1
|
Shashikadze B, Flenkenthaler F, Kemter E, Franzmeier S, Stöckl JB, Haid M, Riols F, Rothe M, Pichl L, Renner S, Blutke A, Wolf E, Fröhlich T. Multi-omics analysis of diabetic pig lungs reveals molecular derangements underlying pulmonary complications of diabetes mellitus. Dis Model Mech 2024; 17:dmm050650. [PMID: 38900131 PMCID: PMC11583917 DOI: 10.1242/dmm.050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Growing evidence shows that the lung is an organ prone to injury by diabetes mellitus. However, the molecular mechanisms of these pulmonary complications have not yet been characterized comprehensively. To systematically study the effects of insulin deficiency and hyperglycaemia on the lung, we combined proteomics and lipidomics with quantitative histomorphological analyses to compare lung tissue samples from a clinically relevant pig model for mutant INS gene-induced diabetes of youth (MIDY) with samples from wild-type littermate controls. Among others, the level of pulmonary surfactant-associated protein A (SFTPA1), a biomarker of lung injury, was moderately elevated. Furthermore, key proteins related to humoral immune response and extracellular matrix organization were significantly altered in abundance. Importantly, a lipoxygenase pathway was dysregulated as indicated by 2.5-fold reduction of polyunsaturated fatty acid lipoxygenase ALOX15 levels, associated with corresponding changes in the levels of lipids influenced by this enzyme. Our multi-omics study points to an involvement of reduced ALOX15 levels and an associated lack of eicosanoid switching as mechanisms contributing to a proinflammatory milieu in the lungs of subjects with diabetes mellitus.
Collapse
Affiliation(s)
- Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elisabeth Kemter
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Sophie Franzmeier
- Institute for Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539, Germany
| | - Jan B. Stöckl
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core (MPC), Helmholtz Munich, 85764 Neuherberg, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core (MPC), Helmholtz Munich, 85764 Neuherberg, Germany
| | | | - Lisa Pichl
- Institute for Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Andreas Blutke
- Institute for Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
2
|
Bilyalova A, Bilyalov A, Filatov N, Shagimardanova E, Kiyasov A, Vorontsova M, Gusev O. Non-classical animal models for studying adrenal diseases: advantages, limitations, and implications for research. Lab Anim Res 2024; 40:25. [PMID: 38898483 PMCID: PMC11186145 DOI: 10.1186/s42826-024-00212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
The study of adrenal disorders is a key component of scientific research, driven by the complex innervation, unique structure, and essential functions of the adrenal glands. This review explores the use of non-traditional animal models for studying congenital adrenal hyperplasia. It highlights the advantages, limitations, and relevance of these models, including domestic ferrets, dogs, guinea pigs, golden hamsters, pigs, and spiny mice. We provide a detailed analysis of the histological structure, steroidogenesis pathways, and genetic characteristics of these animal models. The morphological and functional similarities between the adrenal glands of spiny mice and humans highlight their potential as an important avenue for future research.
Collapse
Affiliation(s)
- Alina Bilyalova
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
| | - Airat Bilyalov
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
- Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
| | - Nikita Filatov
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
| | - Elena Shagimardanova
- Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, 121205, Russia
| | - Andrey Kiyasov
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
| | | | - Oleg Gusev
- Life Improvement by Future Technologies (LIFT) Center, Moscow, 121205, Russia.
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Endocrinology Research Center, Moscow, 117292, Russia.
| |
Collapse
|
3
|
Janapati YK, Junapudi S. Progress in experimental models to investigate the in vivo and in vitro antidiabetic activity of drugs. Animal Model Exp Med 2024; 7:297-309. [PMID: 38837635 PMCID: PMC11228097 DOI: 10.1002/ame2.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/01/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetes mellitus is one of the world's most prevalent and complex metabolic disorders, and it is a rapidly growing global public health issue. It is characterized by hyperglycemia, a condition involving a high blood glucose level brought on by deficiencies in insulin secretion, decreased activity of insulin, or both. Prolonged effects of diabetes include cardiovascular problems, retinopathy, neuropathy, nephropathy, and vascular alterations in both macro- and micro-blood vessels. In vivo and in vitro models have always been important for investigating and characterizing disease pathogenesis, identifying targets, and reviewing novel treatment options and medications. Fully understanding these models is crucial for the researchers so this review summarizes the different experimental in vivo and in vitro model options used to study diabetes and its consequences. The most popular in vivo studies involves the small animal models, such as rodent models, chemically induced diabetogens like streptozotocin and alloxan, and the possibility of deleting or overexpressing a specific gene by knockout and transgenic technologies on these animals. Other models include virally induced models, diet/nutrition induced diabetic animals, surgically induced models or pancreatectomy models, and non-obese models. Large animals or non-rodent models like porcine (pig), canine (dog), nonhuman primate, and Zebrafish models are also outlined. The in vitro models discussed are murine and human beta-cell lines and pancreatic islets, human stem cells, and organoid cultures. The other enzymatic in vitro tests to assess diabetes include assay of amylase inhibition and inhibition of α-glucosidase activity.
Collapse
Affiliation(s)
- Yasodha Krishna Janapati
- School of Pharmacy & Health SciencesUnited States International University‐AFRICA (USIU‐A)NairobiKenya
| | - Sunil Junapudi
- Department of Pharmaceutical ChemistryGeethanjali College of PharmacyKeesaraIndia
| |
Collapse
|
4
|
Elefson SK, Stoll B, Davis TA, Fiorotto ML, El-Kadi SW, Genovese K, Thymann T, Sangild PT, Burrin DG. Adverse Metabolic Phenotypes in Parenterally Fed Neonatal Pigs Do Not Persist into Adolescence. J Nutr 2024; 154:638-647. [PMID: 38181968 PMCID: PMC10900187 DOI: 10.1016/j.tjnut.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Nutrition during fetal and neonatal life is an important determinant for the risk of adult-onset diseases, especially type 2 diabetes and obesity. OBJECTIVES We aimed to determine whether total parenteral nutrition (TPN) compared with enteral formula feeding [enteral nutrition (EN)] in term piglets during the first 2 wk after birth would increase the long-term (5-mo) development of metabolic syndrome phenotypes with adverse glucose homeostasis, fatty liver disease, and obesity. METHODS Neonatal female pigs were administered TPN (n = 12) or fed enterally with a liquid enteral milk-replacer formula (EN, n = 12) for 14 d. After transitioning TPN pigs to enteral feeding of liquid formula (days 15-26), both groups were adapted to a solid high-fat diet (30% of the total diet) and sucrose (20% of the total diet) diet (days 27-33), which was fed until the end of the study (140 d). Body composition was measured by dual-energy X-ray absorptiometry at 14, 45, and 140 d. Serum biochemistry and glucose-insulin values (after a fasting intravenous glucose tolerance test) were obtained at 140 d. Liver and muscle were analyzed for insulin receptor signaling and triglycerides. RESULTS Body weight was similar, but percent fat was higher, whereas percent lean and bone mineral density were lower in TPN than in EN pigs (P < 0.01) at 45 d of age but not at 140 d. At 140 d, there were no differences in serum markers of liver injury or lipidemia. Intravenous glucose tolerance test at 140 d showed a lower (P < 0.05) AUC for both glucose and insulin in TPN than in EN pigs, but the ratio of AUCs of insulin and glucose was not different between groups. CONCLUSIONS Administration of TPN during the neonatal period increased adipose deposition that transiently persisted in early adolescence when challenged with a high-fat diet but was not sustained or manifested as glucose intolerance.
Collapse
Affiliation(s)
- Sarah K Elefson
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Barbara Stoll
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Teresa A Davis
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Marta L Fiorotto
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Samer W El-Kadi
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Kenneth Genovese
- USDA Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Thomas Thymann
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Per T Sangild
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Douglas G Burrin
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
5
|
Jiang L, Yan WF, Zhang L, Xu HY, Guo YK, Li ZL, Liu KL, Zeng LM, Li Y, Yang ZG. Early left ventricular microvascular dysfunction in diabetic pigs: a longitudinal quantitative myocardial perfusion CMR study. Cardiovasc Diabetol 2024; 23:9. [PMID: 38184602 PMCID: PMC10771679 DOI: 10.1186/s12933-023-02106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Microvascular pathology is one of the main characteristics of diabetic cardiomyopathy; however, the early longitudinal course of diabetic microvascular dysfunction remains uncertain. This study aimed to investigate the early dynamic changes in left ventricular (LV) microvascular function in diabetic pig model using the cardiac magnetic resonance (CMR)-derived quantitative perfusion technique. METHODS Twelve pigs with streptozotocin-induced diabetes mellitus (DM) were included in this study, and longitudinal CMR scanning was performed before and 2, 6, 10, and 16 months after diabetic modeling. CMR-derived semiquantitative parameters (upslope, maximal signal intensity, perfusion index, and myocardial perfusion reserve index [MPRI]) and fully quantitative perfusion parameters (myocardial blood flow [MBF] and myocardial perfusion reserve [MPR]) were analyzed to evaluate longitudinal changes in LV myocardial microvascular function. Pearson correlation was used to analyze the relationship between LV structure and function and myocardial perfusion function. RESULTS With the progression of DM duration, the upslope at rest showed a gradually increasing trend (P = 0.029); however, the upslope at stress and MBF did not change significantly (P > 0.05). Regarding perfusion reserve function, both MPRI and MPR showed a decreasing trend with the progression of disease duration (MPRI, P = 0.001; MPR, P = 0.042), with high consistency (r = 0.551, P < 0.001). Furthermore, LV MPR is moderately associated with LV longitudinal strain (r = - 0.353, P = 0.022), LV remodeling index (r = - 0.312, P = 0.033), fasting blood glucose (r = - 0.313, P = 0.043), and HbA1c (r = - 0.309, P = 0.046). Microscopically, pathological results showed that collagen volume fraction increased gradually, whereas no significant decrease in microvascular density was observed with the progression of DM duration. CONCLUSIONS Myocardial microvascular reserve function decreased gradually in the early stage of DM, which is related to both structural (but not reduced microvascular density) and functional abnormalities of microvessels, and is associated with increased blood glucose, reduced LV deformation, and myocardial remodeling.
Collapse
Affiliation(s)
- Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Lu Zhang
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan, 610041, China
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan, 610041, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan, 610041, China
| | - Zhen-Lin Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Ke-Ling Liu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Ling-Ming Zeng
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Liu B, Zhang J, Zhou Z, Feng B, He J, Yan W, Zhou X, Amponsah AE, Guo R, Du X, Liu X, Cui H, O'Brien T, Ma J. Preclinical Evidence for the Effectiveness of Mesenchymal Stromal Cells for Diabetic Cardiomyopathy: A Systematic Review and Meta-analysis. Curr Stem Cell Res Ther 2024; 19:220-233. [PMID: 37165495 DOI: 10.2174/1574888x18666230510111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus that endangers human health. DCM results in cardiac dysfunction, which eventually progresses to heart failure. Mesenchymal stromal cells (MSCs), a type of multipotent stem cell, have shown promising therapeutic effects in various cardiovascular diseases and diabetic complications in preclinical studies due to their immunomodulatory and regenerative abilities. However, there is still a lack of evidence to summarize the effectiveness of MSCs in the treatment of DCM. Therefore, a meta-analysis and systematic review are warranted to evaluate the therapeutic potential of MSCs for DCM in preclinical studies. METHODS A comprehensive literature search in English or Chinese was conducted in PubMed, EMBASE, web of Science, Cochrane Library, and China National Knowledge Internet from inception to June 30, 2022. The summarized outcomes included echocardiography, morphology, and pathology. Data were independently extracted and analyzed by two authors. The software we adopted was Review Manager5.4.1. This systematic review was written in compliance with PRISMA 2020 and the review protocol was registered on PROSPERO, registration no. CRD42022350032. RESULTS We included 20 studies in our meta-analysis to examine the efficacy of MSCs in the treatment of DCM. The MSC-treated group showed a statistically significant effect on left ventricular ejection fraction (WMD=12.61, 95% CI 4.32 to 20.90, P=0.003) and short axis fractional shortening (WMD=6.84, 95% CI 4.09 to 9.59, P < 0.00001). The overall effects on the ratio of early to late diastolic mitral annular velocity, left ventricular end-diastolic pressure, maximum positive pressure development, maximum negative pressure development, left ventricular relaxation time constant, heart weight to body weight ratio, fibrosis area, and arteriole density were analyzed, suggesting that MSCs represent an effective therapy for the treatment of DCM. CONCLUSION Our results suggest a therapeutic role for MSCs in the treatment of DCM, and these results provide support for the use of MSCs in clinical trials of patients with DCM.
