1
|
Bällgren F, Bergfast T, Ginosyan A, Mahajan J, Lipcsey M, Hammarlund-Udenaes M, Syvänen S, Loryan I. Active CNS delivery of oxycodone in healthy and endotoxemic pigs. Fluids Barriers CNS 2024; 21:86. [PMID: 39443944 PMCID: PMC11515623 DOI: 10.1186/s12987-024-00583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The primary objective of this study was to advance our understanding of active drug uptake at brain barriers in higher species than rodents, by examining oxycodone brain concentrations in pigs. METHODS This was investigated by a microdialysis study in healthy and endotoxemic conditions to increase the understanding of inter-species translation of putative proton-coupled organic cation (H+/OC) antiporter-mediated central nervous system (CNS) drug delivery in health and pathology, and facilitate the extrapolation to humans for improved CNS drug treatment in patients. Additionally, we sought to evaluate the efficacy of lumbar cerebrospinal fluid (CSF) exposure readout as a proxy for brain unbound interstitial fluid (ISF) concentrations. By simultaneously monitoring unbound concentrations in blood, the frontal cortical area, the lateral ventricle (LV), and the lumbar intrathecal space in healthy and lipopolysaccharide (LPS)-induced inflammation states within the same animal, we achieved exceptional spatiotemporal resolution in mapping oxycodone transport across CNS barriers. RESULTS Our findings provide novel evidence of higher unbound oxycodone concentrations in brain ISF compared to blood, yielding an unbound brain-to-plasma concentration ratio (Kp,uu,brain) of 2.5. This supports the hypothesis of the presence of the H+/OC antiporter system at the blood-brain barrier (BBB) in pigs. Despite significant physiological changes, reflected in pig Sequential Organ Failure Assessment, pSOFA scores, oxycodone blood concentrations and its active net uptake across the BBB remained nearly unchanged during three hours of i.v. infusion of 4 µg/kg/h LPS from Escherichia coli (O111:B4). Mean Kp,uu,LV values indicated active uptake also at the blood-CSF barrier in healthy and endotoxemic pigs. Lumbar CSF concentrations showed minimal inter-individual variability during the experiment, with a mean Kp,uu,lumbarCSF of 1.5. LPS challenge caused a slight decrease in Kp,uu,LV, while Kp,uu,lumbarCSF remained unaffected. CONCLUSIONS This study enhances our understanding of oxycodone pharmacokinetics and CNS drug delivery in both healthy and inflamed conditions, providing crucial insights for translating these findings to clinical settings.
Collapse
Affiliation(s)
- Frida Bällgren
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
| | - Tilda Bergfast
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Aghavni Ginosyan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Jessica Mahajan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
- School of Applied Sciences, Abertay University, Bell Street, Dundee, DD1 1HG, Scotland, UK
| | - Miklós Lipcsey
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, 751 85, Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds Väg 20, 751 85, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
| |
Collapse
|
2
|
Jacobsen KR, Mota J, Salerno M, Willis A, Pitts D, Denner J. Prevalence of Antibodies against Adeno-Associated Viruses (AAVs) in Göttingen Minipigs and Its Implications for Gene Therapy and Xenotransplantation. Viruses 2024; 16:1613. [PMID: 39459946 PMCID: PMC11512330 DOI: 10.3390/v16101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Adeno-associated viruses (AAV) are widely used as delivery vectors in clinical trials for in vivo gene therapy due to their unique features. Göttingen minipigs are a well-established animal model for several diseases and can be used for the efficacy and safety testing of AAV-based gene therapy. Pre-existing antibodies against AAV may influence the results of testing and, therefore, the animals should be tested for the presence of antibodies against relevant AAV serotypes. The detection of AAVs in pigs may be also important for the virus safety of xenotransplantation. In this study, we screened Göttingen minipigs from Ellegaard Göttingen Minipigs A/S, Denmark, and Marshall BioResources, USA, for antibodies against AAV1, AAV2, AAV6, AAV9 serotypes. Of the 20 animals tested, 18 had no neutralizing antibodies for all AAVs tested, none had antibodies against AAV9, only one had antibodies against AAV6, and the titers of antibodies against AAV1 and AAV2 were less than 1:100, with two exceptions. For total binding IgG, more individuals showed positivity for all the tested serotypes but, in general, the levels were low or zero. Three animals had no antibodies at all against the AAVs tested. Therefore, Göttingen minipigs could be considered an attractive animal model for gene therapy studies. Since some animals were negative for all AAVs tested, these may be selected and used as donor animals for xenotransplantation.
Collapse
Affiliation(s)
| | - Javier Mota
- VRL Diagnostics, San Antonio, TX 78229, USA; (J.M.); (D.P.)
| | - Michelle Salerno
- Marshall BioResources, North Rose, NY 14516, USA; (M.S.); (A.W.)
| | - Alexis Willis
- Marshall BioResources, North Rose, NY 14516, USA; (M.S.); (A.W.)
| | - Dennis Pitts
- VRL Diagnostics, San Antonio, TX 78229, USA; (J.M.); (D.P.)
| | - Joachim Denner
- Institute of Virology, Free University, 14163 Berlin, Germany
| |
Collapse
|
3
|
Vatzia E, Paudyal B, Dema B, Carr BV, Sedaghat-Rostami E, Gubbins S, Sharma B, Moorhouse E, Morris S, Ulaszewska M, MacLoughlin R, Salguero FJ, Gilbert SC, Tchilian E. Aerosol immunization with influenza matrix, nucleoprotein, or both prevents lung disease in pig. NPJ Vaccines 2024; 9:188. [PMID: 39397062 PMCID: PMC11471855 DOI: 10.1038/s41541-024-00989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Current influenza vaccines are strain-specific and require frequent updates to combat new strains, making a broadly protective influenza vaccine (BPIV) highly desirable. A promising strategy is to induce T-cell responses against internal proteins conserved across influenza strains. In this study, pH1N1 pre-exposed pigs were immunized by aerosol using viral vectored vaccines (ChAdOx2 and MVA) expressing matrix (M1) and nucleoprotein (NP). Following H3N2 challenge, all immunizations (M1, NP or NPM1) reduced lung pathology, but M1 alone offered the greatest protection. NP or NPM1 immunization induced both T-cell and antibody responses. M1 immunization generated no detectable antibodies but elicited M1-specific T-cell responses, suggesting T cell-mediated protection. Additionally, a single aerosol immunization with the ChAdOx vaccine encoding M1, NP and neuraminidase reduced lung pathology. These findings provide insights into BPIV development using a relevant large natural host, the pig.
Collapse
Affiliation(s)
| | | | - Barbara Dema
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Susan Morris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah C Gilbert
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
4
|
Franzoni G, Fruscione F, Dell'Anno F, Mura L, De Ciucis CG, Zinellu S, Columbano N, Graham SP, Dei Giudici S, Razzuoli E. Expression of key immune genes in polarized porcine monocyte-derived macrophage subsets. Vet Immunol Immunopathol 2024; 278:110841. [PMID: 39427365 DOI: 10.1016/j.vetimm.2024.110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Swine are considered one of the most relevant large animal biomedical models since they share many immunological similarities with humans. Despite that, macrophage polarization has not comprehensively investigated in pigs. In this study, porcine monocyte-derived macrophages (moMΦ) were untreated or stimulated with IFN-γ + LPS (classical activation), or by different M2 polarizing stimuli: IL-4, IL-10, TGF-β, or dexamethasone. Expression of key cytokine genes (IL1B2, IL33, IL19, IL22, IL26, CCL17, CCL24, IFNA, IFNB) in macrophage subsets were investigated over time. Expression of the genes encoding the two main enzymes of the arginine pathway (ARG1, NOS2), and molecules related to alternative macrophage polarization in human and mice (MMP9, MRC1, FIZZ1, VEGFA) were also assessed. Stimulation with IFN-γ + LPS triggered up-regulation of IL1B2, IFNB, NOS2, whereas IL-4 triggered upregulation of CCL17, CCL24, CXCR2, and ARG1 expression. IL19 and IL22 expression was enhanced by stimulation with IFN-γ + LPS or TGF-β, but not IL-4, IL-10, or dexamethasone. Our data highlighted some peculiarities in swine, such as induced expression of IL33 after stimulation with IFN-γ + LPS, and no up-regulation of FIZZ1, VEGFA or MMP9 after exposure to any of the M2 polarizing stimuli. A better understanding of porcine macrophage polarization could benefit translational studies using this large animal model.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari 07100, Italy.
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy.
| | - Filippo Dell'Anno
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy; Department of Public Health Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy.
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari 07100, Italy.
| | - Chiara G De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy; Department of Public Health Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy.
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari 07100, Italy.
| | - Nicolò Columbano
- Department of Veterinary Medicine, University of Sassari, Sassari 07100, Italy.
| | - Simon P Graham
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 ONF, UK.
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari 07100, Italy.
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy.
| |
Collapse
|
5
|
Nicolussi P, Pilo G, Cancedda MG, Peng G, Chau NDQ, De la Cadena A, Vanna R, Samad YA, Ahmed T, Marcellino J, Tedde G, Giro L, Ylmazer A, Loi F, Carta G, Secchi L, Dei Giudici S, Macciocu S, Polli D, Nishina Y, Ligios C, Cerullo G, Ferrari A, Bianco A, Fadeel B, Franzoni G, Delogu LG. Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine. Adv Healthc Mater 2024:e2401783. [PMID: 39385652 DOI: 10.1002/adhm.202401783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Indexed: 10/12/2024]
Abstract
Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene.
Collapse
Affiliation(s)
- Paola Nicolussi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | | | | | - Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Ngoc Do Quyen Chau
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg ISIS, Strasbourg, 67000, France
| | | | - Renzo Vanna
- Istituto di Fotonica e Nanotecnologie - CNR, Milan, 20133, Italy
| | - Yarjan Abdul Samad
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
- Department of Aerospace Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, UAE
| | - Tanweer Ahmed
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Jeremia Marcellino
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Giuseppe Tedde
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Linda Giro
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
| | - Acelya Ylmazer
- Department of Biomedical Engineering, Ankara University, Ankara, 06830, Turkey
| | - Federica Loi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Gavina Carta
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Loredana Secchi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Silvia Dei Giudici
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Simona Macciocu
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Dario Polli
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Istituto di Fotonica e Nanotecnologie - CNR, Milan, 20133, Italy
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Istituto di Fotonica e Nanotecnologie - CNR, Milan, 20133, Italy
| | - Andrea Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg ISIS, Strasbourg, 67000, France
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Giulia Franzoni
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Lucia Gemma Delogu
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE
| |
Collapse
|
6
|
Sousa KRS, de Melo Ferreira Dantas W, de Oliveira LL, Cardoso SA, Dos Santos Araújo R, Guimarães SEF. Effect of vaccination against Mycoplasma hyopneumoniae on divergent pig genetic groups. Res Vet Sci 2024; 180:105417. [PMID: 39288683 DOI: 10.1016/j.rvsc.2024.105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
The bacterium Mycoplasma hyopneumoniae (Mhp) causes a chronic infectious respiratory disease in pigs, leading to important economic losses. This study aimed to compare the immune response of the local Piau breed and a commercial line to Mhp vaccination. For this, two phases were carried out. In the first, gene expression of toll-like receptors (TLR2, TLR4, TLR6, and TLR10) and cytokines (IL2, IL6, IL8, IL10, IL12, IL13, TNFα, and TGFβ) was assessed in porcine blood mononuclear cells (PBMC) from the two genetic groups before and after vaccination. In the second experiment, nitric oxide production, specific antibodies, and gene expression of toll-like receptors and cytokines were evaluated in bronchoalveolar lavage fluid (BALF) cells of vaccinated and unvaccinated pigs. After vaccination against Mhp, TLR2, TLR4, TLR6, TLR10, IL6, TNFα, and TGFβ expression levels were elevated in PBMC from commercial animals, and TLR6, TLR10, and TGFβ expression levels were elevated in PBMC from the Piau group. Vaccination also increased the production of Mhp-specific IgG antibodies in BALF cells in the Piau breed. Comparison of the two genetic groups revealed differences in TNFα and IL10 expression in BALF cells. These results show that Piau pigs have different immune responses to vaccination compared with commercial animals. It is worth noting that these genetic differences between both genetic groups may be related to phenotypic differences in Mhp resistance or susceptibility.
Collapse
Affiliation(s)
- Katiene Regia Silva Sousa
- Departamento de Oceanografia e Limnologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil.
| | | | | | - Silvia Almeida Cardoso
- Departamento de Enfermagem e Medicina, Universidade Federal de Viçosa, Minas Gerais 36570-000, Brazil.
| | - Renan Dos Santos Araújo
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, 78698-000, Pontal do Araguaia, Mato Grosso, Brazil
| | | |
Collapse
|
7
|
Qiao J, Xu M, Xu F, Che Z, Han P, Dai X, Miao N, Zhu M. Identification of SNPs and Candidate Genes Associated with Monocyte/Lymphocyte Ratio and Neutrophil/Lymphocyte Ratio in Duroc × Erhualian F 2 Population. Int J Mol Sci 2024; 25:9745. [PMID: 39273692 PMCID: PMC11396299 DOI: 10.3390/ijms25179745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024] Open
Abstract
Understanding the pig immune function is crucial for disease-resistant breeding and potentially for human health research due to shared immune system features. Immune cell ratios, like monocyte/lymphocyte ratio (MLR) and neutrophil/lymphocyte ratio (NLR), offer a more comprehensive view of immune status compared to individual cell counts. However, research on pig immune cell ratios remains limited. This study investigated MLR and NLR in a Duroc × Erhualian F2 resource population. Heritability analysis revealed high values (0.649 and 0.688 for MLR and NLR, respectively), suggesting a strong genetic component. Furthermore, we employed an ensemble-like GWAS (E-GWAS) strategy and functional annotation analysis to identify 11 MLR-associated and 6 NLR-associated candidate genes. These genes were significantly enriched in immune-related biological processes. These findings provide novel genetic markers and candidate genes associated with porcine immunity, thereby providing valuable insights for addressing biosecurity and animal welfare concerns in the pig industry.
