1
|
Wang L, Taché Y. The parasympathetic and sensory innervation of the proximal and distal colon in male mice. Front Neuroanat 2024; 18:1422403. [PMID: 39045348 PMCID: PMC11263295 DOI: 10.3389/fnana.2024.1422403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction The distributions of extrinsic neurons innervating the colon show differences in experimental animals from humans, including the vagal and spinal parasympathetic innervation to the distal colon. The neuroanatomical tracing to the mouse proximal colon has not been studied in details. This study aimed to trace the locations of extrinsic neurons projecting to the mouse proximal colon compared to the distal colon using dual retrograde tracing. Methods The parasympathetic and sensory neurons projecting to colon were assessed using Cholera Toxin subunit B conjugated to Alexa-Fluor 488 or 555 injected in the proximal and distal colon of the same mice. Results Retrograde tracing from the proximal and distal colon labeled neurons in the dorsal motor nucleus of the vagus (DMV) and the nodose ganglia, while the tracing from the distal colon did not label the parasympathetic neurons in the lumbosacral spinal cord at L6-S1. Neurons in the pelvic ganglia which were cholinergic projected to the distal colon. There were more neurons in the DMV and nodose ganglia projecting to the proximal than distal colon. The right nodose ganglion had a higher number of neurons than the left ganglion innervating the proximal colon. In the dorsal root ganglia (DRG), the highest number of neurons traced from the distal colon were at L6, and those from the proximal colon at T12. DRG neurons projected closely to the cholinergic neurons in the intermediolateral column of L6 spinal cord. Small percentages of neurons with dual projections to both the proximal and distal colon existed in the DMV, nodose ganglia and DRG. We also observed long projecting neurons traced from the caudal distal colon to the transverse and proximal colon, some of which were calbindin immunoreactive, while there were no retrogradely labeled neurons traced from the proximal to distal colon. Discussion These data demonstrated that the vagal motor and motor and sensory neurons innervate both the proximal and distal colon in mice, and the autonomic neurons in the intermediate zone of the lumbosacral spinal cord do not project directly to the mouse colon, which differs from that in humans.
Collapse
Affiliation(s)
- Lixin Wang
- CURE/Digestive Diseases Research Center, Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
2
|
The role of enteric inhibitory neurons in intestinal motility. Auton Neurosci 2021; 235:102854. [PMID: 34329834 DOI: 10.1016/j.autneu.2021.102854] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
The enteric nervous system controls much of the mixing and propulsion of nutrients along the digestive tract. Enteric neural circuits involve intrinsic sensory neurons, interneurons and motor neurons. While the role of the excitatory motor neurons is well established, the role of the enteric inhibitory motor neurons (IMNs) is less clear. The discovery of inhibitory transmission in the intestine in the 1960's in the laboratory of Geoff Burnstock triggered the search for the unknown neurotransmitter. It has since emerged that most neurons including the IMNs contain and may utilise more than one transmitter substances; for IMNs these include ATP, the neuropeptide VIP/PACAP and nitric oxide. This review distinguishes the enteric neural pathways underlying the 'standing reflexes' from the pathways operating physiologically during propulsive and non-propulsive movements. Morphological evidence in small laboratory animals indicates that the IMNs are located in the myenteric plexus and project aborally to the circular muscle, where they act by relaxing the muscle. There is ongoing 'tonic' activity of these IMNs to keep the intestinal muscle relaxed. Accommodatory responses to content further activate enteric pathways that involve the IMNs as the final neural element. IMNs are activated by mechanical and chemical stimulation induced by luminal contents, which activate intrinsic sensory enteric neurons and the polarised interneuronal ascending excitatory and descending inhibitory reflex pathways. The latter relaxes the muscle ahead of the advancing bolus, thus facilitating propulsion.