Collapse
Affiliation(s)
- Boxin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Zijing Zhou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Wei Yan
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xinghong Zhou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaofeng Du
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province
| | - Timothy O'Brien
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province
| |
Collapse
|
7
|
Zhao Y, Niu M, Jia Y, Yuan J, Xiang L, Dai X, Wang G, Chen H. Establishment of type 2 diabetes mellitus models using streptozotocin after 3 months high-fat diet in Bama minipigs. Anim Biotechnol 2023; 34:2295-2312. [PMID: 35749713 DOI: 10.1080/10495398.2022.2088548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the past twenty years, the number of adults with diabetes has tripled. Most studies have been conducted using rodent models of type 2 diabetes mellitus (T2DM), and the developed drugs have low clinical conversion efficiency. Therefore, it is urgent to establish a more human-like large animal model to explore T2DM pathogenesis and formulate new disease prevention and control strategies. This study was designed to establish and validate a T2DM model using minipigs fed a high-fat or high-cholesterol/high-fat diet and injected with low-dose streptozotocin (STZ). We examined the influence of the STZ injection timing with a diet high in fat (HFD) compared with one high in cholesterol and fat (HCFD) on the atherosclerotic lesions accelerated by T2DM. Male Bama minipigs (n = 24) were randomly divided into five groups. The control group was fed a normal diet for 9 months. The STZ + HFD and STZ + HCFD groups were infused with 90 mg/kg STZ and then fed a high-fat diet or high-cholesterol and high-fat diet for 9 months, respectively. The HFD + STZ and HCFD + STZ groups were fed a high-fat diet or a high-cholesterol and high-fat diet, respectively, for 9 months (after 3 months, these pigs were injected intravenously with 90 mg/kg STZ). During the induction period, animal body weight, BMI, and serum GLU, INS, TG, TC, HDL-C, LDL-C, FFA, ALT, AST, CRE, and BUN were detected monthly intervals. IVGTT and insulin release tests were performed at 3-month intervals. At the end of the test, the coronary artery and abdominal aorta were examined by computed tomography and pathological observations, and the thickness of the basement membrane of the capillary of the retina and kidney glomerulus was measured under a transmission electron microscope. The serum glucose concentrations were normal in all groups except the HFD + STZ and HCFD + STZ groups. Animals fed an HFD for 9 months did not develop apparent atherosclerotic lesions, but atherosclerotic lesions were seen in the animals fed an HCFD. Hyperglycemia accelerated the formation of atherosclerotic lesions on the intimal surface of the abdominal aorta. Low-dose STZ after 3 months of HFD or HCFD successfully established a T2DM model in minipigs. The HFD did not induce apparent atherosclerotic lesions, but these were seen with the HCFD. Hyperglycemia accelerated atherosclerosis in the minipigs.
Collapse
Affiliation(s)
- Yuqiong Zhao
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Miaomiao Niu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Yunxiao Jia
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Jifang Yuan
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Lei Xiang
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Dai
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Guisheng Wang
- Radiology Department of No. 3 Clinical Center, Chinese PLA General Hospital, Beijing, China
| | - Hua Chen
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Malečková A, Mik P, Liška V, Pálek R, Rosendorf J, Witter K, Grajciarová M, Tonar Z. Periphery of porcine hepatic lobes has the smallest length density of hepatic sinusoids and bile canaliculi: A stereological histological study with implications for liver biopsies. Ann Anat 2023; 250:152157. [PMID: 37666463 DOI: 10.1016/j.aanat.2023.152157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/12/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Porcine liver is widely used in hepatologic research as a large animal model with many anatomical and physiological similarities with humans. However, only limited information on porcine liver spatial microstructure has been published, especially regarding the hepatic sinusoids and bile canaliculi. The aim of our study was to quantify the sinusoidal and bile canalicular network in healthy male and female porcine livers and to map the variability of these structures with heterogenous distribution to improve the evaluability of liver biopsy samples. METHODS Livers from 12 healthy piglets (6 females and 6 neutered males) were sampled into 36 tissue samples per organ, representing six hepatic lobes and three different regions related to the hepatic vasculature (peripheral, paracaval and paraportal region). Histological sections were processed with a random orientation of the cutting plane. The endothelium and the bile canaliculi were stained using Ricinus communis agglutinin I lectin histochemistry. The length densities of hepatic sinusoids LV(sinusoids,liver), of bile canaliculi LV(bile canaliculi,liver) and volume fraction VV(sinusoids,liver) and surface density SV(sinusoids,liver) of sinusoids were estimated using stereological methods. The newly acquired morphometric data were compared with previously published data on density of porcine hepatocytes and fractions of connective tissue. RESULTS The peripheral region had smallest LV(sinusoids,liver), smallest LV(bile canaliculi,liver) and greatest VV(sinusoids,liver). The six hepatic lobes had statistically comparable length densities of both sinusoids and bile canaliculi, but the left lateral lobe had smallest VV(sinusoids,liver). Regions with greater LV(sinusoids,liver) had also greater LV(bile canaliculi,liver) and SV(sinusoids,liver) and were accompanied by greater density of smaller hepatocytes. Regions with smaller LV(sinusoids,liver) and LV(bile canaliculi,liver) contained a greater fraction of interlobular connective tissue. CONCLUSIONS The length density of hepatic sinusoids is smaller in the peripheral regions of the porcine liver than in other regions related to the hepatic vasculature - paracaval and paraportal regions, and smaller in castrated males than in females. Greater length density of liver sinusoids was linked with greater local density of bile canaliculi, with local increase in the density of smaller hepatocytes and, simultaneously, with smaller fractions of hepatic connective tissue. The intrahepatic and inter-sexual variability of the porcine liver morphology needs to be taken into account when designing and interpreting experiments involving the histological quantification of the microvascular network. The complete primary morphometric data describing the distribution of morphometric parameters within porcine liver were made available in a form facilitating the power analysis to justify the minimal number of tissue samples or animals required when designing further histological evaluation studies. The macroscopic map of microvessels and bile canaliculi variability facilitates their assessment in liver biopsies in the pig.
Collapse
Affiliation(s)
- Anna Malečková
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic.
| | - Patrik Mik
- Department of Anatomy and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Václav Liška
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Richard Pálek
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Jáchym Rosendorf
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Kirsti Witter
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria
| | - Martina Grajciarová
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Zbyněk Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
9
|
Niu M, Zhao Y, Jia Y, Xiang L, Dai X, Chen H. Whole-genome sequencing study to identify candidate markers indicating susceptibility to type 2 diabetes in Bama miniature pigs. Animal Model Exp Med 2023; 6:283-293. [PMID: 37132291 PMCID: PMC10486338 DOI: 10.1002/ame2.12317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/08/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Hundreds of single-nucleotide polymorphism (SNP) sites have been found to be potential genetic markers of type 2 diabetes mellitus (T2DM). However, SNPs related to T2DM in minipigs have been less reported. This study aimed to screen the T2DM-susceptible candidate SNP loci in Bama minipigs so as to improve the success rate of the minipig T2DM model. METHODS The genomic DNAs of three Bama minipigs with T2DM, six sibling low-susceptibility minipigs with T2DM, and three normal control minipigs were compared by whole-genome sequencing. The T2DM Bama minipig-specific loci were obtained, and their functions were annotated. Meanwhile, the Biomart software was used to perform homology alignment with T2DM-related loci obtained from the human genome-wide association study to screen candidate SNP markers for T2DM in Bama miniature pigs. RESULTS Whole-genome resequencing detected 6960 specific loci in the minipigs with T2DM, and 13 loci corresponding to 9 diabetes-related genes were selected. Further, a set of 122 specific loci in 69 orthologous genes of human T2DM candidate genes were obtained in the pigs. Collectively, a batch of T2DM-susceptible candidate SNP markers in Bama minipigs, covering 16 genes and 135 loci, was established. CONCLUSIONS Whole-genome sequencing and comparative genomics analysis of the orthologous genes in pigs that corresponded to the human T2DM-related variant loci successfully screened out T2DM-susceptible candidate markers in Bama miniature pigs. Using these loci to predict the susceptibility of the pigs before constructing an animal model of T2DM may help to establish an ideal animal model.
Collapse
Affiliation(s)
- Miaomiao Niu
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yuqiong Zhao
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yunxiao Jia
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Lei Xiang
- Beijing Institute of Orthopaedic TraumaBeijing Jishuitan HospitalBeijingPR China
| | - Xin Dai
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Hua Chen
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| |
Collapse
|
10
|
Goutchtat R, Quenon A, Clarisse M, Delalleau N, Coddeville A, Gobert M, Gmyr V, Kerr-Conte J, Pattou F, Hubert T. Effects of subtotal pancreatectomy and long-term glucose and lipid overload on insulin secretion and glucose homeostasis in minipigs. Endocrinol Diabetes Metab 2023:e425. [PMID: 37144278 DOI: 10.1002/edm2.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
INTRODUCTION Nowadays, there are no strong diabetic pig models, yet they are required for various types of diabetes research. Using cutting-edge techniques, we attempted to develop a type 2 diabetic minipig model in this study by combining a partial pancreatectomy (Px) with an energetic overload administered either orally or parenterally. METHODS Different groups of minipigs, including Göttingen-like (GL, n = 17) and Ossabaw (O, n = 4), were developed. Prior to and following each intervention, metabolic assessments were conducted. First, the metabolic responses of the Göttingen-like (n = 3) and Ossabaw (n = 4) strains to a 2-month High-Fat, High-Sucrose diet (HFHSD) were compared. Then, other groups of GL minipigs were established: with a single Px (n = 10), a Px combined with a 2-month HFHSD (n = 6), and long-term intraportal glucose and lipid infusions that were either preceded by a Px (n = 4) or not (n = 4). RESULTS After the 2-month HFHSD, there was no discernible change between the GL and O minipigs. The pancreatectomized group in GL minipigs showed a significantly lower Acute Insulin Response (AIR) (18.3 ± 10.0 IU/mL after Px vs. 34.9 ± 13.7 IU/mL before, p < .0005). In both long-term intraportal infusion groups, an increase in the Insulinogenic (IGI) and Hepatic Insulin Resistance Indexes (HIRI) was found with a decrease in the AIR, especially in the pancreatectomized group (IGI: 4.2 ± 1.9 after vs. 1.5 ± 0.8 before, p < .05; HIRI (×10-5 ): 12.6 ± 7.9 after vs. 3.8 ± 4.3 before, p < .05; AIR: 24.4 ± 13.7 µIU/mL after vs. 43.9 ± 14.5 µIU/mL before, p < .005). Regardless of the group, there was no fasting hyperglycemia. CONCLUSIONS In this study, we used pancreatectomy followed by long-term intraportal glucose and lipid infusions to develop an original minipig model with metabolic syndrome and early signs of glucose intolerance. We reaffirm the pig's usefulness as a preclinical model for the metabolic syndrome but without the fasting hyperglycemia that characterizes diabetes mellitus.
