormalities, tachyarrhythmias, exposure to infection or toxins, or secondary to other underlying disorders. Increasingly, the importance of genetic mutations in the pathogenesis of isolated or syndromic pediatric cardiomyopathies is becoming apparent. Pediatric cardiomyopathies often occur in the absence of comorbidities, such as atherosclerosis, hypertension, renal dysfunction, and diabetes mellitus; as a result, they offer insights into the primary pathogenesis of myocardial dysfunction. Large international registries have characterized the epidemiology, cause, and outcomes of pediatric cardiomyopathies. Although adult and pediatric cardiomyopathies have similar morphological and clinical manifestations, their outcomes differ significantly. Within 2 years of presentation, normalization of function occurs in 20% of children with dilated cardiomyopathy, and 40% die or undergo transplantation. Infants with hypertrophic cardiomyopathy have a 2-year mortality of 30%, whereas death is rare in older children. Sudden death is rare. Molecular evidence indicates that gene expression differs between adult and pediatric cardiomyopathies, suggesting that treatment response may differ as well. Clinical trials to support evidence-based treatments and the development of disease-specific therapies for pediatric cardiomyopathies are in their infancy. This compendium summarizes current knowledge of the genetic and molecular origins, clinical course, and outcomes of the most common phenotypic presentations of pediatric cardiomyopathies and highlights key areas where additional research is required. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifiers: NCT02549664 and NCT01912534.
Collapse
Affiliation(s)
- Teresa M Lee
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.).
| | - Daphne T Hsu
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Paul Kantor
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Jeffrey A Towbin
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Stephanie M Ware
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Steven D Colan
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Wendy K Chung
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - John L Jefferies
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Joseph W Rossano
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Chesney D Castleberry
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Linda J Addonizio
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Ashwin K Lal
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Jacqueline M Lamour
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Erin M Miller
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Philip T Thrush
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Jason D Czachor
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Hiedy Razoky
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Ashley Hill
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Steven E Lipshultz
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| |
Collapse
|
37
|
Rozenfeld JHK, Duarte EL, Oliveira TR, Lamy MT. Structural insights on biologically relevant cationic membranes by ESR spectroscopy. Biophys Rev 2017; 9:633-647. [PMID: 28836112 PMCID: PMC5662045 DOI: 10.1007/s12551-017-0304-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/28/2017] [Indexed: 12/26/2022] Open
Abstract
Cationic bilayers have been used as models to study membrane fusion, templates for polymerization and deposition of materials, carriers of nucleic acids and hydrophobic drugs, microbicidal agents and vaccine adjuvants. The versatility of these membranes depends on their structure. Electron spin resonance (ESR) spectroscopy is a powerful technique that employs hydrophobic spin labels to probe membrane structure and packing. The focus of this review is the extensive structural characterization of cationic membranes prepared with dioctadecyldimethylammonium bromide or diC14-amidine to illustrate how ESR spectroscopy can provide important structural information on bilayer thermotropic behavior, gel and fluid phases, phase coexistence, presence of bilayer interdigitation, membrane fusion and interactions with other biologically relevant molecules.
Collapse
Affiliation(s)
- Julio H K Rozenfeld
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP, 04023-062, Brazil
| | - Evandro L Duarte
- Instituto de Física, Universidade de São Paulo, R. do Matão 1371, São Paulo, SP, 05508-090, Brazil
| | - Tiago R Oliveira
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, R. Arcturus (Jd Antares), São Bernardo do Campo, SP, Brazil
| | - M Teresa Lamy
- Instituto de Física, Universidade de São Paulo, R. do Matão 1371, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
38
|
Nelson CE, Robinson-Hamm JN, Gersbach CA. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol 2017; 13:647-661. [DOI: 10.1038/nrneurol.2017.126] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Mou H, Smith JL, Peng L, Yin H, Moore J, Zhang XO, Song CQ, Sheel A, Wu Q, Ozata DM, Li Y, Anderson DG, Emerson CP, Sontheimer EJ, Moore MJ, Weng Z, Xue W. CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol 2017; 18:108. [PMID: 28615073 PMCID: PMC5470253 DOI: 10.1186/s13059-017-1237-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/11/2017] [Indexed: 12/26/2022] Open
Abstract
CRISPR is widely used to disrupt gene function by inducing small insertions and deletions. Here, we show that some single-guide RNAs (sgRNAs) can induce exon skipping or large genomic deletions that delete exons. For example, CRISPR-mediated editing of β-catenin exon 3, which encodes an autoinhibitory domain, induces partial skipping of the in-frame exon and nuclear accumulation of β-catenin. A single sgRNA can induce small insertions or deletions that partially alter splicing or unexpected larger deletions that remove exons. Exon skipping adds to the unexpected outcomes that must be accounted for, and perhaps taken advantage of, in CRISPR experiments.