Collapse
|
3
|
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 2020; 17:338-351. [PMID: 32152479 PMCID: PMC7474470 DOI: 10.1038/s41575-020-0271-2] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the only internal organ to have evolved with its own independent nervous system, known as the enteric nervous system (ENS). This Review provides an update on advances that have been made in our understanding of how neurons within the ENS coordinate sensory and motor functions. Understanding this function is critical for determining how deficits in neurogenic motor patterns arise. Knowledge of how distension or chemical stimulation of the bowel evokes sensory responses in the ENS and central nervous system have progressed, including critical elements that underlie the mechanotransduction of distension-evoked colonic peristalsis. Contrary to original thought, evidence suggests that mucosal serotonin is not required for peristalsis or colonic migrating motor complexes, although it can modulate their characteristics. Chemosensory stimuli applied to the lumen can release substances from enteroendocrine cells, which could subsequently modulate ENS activity. Advances have been made in optogenetic technologies, such that specific neurochemical classes of enteric neurons can be stimulated. A major focus of this Review will be the latest advances in our understanding of how intrinsic sensory neurons in the ENS detect and respond to sensory stimuli and how these mechanisms differ from extrinsic sensory nerve endings in the gut that underlie the gut-brain axis.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, Australia.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
4
|
Humenick A, Chen BN, Lauder CIW, Wattchow DA, Zagorodnyuk VP, Dinning PG, Spencer NJ, Costa M, Brookes SJH. Characterization of projections of longitudinal muscle motor neurons in human colon. Neurogastroenterol Motil 2019; 31:e13685. [PMID: 31355986 DOI: 10.1111/nmo.13685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/08/2022]
Abstract
BACKGROUND The enteric nervous system contains inhibitory and excitatory motor neurons which modulate smooth muscle contractility. Cell bodies of longitudinal muscle motor neurons have not been identified in human intestine. METHODS We used retrograde tracing ex vivo with DiI, with multiple labeling immunohistochemistry, to characterize motor neurons innervating tenial and inter-tenial longitudinal muscle of human colon. KEY RESULTS The most abundant immunohistochemical markers in the tertiary plexus were vesicular acetylcholine transporter, nitric oxide synthase (NOS), and vasoactive intestinal polypeptide (VIP). Of retrogradely traced motor neurons innervating inter-tenial longitudinal muscle, 95% were located within 6mm oral or anal to the DiI application site. Excitatory motor neuron cell bodies, immunoreactive for choline acetyltransferase (ChAT), were clustered aborally, whereas NOS-immunoreactive cell bodies were distributed either side of the DiI application site. Motor neurons had small cell bodies, averaging 438 + 18µm2 in cross-sectional area, similar for ChAT- and NOS-immunoreactive subtypes. Motor neurons innervating the tenia had slightly longer axial projections, with 95% located within 9mm. ChAT-immunoreactive excitatory motor neurons to tenia were clustered aborally, whereas NOS-immunoreactive inhibitory motor neurons had both ascending and descending projections. VIP immunoreactivity was rarely present without NOS immunoreactivity in motor neurons. CONCLUSIONS AND INFERENCES Tenial and inter-tenial motor neurons innervating the longitudinal muscle have short projections. Inhibitory motor neurons have less polarized projections than cholinergic excitatory motor neurons. Longitudinal and circular muscle layers are innervated by distinct local populations of excitatory and inhibitory motor neurons. A population of human enteric neurons that contribute significantly to colonic motility has been characterized.