Collapse
Affiliation(s)
- Rébecca Goutchtat
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Audrey Quenon
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
- Univ. Lille, CHU Lille, UFR3S, Département Hospitalo-Universitaire de Recherche et d'Enseignement (Dhure), Lille, France
| | | | - Nathalie Delalleau
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Anaïs Coddeville
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Mathilde Gobert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Valéry Gmyr
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Julie Kerr-Conte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Thomas Hubert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
- Univ. Lille, CHU Lille, UFR3S, Département Hospitalo-Universitaire de Recherche et d'Enseignement (Dhure), Lille, France
| |
Collapse
|
11
|
Peng H, Zhang K, Miao J, Yang Y, Xu S, Wu T, Tao C, Wang Y, Yang S. SnRNA-Seq of Pancreas Revealed the Dysfunction of Endocrine and Exocrine Cells in Transgenic Pigs with Prediabetes. Int J Mol Sci 2023; 24:ijms24097701. [PMID: 37175407 PMCID: PMC10178631 DOI: 10.3390/ijms24097701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetes poses a significant threat to human health. Exocrine pancreatic dysfunction is related to diabetes, but the exact mechanism is not fully understood. This study aimed to describe the pathological phenotype and pathological mechanisms of the pancreas of transgenic pigs (PIGinH11) that was constructed in our laboratory and to compare it with humans. We established diabetes-susceptible transgenic pigs and subjected them to high-fat and high-sucrose dietary interventions. The damage to the pancreatic endocrine and exocrine was evaluated using histopathology and the involved molecular mechanisms were analyzed using single-nucleus RNA-sequencing (SnRNA-seq). Compared to wild-type (WT) pigs, PIGinH11 pigs showed similar pathological manifestations to type 2 diabetes patients, such as insulin deficiency, fatty deposition, inflammatory infiltration, fibrosis tissue necrosis, double positive cells, endoplasmic reticulum (ER) and mitochondria damage. SnRNA-seq analysis revealed 16 clusters and cell-type-specific gene expression characterization in the pig pancreas. Notably, clusters of Ainar-M and Endocrine-U were observed at the intermediate state between the exocrine and endocrine pancreas. Beta cells of the PIGinH11 group demonstrated the dysfunction with insulin produced and secret decreased and ER stress. Moreover, like clinic patients, acinar cells expressed fewer digestive enzymes and showed organelle damage. We hypothesize that TXNIP that is upregulated by high glucose might play an important role in the dysfunction of endocrine to exocrine cells in PIGinH11 pigs.
Collapse
Affiliation(s)
- Huanqi Peng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kaiyi Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiakun Miao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Xu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianwen Wu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Lutz TA. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus. Nat Rev Endocrinol 2023; 19:350-360. [PMID: 36941447 DOI: 10.1038/s41574-023-00818-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
Although no single animal model replicates all aspects of diabetes mellitus in humans, animal models are essential for the study of energy balance and metabolism control as well as to investigate the reasons for their imbalance that could eventually lead to overt metabolic diseases such as type 2 diabetes mellitus. The most frequently used animal models in diabetes mellitus research are small rodents that harbour spontaneous genetic mutations or that can be manipulated genetically or by other means to influence their nutrient metabolism and nutrient handling. Non-rodent species, including pigs, cats and dogs, are also useful models in diabetes mellitus research. This Review will outline the advantages and disadvantages of selected animal models of diabetes mellitus to build a basis for their most appropriate use in biomedical research.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Liu Q, He M, Zeng Z, Huang X, Fang S, Zhao Y, Ke S, Wu J, Zhou Y, Xiong X, Li Z, Fu H, Huang L, Chen C. Extensive identification of serum metabolites related to microbes in different gut locations and evaluating their associations with porcine fatness. Microb Biotechnol 2023; 16:1293-1311. [PMID: 36916818 DOI: 10.1111/1751-7915.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Gut microbiota plays important roles in host metabolism. Whether and how much the gut microbiota in different gut locations contributes to the variations of host serum metabolites are largely unknown, because it is difficult to obtain microbial samples from different gut locations on a large population scale. Here, we quantified the gut microbial compositions using 16S rRNA gene sequencing for 1070 samples collected from the ileum, cecum and faeces of 544 F6 pigs from a mosaic pig population. Untargeted metabolome measurements determined serum metabolome profiles. We found 1671, 12,985 and 103,250 significant correlations between circulating serum metabolites and bacterial ASVs in the ileum, cecum, and faeces samples. We detected nine serum metabolites showing significant correlations with gut bacteria in more than one gut location. However, most metabolite-microbiota pairwise associations were gut location-specific. Targeted metabolome analysis revealed that CDCA, taurine, L-leucine and N-acetyl-L-alanine can be used as biomarkers to predict porcine fatness. Enriched taxa in fat pigs, for example Prevotella and Lawsonia intracellularis were positively associated with L-leucine, while enriched taxa in lean pigs, such as Clostridium butyricum, were negatively associated with L-leucine and CDCA, but positively associated with taurine and N-acetyl-L-alanine. These results suggested that the contributions of gut microbiota in each gut location to the variations of serum metabolites showed spatial heterogeneity.
Collapse
Affiliation(s)
- Qin Liu
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Maozhang He
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.,Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhijun Zeng
- Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaochang Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shaoming Fang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuanzhang Zhao
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shanlin Ke
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jinyuan Wu
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yunyan Zhou
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xinwei Xiong
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhuojun Li
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Hao Fu
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Congying Chen
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
14
|
Rodent Models of Diabetic Retinopathy as a Useful Research Tool to Study Neurovascular Cross-Talk. BIOLOGY 2023; 12:biology12020262. [PMID: 36829539 PMCID: PMC9952991 DOI: 10.3390/biology12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Diabetes is a group of metabolic diseases leading to dysfunction of various organs, including ocular complications such as diabetic retinopathy (DR). Nowadays, DR treatments involve invasive options and are applied at the sight-threatening stages of DR. It is important to investigate noninvasive or pharmacological methods enabling the disease to be controlled at the early stage or to prevent ocular complications. Animal models are useful in DR laboratory practice, and this review is dedicated to them. The first part describes the characteristics of the most commonly used genetic rodent models in DR research. The second part focuses on the main chemically induced models. The authors pay particular attention to the streptozotocin model. Moreover, this section is enriched with practical aspects and contains the current protocols used in research in the last three years. Both parts include suggestions on which aspect of DR can be tested using a given model and the disadvantages of each model. Although animal models show huge variability, they are still an important and irreplaceable research tool. Note that the choice of a research model should be thoroughly considered and dependent on the aspect of the disease to be analyzed.
Collapse
|
15
|
Takase K, Yokota H, Ohno A, Watanabe M, Kushiyama A, Kushiyama S, Yamagami S, Nagaoka T. A pilot study of diabetic retinopathy in a porcine model of maturity onset diabetes of the young type 3 (MODY3). Exp Eye Res 2023; 227:109379. [PMID: 36608813 DOI: 10.1016/j.exer.2022.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in the working population. Because novel therapeutic intervention require testing, there is an urgent need for reliable animal models that faithfully replicate DR. Pig eyes have many similarities to human eyes anatomically and physiologically. Thus, attempts have been made to establish porcine models of DR by surgical, pharmaceutical or genetical induction of insulin deficiency, and dietary intervention. A previous study reported a transgenic pig model of maturity onset diabetes of the young type 3 (MODY3) developed signs of severe DR such as hemorrhage and proliferative tissue at the surface of the retina. However, the course of development of DR has not been studied in detail in this model. The purpose of this study was to investigate the early phase of DR in a MODY3. MODY3 and wild-type (WT) pigs underwent fundus photography and fluorescein angiogram (FA) before they developed cataracts. Animals were euthanized at age 1, 4, 7, and 10 months. Whole-mount retina and 10-μm thick paraffinized sections were stained with isolectin B4, and vessel density was determined by MATLAB software. At 4 and 7 months, retinal arterioles were immediately cannulated, and vasomotor action was measured by incubation with bradykinin and sodium nitroprusside. In the MODY3 pigs, fasting blood sugar levels gradually increased up to 500 mg/dL. Vascular tortuosity and yellowish spindle-shaped lesions were confirmed in MODY3 pigs at the age of 7 months; however, no microaneurysms were detected on FA. Compared with age-matched WT pigs, MODY3 pigs showed a significant decrease in blood vessel density in the intermediate and deep vascular plexus at 4 and 7 months of age and a slight decrease in capillary density in the superficial vascular plexus at 7 months of age. In MODY3 pigs, electron microscopy revealed thickening of the capillary basement membrane and leukostasis in the major blood vessels at 10 months of age. Bradykinin-induced dilation of retinal arterioles was diminished in MODY3 pigs as early as 7 months of age. Within 1 year after birth, MODY3 pigs show all typical early vascular lesions of diabetes except for microaneurysm formation. This pilot study suggests that the MODY3 pigs may serve as a suitable DR model to test effects of newly developed compounds on DR.
Collapse
Affiliation(s)
- Koyo Takase
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Harumasa Yokota
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan.