Collapse
Affiliation(s)
- Haiwei Mou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jordan L Smith
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lingtao Peng
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Hao Yin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jill Moore
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Chun-Qing Song
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ankur Sheel
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Qiongqiong Wu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Deniz M Ozata
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yingxiang Li
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Melissa J Moore
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Zhiping Weng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
40
|
Pharmacological advances for treatment in Duchenne muscular dystrophy. Curr Opin Pharmacol 2017; 34:36-48. [DOI: 10.1016/j.coph.2017.04.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/13/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
|
41
|
FDA-Approved Oligonucleotide Therapies in 2017. Mol Ther 2017; 25:1069-1075. [PMID: 28366767 DOI: 10.1016/j.ymthe.2017.03.023] [Citation(s) in RCA: 467] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 01/16/2023] Open
Abstract
Oligonucleotides (oligos) have been under clinical development for approximately the past 30 years, beginning with antisense oligonucleotides (ASOs) and apatmers and followed about 15 years ago by siRNAs. During that lengthy period of time, numerous clinical trials have been performed and thousands of trial participants accrued onto studies. Of all the molecules evaluated as of January 2017, the regulatory authorities assessed that six provided clear clinical benefit in rigorously controlled trials. The story of these six is given in this review.
Collapse
|
42
|
Kataoka N. Modulation of aberrant splicing in human RNA diseases by chemical compounds. Hum Genet 2017; 136:1237-1245. [PMID: 28364159 DOI: 10.1007/s00439-017-1789-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/25/2017] [Indexed: 01/09/2023]
Abstract
Pre-mRNA splicing is an essential step for gene expression in higher eukaryotes. Alternative splicing contributes to diversity of the expressed proteins from the limited number of genes. Disruption of splicing regulation often results in hereditary and sporadic diseases called as 'RNA diseases'. Modulation of splicing by small chemical compounds and nucleic acids has been tried to target aberrant splicing in those diseases. Several RNA diseases and splicing-target therapeutic approaches will be briefly introduced in this review. Accumulating knowledge about molecular mechanism of aberrant splicing and their correction by chemical compounds is important not only for RNA biologists, but also for clinicians who desire therapies for those diseases.
Collapse
Affiliation(s)
- Naoyuki Kataoka
- Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
43
|
Farruggio AP, Bhakta MS, du Bois H, Ma J, Calos MP. Genomic integration of the full-length dystrophin coding sequence in Duchenne muscular dystrophy induced pluripotent stem cells. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 01/13/2023]
Affiliation(s)
| | - Mital S. Bhakta
- Department of Genetics; Stanford University School of Medicine; Stanford CA USA
| | - Haley du Bois
- Department of Genetics; Stanford University School of Medicine; Stanford CA USA
| | - Julia Ma
- Department of Genetics; Stanford University School of Medicine; Stanford CA USA
| | - Michele P. Calos
- Department of Genetics; Stanford University School of Medicine; Stanford CA USA
| |
Collapse
|
44
|
Wang DN, Wang ZQ, Yan L, He J, Lin MT, Chen WJ, Wang N. Clinical and mutational characteristics of Duchenne muscular dystrophy patients based on a comprehensive database in South China. Neuromuscul Disord 2017; 27:715-722. [PMID: 28318817 DOI: 10.1016/j.nmd.2017.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022]
Abstract
The development of clinical trials for Duchenne muscular dystrophy (DMD) in China faces many challenges due to limited information about epidemiological data, natural history and clinical management. To provide these detailed data, we developed a comprehensive database based on registered DMD patients from South China and analysed their clinical and mutational characteristics. The database included DMD registrants confirmed by clinical presentation, family history, genetic detection, prognostic outcome, and/or muscle biopsy. Clinical data were collected by a registry form. Mutations of dystrophin were detected by multiplex ligation-dependent probe amplification (MLPA) and Sanger sequencing. Currently, 132 DMD patients from 128 families in South China have been registered, and 91.7% of them were below 10 years old. In mutational detection, large deletions were the most frequent type (57.8%), followed by small deletion/insertion mutations (14.1%), nonsense mutations (13.3%), large duplications (10.9%), and splice site mutations (3.1%). Clinical analysis revealed that most patients reported initial symptoms between 1 and 3 years of age, but the diagnostic age was more frequently between 6 and 8 years. 81.4% of patients were ambulatory. Baseline cardiac assessments at diagnosis were conducted in 39.4% and 29.5% of patients by echocardiograms and electrocardiograms, respectively. Only 22.7% of registrants performed baseline respiratory assessments. A small numbers of patients (20.5%) were treated with glucocorticoids. 13.3% of patients were eligible for stop codon read-through therapy, and 48.4% of patients would potentially benefit from exon skipping. The top five exon skips applicable to the largest group of registrants were skipping of exons 51 (14.8% of total mutations), 53 (12.5%), 45 (7.0%), 55 (4.7%), and 44 (3.9%). In conclusion, our database provided information on the natural history, diagnosis and management status of DMD in South China, as well as potential molecular therapies suitable for these patients. This comprehensive database will promote future experimental therapies in China.