Collapse
Affiliation(s)
- Adam Humenick
- Human Physiology, Medical Bioscience, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Bao Nan Chen
- Human Physiology, Medical Bioscience, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Chris I W Lauder
- Department of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | - Vladimir P Zagorodnyuk
- Human Physiology, Medical Bioscience, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Phil G Dinning
- Department of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | - Nick J Spencer
- Human Physiology, Medical Bioscience, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Marcello Costa
- Human Physiology, Medical Bioscience, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Simon J H Brookes
- Human Physiology, Medical Bioscience, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
5
|
Smolilo DJ, Costa M, Hibberd TJ, Brookes SJH, Wattchow DA, Spencer NJ. Distribution, projections, and association with calbindin baskets of motor neurons, interneurons, and sensory neurons in guinea-pig distal colon. J Comp Neurol 2019; 527:1140-1158. [PMID: 30520048 DOI: 10.1002/cne.24594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/25/2018] [Accepted: 11/18/2018] [Indexed: 11/07/2022]
Abstract
Normal gut function relies on the activity of the enteric nervous system (ENS) found within the wall of the gastrointestinal tract. The structural and functional organization of the ENS has been extensively studied in the guinea pig small intestine, but less is known about colonic circuitry. Given that there are significant differences between these regions in function, observed motor patterns and pathology, it would be valuable to have a better understanding of the colonic ENS. Furthermore, disorders of colonic motor function, such as irritable bowel syndrome, are much more common. We have recently reported specialized basket-like structures, immunoreactive for calbindin, that likely underlie synaptic inputs to specific types of calretinin-immunoreactive neurons in the guinea-pig colon. Based on detailed immunohistochemical analysis, we postulated the recipient neurons may be excitatory motor neurons and ascending interneurons. In the present study, we combined retrograde tracing and immunohistochemistry to examine the projections of circular muscle motor neurons, myenteric interneurons, and putative sensory neurons. We focused on neurons with immunoreactivity for calbindin, calretinin and nitric oxide synthase and their relationship with calbindin baskets. Retrograde tracing using indocarbocyanine dye (DiI) revealed that many of the nerve cell bodies surrounded by calbindin baskets belong to motor neurons and ascending interneurons. Unique functional classes of myenteric neurons were identified based on morphology, neuronal markers and polarity of projection. We provide evidence for three groups of ascending motor neurons based on immunoreactivity and association with calbindin baskets, a finding that may have significant functional implications.
Collapse
Affiliation(s)
- D J Smolilo
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - M Costa
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - T J Hibberd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - S J H Brookes
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - D A Wattchow
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - N J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| |
Collapse
|
6
|
Smolilo DJ, Costa M, Hibberd TJ, Wattchow DA, Spencer NJ. Morphological evidence for novel enteric neuronal circuitry in guinea pig distal colon. J Comp Neurol 2018; 526:1662-1672. [PMID: 29574743 DOI: 10.1002/cne.24436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
The gastrointestinal (GI) tract is unique compared to all other internal organs; it is the only organ with its own nervous system and its own population of intrinsic sensory neurons, known as intrinsic primary afferent neurons (IPANs). How these IPANs form neuronal circuits with other functional classes of neurons in the enteric nervous system (ENS) is incompletely understood. We used a combination of light microscopy, immunohistochemistry and confocal microscopy to examine the topographical distribution of specific classes of neurons in the myenteric plexus of guinea-pig colon, including putative IPANs, with other classes of enteric neurons. These findings were based on immunoreactivity to the neuronal markers, calbindin, calretinin and nitric oxide synthase. We then correlated the varicose outputs formed by putative IPANs with subclasses of excitatory interneurons and motor neurons. We revealed that calbindin-immunoreactive varicosities form specialized structures resembling 'baskets' within the majority of myenteric ganglia, which were arranged in clusters around calretinin-immunoreactive neurons. These calbindin baskets directly arose from projections of putative IPANs and represent morphological evidence of preferential input from sensory neurons directly to a select group of calretinin neurons. Our findings uncovered that these neurons are likely to be ascending excitatory interneurons and excitatory motor neurons. Our study reveals for the first time in the colon, a novel enteric neural circuit, whereby calbindin-immunoreactive putative sensory neurons form specialized varicose structures that likely direct synaptic outputs to excitatory interneurons and motor neurons. This circuit likely forms the basis of polarized neuronal pathways underlying motility.