| | - Akira Ohno
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Masahisa Watanabe
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Sakura Kushiyama
- Division of Life Science, Department of Nursing, National College of Nursing, Kiyose, Tokyo, 204-8575, Japan
| | - Satoru Yamagami
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Taiji Nagaoka
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| |
Collapse
|
16
|
Yan WF, Xu HY, Jiang L, Zhang L, Guo YK, Li Y, Shen LT, Min CY, Yang ZG. Early longitudinal changes in left ventricular function and morphology in diabetic pigs: evaluation by 3.0T magnetic resonance imaging. Cardiovasc Diabetol 2023; 22:6. [PMID: 36627647 PMCID: PMC9830732 DOI: 10.1186/s12933-022-01734-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Previous researches on large animal models of diabetic cardiomyopathy were insufficient. The aim of this study was to evaluate early changes in left ventricular (LV) function and morphology in diabetic pigs using a cardiac magnetic resonance (CMR) time-volume curve and feature tracking technique. METHODS Streptozotocin (STZ) was used to induce diabetic in sixteen pigs. 3.0T MRI scanned the pig's heart before and 2, 6, 10 and 16 months after modelling. CMR biomarkers, including time-volume curve and myocardial strain, were compared to analyse the longitudinal changes in LV function and morphology. Pearson correlation was used to evaluate the relationship between LV strain and remodelling. Cardiac specimens were obtained at 6, 10, and 16 months after modelling to observe the myocardial ultrastructural and microstructure at different courses of diabetes. RESULTS Twelve pigs developed diabetes. The 80% diastolic volume recovery rate (DVR) at 6 months after modelling was significantly higher than that before modelling (0.78 ± 0.08vs. 0.67 ± 0.15). The LV global longitudinal peak strain (GLPS) (- 10.21 ± 3.15 vs. - 9.74 ± 2.78 vs. - 9.38 ± 3.71 vs. - 8.71 ± 2.68 vs. - 6.59 ± 2.90%) altered gradually from the baseline data to 2, 6, 10 and 16 months after modelling. After 16 months of modelling, the LV remodelling index (LVRI) of pigs increased compared with that before modelling (2.19 ± 0.97 vs. 1.36 ± 0.45 g/ml). The LVRI and myocardial peak strain were correlated in diabetic pigs (r= - 0.40 to - 0.54), with GLPS being the most significant. Electron microscopy and Masson staining showed that myocardial damage and fibrosis gradually increased with the progression of the disease. CONCLUSION Intravenous injection of STZ can induce a porcine diabetic cardiomyopathy model, mainly characterized by decreased LV diastolic function and strain changes accompanied by myocardial remodelling. The changes in CMR biomarkers could reflect the early myocardial injury of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Wei-Feng Yan
- grid.13291.380000 0001 0807 1581Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Hua-Yan Xu
- grid.13291.380000 0001 0807 1581Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Jiang
- grid.13291.380000 0001 0807 1581Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Lu Zhang
- grid.13291.380000 0001 0807 1581Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying-Kun Guo
- grid.13291.380000 0001 0807 1581Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- grid.13291.380000 0001 0807 1581Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Li-Ting Shen
- grid.13291.380000 0001 0807 1581Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Chen-Yan Min
- grid.13291.380000 0001 0807 1581Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
17
|
Despite similar clinical features metabolomics reveals distinct signatures in insulin resistant and progressively obese minipigs. J Physiol Biochem 2022. [DOI: 10.1007/s13105-022-00940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Bayliss G. Practical ethical concerns in allocation of pig kidneys to humans. Clin Kidney J 2022; 15:2161-2168. [PMID: 36381360 PMCID: PMC9664566 DOI: 10.1093/ckj/sfac125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 01/04/2024] Open
Abstract
The fundamental ethical question of whether pig organs should be transplanted into humans has been settled, as recent surgeries demonstrating proof of concept demonstrate. Other issues need to be considered and reconciled before xenotransplantation of pig kidneys becomes a solution to the organ shortage for people waiting for a kidney transplant or as a viable alternative to the deceased donor or living donor human kidneys. Human trials will be needed beyond brain-dead individuals to show that xenotransplantation is safe from immunologic and infectious standpoints. Transplant centers will need to show that xenotransplantation provides a long-term benefit to recipients and is financially viable. If trials are successful and receive regulatory approval, pig xenotransplants may become another option for people waiting for a kidney. Before patients are discharged with a functioning xenograft, practical issues with ethical implications remain.
Collapse
Affiliation(s)
- George Bayliss
- Alpert Medical School, Brown University, Providence, RI, USA
- Rhode Island Hospital Division Organ Transplantation, Providence, RI, USA
| |
Collapse
|
19
|
Li Y, Wang H, Chen H, Liao Y, Gou S, Yan Q, Zhuang Z, Li H, Wang J, Suo Y, Lan T, Liu Y, Zhao Y, Zou Q, Nie T, Hui X, Lai L, Wu D, Fan N. Generation of a genetically modified pig model with CREBRF R457Q variant. FASEB J 2022; 36:e22611. [PMID: 36250915 DOI: 10.1096/fj.202201117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Obesity is among the strongest risk factors for type 2 diabetes (T2D). The CREBRF missense allele rs373863828 (p. Arg457Gln, p. R457Q) is associated with increased body mass index but reduced risk of T2D in people of Pacific ancestry. To investigate the functional consequences of the CREBRF variant, we introduced the corresponding human mutation R457Q into the porcine genome. The CREBRFR457Q pigs displayed dramatically increased fat deposition, which was mainly distributed in subcutaneous adipose tissue other than visceral adipose tissue. The CREBRFR457Q variant promoted preadipocyte differentiation. The increased differentiation capacity of precursor adipocytes conferred pigs the unique histological phenotype that adipocytes had a smaller size but a greater number in subcutaneous adipose tissue (SAT) of CREBRFR457Q variant pigs. In addition, in SAT of CREBRFR457Q pigs, the contents of the peroxidative metabolites 4-hydroxy-nonenal and malondialdehyde were significantly decreased, while the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase, and catalase, was increased, which was in accordance with the declined level of the reactive oxygen species (ROS) in CREBRFR457Q pigs. Together, these data supported a causal role of the CREBRFR457Q variant in the pathogenesis of obesity, partly via adipocyte hyperplasia, and further suggested that reduced oxidative stress in adipose tissue may mediate the relative metabolic protection afforded by this variant despite the related obesity.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hai Wang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Huangyao Chen
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yuan Liao
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Quanmei Yan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenpeng Zhuang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hao Li
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Jiaowei Wang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yangyang Suo
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ting Lan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yang Liu
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Tao Nie
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyan Hui
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong SAR
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Donghai Wu
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Nana Fan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
20
|
Tritschler S, Thomas M, Böttcher A, Ludwig B, Schmid J, Schubert U, Kemter E, Wolf E, Lickert H, Theis FJ. A transcriptional cross species map of pancreatic islet cells. Mol Metab 2022; 66:101595. [PMID: 36113773 PMCID: PMC9526148 DOI: 10.1016/j.molmet.2022.101595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/20/2022] [Accepted: 09/03/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Pancreatic islets of Langerhans secrete hormones to regulate systemic glucose levels. Emerging evidence suggests that islet cells are functionally heterogeneous to allow a fine-tuned and efficient endocrine response to physiological changes. A precise description of the molecular basis of this heterogeneity, in particular linking animal models to human islets, is an important step towards identifying the factors critical for endocrine cell function in physiological and pathophysiological conditions. METHODS In this study, we used single-cell RNA sequencing to profile more than 50'000 endocrine cells isolated from healthy human, pig and mouse pancreatic islets and characterize transcriptional heterogeneity and evolutionary conservation of those cells across the three species. We systematically delineated endocrine cell types and α- and β-cell heterogeneity through prior knowledge- and data-driven gene sets shared across species, which altogether capture common and differential cellular properties, transcriptional dynamics and putative driving factors of state transitions. RESULTS We showed that global endocrine expression profiles correlate, and that critical identity and functional markers are shared between species, while only approximately 20% of cell type enriched expression is conserved. We resolved distinct human α- and β-cell states that form continuous transcriptional landscapes. These states differentially activate maturation and hormone secretion programs, which are related to regulatory hormone receptor expression, signaling pathways and different types of cellular stress responses. Finally, we mapped mouse and pig cells to the human reference and observed that the spectrum of human α- and β-cell heterogeneity and aspects of such functional gene expression are better recapitulated in the pig than mouse data. CONCLUSIONS Here, we provide a high-resolution transcriptional map of healthy human islet cells and their murine and porcine counterparts, which is easily queryable via an online interface. This comprehensive resource informs future efforts that focus on pancreatic endocrine function, failure and regeneration, and enables to assess molecular conservation in islet biology across species for translational purposes.
Collapse
Affiliation(s)
- Sophie Tritschler
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technical University of Munich, School of Life Sciences Weihenstephan, 85354 Freising, Germany
| | - Moritz Thomas
- Technical University of Munich, School of Life Sciences Weihenstephan, 85354 Freising, Germany; Institute of AI for Health, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Barbara Ludwig
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of Helmholtz Zentrum München, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Janine Schmid
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany
| | - Undine Schubert
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany
| | - Elisabeth Kemter
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Technical University of Munich, Medical Faculty, 81675 Munich, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technical University of Munich, Department of Mathematics, 85748 Garching b. Munich, Germany.
| |
Collapse
|
21
|
Tian C, Qiu M, Lv H, Yue F, Zhou F. Preliminary serum and fecal metabolomics study of spontaneously diabetic cynomolgus monkeys based on LC-MS/MS. J Med Primatol 2022; 51:355-366. [PMID: 35993379 DOI: 10.1111/jmp.12610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Using untargeted metabolomics techniques, the goal of the study is to differentially screen serum and feces metabolite profiles of spontaneously diabetic and healthy cynomolgus monkeys, to explore potential serum and fecal biomarkers and analyze affected metabolic pathways. METHODS We adopted the diagnostic criteria for T2DM recommended by ADA for humans: FSG ≥7.0 mmol/L (126 mg/dl) and HbA1c ≥ 6.5%. The serum and feces samples from three diagnosed spontaneously T2DM cynomolgus monkeys and 11 age-matched healthy controls were enrolled in the study. We employed LC-MS/MS-based untargeted metabolomic methods to reveal the differential metabolite profiles of serum and feces samples between the two groups and to analyze the affected metabolic pathways in MetaboAnalyst 5.0 based on KEGG library. RESULTS Six and 44 differential metabolites were identified in serum and feces samples, respectively, and the corresponding affected commonly metabolic pathways involved several metabolic ways, such as arginine biosynthesis, pantothenate and CoA biosynthesis, alanine, aspartate and glutamate metabolism, valine, leucine and isoleucine biosynthesis, and histidine metabolism. CONCLUSION The differential potential serum and feces biomarkers obtained from the LC-MS/MS based untargeted metabolomic may help to explain the potential pathophysiological mechanisms of T2DM and offer pivotal information for the early diagnosis and treatment of DM.
Collapse
Affiliation(s)
- Chaoyang Tian
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China.,One Health Institute, Hainan University, Haikou, China
| | - Mingyin Qiu
- Hainan Jingang Biotech Co., Ltd, Haikou, China
| | - Haizhou Lv
- Hainan Jingang Biotech Co., Ltd, Haikou, China
| | - Feng Yue
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China.,One Health Institute, Hainan University, Haikou, China
| | - Feifan Zhou
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China.,One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
22
|
Xia R, Tomsits P, Loy S, Zhang Z, Pauly V, Schüttler D, Clauss S. Cardiac Macrophages and Their Effects on Arrhythmogenesis. Front Physiol 2022; 13:900094. [PMID: 35812333 PMCID: PMC9257039 DOI: 10.3389/fphys.2022.900094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac electrophysiology is a complex system established by a plethora of inward and outward ion currents in cardiomyocytes generating and conducting electrical signals in the heart. However, not only cardiomyocytes but also other cell types can modulate the heart rhythm. Recently, cardiac macrophages were demonstrated as important players in both electrophysiology and arrhythmogenesis. Cardiac macrophages are a heterogeneous group of immune cells including resident macrophages derived from embryonic and fetal precursors and recruited macrophages derived from circulating monocytes from the bone marrow. Recent studies suggest antiarrhythmic as well as proarrhythmic effects of cardiac macrophages. The proposed mechanisms of how cardiac macrophages affect electrophysiology vary and include both direct and indirect interactions with other cardiac cells. In this review, we provide an overview of the different subsets of macrophages in the heart and their possible interactions with cardiomyocytes under both physiologic conditions and heart disease. Furthermore, we elucidate similarities and differences between human, murine and porcine cardiac macrophages, thus providing detailed information for researchers investigating cardiac macrophages in important animal species for electrophysiologic research. Finally, we discuss the pros and cons of mice and pigs to investigate the role of cardiac macrophages in arrhythmogenesis from a translational perspective.
Collapse
Affiliation(s)
- Ruibing Xia
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Simone Loy
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Zhihao Zhang
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Valerie Pauly
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
23
|
Signaling Pathways Involved in Myocardial Ischemia-Reperfusion Injury and Cardioprotection: A Systematic Review of Transcriptomic Studies in Sus scrofa. J Cardiovasc Dev Dis 2022; 9:jcdd9050132. [PMID: 35621843 PMCID: PMC9145716 DOI: 10.3390/jcdd9050132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial damage in acute myocardial infarctions (AMI) is primarily the result of ischemia−reperfusion injury (IRI). Recognizing the timing of transcriptional events and their modulation by cardioprotective strategies is critical to address the pathophysiology of myocardial IRI. Despite the relevance of pigs for translational studies of AMI, only a few have identified how transcriptomic changes shape cellular signaling pathways in response to injury. We systematically reviewed transcriptomic studies of myocardial IRI and cardioprotection in Sus scrofa. Gene expression datasets were analyzed for significantly enriched terms using the Enrichr analysis tool, and statistically significant results (adjusted p-values of <0.05) for Signaling Pathways, Transcription Factors, Molecular Functions, and Biological Processes were compared between eligible studies to describe how these dynamic changes transform the myocardium from an injured and inflamed tissue into a scar. Then, we address how cardioprotective interventions distinctly modulate the myocardial transcriptome and discuss the implications of uncovering gene regulatory networks for cardiovascular pathologies and translational applications.