Collapse
Affiliation(s)
- Jiakun Qiao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Minghang Xu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangjun Xu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxuan Che
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Pingping Han
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyu Dai
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Na Miao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengjin Zhu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Grattoni A, Korbutt G, Tomei AA, García AJ, Pepper AR, Stabler C, Brehm M, Papas K, Citro A, Shirwan H, Millman JR, Melero-Martin J, Graham M, Sefton M, Ma M, Kenyon N, Veiseh O, Desai TA, Nostro MC, Marinac M, Sykes M, Russ HA, Odorico J, Tang Q, Ricordi C, Latres E, Mamrak NE, Giraldo J, Poznansky MC, de Vos P. Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nat Rev Endocrinol 2024:10.1038/s41574-024-01029-0. [PMID: 39227741 DOI: 10.1038/s41574-024-01029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis. Therapeutic intervention for T1DM requires a complex regimen of glycaemic monitoring and the administration of exogenous insulin to regulate blood glucose levels. Advances in continuous glucose monitoring and algorithm-driven insulin delivery devices have improved the quality of life of patients. Despite this, mimicking islet function and complex physiological feedback remains challenging. Pancreatic islet transplantation represents a potential functional cure for T1DM but is hindered by donor scarcity, variability in harvested cells, aggressive immunosuppressive regimens and suboptimal clinical outcomes. Current research is directed towards generating alternative cell sources, improving transplantation methods, and enhancing cell survival without chronic immunosuppression. This Review maps the progress in cell replacement therapies for T1DM and outlines the remaining challenges and future directions. We explore the state-of-the-art strategies for generating replenishable β cells, cell delivery technologies and local targeted immune modulation. Finally, we highlight relevant animal models and the regulatory aspects for advancing these technologies towards clinical deployment.
Collapse
Affiliation(s)
- Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| | - Gregory Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Cherie Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Michael Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Klearchos Papas
- Department of Surgery, The University of Arizona, Tucson, AZ, USA
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Haval Shirwan
- Department of Pediatrics, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Juan Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Michael Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Norma Kenyon
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Tejal A Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA, USA
- Brown University, School of Engineering, Providence, RI, USA
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Megan Sykes
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jon Odorico
- UW Health Transplant Center, Madison, WI, USA
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California San Francisco, San Francisco, CA, US
- Gladstone Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esther Latres
- Research Department, Breakthrough T1D, New York, NY, USA
| | | | - Jaime Giraldo
- Research Department, Breakthrough T1D, New York, NY, USA.
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
9
|
Tuca AC, Bernardelli de Mattos I, Funk M, Markovic D, Winter R, Lemarchand T, Kniepeiss D, Spendel S, Hartmann B, Ottoman C, Kamolz LP. A Standardized Porcine Model for Partial-Thickness Wound Healing Studies: Design, Characterization, Model Validation, and Histological Insights. Int J Mol Sci 2024; 25:7658. [PMID: 39062901 PMCID: PMC11276889 DOI: 10.3390/ijms25147658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing is a complex process that is still not fully understood despite extensive research. To address this, we aimed to design and characterize a standardized porcine model for the evaluation of wound healing, dressings, cell therapies, and pharmaceutical agents. Using a standardized approach, we examined the wound healing process in 1.2 mm-deep dermatome wounds at defined positions in 11 female pigs. Unlike previous studies that have only described/analyzed selected punch biopsies, we performed and described histological analyses along the complete wound length using quantitative morphometric methods. All animals remained fully healthy following surgery and showed no signs of infection. Our histopathological evaluation using a predetermined grading score and quantitative manual morphometry demonstrated the impact of different tissue sampling methods, sampling sites, and residual dermis thickness on wound healing. Our study presents a reproducible model for wound healing evaluation and demonstrates the usefulness of porcine models for assessing dermal and epidermal wound healing. The use of histological analyses over the complete wound length provides advantages over previous studies, leading to the possibility of a deeper understanding of the wound healing process. This model could potentially facilitate future research on novel wound dressings and local wound healing therapies.
Collapse
Affiliation(s)
- Alexandru-Cristian Tuca
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (A.-C.T.); (R.W.); (S.S.); (L.-P.K.)
| | - Ives Bernardelli de Mattos
- Department of Tissue Engineering & Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany
- EVOMEDIS GmbH, 8036 Graz, Austria;
| | | | - Danijel Markovic
- Core Facility Experimental Biomodels, Medical University of Graz, 8010 Graz, Austria;
| | - Raimund Winter
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (A.-C.T.); (R.W.); (S.S.); (L.-P.K.)
| | | | - Daniela Kniepeiss
- Division of General, Visceral, and Transplant Surgery, Department of Surgery, Medical University of Graz, 8010 Graz, Austria;
| | - Stephan Spendel
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (A.-C.T.); (R.W.); (S.S.); (L.-P.K.)
| | - Bernd Hartmann
- BG Klinikum Unfallkrankenhaus Berlin, 12683 Berlin, Germany; (B.H.); (C.O.)
| | - Christian Ottoman
- BG Klinikum Unfallkrankenhaus Berlin, 12683 Berlin, Germany; (B.H.); (C.O.)
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (A.-C.T.); (R.W.); (S.S.); (L.-P.K.)
- Joanneum Research Forschungsgesellschaft mbH, COREMED, 8010 Graz, Austria
| |
Collapse
|
10
|
Farhangi S, Gòdia M, Derks MFL, Harlizius B, Dibbits B, González-Prendes R, Crooijmans RPMA, Madsen O, Groenen MAM. Expression genome-wide association study identifies key regulatory variants enriched with metabolic and immune functions in four porcine tissues. BMC Genomics 2024; 25:684. [PMID: 38992576 PMCID: PMC11238464 DOI: 10.1186/s12864-024-10583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Integration of high throughput DNA genotyping and RNA-sequencing data enables the discovery of genomic regions that regulate gene expression, known as expression quantitative trait loci (eQTL). In pigs, efforts to date have been mainly focused on purebred lines for traits with commercial relevance as such growth and meat quality. However, little is known on genetic variants and mechanisms associated with the robustness of an animal, thus its overall health status. Here, the liver, lung, spleen, and muscle transcriptomes of 100 three-way crossbred female finishers were studied, with the aim of identifying novel eQTL regulatory regions and transcription factors (TFs) associated with regulation of porcine metabolism and health-related traits. RESULTS An expression genome-wide association study with 535,896 genotypes and the expression of 12,680 genes in liver, 13,310 genes in lung, 12,650 genes in spleen, and 12,595 genes in muscle resulted in 4,293, 10,630, 4,533, and 6,871 eQTL regions for each of these tissues, respectively. Although only a small fraction of the eQTLs were annotated as cis-eQTLs, these presented a higher number of polymorphisms per region and significantly stronger associations with their target gene compared to trans-eQTLs. Between 20 and 115 eQTL hotspots were identified across the four tissues. Interestingly, these were all enriched for immune-related biological processes. In spleen, two TFs were identified: ERF and ZNF45, with key roles in regulation of gene expression. CONCLUSIONS This study provides a comprehensive analysis with more than 26,000 eQTL regions identified that are now publicly available. The genomic regions and their variants were mostly associated with tissue-specific regulatory roles. However, some shared regions provide new insights into the complex regulation of genes and their interactions that are involved with important traits related to metabolism and immunity.
Collapse
Affiliation(s)
- Samin Farhangi
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Marta Gòdia
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Topigs Norsvin Research Center, 's-Hertogenbosch, The Netherlands
| | | | - Bert Dibbits
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Rayner González-Prendes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Ausnutria BV, Zwolle, The Netherlands
| | | | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
11
|
Bram S, Lindsey G, Drnevich J, Xu F, Wozniak M, Medina GN, Mehta AP. Parallel single B cell transcriptomics to elucidate pig B cell repertoire. Sci Rep 2024; 14:15997. [PMID: 38987322 PMCID: PMC11237004 DOI: 10.1038/s41598-024-65263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
Pork is the most widely consumed meat on the planet, placing swine health as a critical factor for both the world economy and the food industry. Infectious diseases in pigs not only threaten these sectors but also raise zoonotic concerns, as pigs can act as "mixing vessels" for several animals and human viruses and can lead to the emergence of new viruses that are capable of infecting humans. Several efforts are ongoing to develop pig vaccines, albeit with limited success. This has been largely attributed to the complex nature of pig infections and incomplete understanding of the pig immune responses. Additionally, pig has been suggested to be a good experimental model to study viral infections (e.g., human influenza). Despite the significant importance of studying pig immunology for developing infection models, zoonosis, and the crucial need to develop better swine vaccines, there is still very limited information on the response of the swine adaptive immune system to several emerging pathogens. Particularly, very little is known about the pig B cell repertoire upon infection. Understanding the B cell repertoire is especially crucial towards designing better vaccines, predicting zoonosis and can provide insights into developing new diagnostic agents. Here, we developed methods for performing parallel single pig B cell (up to 10,000 B cells) global and immunoglobulin transcriptome sequencing. We then adapted a computational pipeline previously built for human/mouse sequences, to now analyze pig sequences. This allowed us to comprehensively map the B cell repertoire and get paired antibody sequences from pigs in a single parallel sequencing experiment. We believe that these approaches will have significant implications for swine diseases, particularly in the context of swine mediated zoonosis and swine and human vaccine development.
Collapse
Affiliation(s)
- Stanley Bram
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Graeme Lindsey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Fangxiu Xu
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marcin Wozniak
- Cytometry and Microscopy to Omics Facility Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gisselle N Medina
- National Agro and Bio-Defense Facility (NBAF), USDA, Manhattan, KS, USA
- Plum Island Animal Disease Center, USDA, Orient Point, NY, USA
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
12
|
Thierry B, Arakelian L, Denoyelle F, Larghero J, Wurtz A. Full circumferential human tracheal replacement: a systematic review. Eur J Cardiothorac Surg 2024; 66:ezae269. [PMID: 38984816 DOI: 10.1093/ejcts/ezae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Full Circumferential Tracheal Replacement (FCTR) is a surgical challenge, indicated in rare cases of extensive tracheal resection, with no consensus on surgical technique or materials. A systematic review according to PRISMA guidelines was carried out from 2000 to 2022 to identify cases of FCTR, to compare surgical indications, the nature of the tracheal substitutes and their immunological characteristics, surgical replacement techniques and vascularization. Thirty-seven patients, including five children, underwent FCTR surgery using 4 different techniques: thyrotracheal complex allograft (n = 2), aorta (n = 12), autologous surgical reconstruction (n = 19), tissue-engineered decellularized trachea (n = 4). The mean follow-up was 4 years. Of the 15 deceased patients, 10 died of the progression of the initial pathology. For the majority of the teams, particular care was given to the vascularization of the substitute, in order to guarantee long-term biointegration. This included either direct vascularization via vascular anastomosis, or an indirect technique involving envelopment of the avascular substitute in a richly vascularized tissue. Stent placement was standard, except for autologous surgical reconstructions where tracheal caliber was stable. Internal stents were frequently complicated by granulation and stenosis. Although epithelial coverage is essential to limit endoluminal proliferation and act as a barrier, fully functional ciliated airway epithelium did not seem to be necessary. In order to facilitate future comparisons, a standardized clinical trial, respecting regulatory constraints, including routine follow-up with tracheal biomechanics assessment and scheduled biopsies could be proposed. It would help collecting information such as dynamics and mechanisms of tracheal bio-integration and regeneration.