Collapse
Affiliation(s)
- D J Smolilo
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - M Costa
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - T J Hibberd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - D A Wattchow
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
8
|
MacEachern SJ, Patel BA, McKay DM, Sharkey KA. Nitric oxide regulation of colonic epithelial ion transport: a novel role for enteric glia in the myenteric plexus. J Physiol 2011; 589:3333-48. [PMID: 21558161 PMCID: PMC3145943 DOI: 10.1113/jphysiol.2011.207902] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/07/2011] [Indexed: 12/14/2022] Open
Abstract
Enteric glia are increasingly recognized as important in the regulation of a variety of gastrointestinal functions.Here we tested the hypothesis that nicotinic signalling in the myenteric plexus results in the release of nitric oxide (NO) from neurons and enteric glia to modulate epithelial ion transport. Ion transport was assessed using full-thickness or muscle-stripped segments of mouse colon mounted in Ussing chambers. The cell-permeant NO-sensitive dye DAR-4M AM and amperometry were utilized to identify the cellular sites of NO production within the myenteric plexus and the contributions from specific NOS isoforms. Nicotinic receptors were localized using immunohistochemistry. Nicotinic cholinergic stimulation of colonic segments resulted in NO-dependent changes in epithelial active electrogenic ion transport that were TTX sensitive and significantly altered in the absence of the myenteric plexus. Nicotinic stimulation of the myenteric plexus resulted in NO production and release from neurons and enteric glia, which was completely blocked in the presence of nitric oxide synthase (NOS) I and NOS II inhibitors. Using the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), neuronal and enteric glial components of NO production were demonstrated. Nicotinic receptors were identified on enteric neurons, which express NOS I, and enteric glia, which express NOS II. These data identify a unique pathway in the mouse colon whereby nicotinic cholinergic signalling in myenteric ganglia mobilizes NO from NOS II in enteric glia, which in coordinated activity with neurons in the myenteric plexus modulates epithelial ion transport, a key component of homeostasis and innate immunity.
Collapse
Affiliation(s)
- Sarah J MacEachern
- Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, Canada, T2N 4N1
| | | | | | | |
Collapse
|
9
|
de Vries P, Soret R, Suply E, Heloury Y, Neunlist M. Postnatal development of myenteric neurochemical phenotype and impact on neuromuscular transmission in the rat colon. Am J Physiol Gastrointest Liver Physiol 2010; 299:G539-47. [PMID: 20522637 DOI: 10.1152/ajpgi.00092.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Profound changes in intestinal motility occur during the postnatal period, but the involvement of the enteric nervous system (ENS), a key regulator of gastrointestinal (GI) motility, in these modifications remains largely unknown. We therefore investigated the postnatal development of the ENS phenotype and determined its functional repercussion on the neuromuscular transmission in the rat colon. Sprague-Dawley rats were euthanized at postnatal day (P) 1, P3, P5, P7, P14, P21, and P36. Whole mounts of colonic myenteric plexus were stained with antibodies against choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and HuC/D. Colonic contractile response induced by electrical field stimulation (EFS) was investigated in organ chambers in absence or presence of N-nitro-l-arginine methyl ester (l-NAME) and/or atropine. In vivo motility was assessed by measurement of the colonic bead latency time. Randomly occurring ex vivo contractions appeared starting at P5. Starting at P14, rhythmic phasic contractions occurred whose frequency and amplitude increased over time. In vivo, bead latency was significantly reduced between P14 and P21. Ex vivo, EFS-induced contractile responses increased significantly over time and were significantly reduced by atropine starting at P14 but were sensitive to l-NAME only after P21. The proportion of ChAT-immunoreactive (IR) neurons increased time dependently starting at P14. The proportion of nNOS-IR neurons increased as early as P5 compared with P1 but did not change afterward. Our data support a key role for cholinergic myenteric pathways in the development of postnatal motility and further identify them as putative therapeutic target for the treatment of GI motility disorders in the newborn.