Collapse
|
24
|
Cluzel GL, Ryan PM, Herisson FM, Caplice NM. High-fidelity porcine models of metabolic syndrome: a contemporary synthesis. Am J Physiol Endocrinol Metab 2022; 322:E366-E381. [PMID: 35224983 DOI: 10.1152/ajpendo.00413.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review aims to describe and compare porcine models of metabolic syndrome. This syndrome and its associated secondary comorbidities are set to become the greatest challenge to healthcare providers and policy makers in the coming century. However, an incomplete understanding of the pathogenesis has left significant knowledge gaps in terms of efficacious therapeutics. To further our comprehension and, in turn, management of metabolic syndrome, appropriate high-fidelity models of the disease complex are of great importance. In this context, our review aims to assess the most promising porcine models of metabolic syndrome currently available for their similarity to the human phenotype. In addition, we aim to highlight the strengths and shortcomings of each model in an attempt to identify the most appropriate application of each. Although no porcine model perfectly recapitulates the human metabolic syndrome, several pose satisfactory approximations. The Ossabaw miniature swine in particular represents a highly translatable model that develops each of the core parameters of the syndrome with many of the associated secondary comorbidities. Future high-fidelity porcine models of metabolic syndrome need to focus on secondary sequelae replication, which may require extended induction period to reveal.
Collapse
Affiliation(s)
- Gaston L Cluzel
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul M Ryan
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Florence M Herisson
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Noel M Caplice
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Zhang P, Li Q, Wu Y, Zhang Y, Zhang B, Zhang H. Identification of candidate genes that specifically regulate subcutaneous and intramuscular fat deposition using transcriptomic and proteomic profiles in Dingyuan pigs. Sci Rep 2022; 12:2844. [PMID: 35181733 PMCID: PMC8857214 DOI: 10.1038/s41598-022-06868-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Subcutaneous fat and intramuscular fat (IMF) deposition are closely related to meat production and pork quality. Dingyuan pig, as a native pig breed in China, low selection leads to obvious genetic and phenotypic differences in the population. Individuals with extreme fat content in the population are ideal models for studying the mechanism of fat deposition. In this study, we used RNA-Seq and tandem mass tags-based (TMT) proteomics to analyze the key pathways and genes that specifically regulate subcutaneous fat and IMF deposition in Dingyuan pigs. We identified 191 differentially expressed genes (DEGs) and 61 differentially abundant proteins (DAPs) in the high and low back fat thickness (HBF, LBF) groups, 85 DEGs and 12 DAPs were obtained in the high and low intramuscular fat (HIMF, LIMF) groups. The functional analysis showed that the DEGs and DAPs in the backfat groups were mainly involved in carbohydrates, amino acids, and fatty acids metabolism, whereas the IMF groups were involved in the insulin pathway, longevity, and some disease-related pathways. We found 40 candidate genes that might tissue-specifically lipids deposition for subcutaneous and intramuscular fat. Our research provides theoretical reference materials for the improvement of fat deposition traits of local pig breeds in my country.
Collapse
Affiliation(s)
- Pan Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Qinggang Li
- Institute of Animal Sciences and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Yijing Wu
- Institute of Animal Sciences and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Yawen Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China.
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
26
|
Yokota H, Hayashi H, Hanaguri J, Yamagami S, Kushiyama A, Nakagami H, Nagaoka T. Effect of prorenin peptide vaccine on the early phase of diabetic retinopathy in a murine model of type 2 diabetes. PLoS One 2022; 17:e0262568. [PMID: 35041699 PMCID: PMC8765632 DOI: 10.1371/journal.pone.0262568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022] Open
Abstract
Prorenin is viewed as an ideal target molecule in the prevention of diabetic retinopathy. However, no drugs are available for inhibiting activation of prorenin. Here, we tested the effect of a prorenin peptide vaccine (VP) in the retina of a murine model of type 2 diabetes (T2D). To choose the optimal vaccine, we selected three different epitopes of the prorenin prosegment (E1, E2, and E3) and conjugated them to keyhole limpet hemocyanin (KLH). We injected C57BL/6J mice twice with KLH only (as a control vaccine), E1 conjugated with KLH (E1-KLH), E2-KLH, or E3-KLH and compared antibody titers. E2-KLH showed the highest antibody titer and specific immunoreactivity of anti-sera against prorenin, so we used E2-KLH as VP. Then, we administered injections to the non-diabetic db/m and diabetic db/db mice, as follows: db/m + KLH, db/db + KLH, and db/db + VP. Retinal blood flow measurement with laser speckle flowgraphy showed that the impaired retinal circulation response to both flicker light and systemic hyperoxia in db/db mice improved with VP. Furthermore, the prolonged implicit time of b-wave and oscillatory potentials in electroretinography was prevented, and immunohistochemical analysis showed reduced microglial activation, gliosis, and vascular leakage. The enzyme-linked immunosorbent spot assay confirmed vaccinated mice had no auto-immune response against prorenin itself. The present data suggest that vaccination against prorenin is an effective and safe measure against the early pathological changes of diabetic retinopathy in T2D.
Collapse
Affiliation(s)
- Harumasa Yokota
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University, Osaka, Japan
| | - Junya Hanaguri
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Yamagami
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Tokyo, Japan
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University, Osaka, Japan
| | - Taiji Nagaoka
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Shashikadze B, Flenkenthaler F, Stöckl JB, Valla L, Renner S, Kemter E, Wolf E, Fröhlich T. Developmental Effects of (Pre-)Gestational Diabetes on Offspring: Systematic Screening Using Omics Approaches. Genes (Basel) 2021; 12:1991. [PMID: 34946940 PMCID: PMC8701487 DOI: 10.3390/genes12121991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/27/2022] Open
Abstract
Worldwide, gestational diabetes affects 2-25% of pregnancies. Due to related disturbances of the maternal metabolism during the periconceptional period and pregnancy, children bear an increased risk for future diseases. It is well known that an aberrant intrauterine environment caused by elevated maternal glucose levels is related to elevated risks for increased birth weights and metabolic disorders in later life, such as obesity or type 2 diabetes. The complexity of disturbances induced by maternal diabetes, with multiple underlying mechanisms, makes early diagnosis or prevention a challenging task. Omics technologies allowing holistic quantification of several classes of molecules from biological fluids, cells, or tissues are powerful tools to systematically investigate the effects of maternal diabetes on the offspring in an unbiased manner. Differentially abundant molecules or distinct molecular profiles may serve as diagnostic biomarkers, which may also support the development of preventive and therapeutic strategies. In this review, we summarize key findings from state-of-the-art Omics studies addressing the impact of maternal diabetes on offspring health.
Collapse
Affiliation(s)
- Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| | - Jan B. Stöckl
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| | - Libera Valla
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| |
Collapse
|
28
|
Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human biomedical model. Sci Transl Med 2021; 13:eabd5758. [PMID: 34818055 DOI: 10.1126/scitranslmed.abd5758] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Angelica Van Goor
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Kristen E Walker
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Taylor Hailstock
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Jasmine Franklin
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Chaohui Dai
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
29
|
Schmalen A, Lorenz L, Grosche A, Pauly D, Deeg CA, Hauck SM. Proteomic Phenotyping of Stimulated Müller Cells Uncovers Profound Pro-Inflammatory Signaling and Antigen-Presenting Capacity. Front Pharmacol 2021; 12:771571. [PMID: 34776983 PMCID: PMC8585775 DOI: 10.3389/fphar.2021.771571] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 01/15/2023] Open
Abstract
Müller cells are the main macroglial cells of the retina exerting a wealth of functions to maintain retinal homoeostasis. Upon pathological changes in the retina, they become gliotic with both protective and detrimental consequences. Accumulating data also provide evidence for a pivotal role of Müller cells in the pathogenesis of diabetic retinopathy (DR). While microglial cells, the resident immune cells of the retina are considered as main players in inflammatory processes associated with DR, the implication of activated Müller cells in chronic retinal inflammation remains to be elucidated. In order to assess the signaling capacity of Müller cells and their role in retinal inflammation, we performed in-depth proteomic analysis of Müller cell proteomes and secretomes after stimulation with INFγ, TNFα, IL-4, IL-6, IL-10, VEGF, TGFβ1, TGFβ2 and TGFβ3. We used both, primary porcine Müller cells and the human Müller cell line MIO-M1 for our hypothesis generating approach. Our results point towards an intense signaling capacity of Müller cells, which reacted in a highly discriminating manner upon treatment with different cytokines. Stimulation of Müller cells resulted in a primarily pro-inflammatory phenotype with secretion of cytokines and components of the complement system. Furthermore, we observed evidence for mitochondrial dysfunction, implying oxidative stress after treatment with the various cytokines. Finally, both MIO-M1 cells and primary porcine Müller cells showed several characteristics of atypical antigen-presenting cells, as they are capable of inducing MHC class I and MHC class II with co-stimulatory molecules. In line with this, they express proteins associated with formation and maturation of phagosomes. Thus, our findings underline the importance of Müller cell signaling in the inflamed retina, indicating an active role in chronic retinal inflammation.
Collapse
Affiliation(s)
- Adrian Schmalen
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Lea Lorenz
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center, LMU Munich, Martinsried, Germany
| | - Diana Pauly
- Experimental Ophthalmology, Philipps-University Marburg, Marburg, Germany.,Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
30
|
Hellman A, Maietta T, Clum A, Byraju K, Raviv N, Staudt MD, Jeannotte E, Nalwalk J, Belin S, Poitelon Y, Pilitsis JG. Development of a common peroneal nerve injury model in domestic swine for the study of translational neuropathic pain treatments. J Neurosurg 2021; 135:1516-1523. [PMID: 33862596 PMCID: PMC8521549 DOI: 10.3171/2020.9.jns202961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To date, muscular and bone pain have been studied in domestic swine models, but the only neuropathic pain model described in swine is a mixed neuritis model. Common peroneal nerve injury (CPNI) neuropathic pain models have been utilized in both mice and rats. METHODS The authors developed a swine surgical CPNI model of neuropathic pain. Behavioral outcomes were validated with von Frey filament testing, thermal sensitivity assessments, and social and motor scoring. Demyelination of the nerve was confirmed through standard histological assessment. The contralateral nerve served as the control. RESULTS CPNI induced mechanical and thermal allodynia (p < 0.001 [n = 10] and p < 0.05 [n = 4], respectively) and increased pain behavior, i.e., guarding of the painful leg (n = 12). Myelin protein zero (P0) staining revealed demyelination of the ligated nerve upstream of the ligation site. CONCLUSIONS In a neuropathic pain model in domestic swine, the authors demonstrated that CPNI induces demyelination of the common peroneal nerve, which the authors hypothesize is responsible for the resulting allodynic pain behavior. As the anatomical features of domestic swine resemble those of humans more closely than previously used rat and mouse models, utilizing this swine model, which is to the authors' knowledge the first of its kind, will aid in the translation of experimental treatments to clinical trials.