Collapse
Affiliation(s)
- Briac Thierry
- Department of Paediatric Otolaryngology - Head and Neck Surgery, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Université Paris Cité, Paris, France
- Department of biotherapy clinical investigation, INSERM U976, Assistance Publique - Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Lousineh Arakelian
- Department of biotherapy clinical investigation, INSERM U976, Assistance Publique - Hôpitaux de Paris, Université Paris Cité, Paris, France
- Department of cell therapy, Hôpital St Louis, AP-HP, Paris, France
| | - Françoise Denoyelle
- Department of Paediatric Otolaryngology - Head and Neck Surgery, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Jérôme Larghero
- Department of biotherapy clinical investigation, INSERM U976, Assistance Publique - Hôpitaux de Paris, Université Paris Cité, Paris, France
- Department of cell therapy, Hôpital St Louis, AP-HP, Paris, France
| | - Alain Wurtz
- Emis Platform, Limoges University Hospital, Limoges, France
| |
Collapse
|
13
|
Muir A, Paudyal B, Schmidt S, Sedaghat-Rostami E, Chakravarti S, Villanueva-Hernández S, Moffat K, Polo N, Angelopoulos N, Schmidt A, Tenbusch M, Freimanis G, Gerner W, Richard AC, Tchilian E. Single-cell analysis reveals lasting immunological consequences of influenza infection and respiratory immunization in the pig lung. PLoS Pathog 2024; 20:e1011910. [PMID: 39024231 PMCID: PMC11257366 DOI: 10.1371/journal.ppat.1011910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
The pig is a natural host for influenza viruses and integrally involved in virus evolution through interspecies transmissions between humans and swine. Swine have many physiological, anatomical, and immunological similarities to humans, and are an excellent model for human influenza. Here, we employed single cell RNA-sequencing (scRNA-seq) and flow cytometry to characterize the major leukocyte subsets in bronchoalveolar lavage (BAL), twenty-one days after H1N1pdm09 infection or respiratory immunization with an adenoviral vector vaccine expressing hemagglutinin and nucleoprotein with or without IL-1β. Mapping scRNA-seq clusters from BAL onto those previously described in peripheral blood facilitated annotation and highlighted differences between tissue resident and circulating immune cells. ScRNA-seq data and functional assays revealed lasting impacts of immune challenge on BAL populations. First, mucosal administration of IL-1β reduced the number of functionally active Treg cells. Second, influenza infection upregulated IFI6 in BAL cells and decreased their susceptibility to virus replication in vitro. Our data provide a reference map of porcine BAL cells and reveal lasting immunological consequences of influenza infection and respiratory immunization in a highly relevant large animal model for respiratory virus infection.
Collapse
Affiliation(s)
- Andrew Muir
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | | | - Katy Moffat
- The Pirbright Institute, Pirbright, United Kingdom
| | - Noemi Polo
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Anna Schmidt
- Virologisches Institut-Klinische und Molekulare Virologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profilzentrum Immunmedizin (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Virologisches Institut-Klinische und Molekulare Virologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profilzentrum Immunmedizin (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
14
|
Neira JA, Conrad JV, Rusteika M, Chu LF. The progress of induced pluripotent stem cells derived from pigs: a mini review of recent advances. Front Cell Dev Biol 2024; 12:1371240. [PMID: 38979033 PMCID: PMC11228285 DOI: 10.3389/fcell.2024.1371240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 07/10/2024] Open
Abstract
Pigs (Sus scrofa) are widely acknowledged as an important large mammalian animal model due to their similarity to human physiology, genetics, and immunology. Leveraging the full potential of this model presents significant opportunities for major advancements in the fields of comparative biology, disease modeling, and regenerative medicine. Thus, the derivation of pluripotent stem cells from this species can offer new tools for disease modeling and serve as a stepping stone to test future autologous or allogeneic cell-based therapies. Over the past few decades, great progress has been made in establishing porcine pluripotent stem cells (pPSCs), including embryonic stem cells (pESCs) derived from pre- and peri-implantation embryos, and porcine induced pluripotent stem cells (piPSCs) using a variety of cellular reprogramming strategies. However, the stabilization of pPSCs was not as straightforward as directly applying the culture conditions developed and optimized for murine or primate PSCs. Therefore, it has historically been challenging to establish stable pPSC lines that could pass stringent pluripotency tests. Here, we review recent advances in the establishment of stable porcine PSCs. We focus on the evolving derivation methods that eventually led to the establishment of pESCs and transgene-free piPSCs, as well as current challenges and opportunities in this rapidly advancing field.
Collapse
Affiliation(s)
- Jaime A Neira
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Li-Fang Chu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
15
|
Bernardini C, Nesci S, La Mantia D, Salaroli R, Nauwelaerts N, Ventrella D, Elmi A, Trombetti F, Zannoni A, Forni M. Isolation and characterization of mammary epithelial cells derived from Göttingen Minipigs: A comparative study versus hybrid pig cells from the IMI-ConcePTION Project. Res Vet Sci 2024; 172:105244. [PMID: 38554548 DOI: 10.1016/j.rvsc.2024.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
The value of pig as "large animal model" is a well-known tool for translational medicine, but it can also be beneficial in studying animal health in a one-health vision. The ConcePTION Project aims to provide new information about the risks associated with medication use during breastfeeding, as this information is not available for most commonly used drugs. In the IMI-Conception context, Göttingen Minipigs have been preferred to hybrid pigs for their genetic stability and microbiological control. For the first time, in the present research, three primary cell cultures of mammary epithelial cells were isolated and characterized from Göttingen Minipigs (mpMECs), including their ability to create the epithelial barrier. In addition, a comparative analysis between Göttingen Minipigs and commercial hybrid pig mammary epithelial cells (pMECs) was conducted. Epithelial markers: CKs, CK18, E-CAD, ZO-1 and OCL, were expressed in both mpMECs and pMECs. RT2 Profiler PCR Array Pig Drug Transporters showed a similar profile in mRNA drug transporters. No difference in energy production under basal metabolic condition was evidenced, while under stressed state, a different metabolic behaviour was shown between mpMECs vs pMECs. TEER measurement and sodium fluorescein transport, indicated that mpMECs were able to create an epithelial barrier, although, this turned out to be less compact than pMECs. By comparing mpMECs with mammary epithelial cells isolated from Hybrid pigs (pMECs), although both cell lines have morphological and phenotypic characteristics that make them both useful in barrier studies, some specific differences exist and must be considered in a translational perspective.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy.
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy.
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy.
| | - Nina Nauwelaerts
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven University, Belgium.
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy.
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy.
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell 'Emilia, 40064 Bologna, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Monica Forni
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy.
| |
Collapse
|
16
|
Yan R, Liu J, Chen Z, Wan P, Liang T, Li K, Liu D, Ma M, Chen X, Li A, He Y, Li H, Mao Y. Rapid production of COVID-19 subunit vaccine candidates and their immunogenicity evaluation in pigs. Int J Biol Macromol 2024; 272:132798. [PMID: 38838896 DOI: 10.1016/j.ijbiomac.2024.132798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
The emergence of various variants of concern (VOCs) necessitates the development of more efficient vaccines for COVID-19. In this study, we established a rapid and robust production platform for a novel subunit vaccine candidate based on eukaryotic HEK-293 T cells. The immunogenicity of the vaccine candidate was evaluated in pigs. The results demonstrated that the pseudovirus neutralizing antibody (pNAb) titers reached 7751 and 306 for the SARS-CoV-2 Delta and Omicron variants, respectively, after the first boost. Subsequently, pNAb titers further increased to 10,201 and 1350, respectively, after the second boost. Additionally, ELISPOT analysis revealed a robust T-cell response characterized by IFN-γ (171 SFCs/106 cells) and IL-2 (101 SFCs/106 cells) production. Our study demonstrates that a vaccine candidate based on the Delta variant spike protein may provide strong and broad protection against the prototype SARS-CoV-2 and VOCs. Moreover, the strategy for the efficient and stable expression of recombinant proteins utilizing HEK-293 T cells can be employed as a universal platform for future vaccine development.
Collapse
Affiliation(s)
- Renhe Yan
- Guangzhou Bioneeds Biotechnology CO., Ltd, Guangzhou, 510000, China
| | - Jun Liu
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou 510000, China
| | - Zedian Chen
- The First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Pengfei Wan
- Guangzhou Bioneeds Biotechnology CO., Ltd, Guangzhou, 510000, China
| | - Tiekun Liang
- Guangzhou Bioneeds Biotechnology CO., Ltd, Guangzhou, 510000, China
| | - Kanhe Li
- Guangzhou Bioneeds Biotechnology CO., Ltd, Guangzhou, 510000, China
| | - Dandan Liu
- Guangzhou Bioneeds Biotechnology CO., Ltd, Guangzhou, 510000, China
| | - Manxin Ma
- Guangzhou Bioneeds Biotechnology CO., Ltd, Guangzhou, 510000, China
| | - Xueji Chen
- South China Institute of Biomedicine, Guangzhou 510000, China
| | - Andrew Li
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Yuezhong He
- South China Institute of Biomedicine, Guangzhou 510000, China
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Yingying Mao
- Guangzhou Bioneeds Biotechnology CO., Ltd, Guangzhou, 510000, China; South China Institute of Biomedicine, Guangzhou 510000, China.
| |
Collapse
|
17
|
Lee J, Boas FE, Duran-Struuck R, Gaba RC, Schachtschneider KM, Comin-Anduix B, Galic Z, Haile S, Bassir A, Chiang J. Pigs as Clinically Relevant Models for Synergizing Interventional Oncology and Immunotherapy. J Vasc Interv Radiol 2024; 35:809-817.e1. [PMID: 38219903 DOI: 10.1016/j.jvir.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/31/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
Traditionally, rodent cancer models have driven preclinical oncology research. However, they do not fully recapitulate characteristics of human cancers, and their size poses challenges when evaluating tools in the interventional oncologists' armamentarium. Pig models, however, have been the gold standard for validating surgical procedures. Their size enables the study of image-guided interventions using human ultrasound (US), computed tomography (CT), and magnetic resonance (MR) imaging platforms. Furthermore, pigs have immunologic features that are similar to those of humans, which can potentially be leveraged for studying immunotherapy. Novel pig models of cancer are being developed, but additional research is required to better understand both the pig immune system and malignancy to enhance the potential for pig models in interventional oncology research. This review aims to address the main advantages and disadvantages of using a pig model for interventional oncology and outline the specific characteristics of pig models that make them more suitable for investigation of locoregional therapies.
Collapse
Affiliation(s)
- Justin Lee
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - F Edward Boas
- Department of Radiology, City of Hope, Duarte, California
| | - Raimon Duran-Struuck
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Ron C Gaba
- Department of Radiology, University of Illinois Health, Chicago, Illinois
| | | | - Begonya Comin-Anduix
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Zoran Galic
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Salem Haile
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ali Bassir
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jason Chiang
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, California.
| |
Collapse
|
18
|
Schnitter F, Stangl F, Noeske E, Bille M, Stadtmüller A, Vogt N, Sicklinger F, Leuschner F, Frey A, Schreiber L, Frantz S, Beyersdorf N, Ramos G, Gladow N, Hofmann U. Characterizing the immune response to myocardial infarction in pigs. Basic Res Cardiol 2024; 119:453-479. [PMID: 38491291 PMCID: PMC11143055 DOI: 10.1007/s00395-024-01036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/18/2024]
Abstract
Though myocardial infarction (MI) in pigs is a well-established translational large animal model, it has not yet been widely used for immunotherapy studies, and a comprehensive description of the immune response to MI in this species is lacking. We induced MI in Landrace pigs by balloon occlusion of the left anterior descending artery over 90 min. Within 14 days, the necrotic myocardium was progressively replaced by scar tissue with involvement of myofibroblasts. We characterized the immune response in the heart ex vivo by (immuno)histology, flow cytometry, and RNA sequencing of myocardial tissue on days 3, 7, and 14 after MI. Besides a clear predominance of myeloid cells among heart-infiltrating leukocytes, we detected activated T cells and an increasing proportion of CD4+ Foxp3+ regulatory T cells (Treg), especially in the infarct core-findings that closely mirror what has been observed in mice and humans after MI. Transcriptome data indicated inflammatory activity that was persistent but markedly changing in character over time and linked to extracellular matrix biology. Analysis of lymphocytes in heart-draining lymph nodes revealed significantly higher proliferation rates of T helper cell subsets, including Treg on day 7 after MI, compared to sham controls. Elevated frequencies of myeloid progenitors in the spleen suggest that it might be a site of emergency myelopoiesis after MI in pigs, as previously shown in mice. We thus provide a first description of the immune response to MI in pigs, and our results can aid future research using the species for preclinical immunotherapy studies.
Collapse
Affiliation(s)
- Florian Schnitter
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.
| | - Franziska Stangl
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Elisabeth Noeske
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Maya Bille
- Comprehensive Heart Failure Center, Department of Cardiovascular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Anja Stadtmüller
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Niklas Vogt
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Florian Sicklinger
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg, Heidelberg, Germany
| | - Florian Leuschner
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg, Heidelberg, Germany
| | - Anna Frey
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Laura Schreiber
- Comprehensive Heart Failure Center, Department of Cardiovascular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Gustavo Ramos
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Nadine Gladow
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Deng Y, Zhu J, Liu X, Dai J, Yu T, Zhu D. A robust vessel-labeling pipeline with high tissue clearing compatibility for 3D mapping of vascular networks. iScience 2024; 27:109730. [PMID: 38706842 PMCID: PMC11068851 DOI: 10.1016/j.isci.2024.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
The combination of vessel-labeling, tissue-clearing, and light-sheet imaging techniques provides a potent tool for accurately mapping vascular networks, enabling the assessment of vascular remodeling in vascular-related disorders. However, most vascular labeling methods face challenges such as inadequate labeling efficiency or poor compatibility with current tissue clearing technology, which significantly undermines the image quality. To address this limitation, we introduce a vessel-labeling pipeline, termed Ultralabel, which relies on a specially designed dye hydrogel containing lysine-fixable dextran and gelatins for double enhancement. Ultralabel demonstrates not only excellent vessel-labeling capability but also strong compatibility with all tissue clearing methods tested, which outperforms other vessel-labeling methods. Consequently, Ultralabel enables fine mapping of vascular networks in diverse organs, as well as multi-color labeling alongside other labeling techniques. Ultralabel should provide a robust and user-friendly method for obtaining 3D vascular networks in different biomedical applications.