Collapse
|
10
|
Neorectal irritability after short-term preoperative radiotherapy and surgical resection for rectal cancer. Am J Gastroenterol 2009; 104:133-41. [PMID: 19098861 DOI: 10.1038/ajg.2008.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Preoperative radiotherapy followed by rectal resection with total mesorectal excision (TME) and colo-anal anastomosis severely compromises anorectal function, which has been attributed to a decrease in neorectal capacity and neorectal compliance. However, to what extent altered motility of the neorectum is involved, is still unknown. The aim of the study was to compare the motor response to (prolonged) filling of the (neo-)rectum in patients after preoperative radiotherapy and rectal resection with that in healthy volunteers (HV). METHODS Neorectal function (J-pouch or side-to-end anastomosis) was studied in 15 patients (median age 61 years, 10 males) 5 months after short-term preoperative radiotherapy (5 x 5 Gy) and rectal resection with TME for rectal cancer and compared with that of 10 volunteers (median age 41 years, 7 males). Furthermore, patients with a colonic J-pouch anastomosis (n=6) were compared with patients with a side-to-end anastomosis (n=9). (Neo-)rectal sensitivity was assessed using a stepwise isovolumetric and isobaric distension protocol. (Neo-)rectal motility was determined during prolonged distension at the threshold of the urge to defecate. RESULTS The neorectal volume of patients at the threshold of the urge to defecate (125 +/-45 ml) was significantly lower when compared with that of HV (272+/-87 ml, P<0.05). The pressure threshold, however, did not differ between patients (26+/-9 mm Hg) and HV (21+/-5 mm Hg) and neither did the pressure threshold differ between patients with a J-pouch and those with side-to-end anastomosis. In HV, no rectal contractions were observed during prolonged rectal distension. In contrast, in all 15 patients, prolonged isovolumetric and isobaric distension induced 3 (range 0-5) rectal contractions/10 min, which were associated with an increase in sensation in half of the patients. CONCLUSIONS Patients who underwent preoperative radiotherapy and rectal resection with TME, but not HV, developed contractions of the neo-rectum in response to prolonged distension. We suggest that this neorectal "irritability" represents a new pathophysiological mechanism contributing to the urgency for defecation after this multimodality treatment.
Collapse
|
11
|
Sibaev A, Yüce B, Allescher HD, Göke B, Storr M. A new electrophysiological tool to investigate the spatial neuronal projections within the myenteric ascending reflex of the mouse colon. Clin Exp Pharmacol Physiol 2008; 35:744-50. [PMID: 18346174 DOI: 10.1111/j.1440-1681.2008.04919.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. The intestinal peristaltic reflex is regulated by local microcircuits that, upon activation, result in an oral contraction and anal relaxation of the circular muscle. This contractile response is associated with typical electrophysiological changes in membrane potential resulting from excitatory and inhibitory myenteric pathways. 2. The aim of the present study was to investigate the influence of local electrical stimulation (ES; single pulses, 15 V, 0.3 msec duration) on the ascending gastrointestinal electrophysiological potentials of the mouse colon using a novel 12-channel stimulation electrode in a newly designed model of the ascending myenteric pathways with simultaneous intracellular recording. 3. Local myenteric reflex responses in the proximal colon were initiated by ES (12 bipolar stimulation electrodes (SE) 0.7 mm apart from each other) and excitatory and inhibitory junction potentials (EJP and IJP, respectively) were recorded from circular smooth muscle cells with intracellular recording techniques. In vivo colonic propulsion was determined by measuring the time to expulsion of a 3 mm glass bead inserted 2.5 cm into the distal colon of mouse. 4. Under basal conditions, circular smooth muscle cells displayed a stable membrane potential (-56.7 +/- 6.9 mV; n = 13). Electrical stimulation elicited a tetrodotoxin (3 micromol/L)-sensitive, neuronal-induced EJP (cholinergic; atropine (1 micromol/L) sensitive) and a biphasic IJP. Both the EJP and IJP showed characteristic responses dependent on the distance between stimulation and recording sites. The EJP could be recorded over long distances, resulting in a maximal EJP amplitude at a distance of 10 mm distance (represented by stimulation electrodes (SE) number 6/7) and a maximal projection distance of 18-20 mm. Both components of IJP were maximal during direct stimulation (at SE1; stimulation at the recording site) and gradually decreased to SE6/7 (10 mm). At distances greater than 10 mm apart, ES did not produce IJP. The ganglionic blocker hexamethonium (10-100 micromol/L) concentration dependently abolished all inhibitory junction potentials at distances greater than 10 mm and significantly reduced the amplitude of EJP for the first 10 mm. Colonic propulsion was decreased by hexamethonium (40 mg/kg) and atropine (0.7 mg/kg). 5. Neuronal circuits of the ascending myenteric reflex functionally project distances ranging up to 18-20 mm. Our newly designed setup allows simultaneous electrophysiological investigations of neuronal microcircuitry within the myenteric plexus over short and long distances and enables conclusions to be drawn regarding neuroneuronal and neuromuscular transmission.