Collapse
Affiliation(s)
- Abigail Hellman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Teresa Maietta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Alicia Clum
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Kanakaharini Byraju
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Nataly Raviv
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Michael D. Staudt
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Erin Jeannotte
- Department of Animals Resources Facility, Albany Medical College, Albany, New York
| | - Julia Nalwalk
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Julie G. Pilitsis
- Department of Neurosurgery, Albany Medical College, Albany, New York
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| |
Collapse
|
31
|
Banana Lectin from Musa paradisiaca Is Mitogenic for Cow and Pig PBMC via IL-2 Pathway and ELF1. IMMUNO 2021. [DOI: 10.3390/immuno1030018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to gain deeper insights in the potential of polyclonal stimulation of PBMC with banana lectin (BanLec) from Musa paradisiaca. BanLec induced a marked proliferative response in cow and pig PBMC, but was strongest in pigs, where it induced an even higher proliferation rate than Concanavalin A. Molecular processes associated with respective responses in porcine PBMC were examined with differential proteome analyses. Discovery proteomic experiments was applied to BanLec stimulated PBMC and cellular and secretome responses were analyzed with label free LC-MS/MS. In PBMC, 3955 proteins were identified. After polyclonal stimulation with BanLec, 459 proteins showed significantly changed abundance in PBMC. In respective PBMC secretomes, 2867 proteins were identified with 231 differentially expressed candidates as reaction to BanLec stimulation. The transcription factor “E74 like ETS transcription factor 1 (ELF1)” was solely enriched in BanLec stimulated PBMC. BanLec induced secretion of several immune regulators, amongst them positive regulators of activated T cell proliferation and Jak-STAT signaling pathway. Top changed immune proteins were CD226, CD27, IFNG, IL18, IL2, CXCL10, LAT, ICOS, IL2RA, LAG3, and CD300C. BanLec stimulates PBMC of cows and pigs polyclonally and induces IL2 pathway and further proinflammatory cytokines. Proteomics data are available via ProteomeXchange with identifier PXD027505.
Collapse
|
32
|
Sanapalli BKR, Yele V, Singh MK, Thaggikuppe Krishnamurthy P, Karri VVSR. Preclinical models of diabetic wound healing: A critical review. Biomed Pharmacother 2021; 142:111946. [PMID: 34339915 DOI: 10.1016/j.biopha.2021.111946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of diabetic wounds (DWs) is always challenging for the medical community because of its multifaceted pathophysiology. Due to practical and ethical considerations, direct studies of therapeutic interventions on human subjects are limited. Thus, it is ideal for performing studies on animals having less genetic and biological variability. An ideal DW model should progress toward reproducibility, quantifiable interpretation, therapeutic significance, and effective translation into clinical use. In the last couple of decades, various animal models were developed to examine the complex cellular and biochemical process of skin restoration in DW healing. Also, these models were used to assess the potency of developed active pharmaceutical ingredients and formulations. However, many animal models lack studying mechanisms that can appropriately restate human DW, stay a huge translational challenge. This review discusses the available animal models with their significance in DW experiments and their limitations, focusing on levels of proof of effectiveness in selecting appropriate models to restate the human DW to improve clinical outcomes. Although numerous newer entities and combinatory formulations are very well appreciated preclinically for DW management, they fail in clinical trials, which may be due to improper selection of the appropriate model. The major future challenge could be developing a model that resembles the human DW environment, can potentiate translational research in DW care.
Collapse
Affiliation(s)
- Bharat Kumar Reddy Sanapalli
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Mantosh Kumar Singh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | | |
Collapse
|
33
|
Richter C, Hinkel R. Research('s) Sweet Hearts: Experimental Biomedical Models of Diabetic Cardiomyopathy. Front Cardiovasc Med 2021; 8:703355. [PMID: 34368257 PMCID: PMC8342758 DOI: 10.3389/fcvm.2021.703355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetes and the often accompanying cardiovascular diseases including cardiomyopathy represent a complex disease, that is reluctant to reveal the molecular mechanisms and underlying cellular responses. Current research projects on diabetic cardiomyopathy are predominantly based on animal models, in which there are not only obvious advantages, such as genetics that can be traced over generations and the directly measurable influence of dietary types, but also not despisable disadvantages. Thus, many studies are built up on transgenic rodent models, which are partly comparable to symptoms in humans due to their genetic alterations, but on the other hand are also under discussion regarding their clinical relevance in the translation of biomedical therapeutic approaches. Furthermore, a focus on transgenic rodent models ignores spontaneously occurring diabetes in larger mammals (such as dogs or pigs), which represent with their anatomical similarity to humans regarding their cardiovascular situation appealing models for testing translational approaches. With this in mind, we aim to shed light on the currently most popular animal models for diabetic cardiomyopathy and, by weighing the advantages and disadvantages, provide decision support for future animal experimental work in the field, hence advancing the biomedical translation of promising approaches into clinical application.
Collapse
Affiliation(s)
- Claudia Richter
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.,Partnersite Goettingen, German Center for Cardiovascular Research (DZHK e.V.), Goettingen, Germany
| | - Rabea Hinkel
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.,Partnersite Goettingen, German Center for Cardiovascular Research (DZHK e.V.), Goettingen, Germany.,Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
34
|
Zhang K, Tao C, Xu J, Ruan J, Xia J, Zhu W, Xin L, Ye H, Xie N, Xia B, Li C, Wu T, Wang Y, Schroyen M, Xiao X, Fan J, Yang S. CD8 + T Cells Involved in Metabolic Inflammation in Visceral Adipose Tissue and Liver of Transgenic Pigs. Front Immunol 2021; 12:690069. [PMID: 34322121 PMCID: PMC8311854 DOI: 10.3389/fimmu.2021.690069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Anti-inflammatory therapies have the potential to become an effective treatment for obesity-related diseases. However, the huge gap of immune system between human and rodent leads to limitations of drug discovery. This work aims at constructing a transgenic pig model with higher risk of metabolic diseases and outlining the immune responses at the early stage of metaflammation by transcriptomic strategy. We used CRISPR/Cas9 techniques to targeted knock-in three humanized disease risk genes, GIPRdn , hIAPP and PNPLA3I148M . Transgenic effect increased the risk of metabolic disorders. Triple-transgenic pigs with short-term diet intervention showed early symptoms of type 2 diabetes, including glucose intolerance, pancreatic lipid infiltration, islet hypertrophy, hepatic lobular inflammation and adipose tissue inflammation. Molecular pathways related to CD8+ T cell function were significantly activated in the liver and visceral adipose samples from triple-transgenic pigs, including antigen processing and presentation, T-cell receptor signaling, co-stimulation, cytotoxicity, and cytokine and chemokine secretion. The similar pro-inflammatory signaling in liver and visceral adipose tissue indicated that there might be a potential immune crosstalk between the two tissues. Moreover, genes that functionally related to liver antioxidant activity, mitochondrial function and extracellular matrix showed distinct expression between the two groups, indicating metabolic stress in transgenic pigs' liver samples. We confirmed that triple-transgenic pigs had high coincidence with human metabolic diseases, especially in the scope of inflammatory signaling at early stage metaflammation. Taken together, this study provides a valuable large animal model for the clinical study of metaflammation and metabolic diseases.
Collapse
Affiliation(s)
- Kaiyi Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianping Xu
- The Ministry of Health Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinxue Ruan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jihan Xia
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wenjuan Zhu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leilei Xin
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaqiong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Xie
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boce Xia
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenxiao Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianwen Wu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Xinhua Xiao
- The Ministry of Health Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangao Fan
- Shanghai Key Laboratory of Children's Digestion and Nutrition, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Alberio R, Wolf E. 25th ANNIVERSARY OF CLONING BY SOMATIC-CELL NUCLEAR TRANSFER: Nuclear transfer and the development of genetically modified/gene edited livestock. Reproduction 2021; 162:F59-F68. [PMID: 34096507 PMCID: PMC8240728 DOI: 10.1530/rep-21-0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
The birth and adult development of 'Dolly' the sheep, the first mammal produced by the transfer of a terminally differentiated cell nucleus into an egg, provided unequivocal evidence of nuclear equivalence among somatic cells. This ground-breaking experiment challenged a long-standing dogma of irreversible cellular differentiation that prevailed for over a century and enabled the development of methodologies for reversal of differentiation of somatic cells, also known as nuclear reprogramming. Thanks to this new paradigm, novel alternatives for regenerative medicine in humans, improved animal breeding in domestic animals and approaches to species conservation through reproductive methodologies have emerged. Combined with the incorporation of new tools for genetic modification, these novel techniques promise to (i) transform and accelerate our understanding of genetic diseases and the development of targeted therapies through creation of tailored animal models, (ii) provide safe animal cells, tissues and organs for xenotransplantation, (iii) contribute to the preservation of endangered species, and (iv) improve global food security whilst reducing the environmental impact of animal production. This review discusses recent advances that build on the conceptual legacy of nuclear transfer and – when combined with gene editing – will have transformative potential for medicine, biodiversity and sustainable agriculture. We conclude that the potential of these technologies depends on further fundamental and translational research directed at improving the efficiency and safety of these methods.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences University of Nottingham, Nottingham, UK
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
36
|
Barteková M, Adameová A, Görbe A, Ferenczyová K, Pecháňová O, Lazou A, Dhalla NS, Ferdinandy P, Giricz Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic Biol Med 2021; 169:446-477. [PMID: 33905865 DOI: 10.1016/j.freeradbiomed.2021.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiometabolic diseases (CMDs) are metabolic diseases (e.g., obesity, diabetes, atherosclerosis, rare genetic metabolic diseases, etc.) associated with cardiac pathologies. Pathophysiology of most CMDs involves increased production of reactive oxygen species and impaired antioxidant defense systems, resulting in cardiac oxidative stress (OxS). To alleviate OxS, various antioxidants have been investigated in several diseases with conflicting results. Here we review the effect of CMDs on cardiac redox homeostasis, the role of OxS in cardiac pathologies, as well as experimental and clinical data on the therapeutic potential of natural antioxidants (including resveratrol, quercetin, curcumin, vitamins A, C, and E, coenzyme Q10, etc.), synthetic antioxidants (including N-acetylcysteine, SOD mimetics, mitoTEMPO, SkQ1, etc.), and promoters of antioxidant enzymes in CMDs. As no antioxidant indicated for the prevention and/or treatment of CMDs has reached the market despite the large number of preclinical and clinical studies, a sizeable translational gap is evident in this field. Thus, we also highlight potential underlying factors that may contribute to the failure of translation of antioxidant therapies in CMDs.
Collapse
Affiliation(s)
- Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia.
| | - Adriana Adameová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovakia
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Oľga Pecháňová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, And Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| |
Collapse
|
37
|
Sagmeister S, Merl-Pham J, Petrera A, Deeg CA, Hauck SM. High glucose treatment promotes extracellular matrix proteome remodeling in Mller glial cells. PeerJ 2021; 9:e11316. [PMID: 34046254 PMCID: PMC8139267 DOI: 10.7717/peerj.11316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 11/20/2022] Open
Abstract
Background The underlying pathomechanisms in diabetic retinopathy (DR) remain incompletely understood. The aim of this study was to add to the current knowledge about the particular role of retinal Mller glial cells (RMG) in the initial processes of DR. Methods Applying a quantitative proteomic workflow, we investigated changes of primary porcine RMG under short term high glucose treatment as well as glycolysis inhibition treatment. Results We revealed significant changes in RMG proteome primarily in proteins building the extracellular matrix (ECM) indicating fundamental remodeling processes of ECM as novel rapid response to high glucose treatment. Among others, Osteopontin (SPP1) as well as its interacting integrins were significantly downregulated and organotypic retinal explant culture confirmed the selective loss of SPP1 in RMG upon treatment. Since SPP1 in the retina has been described neuroprotective for photoreceptors and functions against experimentally induced cell swelling, its rapid loss under diabetic conditions may point to a direct involvement of RMG to the early neurodegenerative processes driving DR. Data are available via ProteomeXchange with identifier PXD015879.