Collapse
Affiliation(s)
- Yating Deng
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Junyao Dai
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
20
|
Wen M, Chen S, Zhang Y, Liu Y, Tang C, Zhang J, Sun J, Li X, Ding Y, Lu L, Long K, Nie Y, Li X, Li M, Ge L, Ma J. Diversity and host interaction of the gut microbiota in specific pathogen-free pigs. Front Microbiol 2024; 15:1402807. [PMID: 38800748 PMCID: PMC11122924 DOI: 10.3389/fmicb.2024.1402807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Pigs are widely used as animal models in various studies related to humans. The interaction between the gut microbiota and the host has significant effects on the host's health and disease status. However, although there have been many studies investigating the pig gut microbiota, the findings have been inconsistent due to variations in rearing conditions. Interactions between the gut microbiota and host have not been fully explored in pigs. Specific pathogen-free (SPF) pigs are ideal non-primate large animals to study the interactions between the gut microbiota and the host. In this study, we performed high-throughput sequencing analysis of the gut microbiota and the gut tissue transcriptome of six SPF pigs to provide a systematic understanding of the composition, function, and spatial distribution of gut microbiota in SPF pigs. We identified significant differences in microbial diversity and functionality among different gastrointestinal tract sites. Metagenomics data analysis revealed significant differences in alpha diversity and beta diversity of microbiota in different gastrointestinal sites of SPF pigs. Additionally, transcriptomic data indicated significant differences in gene expression as well as KEGG and GO functional enrichment between the small intestine and large intestine. Furthermore, by combining microbial metagenomics and host transcriptomics analyses, specific correlations were found between gut microbiota and host genes. These included a negative correlation between the TCN1 gene and Prevotella dentalis, possibly related to bacterial metabolic pathways involving vitamin B12, and a positive correlation between the BDH1 gene and Roseburia hominis, possibly because both are involved in fatty acid metabolism. These findings lay the groundwork for further exploration of the co-evolution between the microbiota and the host, specifically in relation to nutrition, metabolism, and immunity. In conclusion, we have elucidated the diversity of the gut microbiota in SPF pigs and conducted a detailed investigation into the interactions between the gut microbiota and host gene expression. These results contribute to our understanding of the intricate dynamics between the gut microbiota and the host, offering important references for advancements in life science research, bioproduct production, and sustainable development in animal husbandry.
Collapse
Affiliation(s)
- Mingxing Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuangshuang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yali Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chuang Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Xiaokai Li
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, China
| | - Xuewei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Windoloski KA, Janum S, Berg RMG, Olufsen MS. Characterization of differences in immune responses during bolus and continuous infusion endotoxin challenges using mathematical modelling. Exp Physiol 2024; 109:689-710. [PMID: 38466166 PMCID: PMC11061636 DOI: 10.1113/ep091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Endotoxin administration is commonly used to study the inflammatory response, and though traditionally given as a bolus injection, it can be administered as a continuous infusion over multiple hours. Several studies hypothesize that the latter better represents the prolonged and pronounced inflammation observed in conditions like sepsis. Yet very few experimental studies have administered endotoxin using both strategies, leaving significant gaps in determining the underlying mechanisms responsible for their differing immune responses. We used mathematical modelling to analyse cytokine data from two studies administering a 2 ng kg-1 dose of endotoxin, one as a bolus and the other as a continuous infusion over 4 h. Using our model, we simulated the dynamics of mean and subject-specific cytokine responses as well as the response to long-term endotoxin administration. Cytokine measurements revealed that the bolus injection led to significantly higher peaks for interleukin (IL)-8, while IL-10 reaches higher peaks during continuous administration. Moreover, the peak timing of all measured cytokines occurred later with continuous infusion. We identified three model parameters that significantly differed between the two administration methods. Monocyte activation of IL-10 was greater during the continuous infusion, while tumour necrosis factor α $ {\alpha} $ and IL-8 recovery rates were faster for the bolus injection. This suggests that a continuous infusion elicits a stronger, longer-lasting systemic reaction through increased stimulation of monocyte anti-inflammatory mediator production and decreased recovery of pro-inflammatory catalysts. Furthermore, the continuous infusion model exhibited prolonged inflammation with recurrent peaks resolving within 2 days during long-term (20-32 h) endotoxin administration.
Collapse
Affiliation(s)
| | - Susanne Janum
- Frederiksberg and Bispebjerg HospitalsFrederiksbergDenmark
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ronan M. G. Berg
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical Physiology and Nuclear Medicine and, Centre for Physical Activity ResearchCopenhagen University HospitalCopenhagenDenmark
- Neurovascular Research LaboratoryUniversity of South WalesPontypriddUK
| | - Mette S. Olufsen
- Department of MathematicsNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
22
|
Beslika E, Leite-Moreira A, De Windt LJ, da Costa Martins PA. Large animal models of pressure overload-induced cardiac left ventricular hypertrophy to study remodelling of the human heart with aortic stenosis. Cardiovasc Res 2024; 120:461-475. [PMID: 38428029 PMCID: PMC11060489 DOI: 10.1093/cvr/cvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 03/03/2024] Open
Abstract
Pathologic cardiac hypertrophy is a common consequence of many cardiovascular diseases, including aortic stenosis (AS). AS is known to increase the pressure load of the left ventricle, causing a compensative response of the cardiac muscle, which progressively will lead to dilation and heart failure. At a cellular level, this corresponds to a considerable increase in the size of cardiomyocytes, known as cardiomyocyte hypertrophy, while their proliferation capacity is attenuated upon the first developmental stages. Cardiomyocytes, in order to cope with the increased workload (overload), suffer alterations in their morphology, nuclear content, energy metabolism, intracellular homeostatic mechanisms, contractile activity, and cell death mechanisms. Moreover, modifications in the cardiomyocyte niche, involving inflammation, immune infiltration, fibrosis, and angiogenesis, contribute to the subsequent events of a pathologic hypertrophic response. Considering the emerging need for a better understanding of the condition and treatment improvement, as the only available treatment option of AS consists of surgical interventions at a late stage of the disease, when the cardiac muscle state is irreversible, large animal models have been developed to mimic the human condition, to the greatest extend. Smaller animal models lack physiological, cellular and molecular mechanisms that sufficiently resemblance humans and in vitro techniques yet fail to provide adequate complexity. Animals, such as the ferret (Mustello purtorius furo), lapine (rabbit, Oryctolagus cunigulus), feline (cat, Felis catus), canine (dog, Canis lupus familiaris), ovine (sheep, Ovis aries), and porcine (pig, Sus scrofa), have contributed to research by elucidating implicated cellular and molecular mechanisms of the condition. Essential discoveries of each model are reported and discussed briefly in this review. Results of large animal experimentation could further be interpreted aiming at prevention of the disease progress or, alternatively, at regression of the implicated pathologic mechanisms to a physiologic state. This review summarizes the important aspects of the pathophysiology of LV hypertrophy and the applied surgical large animal models that currently better mimic the condition.
Collapse
Affiliation(s)
- Evangelia Beslika
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Leon J De Windt
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| | - Paula A da Costa Martins
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| |
Collapse
|
23
|
Horseman T, Rittase WB, Slaven JE, Bradfield DT, Frank AM, Anderson JA, Hays EC, Ott AC, Thomas AE, Huppmann AR, Lee SH, Burmeister DM, Day RM. Ferroptosis, Inflammation, and Microbiome Alterations in the Intestine in the Göttingen Minipig Model of Hematopoietic-Acute Radiation Syndrome. Int J Mol Sci 2024; 25:4535. [PMID: 38674120 PMCID: PMC11050692 DOI: 10.3390/ijms25084535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hematopoietic acute radiation syndrome (H-ARS) involves injury to multiple organ systems following total body irradiation (TBI). Our laboratory demonstrated that captopril, an angiotensin-converting enzyme inhibitor, mitigates H-ARS in Göttingen minipigs, with improved survival and hematopoietic recovery, as well as the suppression of acute inflammation. However, the effects of captopril on the gastrointestinal (GI) system after TBI are not well known. We used a Göttingen minipig H-ARS model to investigate captopril's effects on the GI following TBI (60Co 1.79 or 1.80 Gy, 0.42-0.48 Gy/min), with endpoints at 6 or 35 days. The vehicle or captopril (0.96 mg/kg) was administered orally twice daily for 12 days, starting 4 h post-irradiation. Ilea were harvested for histological, protein, and RNA analyses. TBI increased congestion and mucosa erosion and hemorrhage, which were modulated by captopril. GPX-4 and SLC7A11 were downregulated post-irradiation, consistent with ferroptosis at 6 and 35 days post-irradiation in all groups. Interestingly, p21/waf1 increased at 6 days in vehicle-treated but not captopril-treated animals. An RT-qPCR analysis showed that radiation increased the gene expression of inflammatory cytokines IL1B, TNFA, CCL2, IL18, and CXCL8, and the inflammasome component NLRP3. Captopril suppressed radiation-induced IL1B and TNFA. Rectal microbiome analysis showed that 1 day of captopril treatment with radiation decreased overall diversity, with increased Proteobacteria phyla and Escherichia genera. By 6 days, captopril increased the relative abundance of Enterococcus, previously associated with improved H-ARS survival in mice. Our data suggest that captopril mitigates senescence, some inflammation, and microbiome alterations, but not ferroptosis markers in the intestine following TBI.
Collapse
Affiliation(s)
- Timothy Horseman
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.); (D.M.B.)
| | - W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Andrew M. Frank
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Joseph A. Anderson
- Comparative Pathology Division, Department of Laboratory Animal Resources, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Evelyn C. Hays
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Andrew C. Ott
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Anjali E. Thomas
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Alison R. Huppmann
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC 29605, USA;
| | - Sang-Ho Lee
- Pathology Department, Research Services, Naval Medical Research Center, Silver Spring, MD 20910, USA;
| | - David M. Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.); (D.M.B.)
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| |
Collapse
|
24
|
Proctor J, Stadler M, Cortes LM, Brodsky D, Poisson L, Gerdts V, Smirnov AI, Smirnova TI, Barua S, Leahy D, Beagley KW, Harris JM, Darville T, Käser T. A TriAdj-Adjuvanted Chlamydia trachomatis CPAF Protein Vaccine Is Highly Immunogenic in Pigs. Vaccines (Basel) 2024; 12:423. [PMID: 38675805 PMCID: PMC11054031 DOI: 10.3390/vaccines12040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Chlamydia trachomatis (Ct) infections are the most common sexually transmitted infection (STI). Despite effective antibiotics for Ct, undetected infections or delayed treatment can lead to infertility, ectopic pregnancies, and chronic pelvic pain. Besides humans, chlamydia poses similar health challenges in animals such as C. suis (Cs) in pigs. Based on the similarities between humans and pigs, as well as their chlamydia species, we use pigs as a large biomedical animal model for chlamydia research. In this study, we used the pig model to develop a vaccine candidate against Ct. The vaccine candidate consists of TriAdj-adjuvanted chlamydial-protease-like activity factor (CPAF) protein. We tested two weekly administration options-twice intranasal (IN) followed by twice intramuscular (IM) and twice IM followed by twice IN. We assessed the humoral immune response in both serum using CPAF-specific IgG (including antibody avidity determination) and also in cervical and rectal swabs using CPAF-specific IgG and IgA ELISAs. The systemic T-cell response was analyzed following in vitro CPAF restimulation via IFN-γ and IL-17 ELISpots, as well as intracellular cytokine staining flow cytometry. Our data demonstrate that while the IN/IM vaccination mainly led to non-significant systemic immune responses, the vaccine candidate is highly immunogenic if administered IM/IN. This vaccination strategy induced high serum anti-CPAF IgG levels with strong avidity, as well as high IgA and IgG levels in vaginal and rectal swabs and in uterine horn flushes. In addition, this vaccination strategy prompted a pronounced cellular immune response. Besides inducing IL-17 production, the vaccine candidate induced a strong IFN-γ response with CD4 T cells. In IM/IN-vaccinated pigs, these cells also significantly downregulated their CCR7 expression, a sign of differentiation into peripheral-tissue-homing effector/memory cells. Conclusively, this study demonstrates the strong immunogenicity of the IM/IN-administered TriAdj-adjuvanted Ct CPAF vaccine candidate. Future studies will test the vaccine efficacy of this promising Ct vaccine candidate. In addition, this project demonstrates the suitability of the Cs pre-exposed outbred pig model for Ct vaccine development. Thereby, we aim to open the bottleneck of large animal models to facilitate the progression of Ct vaccine candidates into clinical trials.