Collapse
Affiliation(s)
- Dan-Ni Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhi-Qiang Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Lei Yan
- Department of Ultrasound, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jin He
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Min-Ting Lin
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fuzhou, China.
| |
Collapse
|
45
|
Raman SV, Hor KN, Mazur W, He X, Kissel JT, Smart S, McCarthy B, Roble SL, Cripe LH. Eplerenone for early cardiomyopathy in Duchenne muscular dystrophy: results of a two-year open-label extension trial. Orphanet J Rare Dis 2017; 12:39. [PMID: 28219442 PMCID: PMC5319045 DOI: 10.1186/s13023-017-0590-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/07/2017] [Indexed: 01/16/2023] Open
Abstract
Background Cardiomyopathy is a leading cause of morbidity and mortality in boys with Duchenne muscular dystrophy (DMD). We recently showed in a 12-month double-blind randomized controlled trial that adding eplerenone to background medical therapy was cardioprotective in this population. The objective of this study was to evaluate the safety and efficacy of longer-term eplerenone therapy in boys with DMD. Results Eleven subjects (phase 1 baseline median [range] age: 13 [7 – 25] years) from the original 12-month trial at a single participating center were enrolled. Importantly, those who entered the extension study who had been on eplerenone previously were significantly older than those who had originally been on placebo (median age 10.5 vs. 18.0 years, p = 0.045). During an additional 24-month open-label extension study, all boys received eplerenone 25 mg orally once daily to treat preclinical DMD cardiomyopathy, defined as evident myocardial damage by late gadolinium enhancement cardiac magnetic resonance (LGE) with preserved ejection fraction (EF). The threshold for potassium level, the primary safety measure, was not exceeded in any non-hemolyzed blood sample. Over 24 months, left ventricular (LV) systolic strain, a more sensitive marker whose more negative values indicate greater contractility significantly improved (median change -4.4%, IQR -5.8 to -0.9%) in younger subjects whereas older subjects’ strain remained stable without significant worsening or improvement (median change 0.2%, IQR -1.1 to 4.3%). EF and extent of myocardial damage by LGE remained stable in both groups over 2 years. Conclusions Eplerenone offers effective and safe cardioprotection for boys with DMD, particularly when started at a younger age. Eplerenone is a useful clinical therapeutic option, particularly if treatment is initiated earlier in life when cardiac damage is minimal. Trial registration http://ClinicalTrials.gov identifier NCT01521546. Registered 26 January 2012.
Collapse
Affiliation(s)
- Subha V Raman
- Ohio State University, 473 W. 12th Ave, Suite 200, Columbus, OH, 43210, USA.