Collapse
Affiliation(s)
- Sandra Sagmeister
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany.,Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Agnese Petrera
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| |
Collapse
|
38
|
Abstract
Pigs represent a potentially attractive model for medical research. Similar body size and physiological patterns of kidney injury that more closely mimic those described in humans make larger animals attractive for experimentation. Using larger animals, including pigs, to investigate the pathogenesis of acute kidney injury (AKI) also serves as an experimental bridge, narrowing the gap between clinical disease and preclinical discoveries. This article compares the advantages and disadvantages of large versus small AKI animal models and provides a comprehensive overview of the development and application of porcine models of AKI induced by clinically relevant insults, including ischemia-reperfusion, sepsis, and nephrotoxin exposure. The primary focus of this review is to evaluate the use of pigs for AKI studies by current investigators, including areas where more information is needed.
Collapse
Affiliation(s)
- Jianni Huang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
39
|
Ratner LD, La Motta GE, Briski O, Salamone DF, Fernandez-Martin R. Practical Approaches for Knock-Out Gene Editing in Pigs. Front Genet 2021; 11:617850. [PMID: 33747029 PMCID: PMC7973260 DOI: 10.3389/fgene.2020.617850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Pigs are an important resource for meat production and serve as a model for human diseases. Due to their physiological and anatomical similarities to humans, these animals can recapitulate symptoms of human diseases, becoming an effective model for biomedical research. Although, in the past pig have not been widely used partially because of the difficulty in genetic modification; nowadays, with the new revolutionary technology of programmable nucleases, and fundamentally of the CRISPR-Cas9 systems, it is possible for the first time to precisely modify the porcine genome as never before. To this purpose, it is necessary to introduce the system into early stage zygotes or to edit cells followed by somatic cell nuclear transfer. In this review, several strategies for pig knock-out gene editing, using the CRISPR-Cas9 system, will be summarized, as well as genotyping methods and different delivery techniques to introduce these tools into the embryos. Finally, the best approaches to produce homogeneous, biallelic edited animals will be discussed.
Collapse
Affiliation(s)
- Laura Daniela Ratner
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gaston Emilio La Motta
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Olinda Briski
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Felipe Salamone
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Fernandez-Martin
- Laboratorio Biotecnología Animal (LabBA), Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
40
|
Abstract
A low-glycaemic diet is crucial for those with diabetes and cardiovascular diseases. Information on the glycaemic index (GI) of different ingredients can help in designing novel food products for such target groups. This is because of the intricate dependency of material source, composition, food structure and processing conditions, among other factors, on the glycaemic responses. Different approaches have been used to predict the GI of foods, and certain discrepancies exist because of factors such as inter-individual variation among human subjects. Besides other aspects, it is important to understand the mechanism of food digestion because an approach to predict GI must essentially mimic the complex processes in the human gastrointestinal tract. The focus of this work is to review the advances in various approaches for predicting the glycaemic responses to foods. This has been carried out by detailing conventional approaches, their merits and limitations, and the need to focus on emerging approaches. Given that no single approach can be generalised to all applications, the review emphasises the scope of deriving insights for improvements in methodologies. Reviewing the conventional and emerging approaches for the determination of GI in foods, this detailed work is intended to serve as a state-of-the-art resource for nutritionists who work on developing low-GI foods.
Collapse
|
41
|
Cai T, Hu Y, Ding B, Yan R, Liu B, Cai L, Jing T, Jiang L, Xie X, Wang Y, Wang H, Zhou Y, He K, Xu L, Chen L, Cheng C, Ma J. Effect of Metformin on Testosterone Levels in Male Patients With Type 2 Diabetes Mellitus Treated With Insulin. Front Endocrinol (Lausanne) 2021; 12:813067. [PMID: 35002984 PMCID: PMC8740051 DOI: 10.3389/fendo.2021.813067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022] Open
Abstract
AIM To explore the chronic effects of metformin on testosterone levels in men with type 2 diabetes mellitus (T2DM). METHODS This is a secondary analysis of a real-world study evaluating the efficacy and safety of premixed insulin treatment in patients with T2DM via 3-month intermittent flash glucose monitoring. Male patients aged 18-60 who were using metformin during the 3-month study period were included as the metformin group. The control group included males without metformin therapy by propensity score matching analysis with age as a covariate. Testosterone levels were measured at baseline and after 3-month treatment. RESULTS After 3-month treatment, the control group had higher levels of total testosterone, free and bioavailable testosterone than those at baseline (P<0.05). Compared with the control group, the change of total (-0.82 ± 0.59 vs. 0.99 ± 0.59 nmol/L) and bioavailable (-0.13 ± 0.16 vs. 0.36 ± 0.16 nmol/L) testosterone levels in the metformin group significantly decreased (P=0.036 and 0.029, respectively). In Glycated Albumin (GA) improved subgroup, the TT, FT, and Bio-T levels in the control subgroup were higher than their baseline levels (P < 0.05). Compared with the metformin subgroup, TT level in the control subgroup also increased significantly (P=0.044). In GA unimproved subgroup, the change of TT level in the metformin subgroup was significantly lower than that in the control subgroup (P=0.040). CONCLUSION In men with T2DM, 3-month metformin therapy can reduce testosterone levels, and counteract the testosterone elevation that accompanied with the improvement of blood glucose. CLINICAL TRIAL REGISTRATION https://www.clinicaltrials.gov/ct2/show/NCT04847219?term=04847219&draw=2&rank=1.
Collapse
Affiliation(s)
- Tingting Cai
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Hu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Ding
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rengna Yan
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bingli Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ling Cai
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Jing
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lanlan Jiang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaojing Xie
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuming Wang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiying Wang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yunting Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ke He
- Department of Endocrinology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Lan Xu
- Department of Endocrinology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Liang Chen
- Department of Endocrinology, Huai’an Second People’s Hospital and The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Cheng Cheng
- Department of Endocrinology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Jianhua Ma,
| |
Collapse
|
42
|
Vohra T, Kemter E, Sun N, Dobenecker B, Hinrichs A, Burrello J, Gomez-Sanchez EP, Gomez-Sanchez CE, Wang J, Kinker IS, Teupser D, Fischer K, Schnieke A, Peitzsch M, Eisenhofer G, Walch A, Reincke M, Wolf E, Williams TA. Effect of Dietary Sodium Modulation on Pig Adrenal Steroidogenesis and Transcriptome Profiles. Hypertension 2020; 76:1769-1777. [PMID: 33070662 DOI: 10.1161/hypertensionaha.120.15998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Primary aldosteronism is a frequent form of endocrine hypertension caused by aldosterone overproduction from the adrenal cortex. Regulation of aldosterone biosynthesis has been studied in rodents despite differences in adrenal physiology with humans. We, therefore, investigated pig adrenal steroidogenesis, morphology, and transcriptome profiles of the zona glomerulosa (zG) and zona fasciculata in response to activation of the renin-angiotensin-aldosterone system by dietary sodium restriction. Six-week-old pigs were fed a low- or high-sodium diet for 14 days (3 pigs per group, 0.4 g sodium/kg feed versus 6.8 g sodium/kg). Plasma aldosterone concentrations displayed a 43-fold increase (P=0.011) after 14 days of sodium restriction (day 14 versus day 0). Low dietary sodium caused a 2-fold increase in thickness of the zG (P<0.001) and an almost 3-fold upregulation of CYP11B (P<0.05) compared with high dietary sodium. Strong immunostaining of the KCNJ5 (G protein-activated inward rectifier potassium channel 4), which is frequently mutated in primary aldosteronism, was demonstrated in the zG. mRNA sequencing transcriptome analysis identified significantly altered expression of genes modulated by the renin-angiotensin-aldosterone system in the zG (n=1172) and zona fasciculata (n=280). These genes included many with a known role in the regulation of aldosterone synthesis and adrenal function. The most highly enriched biological pathways in the zG were related to cholesterol biosynthesis, steroid metabolism, cell cycle, and potassium channels. This study provides mechanistic insights into the physiology and pathophysiology of aldosterone production in a species closely related to humans and shows the suitability of pigs as a translational animal model for human adrenal steroidogenesis.
Collapse
Affiliation(s)
- Twinkle Vohra
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (T.V., I.-S.K., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences (E.K., A.H., E.W.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Na Sun
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (N.S., J.W., A.W.)
| | - Britta Dobenecker
- Chair of Animal Nutrition and Dietetics, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany (B.D.)
| | - Arne Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences (E.K., A.H., E.W.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacopo Burrello
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (J.B., T.A.W.)
| | - Elise P Gomez-Sanchez
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson (E.P.G.-S.)
| | - Celso E Gomez-Sanchez
- Endocrine Division, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S.).,Department of Pharmacology and Toxicology and Medicine, University of Mississippi Medical Center, Jackson (C.E.G.-S.)
| | - Jun Wang
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (N.S., J.W., A.W.)
| | - Isabella-Sabrina Kinker
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (T.V., I.-S.K., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital (D.T.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Konrad Fischer
- School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany (K.F., A.S.)
| | - Angelika Schnieke
- School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany (K.F., A.S.)
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine (M.P., G.E.), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine (M.P., G.E.), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Department of Medicine III (G.E.), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (N.S., J.W., A.W.)
| | - Martin Reincke
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (T.V., I.-S.K., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences (E.K., A.H., E.W.), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tracy Ann Williams
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (T.V., I.-S.K., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Munich, Germany.,Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (J.B., T.A.W.)
| |
Collapse
|
43
|
Zeng W, Gunderson KA, Sanchez RJ, Albano NJ, Nkana ZH, Thadikonda KM, Dingle AM, Poore SO. The Blue-Blood Porcine Chest Wall: A Novel Microsurgery Training Simulator for Internal Mammary Vessel Dissection and Anastomosis. J Reconstr Microsurg 2020; 37:353-356. [PMID: 32957156 DOI: 10.1055/s-0040-1716859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Preparation of the internal mammary artery (IMA) is a critical step in autologous breast reconstruction. Intraoperatively, there is limited opportunity for residents to practice this skill. Porcine models provide highly realistic simulation for vascular surgery; however, use of live laboratory pigs is expensive, inconvenient, and offers limited opportunity for repetitive training. We aimed to develop an inexpensive and effective training model for IMA preparation. This article describes creation of a novel microsurgical model using cadaveric chest walls of Wisconsin Miniature Swine embedded in a modified mannequin thorax and augmented with a blue-blood perfusion system. METHODS Anatomic comparison: five porcine chest walls were dissected, and various anatomic measurements were made for anatomic comparison to existing human data in the literature. Model assembly: the chest wall is prepared by cannulating the proximal and distal ends of the internal mammary vessels with angiocatheters, which are then connected to the blue-blood perfusion system. The model is assembled in four layers including: (1) a mannequin thorax with a window removed to expose the first to fourth intercostal spaces, bilaterally, (2) a layer of foam simulating fat, (3) the perfused pig chest wall, and (4) a second mannequin shell placed posteriorly for support. RESULTS The porcine chest walls are similar to humans with regards to vessel size and location. This model can be assembled quickly, with a one-time approximate cost of $55.00, and allows for six training sessions per specimen. The model allows residents to practice the key steps of IMA preparation including dissection, elevation of perichondria, and vascular anastomosis while working at a depth that closely simulates the human thorax. Continuous blue-blood perfusion provides immediate feedback on anastomosis quality. CONCLUSION Overall, this novel model can provide inexpensive and realistic simulation of internal mammary vessel preparation and anastomosis.