Collapse
Affiliation(s)
- Jessica Proctor
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Maria Stadler
- Department of Biological Sciences and Pathobiology, Center of Pathobiology, Immunology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Lizette M. Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - David Brodsky
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Lydia Poisson
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A3, Canada
| | - Alex I. Smirnov
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | - Tatyana I. Smirnova
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | - Subarna Barua
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| | - Darren Leahy
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
| | - Kenneth W. Beagley
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
| | - Jonathan M. Harris
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4000, Australia
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Department of Biological Sciences and Pathobiology, Center of Pathobiology, Immunology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
25
|
McCall MA. Pig Models in Retinal Research and Retinal Disease. Cold Spring Harb Perspect Med 2024; 14:a041296. [PMID: 37553210 PMCID: PMC10982707 DOI: 10.1101/cshperspect.a041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The pig has been used as a large animal model in biomedical research for many years and its use continues to increase because induced mutations phenocopy several inherited human diseases. In addition, they are continuous breeders, can be propagated by artificial insemination, have large litter sizes (on the order of mice), and can be genetically manipulated using all of the techniques that are currently available in mice. The pioneering work of Petters and colleagues set the stage for the use of the pig as a model of inherited retinal disease. In the last 10 years, the pig has become a model of choice where specific disease-causing mutations that are not phenocopied in rodents need to be studied and therapeutic approaches explored. The pig is not only used for retinal eye disease but also for the study of the cornea and lens. This review attempts to show how broad the use of the pig has become and how it has contributed to the assessment of treatments for eye disease. In the last 10 years, there have been several reviews that included the use of the pig in biomedical research (see body of the review) that included information about retinal disease. None directly discuss the use of the pig as an animal model for retinal diseases, including inherited diseases, where a single genetic mutation has been identified or for multifactorial diseases such as glaucoma and diabetic retinopathy. Although the pig is used to explore diseases of the cornea and lens, this review focuses on how and why the pig, as a large animal model, is useful for research in neural retinal disease and its treatment.
Collapse
Affiliation(s)
- Maureen A McCall
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
26
|
Saeed S, Martins-Green M. Assessing Animal Models to Study Impaired and Chronic Wounds. Int J Mol Sci 2024; 25:3837. [PMID: 38612647 PMCID: PMC11011258 DOI: 10.3390/ijms25073837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Impaired healing wounds do not proceed through the normal healing processes in a timely and orderly manner, and while they do eventually heal, their healing is not optimal. Chronic wounds, on the other hand, remain unhealed for weeks or months. In the US alone, chronic wounds impact ~8.5 million people and cost ~USD 28-90 billion per year, not accounting for the psychological and physical pain and emotional suffering that patients endure. These numbers are only expected to rise in the future as the elderly populations and the incidence of comorbidities such as diabetes, hypertension, and obesity increase. Over the last few decades, scientists have used a variety of approaches to treat chronic wounds, but unfortunately, to date, there is no effective treatment. Indeed, while there are thousands of drugs to combat cancer, there is only one single drug approved for the treatment of chronic wounds. This is in part because wound healing is a very complex process involving many phases that must occur sequentially and in a timely manner. Furthermore, models that fully mimic human chronic wounds have not been developed. In this review, we assess various models currently being used to study the biology of impaired healing and chronic non-healing wounds. Among them, this paper also highlights one model which shows significant promise; this model uses aged and obese db/db-/- mice and the chronic wounds that develop show characteristics of human chronic wounds that include increased oxidative stress, chronic inflammation, damaged microvasculature, abnormal collagen matrix deposition, a lack of re-epithelialization, and the spontaneous development of multi-bacterial biofilm. We also discuss how important it is that we continue to develop chronic wound models that more closely mimic those of humans and that can be used to test potential treatments to heal chronic wounds.
Collapse
Affiliation(s)
| | - Manuela Martins-Green
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
27
|
Zheng J, Zhou Y, Zhang D, Ma K, Gong Y, Luo X, Liu J, Cui S. Intestinal melatonin levels and gut microbiota homeostasis are independent of the pineal gland in pigs. Front Microbiol 2024; 15:1352586. [PMID: 38596375 PMCID: PMC11003461 DOI: 10.3389/fmicb.2024.1352586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Melatonin (MEL) is a crucial neuroendocrine hormone primarily produced by the pineal gland. Pinealectomy (PINX) has been performed on an endogenous MEL deficiency model to investigate the functions of pineal MEL and its relationship with various diseases. However, the effect of PINX on the gastrointestinal tract (GIT) MEL levels and gut microbiome in pigs has not been previously reported. Methods By using a newly established pig PINX model, we detected the levels of MEL in the GIT by liquid chromatography-tandem mass spectrometry. In addition, we examined the effects of PINX on the expression of MEL synthesis enzymes, intestinal histomorphology, and the intestinal barrier. Furthermore, 16S rRNA sequencing was performed to analyze the colonic microbiome. Results PINX reduced serum MEL levels but did not affect GIT MEL levels. Conversely, MEL supplementation increased MEL levels in the GIT and intestinal contents. Neither PINX nor MEL supplementation had any effect on weight gain, organ coefficient, serum biochemical indexes, or MEL synthetase arylalkylamine N-acetyltransferase (AANAT) expression in the duodenum, ileum, and colon. Furthermore, no significant differences were observed in the intestinal morphology or intestinal mucosal barrier function due to the treatments. Additionally, 16S rRNA sequencing revealed that PINX had no significant impact on the composition of the intestinal microbiota. Nevertheless, MEL supplementation decreased the abundance of Fibrobacterota and increased the abundance of Actinobacteriota, Desulfobacterota, and Chloroflexi. Conclusion We demonstrated that synthesis of MEL in the GIT is independent of the pineal gland. PINX had no influence on intestinal MEL level and microbiota composition in pigs, while exogenous MEL alters the structure of the gut microbiota.
Collapse
Affiliation(s)
- Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kezhe Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuneng Gong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuan Luo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, China
| |
Collapse
|
28
|
Meng Y, Sun J, Zhang G. Harnessing the power of goat milk-derived extracellular vesicles for medical breakthroughs: A review. Int J Biol Macromol 2024; 262:130044. [PMID: 38340922 DOI: 10.1016/j.ijbiomac.2024.130044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Research into goat milk-derived extracellular vesicles (GMVs) has grown in popularity in recent years owing to their potential uses in several sectors, including medicine. GMVs are tiny, lipid-bound structures that cells secrete and use to transport bioactive substances like proteins, lipids, and nucleic acids. They may be extracted from different body fluids, including blood, urine, and milk, and have been found to play crucial roles in cell-to-cell communication. GMVs are a promising field of study with applications in preventing and treating various disorders. Their immune-modulating properties, for instance, have been investigated, and they have shown promise in treating autoimmune illnesses and cancer. They may be loaded with therapeutic compounds and directed to particular cells or tissues, but they have also been studied for their potential use as drug-delivery vehicles. Goat milk extracellular vesicles are an intriguing study topic with many possible benefits. Although more study is required to thoroughly understand their functioning and prospective applications, they provide a promising path for creating novel medical treatments and technology.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
29
|
Hensley C, Roier S, Zhou P, Schnur S, Nyblade C, Parreno V, Frazier A, Frazier M, Kiley K, O’Brien S, Liang Y, Mayer BT, Wu R, Mahoney C, McNeal MM, Petsch B, Rauch S, Yuan L. mRNA-Based Vaccines Are Highly Immunogenic and Confer Protection in the Gnotobiotic Pig Model of Human Rotavirus Diarrhea. Vaccines (Basel) 2024; 12:260. [PMID: 38543894 PMCID: PMC10974625 DOI: 10.3390/vaccines12030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/01/2024] Open
Abstract
Human rotavirus (HRV) is still a leading cause of severe dehydrating gastroenteritis globally, particularly in infants and children. Previously, we demonstrated the immunogenicity of mRNA-based HRV vaccine candidates expressing the viral spike protein VP8* in rodent models. In the present study, we assessed the immunogenicity and protective efficacy of two mRNA-based HRV trivalent vaccine candidates, encoding VP8* of the genotypes P[8], P[6], or P[4], in the gnotobiotic (Gn) pig model of Wa (G1P[8]) HRV infection and diarrhea. Vaccines either encoded VP8* alone fused to the universal T-cell epitope P2 (P2-VP8*) or expressed P2-VP8* as a fusion protein with lumazine synthase (LS-P2-VP8*) to allow the formation and secretion of protein particles that present VP8* on their surface. Gn pigs were randomly assigned into groups and immunized three times with either P2-VP8* (30 µg) or LS-P2-VP8* (30 µg or 12 µg). A trivalent alum-adjuvanted P2-VP8* protein vaccine or an LNP-formulated irrelevant mRNA vaccine served as the positive and negative control, respectively. Upon challenge with virulent Wa HRV, a significantly shortened duration and decreased severity of diarrhea and significant protection from virus shedding was induced by both mRNA vaccine candidates compared to the negative control. Both LS-P2-VP8* doses induced significantly higher VP8*-specific IgG antibody titers in the serum after immunizations than the negative as well as the protein control. The P[8] VP8*-specific IgG antibody-secreting cells in the ileum, spleen, and blood seven days post-challenge, as well as VP8*-specific IFN-γ-producing T-cell numbers increased in all three mRNA-vaccinated pig groups compared to the negative control. Overall, there was a clear tendency towards improved responses in LS-P2-VP8* compared to the P2-VP8*mRNA vaccine. The demonstrated strong humoral immune responses, priming for effector T cells, and the significant reduction of viral shedding and duration of diarrhea in Gn pigs provide a promising proof of concept and may provide guidance for the further development of mRNA-based rotavirus vaccines.
Collapse
Affiliation(s)
- Casey Hensley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Sandro Roier
- CureVac SE, 72076 Tübingen, Germany; (S.R.); (B.P.); (S.R.)
| | - Peng Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Sofia Schnur
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Charlotte Nyblade
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Viviana Parreno
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Annie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Maggie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Kelsey Kiley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Samantha O’Brien
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Yu Liang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Bryan T. Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (B.T.M.); (R.W.); (C.M.)
| | - Ruizhe Wu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (B.T.M.); (R.W.); (C.M.)
| | - Celia Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (B.T.M.); (R.W.); (C.M.)
| | - Monica M. McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | | | - Susanne Rauch
- CureVac SE, 72076 Tübingen, Germany; (S.R.); (B.P.); (S.R.)
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| |
Collapse
|
30
|
Jores J, Ruggli N, Scalisi N, Jang J, Torres-Puig S. A stress-free and easy-to-use system to expose pigs to aerosols. Vaccine X 2024; 17:100457. [PMID: 38390347 PMCID: PMC10881425 DOI: 10.1016/j.jvacx.2024.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Affiliation(s)
- Jörg Jores
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Nadia Scalisi
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Jaeyoun Jang
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Sergi Torres-Puig
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| |
Collapse
|
31
|
Wang Y, Hils M, Fischer A, Wölbing F, Biedermann T, Schnieke A, Fischer K. Gene-edited pigs: a translational model for human food allergy against alpha-Gal and anaphylaxis. Front Immunol 2024; 15:1358178. [PMID: 38469303 PMCID: PMC10925645 DOI: 10.3389/fimmu.2024.1358178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
The prevalence of food allergy is rising and is estimated to approach 10%. Red meat allergy is the first known food allergy elicited by immunoglobulin E (IgE) antibodies recognizing a carbohydrate. Due to the loss of function of the alpha-1,3-galactosyltransferase (GGTA1) gene in humans, the disaccharide galactose-α-1,3-galactose (α-Gal) cannot be synthesized and therefore became immunogenic. IgE sensitization is elicited through the skin by repetitive tick bites transmitting α-Gal. The underlying mechanisms regarding innate and adaptive immune cell activation, including the B-cell isotype switch to IgE, are poorly understood, requiring further research and physiologically relevant animal models. Here, we describe a new animal model of red meat allergy using percutaneous α-Gal sensitization of gene-edited GGTA1-deficient pigs. Total and α-Gal-specific IgG, IgG1, IgG2, IgG4, and IgE levels were tracked. Further key factors associated with allergic skin inflammation, type 2 immunity, and allergy development were measured in PBMCs and skin samples. Significant increases in α-Gal-specific IgG1 and IgE levels indicated successful sensitization to the allergen α-Gal. Intracutaneous sensitizations with α-Gal recruited lymphocytes to the skin, including elevated numbers of T helper 2 (Th2) cells. Finally, α-Gal-sensitized pigs not only recognized α-Gal as non-self-antigen following α-Gal exposure through the skin but also developed anaphylaxis upon antigen challenge. Based on the similarities between the porcine and human skin, this new large animal model for α-Gal allergy should help to unveil the consecutive steps of cutaneous sensitization and aid the development of prophylactic and treatment interventions.