| | - Kan N Hor
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Wojciech Mazur
- The Christ Hospital Heart and Vascular Center, Cincinnati, OH, USA
| | - Xin He
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, Maryland, USA
| | - John T Kissel
- The Ohio State University Department of Neurology, Columbus, OH, USA
| | - Suzanne Smart
- Ohio State University, 473 W. 12th Ave, Suite 200, Columbus, OH, 43210, USA
| | - Beth McCarthy
- Ohio State University, 473 W. 12th Ave, Suite 200, Columbus, OH, 43210, USA
| | - Sharon L Roble
- Ohio State University, 473 W. 12th Ave, Suite 200, Columbus, OH, 43210, USA.,Nationwide Children's Hospital, Columbus, OH, USA
| | | |
Collapse
|
46
|
Lee T, Awano H, Yagi M, Matsumoto M, Watanabe N, Goda R, Koizumi M, Takeshima Y, Matsuo M. 2'-O-Methyl RNA/Ethylene-Bridged Nucleic Acid Chimera Antisense Oligonucleotides to Induce Dystrophin Exon 45 Skipping. Genes (Basel) 2017; 8:genes8020067. [PMID: 28208626 PMCID: PMC5333056 DOI: 10.3390/genes8020067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease characterized by dystrophin deficiency from mutations in the dystrophin gene. Antisense oligonucleotide (AO)-mediated exon skipping targets restoration of the dystrophin reading frame to allow production of an internally deleted dystrophin protein with functional benefit for DMD patients who have out-of-frame deletions. After accelerated US approval of eteplirsen (Exondys 51), which targets dystrophin exon 51 for skipping, efforts are now focused on targeting other exons. For improved clinical benefits, this strategy requires more studies of the delivery method and modification of nucleic acids. We studied a nucleotide with a 2′-O,4′-C-ethylene-bridged nucleic acid (ENA), which shows high nuclease resistance and high affinity for complementary RNA strands. Here, we describe the process of developing a 2′-O-methyl RNA(2′-OMeRNA)/ENA chimera AO to induce dystrophin exon 45 skipping. One 18-mer 2′-OMeRNA/ENA chimera (AO85) had the most potent activity for inducing exon 45 skipping in cultured myotubes. AO85 was administered to mdx mice without significant side effects. AO85 transfection into cultured myotubes from 13 DMD patients induced exon 45 skipping in all samples at different levels and dystrophin expression in 11 patients. These results suggest the possible efficacy of AO-mediated exon skipping changes in individual patients and highlight the 2′-OMeRNA/ENA chimera AO as a potential fundamental treatment for DMD.
Collapse
Affiliation(s)
- Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 6638501, Japan.
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 6500017, Japan.
| | - Mariko Yagi
- Nikoniko House Medical and Welfare Center, Kobe 6511102, Japan.
| | - Masaaki Matsumoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 6500017, Japan.
| | - Nobuaki Watanabe
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 1408710, Japan.
| | - Ryoya Goda
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 1408710, Japan.
| | - Makoto Koizumi
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 1408710, Japan.
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 6638501, Japan.
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 6512180, Japan.
| |
Collapse
|
47
|
Perrin A, Rousseau J, Tremblay JP. Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:68-79. [PMID: 28325301 PMCID: PMC5363410 DOI: 10.1016/j.omtn.2016.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 12/29/2022]
Abstract
Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adult human muscle, but laminin subunit alpha 1 (LAMA1) gene is expressed only during embryogenesis. We thus developed an alternative method to laminin-111 protein repeated administration by inducing expression of the endogenous mouse Lama1 gene. This was done with the CRSPR/Cas9 system, i.e., by targeting the Lama1 promoter with one or several gRNAs and a dCas9 coupled with the VP160 transcription activation domain. Lama1 mRNA (qRT-PCR) and proteins (immunohistochemistry and western blot) were not detected in the control C2C12 myoblasts and in control muscles. However, significant expression was observed in cells transfected and in mouse muscles electroporated with plasmids coding for dCas9-VP160 and a gRNA. Larger synergic increases were observed by using two or three gRNAs. The increased Lama1 expression did not modify the expression of the α7 and β1 integrins. Increased expression of Lama1 by the CRISPR/Cas9 system will have to be further investigated by systemic delivery of the CRISPR/Cas9 components to verify whether this could be a treatment for several myopathies.
Collapse
Affiliation(s)
- Arnaud Perrin
- Unité de Génétique humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, 2705 Boulevard Laurier, QC G1V4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, QC G1V0A6, Canada
| | - Joël Rousseau
- Unité de Génétique humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, 2705 Boulevard Laurier, QC G1V4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, QC G1V0A6, Canada
| | - Jacques P Tremblay
- Unité de Génétique humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, 2705 Boulevard Laurier, QC G1V4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, QC G1V0A6, Canada.
| |
Collapse
|
48
|
Crist C. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease. J Pathol 2016; 241:264-272. [PMID: 27762447 DOI: 10.1002/path.4830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Colin Crist
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Affiliation(s)
- Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, 1304 West Springfield Avenue, Urbana, IL, 61801, USA. .,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Zheng-Yi Chen
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, USA.
| |
Collapse
|