Collapse
Affiliation(s)
- Weifeng Zeng
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kirsten A Gunderson
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ruston J Sanchez
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nicholas J Albano
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Zeeda H Nkana
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kishan M Thadikonda
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aaron M Dingle
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Samuel O Poore
- Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
44
|
Melià-Sorolla M, Castaño C, DeGregorio-Rocasolano N, Rodríguez-Esparragoza L, Dávalos A, Martí-Sistac O, Gasull T. Relevance of Porcine Stroke Models to Bridge the Gap from Pre-Clinical Findings to Clinical Implementation. Int J Mol Sci 2020; 21:ijms21186568. [PMID: 32911769 PMCID: PMC7555414 DOI: 10.3390/ijms21186568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
In the search of animal stroke models providing translational advantages for biomedical research, pigs are large mammals with interesting brain characteristics and wide social acceptance. Compared to rodents, pigs have human-like highly gyrencephalic brains. In addition, increasingly through phylogeny, animals have more sophisticated white matter connectivity; thus, ratios of white-to-gray matter in humans and pigs are higher than in rodents. Swine models provide the opportunity to study the effect of stroke with emphasis on white matter damage and neuroanatomical changes in connectivity, and their pathophysiological correlate. In addition, the subarachnoid space surrounding the swine brain resembles that of humans. This allows the accumulation of blood and clots in subarachnoid hemorrhage models mimicking the clinical condition. The clot accumulation has been reported to mediate pathological mechanisms known to contribute to infarct progression and final damage in stroke patients. Importantly, swine allows trustworthy tracking of brain damage evolution using the same non-invasive multimodal imaging sequences used in the clinical practice. Moreover, several models of comorbidities and pathologies usually found in stroke patients have recently been established in swine. We review here ischemic and hemorrhagic stroke models reported so far in pigs. The advantages and limitations of each model are also discussed.
Collapse
Affiliation(s)
- Marc Melià-Sorolla
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
| | - Carlos Castaño
- Neurointerventional Radiology Unit, Department of Neurosciences, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain;
| | - Núria DeGregorio-Rocasolano
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
| | - Luis Rodríguez-Esparragoza
- Stroke Unit, Department of Neurology, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain; (L.R.-E.); (A.D.)
| | - Antoni Dávalos
- Stroke Unit, Department of Neurology, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain; (L.R.-E.); (A.D.)
| | - Octavi Martí-Sistac
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08916 Bellaterra, Catalonia, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Carretera del Canyet, Camí de les Escoles s/n, Edifici Mar, 08916 Badalona, Catalonia, Spain
- Correspondence: (O.M.-S.); (T.G.); Tel.: +34-930330531 (O.M.-S.)
| | - Teresa Gasull
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Carretera del Canyet, Camí de les Escoles s/n, Edifici Mar, 08916 Badalona, Catalonia, Spain
- Correspondence: (O.M.-S.); (T.G.); Tel.: +34-930330531 (O.M.-S.)
| |
Collapse
|
45
|
Zettler S, Renner S, Kemter E, Hinrichs A, Klymiuk N, Backman M, Riedel EO, Mueller C, Streckel E, Braun-Reichhart C, Martins AS, Kurome M, Keßler B, Zakhartchenko V, Flenkenthaler F, Arnold GJ, Fröhlich T, Blum H, Blutke A, Wanke R, Wolf E. A decade of experience with genetically tailored pig models for diabetes and metabolic research. Anim Reprod 2020; 17:e20200064. [PMID: 33029223 PMCID: PMC7534555 DOI: 10.1590/1984-3143-ar2020-0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The global prevalence of diabetes mellitus and other metabolic diseases is rapidly increasing. Animal models play pivotal roles in unravelling disease mechanisms and developing and testing therapeutic strategies. Rodents are the most widely used animal models but may have limitations in their resemblance to human disease mechanisms and phenotypes. Findings in rodent models are consequently often difficult to extrapolate to human clinical trials. To overcome this ‘translational gap’, we and other groups are developing porcine disease models. Pigs share many anatomical and physiological traits with humans and thus hold great promise as translational animal models. Importantly, the toolbox for genetic engineering of pigs is rapidly expanding. Human disease mechanisms and targets can therefore be reproduced in pigs on a molecular level, resulting in precise and predictive porcine (PPP) models. In this short review, we summarize our work on the development of genetically (pre)diabetic pig models and how they have been used to study disease mechanisms and test therapeutic strategies. This includes the generation of reporter pigs for studying beta-cell maturation and physiology. Furthermore, genetically engineered pigs are promising donors of pancreatic islets for xenotransplantation. In summary, genetically tailored pig models have become an important link in the chain of translational diabetes and metabolic research.
Collapse
Affiliation(s)
- Silja Zettler
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Simone Renner
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Elisabeth Kemter
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Arne Hinrichs
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Nikolai Klymiuk
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Mattias Backman
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| | | | - Christiane Mueller
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Elisabeth Streckel
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Christina Braun-Reichhart
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Ana Sofia Martins
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Mayuko Kurome
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Barbara Keßler
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Valeri Zakhartchenko
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | | | - Georg Josef Arnold
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| |
Collapse
|
46
|
Phenotyping of the Visceral Adipose Tissue Using Dual Energy X-Ray Absorptiometry (DXA) and Magnetic Resonance Imaging (MRI) in Pigs. Animals (Basel) 2020; 10:ani10071165. [PMID: 32660013 PMCID: PMC7401593 DOI: 10.3390/ani10071165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to phenotype visceral adipose tissue (VAT) in pigs. In this context, the ability to detect VAT by using the DXA CoreScan mode within the enCORE software, version 17 (GE Healthcare) was evaluated in comparison with MRI measurements (Siemens Magnetom C!) of the same body region. A number of 120 crossbred pigs of the F1 and F2 generation, with the parental breeds Large White, Landrace, Piétrain, and Duroc, were examined at an age of 150 days. A whole-body scan in two different modes ("thick", "standard") was carried out by a GE Lunar iDXA scanner. Very strong relationships (R2 = 0.95, RMSE = 175cm3) were found for VAT between the two DXA modes. The comparison of VAT measured by MRI and DXA shows high linear relationships ("thick": R2 = 0.76, RMSE = 399.25cm3/"standard": R2 = 0.71, RMSE = 443.42cm3), but is biased, according to the Bland-Altman analysis. A variance analysis of VAT shows significant differences for both DXA modes and for MRI between male and female pigs, as well as between F1 and F2. In conclusion, DXA "CoreScan" has the ability to estimate VAT in pigs with a close relationship to MRI but needs bias correction.
Collapse
|
47
|
Weigand M, Degroote RL, Amann B, Renner S, Wolf E, Hauck SM, Deeg CA. Proteome profile of neutrophils from a transgenic diabetic pig model shows distinct changes. J Proteomics 2020; 224:103843. [PMID: 32470542 DOI: 10.1016/j.jprot.2020.103843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
INSC94Y transgenic pigs develop a stable diabetic phenotype early after birth and therefore allow studying the influence of hyperglycemia on primary immune cells in an early stage of diabetes mellitus in vivo. Since immune response is altered in diabetes mellitus, with deviant neutrophil function discussed as one of the possible causes in humans and mouse models, we investigated these immune cells in INSC94Y transgenic pigs and wild type controls at protein level. A total of 2371 proteins were quantified by label-free LC-MS/MS. Subsequent differential proteome analysis of transgenic animals and controls revealed clear differences in protein abundances, indicating a deviant behavior of granulocytes in the diabetic state. Interestingly, abundance of myosin regulatory light chain 9 (MLC-2C) was increased 5-fold in cells of diabetic pigs. MLC-2C directly affects cell contractility by regulating myosin ATPase activity, can act as transcription factor and was also associated with inflammation. It might contribute to impaired neutrophil cell adhesion, migration and phagocytosis. Our study provides novel insights into proteome changes in neutrophils from a large animal model for permanent neonatal diabetes mellitus and points to dysregulation of neutrophil function even in an early stage of this disease. Data are available via ProteomeXchange with identifier PXD017274. SIGNIFICANCE: Our studies provide novel basic information about the neutrophil proteome of pigs and contribute to a better understanding of molecular mechanisms involved in altered immune cell function in an early stage diabetes. We demonstrate proteins that are dysregulated in neutrophils from a transgenic diabetic pig and have not been described in this context so far. The data presented here are highly relevant for veterinary medicine and have translational quality for diabetes in humans.
Collapse
Affiliation(s)
- Maria Weigand
- Department of Veterinary Sciences, LMU, Munich, Germany
| | | | - Barbara Amann
- Department of Veterinary Sciences, LMU, Munich, Germany
| | - Simone Renner
- Gene Center and Department of Veterinary Sciences, LMU, Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, LMU, Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Germany
| | | |
Collapse
|
48
|
|
49
|
Badeggi UM, Ismail E, Adeloye AO, Botha S, Badmus JA, Marnewick JL, Cupido CN, Hussein AA. Green Synthesis of Gold Nanoparticles Capped with Procyanidins from Leucosidea sericea as Potential Antidiabetic and Antioxidant Agents. Biomolecules 2020; 10:biom10030452. [PMID: 32183213 PMCID: PMC7175165 DOI: 10.3390/biom10030452] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/02/2023] Open
Abstract
In this study, procyanidins fractions of dimers and trimers (F1-F2) from the Leucosidea sericea total extract (LSTE) were investigated for their chemical constituents. The total extract and the procyanidins were employed in the synthesis of gold nanoparticles (Au NPs) and fully characterized. Au NPs of 6, 24 and 21 nm were obtained using LSTE, F1 and F2 respectively. Zeta potential and in vitro stability studies confirmed the stability of the particles. The enzymatic activity of LSTE, F1, F2 and their corresponding Au NPs showed strong inhibitory alpha-amylase activity where F1 Au NPs demonstrated the highest with IC50 of 1.88 µg/mL. On the other hand, F2 Au NPs displayed the strongest alpha-glucosidase activity at 4.5 µg/mL. F2 and F2 Au NPs also demonstrated the highest antioxidant activity, 1834.0 ± 4.7 μM AAE/g and 1521.9 ± 3.0 μM TE/g respectively. The study revealed not only the ability of procyanidins dimers (F1 and F2) in forming biostable and bioactive Au NPs but also, a significant enhancement of the natural products activities, which could improve the smart delivery in future biomedical applications.
Collapse
Affiliation(s)
- Umar M. Badeggi
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (U.M.B.); (E.I.); (A.O.A.)
| | - Enas Ismail
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (U.M.B.); (E.I.); (A.O.A.)
| | - Adewale O. Adeloye
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (U.M.B.); (E.I.); (A.O.A.)
| | - Subelia Botha
- Electron Microscope Unit, University of the Western Cape, Bellville 7535, South Africa;
| | - Jelili A. Badmus
- Oxidative Stress Research Centre, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (J.A.B.); (J.L.M.)
| | - Jeanine L. Marnewick
- Oxidative Stress Research Centre, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (J.A.B.); (J.L.M.)
| | - Christopher N. Cupido
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa;
| | - Ahmed A. Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (U.M.B.); (E.I.); (A.O.A.)
- Correspondence: ; Tel.: +27-21-959-6193; Fax: +27-21-959-3055
| |
Collapse
|