Collapse
Affiliation(s)
- Ying Wang
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andrea Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Florian Wölbing
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Konrad Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
32
|
Hammer SE, Duckova T, Gociman M, Groiss S, Pernold CPS, Hacker K, Kasper L, Sprung J, Stadler M, Jensen AE, Saalmüller A, Wenzel N, Figueiredo C. Comparative analysis of swine leukocyte antigen gene diversity in Göttingen Minipigs. Front Immunol 2024; 15:1360022. [PMID: 38469309 PMCID: PMC10925748 DOI: 10.3389/fimmu.2024.1360022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Worldwide, pigs represent economically important farm animals, also representing a preferred preclinical large animal model for biomedical studies. The need for swine leukocyte antigen (SLA) typing is increasing with the expanded use of pigs in translational research, infection studies, and for veterinary vaccine design. Göttingen Minipigs (GMP) attract increasing attention as valuable model for pharmacological studies and transplantation research. This study represents a first-time assessment of the SLA gene diversity in Göttingen Minipigs in combination with a comparative metadata analysis with commercial pig lines. As Göttingen Minipigs could harbor private as well as potential novel SLA allele combinations, future research projects would benefit from the characterization of their SLA background. In 209 Göttingen Minipigs, SLA class I (SLA-1, SLA-2, SLA-3) and class II (DRB1, DQB1, DQA) genes were characterized by PCR-based low-resolution (Lr) haplotyping. Criteria and nomenclature used for SLA haplotyping were proposed by the ISAG/IUIS-VIC SLA Nomenclature Committee. Haplotypes were assigned based on the comparison with already known breed or farm-specific allele group combinations. In total, 14 SLA class I and five SLA class II haplotypes were identified in the studied cohort, to manifest in 26 SLA class I but only seven SLA class II genotypes. The most common SLA class I haplotypes Lr-24.0 (SLA-1*15XX or Blank-SLA-3*04:04-SLA-2*06:01~02) and Lr-GMP-3.0 (SLA-1*16:02-SLA-3*03:04-SLA-2*17:01) occurred at frequencies of 23.44 and 18.66%, respectively. For SLA class II, the most prevalent haplotypes Lr-0.21 (DRB1*01XX-DQB1*05XX-DQA*04XX) and Lr-0.03 (DRB1*03:02-DQB1*03:01-DQA*01XX) occurred at frequencies of 38.28 and 30.38%. The comparative metadata analysis revealed that Göttingen Minipigs only share six SLA class I and two SLA class II haplotypes with commercial pig lines. More importantly, despite the limited number of SLA class I haplotypes, the high genotype diversity being observed necessitates pre-experimental SLA background assessment of Göttingen Minipigs in regenerative medicine, allo-transplantation, and xenograft research.
Collapse
Affiliation(s)
- Sabine E. Hammer
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tereza Duckova
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monica Gociman
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sandra Groiss
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Clara P. S. Pernold
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karolin Hacker
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | | | - Julia Sprung
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Stadler
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Armin Saalmüller
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nadine Wenzel
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
33
|
Dunaievska O, Sokulskyi I, Radzykhovskii M, Gutyj B, Dyshkant O, Khomenko Z, Brygadyrenko V. Immunophysiological State of Dogs According to the Immunoregulatory Index of Their Blood and Spleens. Animals (Basel) 2024; 14:706. [PMID: 38473091 DOI: 10.3390/ani14050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, the immunological characteristics of a dog's body were established, allowing for a quick reaction to any changes in the immune status and the development of an immunodeficiency state. The immunoregulatory blood index was determined to indicate the ratio of T-helpers and T-suppressors. The immunoregulatory index of the spleen was determined as the ratio of CD4+ cells to CD8+ cells in the field of view of a microscope (eyepiece 10, objective 40) after obtaining histological preparations according to generally accepted methods. It was found that the number of T-helpers decreased by 0.13 × 1012/L, while the number of T-suppressors increased non-significantly by 0.01 × 1012/L after intensive exercise during tasks. The immunoregulatory blood index of dogs was 2.1 ± 0.1 and 1.7 ± 0.13 before and after intensive exercise, respectively. Lymphocytes with markers CD4+ and CD8+ were located almost all in the white pulp; in the red pulp, they were found alone, and their share was 3.4% and 1.9%, respectively. Lymphocytes with CD4+ markers in the spleen's white pulp were mainly concentrated in lymphoid nodules (60.7%), of which 20.1% were focused on the marginal zone, and slightly less in the light center (19.4%) and the periarterial zone (18.1%). Lymphocytes with CD8+ markers in the spleen's white pulp were also mainly concentrated in lymphoid nodules, but their number was 8.1% higher (68.8%). The immunoregulatory index of the spleen is 1.9. These findings emphasize the need for the assessment of the immunoregulatory index in service dogs to prevent the development of secondary immunodeficiency and allow them to properly perform their official duties.
Collapse
Affiliation(s)
- Oksana Dunaievska
- Department of Normal and Pathological Morphology, Hygiene and Expertise, Faculty of Veterinary Medicine, Polissya National University, Stary Boulevard Str. 7, 10002 Zhytomyr, Ukraine
| | - Ihor Sokulskyi
- Department of Normal and Pathological Morphology, Hygiene and Expertise, Faculty of Veterinary Medicine, Polissya National University, Stary Boulevard Str. 7, 10002 Zhytomyr, Ukraine
| | - Mykola Radzykhovskii
- Department of Epizootology, Microbiology and Virology, Faculty of Veterinary Medicine, National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Str. 15, 03041 Kyiv, Ukraine
| | - Bogdan Gutyj
- Department of Hygiene, Sanitation and General Veterinary Prevention, Faculty of Public Development and Health, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, Pekarska Str. 50, 79010 Lviv, Ukraine
| | - Olga Dyshkant
- Department of Epizootology, Microbiology and Virology, Faculty of Veterinary Medicine, National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Str. 15, 03041 Kyiv, Ukraine
| | - Zoriana Khomenko
- Department of Normal and Pathological Morphology, Hygiene and Expertise, Faculty of Veterinary Medicine, Polissya National University, Stary Boulevard Str. 7, 10002 Zhytomyr, Ukraine
| | - Viktor Brygadyrenko
- Department of Zoology and Ecology, Oles Honchar Dnipro National University, Gagarin Av. 72, 49010 Dnipro, Ukraine
| |
Collapse
|
34
|
Cambiaso-Daniel J, Luze H, Meschnark S, Fink J, Schreiver I, Rappl T, Goessler W, Kotzbeck P, Kamolz LP. Tattoo Pigment Biokinetics in vivo in a 28-Day Porcine Model: Elements Undergo Fast Distribution to Lymph Nodes and Reach Steady State after 7 Days. Dermatology 2024; 240:304-311. [PMID: 38402858 PMCID: PMC10997244 DOI: 10.1159/000536126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Pigments of tattoo inks may over time migrate to other parts of the body. Inks kinetics are still poorly understood and little studied. The aim of this first study was to investigate the kinetics of tattoo inks pigment in tattooed porcine skin, which is closer to human skin than mouse skin studied in the past. METHODS Three animals were tattooed on the inner thigh and one animal served as untreated control. Skin biopsies were taken on days 7, 14, and 28 after tattooing. Animals were sacrificed on day 28 and homogenate samples of the liver, spleen, kidney, and brain, as well the local lymph nodes were prepared. All samples were analyzed for ink components using inductively coupled plasma-mass spectrometry. The ink itself was characterized by dynamic light scattering and matrix-assisted laser desorption-ionization mass analysis. RESULTS Titanium (212 g/kg), copper (6 mg/kg), aluminum (1 mg/kg), zirconium (1 mg/kg), and chromium (3 mg/kg) were found in the ink. Significant deposits of ink elements were detected in the tattooed skin when compared to non-tattooed skin from the same animal (mean ± standard deviation: titanium 240 ± 81 mg/kg, copper 95 ± 39 mg/kg, aluminum 115 ± 63 mg/kg, zirconium 23 ± 12 mg/kg, and chromium 1.0 ± 0.2 mg/kg; p < 0.05). Lymph node concentrations of titanium, copper, aluminum, zirconium, and chromium were 42 ± 2 mg/kg, 69 ± 25 mg/kg, 49 ± 18 mg/kg, 0.3 ± 0.2 mg/kg, 0.5 ± 0.2 mg/kg, respectively. CONCLUSION Deposits in skin were unchanged from days 7-28 indicating no redistribution or elimination. No significant deposits of ink elements were found in the liver, spleen, kidney, and brain. In conclusion, our findings confirmed distribution of elements from tattoos to regional lymph nodes, but neither to excretory organs, e.g., liver and kidney, nor to spleen and brain. Thus systemic internal organ exposure was not found.
Collapse
Affiliation(s)
- Janos Cambiaso-Daniel
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Hanna Luze
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Silvia Meschnark
- Institute of Chemistry, Analytical Chemistry for Health and Environment, University of Graz, Graz, Austria
| | - Julia Fink
- COREMED – Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| | - Ines Schreiver
- Department of Chemical and Product Safety, Dermatotoxicology Study Centre, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Thomas Rappl
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for Health and Environment, University of Graz, Graz, Austria
| | - Petra Kotzbeck
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- COREMED – Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- COREMED – Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
35
|
Xiao X, Xu J, Wang C, Jin Z, Qiang Yuan, Zhou L, Shan L. Porcine platelet lysates exert the efficacy of chondroregeneration and SMAD2-mediated anti-chondrofibrosis on knee osteoarthritis. Int Immunopharmacol 2024; 128:111509. [PMID: 38262159 DOI: 10.1016/j.intimp.2024.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND The lack of self-repairability in cartilage and the formation of fibrocartilage pose significant challenges in treating knee osteoarthritis, and there is still no ideal solution. Autologous platelet lysates have been clinically applied to treat kOA and exert satisfactory cartilage-repair efficacy, but the preparation of human PL brings damage to patients and is hardly standardized. METHODS In this study, porcine PL was developed to replace hPL, and its chondroregenerative and anti-chondrofibrosis effects were explored. Enzyme-Linked Immunosorbent Assay was applied to qualify the PL products. In vivo, partial-thickness cartilage defects were created on rats as a kOA model, and the von Frey test, histopathological observation, immunohistochemical analysis, and western blot analysis were conducted. In vitro, CCK-8 assay, real-time PCR analysis, immunofluorescence test, and WB analysis were conducted for the mechanism study of pPL. RESULTS The in vivo data showed that pPL significantly repaired the cartilage defect by improving matrix synthesis and also ameliorated the pain response in the kOA model of rats. In addition, pPL exerted an anti-fibrosis effect on cartilage by suppressing the expressions of COL1, COL3, α-SMA, VIMENTIN, SMAD2, p-SMAD2, and CTGF in cartilage. The in vitro data verified these effects and indicated that the SMAD2 pathway mediated the anti-fibrosis mechanism of pPL. Moreover, the comparable effects between pPL and rat PL indicate that there is no immune rejection from pPL. CONCLUSIONS This study firstly demonstrated the anti-kOA effects of pPL on both cartilage-repair and anti-chondrofibrosis. It developed pPL as a promising alternative to autologous PL for clinical applications.
Collapse
Affiliation(s)
- Xiujuan Xiao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310053, China
| | - Jiaan Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310053, China
| | - Chen Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310053, China
| | - Zhijiang Jin
- The 9th People's Hospital of Hangzhou, Hangzhou, Zhejiang 310012, China
| | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Li Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310053, China.
| | - Letian Shan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, Zhejiang 310053, China; Fuyang Research Institute, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, Zhejiang 311200, China.
| |
Collapse
|
36
|
Shakya AK, Backus B, Nesovic LD, Mallick M, Banister O, Davis CM, Anvari S, Gill HS. Development of a mini pig model of peanut allergy. FRONTIERS IN ALLERGY 2024; 5:1278801. [PMID: 38410815 PMCID: PMC10894917 DOI: 10.3389/falgy.2024.1278801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction The prevalence of peanut allergies is increasing, emphasizing the need for an animal model to enhance our understanding of peanut allergy pathogenesis and to advance diagnostic tools and therapeutic interventions. While mice are frequently used as model organisms, their allergic responses do not fully mirror those observed in humans, warranting the exploration of a higher animal model. The porcine gastrointestinal system closely resembles that of humans, and exhibits allergy symptoms akin to human responses, making pigs a promising model for peanut allergy research. Methods In this study we compared two allergen sensitization protocols involving either topical allergen application after repeated tape stripping (TS) or intraperitoneal (IP) injections to induce peanut-specific allergy and anaphylaxis reactions in mini pigs. Mini pigs sensitized with a combination of peanut protein extract (PE) and cholera toxin (CT) through either the IP or the TS route. Results Sensitized pigs via both methods developed systemic PE-specific IgG and IgE responses. Following peanut challenge via the IP route, both TS- and IP-sensitized pigs displayed allergy symptoms, including lethargy, skin rashes, vomiting, and a drop in body temperature. However, respiratory distress was observed exclusively in pigs sensitized through the TS route and not in those sensitized through the IP route. However, it is noteworthy that both groups of sensitized pigs maintained peanut hypersensitivity for up to two months post-sensitization, albeit with a reduction in the severity of allergy symptoms. Importantly, both groups exhibited sustained levels of PE-specific IgG, IgE, and elevated concentrations of mast cell protease in their blood following the IP challenges. Discussion Overall, this study reports TS and IP as two different modes of sensitization leading to onset of peanut specific allergic reactions in mini pigs, but only the TS-sensitization led to systemic anaphylaxis (simultaneous presence of symptoms: breathing difficulty, intense skin rash, and impaired mobility). A distinctive feature of these sensitization protocols is the 100% success rate (N = 4 pigs per group) in sensitizing the subjects.
Collapse
Affiliation(s)
- Akhilesh Kumar Shakya
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Brittany Backus
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Lazar D Nesovic
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Malini Mallick
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Olivia Banister
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Carla M Davis
- Division of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Sara Anvari
- Division of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
37
|
Li W, Wu X, Xiang D, Zhang W, Wu L, Meng X, Huo J, Yin Z, Fu G, Zhao G. Genome-Wide Detection for Runs of Homozygosity in Baoshan Pigs Using Whole Genome Resequencing. Genes (Basel) 2024; 15:233. [PMID: 38397222 PMCID: PMC10887577 DOI: 10.3390/genes15020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Baoshan pigs (BS) are a local breed in Yunnan Province that may face inbreeding owing to its limited population size. To accurately evaluate the inbreeding level of the BS pig population, we used whole-genome resequencing to identify runs of homozygosity (ROH) regions in BS pigs, calculated the inbreeding coefficient based on pedigree and ROH, and screened candidate genes with important economic traits from ROH islands. A total of 22,633,391 SNPS were obtained from the whole genome of BS pigs, and 201 ROHs were detected from 532,450 SNPS after quality control. The number of medium-length ROH (1-5 Mb) was the highest (98.43%), the number of long ROH (>5 Mb) was the lowest (1.57%), and the inbreeding of BS pigs mainly occurred in distant generations. The inbreeding coefficient FROH, calculated based on ROH, was 0.018 ± 0.016, and the FPED, calculated based on the pedigree, was 0.027 ± 0.028, which were positively correlated. Forty ROH islands were identified, containing 507 genes and 891 QTLs. Several genes were associated with growth and development (IGFALS, PTN, DLX5, DKK1, WNT2), meat quality traits (MC3R, ACSM3, ECI1, CD36, ROCK1, CACNA2D1), and reproductive traits (NPW, TSHR, BMP7). This study provides a reference for the protection and utilization of BS pigs.
Collapse
Affiliation(s)
- Wenjun Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Xudong Wu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230036, China; (X.W.); (W.Z.)
| | - Decai Xiang
- Institute of Pig and Animal Research, Yunnan Academy of Animal Husbandry and Veterinary Science, Kunming 650201, China;
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230036, China; (X.W.); (W.Z.)
| | - Lingxiang Wu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Xintong Meng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Guowen Fu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| |
Collapse
|
38
|
Wang X, Zhang D, Zhu Y, Li D, Shen L, Wang Q, Gao Y, Li X, Yu M. Protein lysine acetylation played an important role in NH 3-induced AEC2 damage and pulmonary fibrosis in piglets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168303. [PMID: 37939958 DOI: 10.1016/j.scitotenv.2023.168303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Gaseous ammonia (NH3), as a main air pollutant in pig farms and surrounding areas, directly affects animal and human health. The lung, as an important organ for gas exchange in the respiratory system, is damaged after NH3 exposure, but the underlying mechanism needs to be further explored. In this study, seven weeks old piglets were exposed to 50 ppm NH3 for 30 days, and displayed pulmonary fibrosis. Then, the toxicological mechanism of NH3-induced pulmonary fibrosis was explored from the aspects of whole genome wide protein expression and post-translational modification. Totally, 404 differentially expressed proteins (DEPs) and 136 differentially lysine acetylated proteins (DAPs) were identified. The expression or lysine acetylation levels of proteins involved in mitochondrial energy metabolism including fatty acid oxidation (CPT1A, ACADVL, ACADS, HADHA, and HADHB), TCA cycle (IDH2 and MDH2), and oxidative phosphorylation (NDUFB7, NDUFV1, ATP5PB, ATP5F1A, COX5A, and COX5B) were significantly changed after NH3 exposure, which suggested that NH3 disrupted mitochondrial energy metabolism in the lung of piglets. Next, we found that type 2 alveolar epithelial cells (AEC2) damaged after NH3 exposure in vivo and in vitro. Integrin-linked kinase (ILK) was enriched in focal adhesion pathway, and showed significantly up-regulated acetylation levels at K191 (FC = 2.99) and K209 sites (FC = 1.52) after NH3 exposure. We illustrated that ILK-K191 hyper-acetylation inhibited AEC2 proliferation and induced AEC2 apoptosis by down-regulating pAKT-S473 in vitro. In conclusion, for the first time, our study revealed that protein acetylation played an important role in the process of NH3-induced pulmonary fibrosis in piglets. Our findings provided valuable insights into toxicological harm of NH3 to human health.
Collapse
Affiliation(s)
- Xiaotong Wang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Zhang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaxue Zhu
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Daojie Li
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Shen
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiankun Wang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Gao
- College of Engineering, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Li
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mei Yu
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
39
|
Pernold CPS, Lagumdzic E, Stadler M, Dolezal M, Jäckel S, Schmitt MW, Mair KH, Saalmüller A. Species comparison: human and minipig PBMC reactivity under the influence of immunomodulating compounds in vitro. Front Immunol 2024; 14:1327776. [PMID: 38264655 PMCID: PMC10803596 DOI: 10.3389/fimmu.2023.1327776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Considering the similarities between swine and humans, it is a logical consequence to use swine as a translational model in research and drug development, including non-clinical safety. Here, we compared the reactivity of peripheral blood mononuclear cells (PBMCs) from humans and minipigs under the influence of different compounds in vitro. We conducted a flow cytometry-based proliferation assay that focused on the T-cell response to three different stimuli: concanavalin A (ConA), phytohemagglutinin-L (PHA-L), and staphylococcal Enterotoxin B (SEB). Furthermore, four approved immunosuppressive drugs-abatacept, belatacept, rapamycin, and tofacitinib-which are used for the treatment of rheumatoid arthritis or rejection in transplant recipients, were combined with the different stimuli. This allowed us to study the effect of suppressive drugs in comparison with the different stimuli in both species. We examined proliferating T cells (CD3+) and investigated the presence of TCR-αβ+ and TCR-γδ+ T cells. Differences in the response of T cells of the two species under these various conditions were evident. CD4+ T cells were more activated within humans, whereas CD8+ T cells were generally more abundant in swine. The effectiveness of the used humanized antibodies is most likely related to the conserved structure of CTLA-4 as abatacept induced a much stronger reduction in swine compared with belatacept. The reduction of proliferation of rapamycin and tofacitinib was highly dependent on the used stimuli. We further investigated the effect of the immunosuppressive compounds on antigen-specific restimulation of pigs immunized against porcine circovirus 2 (PCV2). Treatment with all four compounds resulted in a clear reduction of the proliferative response, with rapamycin showing the strongest effect. In conclusion, our findings indicate that the effectiveness of suppressive compounds is highly dependent on the stimuli used and must be carefully selected to ensure accurate results. The results highlight the importance of considering the response of T cells in different species when evaluating the potential of an immunomodulatory drug.
Collapse
Affiliation(s)
- Clara P. S. Pernold
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Emil Lagumdzic
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Sven Jäckel
- Chemical and Preclinical Safety, Merck KGaA, Darmstadt, Germany
| | | | - Kerstin H. Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
40
|
Zeng H, Zhang W, Lin Q, Gao Y, Teng J, Xu Z, Cai X, Zhong Z, Wu J, Liu Y, Diao S, Wei C, Gong W, Pan X, Li Z, Huang X, Chen X, Du J, Zhao F, Zhao Y, Ballester M, Crespo-Piazuelo D, Amills M, Clop A, Karlskov-Mortensen P, Fredholm M, Li P, Huang R, Tang G, Li M, Liu X, Chen Y, Zhang Q, Li J, Yuan X, Ding X, Fang L, Zhang Z. PigBiobank: a valuable resource for understanding genetic and biological mechanisms of diverse complex traits in pigs. Nucleic Acids Res 2024; 52:D980-D989. [PMID: 37956339 PMCID: PMC10767803 DOI: 10.1093/nar/gkad1080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
To fully unlock the potential of pigs as both agricultural species for animal-based protein food and biomedical models for human biology and disease, a comprehensive understanding of molecular and cellular mechanisms underlying various complex phenotypes in pigs and how the findings can be translated to other species, especially humans, are urgently needed. Here, within the Farm animal Genotype-Tissue Expression (FarmGTEx) project, we build the PigBiobank (http://pigbiobank.farmgtex.org) to systematically investigate the relationships among genomic variants, regulatory elements, genes, molecular networks, tissues and complex traits in pigs. This first version of the PigBiobank curates 71 885 pigs with both genotypes and phenotypes from over 100 pig breeds worldwide, covering 264 distinct complex traits. The PigBiobank has the following functions: (i) imputed sequence-based genotype-phenotype associations via a standardized and uniform pipeline, (ii) molecular and cellular mechanisms underlying trait-associations via integrating multi-omics data, (iii) cross-species gene mapping of complex traits via transcriptome-wide association studies, and (iv) high-quality results display and visualization. The PigBiobank will be updated timely with the development of the FarmGTEx-PigGTEx project, serving as an open-access and easy-to-use resource for genetically and biologically dissecting complex traits in pigs and translating the findings to other species.
Collapse
Affiliation(s)
- Haonan Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenjing Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qing Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yahui Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinyan Teng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhiting Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodian Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhanming Zhong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuqiang Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuqi Diao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chen Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wentao Gong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangchun Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zedong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyu Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xifan Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinshi Du
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | | | - Fuping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunxiang Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Maria Ballester
- Animal Breeding and Genetics Programme, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Daniel Crespo-Piazuelo
- Animal Breeding and Genetics Programme, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Marcel Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Alex Clop
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | - Peter Karlskov-Mortensen
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C1870, Denmark
| | - Merete Fredholm
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C1870, Denmark
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory in Nanjing for Evaluation and Utilization of Livestock and Poultry (Pigs) Resources, Ministry of Agriculture and Rural Areas, China, Nanjing 210095, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory in Nanjing for Evaluation and Utilization of Livestock and Poultry (Pigs) Resources, Ministry of Agriculture and Rural Areas, China, Nanjing 210095, China
| | - Guoqing Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qin Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolong Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Ding
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark
| | - Zhe Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
41
|
Olney KC, de Ávila C, Todd KT, Tallant LE, Barnett JH, Gibson KA, Hota P, Pandiane AS, Durgun PC, Serhan M, Wang R, Lind ML, Forzani E, Gades NM, Thomas LF, Fryer JD. Commonly disrupted pathways in brain and kidney in a pig model of systemic endotoxemia. J Neuroinflammation 2024; 21:9. [PMID: 38178237 PMCID: PMC10765757 DOI: 10.1186/s12974-023-03002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Sepsis is a life-threatening state that arises due to a hyperactive inflammatory response stimulated by infection and rarely other insults (e.g., non-infections tissue injury). Although changes in several proinflammatory cytokines and signals are documented in humans and small animal models, far less is known about responses within affected tissues of large animal models. We sought to understand the changes that occur during the initial stages of inflammation by administering intravenous lipopolysaccharide (LPS) to Yorkshire pigs and assessing transcriptomic alterations in the brain, kidney, and whole blood. Robust transcriptional alterations were found in the brain, with upregulated responses enriched in inflammatory pathways and downregulated responses enriched in tight junction and blood vessel functions. Comparison of the inflammatory response in the pig brain to a similar mouse model demonstrated some overlapping changes but also numerous differences, including oppositely dysregulated genes between species. Substantial changes also occurred in the kidneys following LPS with several enriched upregulated pathways (cytokines, lipids, unfolded protein response, etc.) and downregulated gene sets (tube morphogenesis, glomerulus development, GTPase signal transduction, etc.). We also found significant dysregulation of genes in whole blood that fell into several gene ontology categories (cytokines, cell cycle, neutrophil degranulation, etc.). We observed a strong correlation between the brain and kidney responses, with significantly shared upregulated pathways (cytokine signaling, cell death, VEGFA pathways) and downregulated pathways (vasculature and RAC1 GTPases). In summary, we have identified a core set of shared genes and pathways in a pig model of systemic inflammation.
Collapse
Affiliation(s)
- Kimberly C Olney
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Camila de Ávila
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Kennedi T Todd
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Lauren E Tallant
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA
| | - J Hudson Barnett
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA
| | - Katelin A Gibson
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Piyush Hota
- Division of Nephrology & Hypertension, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | | | - Pinar Cay Durgun
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Michael Serhan
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Ran Wang
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Mary Laura Lind
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Erica Forzani
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Naomi M Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Leslie F Thomas
- Division of Nephrology & Hypertension, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA.
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA.
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
42
|
Ren Y, Wang F, Sun R, Zheng X, Liu Y, Lin Y, Hong L, Huang X, Chao Z. The Genetic Selection of HSPD1 and HSPE1 Reduce Inflammation of Liver and Spleen While Restraining the Growth and Development of Skeletal Muscle in Wuzhishan Pigs. Animals (Basel) 2024; 14:174. [PMID: 38200905 PMCID: PMC10777996 DOI: 10.3390/ani14010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Wuzhishan (WZS) pigs, which are minipigs native to Hainan Province in China, are characterized by strong resistance to extreme hot temperatures and humidity. The relationship between their immune response and growth still needs to be clarified. In this study, we used whole genome sequencing (WGS) to detect variations within 37 WZS pigs, 32 Large White (LW) pigs, and 22 Xiangxi black (XXB) pigs, and ~2.49 GB of SNPs were obtained. These data were combined with those of two other pig breeds, and it was found that most of the genes detected (354) were located within the distinct genetic regions between WZS pigs and LW pigs. The network that was constructed using these genes represented a center including 12 hub genes, five of which had structural variations (SVs) within their regulatory regions. Furthermore, RNA-seq and RT-qPCR data for 12 genes were primarily consistent in liver, spleen, and LDM tissues. Notably, the expression of HSPs (HSPD1 and HSPE1) was higher while that of most genes involved in the JAK3-STAT pathway were lower in liver tissue of WZS pigs, compared with LW pigs. This likely not only reduced inflammation-related immune response but also impaired their growth. Our findings demonstrated the role of HSPs in the connection between inflammation and growth rate, while also providing the fundamental genetic selection of the adaptability of WZS pigs.
Collapse
Affiliation(s)
- Yuwei Ren
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Feng Wang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Ruiping Sun
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Xinli Zheng
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Yuanyuan Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yanning Lin
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Lingling Hong
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Xiaoxian Huang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Zhe Chao
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| |
Collapse
|
43
|
Liu HY, Zhu C, Zhu M, Yuan L, Li S, Gu F, Hu P, Chen S, Cai D. Alternatives to antibiotics in pig production: looking through the lens of immunophysiology. STRESS BIOLOGY 2024; 4:1. [PMID: 38163818 PMCID: PMC10758383 DOI: 10.1007/s44154-023-00134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
In the livestock production system, the evolution of porcine gut microecology is consistent with the idea of "The Hygiene Hypothesis" in humans. I.e., improved hygiene conditions, reduced exposure to environmental microorganisms in early life, and frequent use of antimicrobial drugs drive immune dysregulation. Meanwhile, the overuse of antibiotics as feed additives for infectious disease prevention and animal growth induces antimicrobial resistance genes in pathogens and spreads related environmental pollutants. It justifies our attempt to review alternatives to antibiotics that can support optimal growth and improve the immunophysiological state of pigs. In the current review, we first described porcine mucosal immunity, followed by discussions of gut microbiota dynamics during the critical weaning period and the impacts brought by antibiotics usage. Evidence of in-feed additives with immuno-modulatory properties highlighting probiotics, prebiotics, and phytobiotics and their cellular and molecular networking are summarized and reviewed. It may provide insights into the immune regulatory mechanisms of antibiotic alternatives and open new avenues for health management in pig production.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Long Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Fang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China.
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
44
|
Moon J, Kim SJ, Lee J, Kang H, Cho B, Kim SJ. Reproductive ability of minipigs as surrogates for somatic cell nuclear transfer. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:156-166. [PMID: 38618033 PMCID: PMC11007462 DOI: 10.5187/jast.2023.e35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2024]
Abstract
Pigs are genetically, anatomically, and physiologically similar to humans. Recently, pigs are in the spotlight as a suitable source animal for xenotransplantation. However, to use pigs as source animals, pigs should be raised in designated pathogen-free facilities. There is abundant data from embryo transfer (ET) experiments using farm pigs as surrogates, but data on ET experiments using minipigs are scarce. Eighty minipigs were used for ET experiments and after transplantation, the implantation and delivery rates were investigated. It was also confirmed whether the pregnancy rate could be increased by changing the condition or surgical method of the surrogate. In the case of minipigs that gave birth, the size of the fetal sac on the 28th day of ET was also measured. The factors that can affect the pregnancy rate such as estrus synchronization program, ovulation status at the time of ET, the number of repeated ET surgeries, and the ET sites, were changed, and the differences on the pregnancy rate were observed. However there were no significant differences in pregnancy rate in minipigs. The diameter of the implanted fetal sac on the 28th day after ET in the minipigs whose delivery was confirmed was calculated to be 4.7 ± 0.5 cm. In conclusion, there were no significant differences in pregnancy rate of minipigs in the comparative experiment on various factors affecting the pregnancy rate. However, additional experiments and analyses are needed due to the large individual differences of the minipigs.
Collapse
Affiliation(s)
| | - Su-Jin Kim
- GenNBio Co., Ltd.,
Pyeongtaek 17796, Korea
| | | | | | - Bumrae Cho
- GenNBio Co., Ltd.,
Pyeongtaek 17796, Korea
| | | |
Collapse
|
45
|
Zafeiropoulos S. Vagus nerve stimulation in postoperative thoracic surgery: the obstacle is the path. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:406. [PMID: 38213808 PMCID: PMC10777229 DOI: 10.21037/atm-23-1889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 01/13/2024]
Affiliation(s)
- Stefanos Zafeiropoulos
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA
| |
Collapse
|
46
|
Zhu JH, Guan XC, Yi LL, Xu H, Li QY, Cheng WJ, Xie YX, Li WZ, Zhao HY, Wei HJ, Zhao SM. Single-nucleus transcriptome sequencing reveals hepatic cell atlas in pigs. BMC Genomics 2023; 24:770. [PMID: 38087243 PMCID: PMC10717992 DOI: 10.1186/s12864-023-09765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND As the largest substantive organ of animals, the liver plays an essential role in the physiological processes of digestive metabolism and immune defense. However, the cellular composition of the pig liver remains poorly understood. This investigation used single-nucleus RNA sequencing technology to identify cell types from liver tissues of pigs, providing a theoretical basis for further investigating liver cell types in pigs. RESULTS The analysis revealed 13 cells clusters which were further identified 7 cell types including endothelial cells, T cells, hepatocytes, Kupffer cells, stellate cells, B cells, and cholangiocytes. The dominant cell types were endothelial cells, T cells and hepatocytes in the liver tissue of Dahe pigs and Dahe black pigs, which accounts for about 85.76% and 82.74%, respectively. The number of endothelial cells was higher in the liver tissue of Dahe pigs compared to Dahe black pigs, while the opposite tendency was observed for T cells. Moreover, functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic endothelial cells were significantly enriched in the protein processing in endoplasmic reticulum, MAPK signaling pathway, and FoxO signaling pathway. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic T cells were significantly enriched in the thyroid hormone signaling pathway, B cell receptor signaling pathway, and focal adhesion. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic hepatocytes were significantly enriched in the metabolic pathways. CONCLUSIONS In summary, this study provides a comprehensive cell atlas of porcine hepatic tissue. The number, gene expression level and functional characteristics of each cell type in pig liver tissue varied between breeds.
Collapse
Affiliation(s)
- Jun-Hong Zhu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuan-Cheng Guan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Lan-Lan Yi
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong Xu
- School of Public Finance and Economics, Yunnan University of Finance and Economics, Kunming, 650221, China
| | - Qiu-Yan Li
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Wen-Jie Cheng
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Yu-Xiao Xie
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, 563006, China
| | - Wei-Zhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| | - Su-Mei Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
47
|
Shao Y, Wu X, Yu Z, Li M, Sheng T, Wang Z, Tu J, Song X, Qi K. Gut Microbiome Analysis and Screening of Lactic Acid Bacteria with Probiotic Potential in Anhui Swine. Animals (Basel) 2023; 13:3812. [PMID: 38136849 PMCID: PMC10741066 DOI: 10.3390/ani13243812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/09/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
With the widespread promotion of the green feeding concept of "substitution and resistance", there is a pressing need for alternative products in feed and breeding industries. Employing lactic acid bacteria represents one of the most promising antimicrobial strategies to combat infections caused by pathogenic bacteria. As such, we analyzed the intestinal tract of Anhui local pig breeds, including LiuBai Pig, YueHei Pig, and HuoShou Pig, to determine the composition and diversity of intestinal microbiota using 16S rRNA. Further, the functionality of the pigs' intestinal microbiota was studied through metagenomic sequencing. This study revealed that lactic acid bacteria were the primary contributors to the functional composition, as determined through a species functional contribution analysis. More specifically, the functional contribution of lactic acid bacteria in the HuoShou Pig group was higher than that of the LiuBai Pig and YueHei Pig. Subsequently, the intestinal contents of the HuoShou Pig group were selected for the screening of the dominant lactic acid bacteria strains. Out of eight strains of lactic acid bacteria, the acid-production capacity, growth curve, and tolerance to a simulated intestinal environment were assessed. Additional assessments included surface hydrophobicity, the self-aggregation capability, co-agglutination of lactic acid bacteria with pathogenic bacteria, and an in vitro bacteriostatic activity assay. Lactobacillus johnsonii L5 and Lactobacillus reuteri L8 were identified as having a strong overall performance. These findings serve as a theoretical basis for the further development of pig-derived probiotics, thereby promoting the application of lactic acid bacteria to livestock production.
Collapse
Affiliation(s)
- Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyan Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhaorong Yu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Min Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tingting Sheng
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
48
|
Feng X, Diao S, Liu Y, Xu Z, Li G, Ma Y, Su Z, Liu X, Li J, Zhang Z. Exploring the mechanism of artificial selection signature in Chinese indigenous pigs by leveraging multiple bioinformatics database tools. BMC Genomics 2023; 24:743. [PMID: 38053015 PMCID: PMC10699062 DOI: 10.1186/s12864-023-09848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Chinese indigenous pigs in Yunnan exhibit considerable phenotypic diversity, but their population structure and the biological interpretation of signatures of artificial selection require further investigation. To uncover population genetic diversity, migration events, and artificial selection signatures in Chinese domestic pigs, we sampled 111 Yunnan pigs from four breeds in Yunnan which is considered to be one of the centres of livestock domestication in China, and genotyped them using Illumina Porcine SNP60K BeadChip. We then leveraged multiple bioinformatics database tools to further investigate the signatures and associated complex traits. RESULTS Population structure and migration analyses showed that Diannanxiaoer pigs had different genetic backgrounds from other Yunnan pigs, and Gaoligongshan may undergone the migration events from Baoshan and Saba pigs. Intriguingly, we identified a possible common target of sharing artificial selection on a 265.09 kb region on chromosome 5 in Yunnan indigenous pigs, and the genes on this region were associated with cardiovascular and immune systems. We also detected several candidate genes correlated with dietary adaptation, body size (e.g., PASCIN1, GRM4, ITPR2), and reproductive performance. In addition, the breed-sharing gene MMP16 was identified to be a human-mediated gene. Multiple lines of evidence at the mammalian genome, transcriptome, and phenome levels further supported the evidence for the causality between MMP16 variants and the metabolic diseases, brain development, and cartilage tissues in Chinese pigs. Our results suggested that the suppression of MMP16 would directly lead to inactivity and insensitivity of neuronal activity and skeletal development in Chinese indigenous pigs. CONCLUSION In this study, the population genetic analyses and identification of artificial selection signatures of Yunnan indigenous pigs help to build an understanding of the effect of human-mediated selection mechanisms on phenotypic traits in Chinese indigenous pigs. Further studies are needed to fully characterize the process of human-mediated genes and biological mechanisms.
Collapse
Affiliation(s)
- Xueyan Feng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuqi Diao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuqiang Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiting Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guangzhen Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ye Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanqin Su
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhe Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
49
|
Feng Y, Chen X, Chen D, He J, Zheng P, Luo Y, Yu B, Huang Z. Dietary grape seed proanthocyanidin extract supplementation improves antioxidant capacity and lipid metabolism in finishing pigs. Anim Biotechnol 2023; 34:4021-4031. [PMID: 37647084 DOI: 10.1080/10495398.2023.2252012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Grape seed proanthocyanidin extract (GSPE) plays a significant role in body health, including improving antioxidant capacity and maintaining lipid metabolism stability. However, whether dietary GSPE supplementation can improve lipid metabolism in finishing pigs remains unclear. Here 18 castrated male Duroc × Landrace × Yorkshire finishing pigs were randomly divided into three groups with six replicates and one pig per replicate. Pigs were fed a basal diet (control), a basal diet supplemented with 100 mg/kg GSPE, or a basal diet supplemented with 200 mg/kg GSPE for 30 days. Antioxidant analysis showed that dietary 200 mg/kg GSPE supplementation increased glutathione, total antioxidant capacity and glutathione peroxidase levels, and reduced malondialdehyde levels in serum, muscle and liver. Dietary 200 mg/kg GSPE supplementation also upregulated the mRNA and protein levels of nuclear-related factor 2 (Nrf2). Lipid metabolism analysis showed that dietary GSPE supplementation increased serum high-density lipoprotein cholesterol levels and reduced serum triglyceride and total cholesterol levels. Besides, GPSE upregulated the mRNA expression of lipolysis- and fatty acid oxidation-related genes downregulated the mRNA expression of lipogenesis-related genes, and activated the AMPK signal in finishing pigs. Together, we provided evidence that dietary GSPE supplementation improved the antioxidant capacity and lipid metabolism in finishing pigs.
Collapse
Affiliation(s)
- Yadi Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
50
|
Orosco FL. Host immune responses against African swine fever virus: Insights and challenges for vaccine development. Open Vet J 2023; 13:1517-1535. [PMID: 38292721 PMCID: PMC10824091 DOI: 10.5455/ovj.2023.v13.i12.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024] Open
Abstract
The African swine fever virus (ASFV) poses a serious threat to global swine populations, underscoring the urgent need for effective preventive strategies. This comprehensive review investigates the intricate interplay between innate, cellular, and humoral immunity against ASFV, with a focus on their relevance to vaccine development. By delving into immunopathogenesis and immunological challenges, this review article aims to provide a holistic perspective on the complexities of ASFV infections and immune evasion. Key findings underscore the critical role of innate immune recognition in shaping subsequent adaptive immune defenses, potential protective antigens, and the multifaceted nature of ASFV-specific antibodies and cytotoxic T-cell responses. Despite advancements, the unique attributes of ASFV present hurdles in the development of a successful vaccine. In conclusion, this review examines the current state of ASFV immune responses and offers insights into future research directions, fostering the development of effective interventions against this devastating pathogen.
Collapse
Affiliation(s)
- Fredmoore L. Orosco
- Virology and Vaccine Institute of the Philippines Program, Department of Science and Technology, Industrial Technology Development Institute, Taguig, Philippines
- S&T Fellows Program, Department of Science and Technology, Taguig, Philippines
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|