Collapse
Affiliation(s)
- Andrei Sibaev
- Department of Internal Medicine II, and Institute of Surgical Research, Ludwig Maximilians University of Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
12
|
Abstract
The proposed functions of the interstitial cells of Cajal (ICC) are to 1) pace the slow waves and regulate their propagation, 2) mediate enteric neuronal signals to smooth muscle cells, and 3) act as mechanosensors. In addition, impairments of ICC have been implicated in diverse motility disorders. This review critically examines the available evidence for these roles and offers alternate explanations. This review suggests the following: 1) The ICC may not pace the slow waves or help in their propagation. Instead, they may help in maintaining the gradient of resting membrane potential (RMP) through the thickness of the circular muscle layer, which stabilizes the slow waves and enhances their propagation. The impairment of ICC destabilizes the slow waves, resulting in attenuation of their amplitude and impaired propagation. 2) The one-way communication between the enteric neuronal varicosities and the smooth muscle cells occurs by volume transmission, rather than by wired transmission via the ICC. 3) There are fundamental limitations for the ICC to act as mechanosensors. 4) The ICC impair in numerous motility disorders. However, a cause-and-effect relationship between ICC impairment and motility dysfunction is not established. The ICC impair readily and transform to other cell types in response to alterations in their microenvironment, which have limited effects on motility function. Concurrent investigations of the alterations in slow-wave characteristics, excitation-contraction and excitation-inhibition couplings in smooth muscle cells, neurotransmitter synthesis and release in enteric neurons, and the impairment of the ICC are required to understand the etiologies of clinical motility disorders.
Collapse
Affiliation(s)
- Sushil K Sarna
- Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, Neuroscience, and Cell Biology, The University of Texas Medical Branch at Gavelston, Galveston, TX 77555-1064, USA.
| |
Collapse
|
13
|
Dickson EJ, Spencer NJ, Hennig GW, Bayguinov PO, Ren J, Heredia DJ, Smith TK. An enteric occult reflex underlies accommodation and slow transit in the distal large bowel. Gastroenterology 2007; 132:1912-24. [PMID: 17484884 DOI: 10.1053/j.gastro.2007.02.047] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 02/15/2007] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Transit of fecal material through the human colon takes > or =30 hours, whereas transit through the small intestine takes 24 hours. The mechanisms underlying colonic storage and slow transit have yet to be elucidated. Our aim was to determine whether an intrinsic neural mechanism underlies these phenomena. METHODS Recordings were made from circular muscle (CM) cells and myenteric neurons in the isolated guinea pig distal colon using intracellular recordings and Ca(2+) imaging techniques. Video imaging was used to determine the effects of colonic filling and pellet transit. RESULTS Circumferential stretch generated ongoing oral excitatory and anal inhibitory junction potentials in the CM. The application of longitudinal stretch inhibited all junction potentials. N-omega-nitro-L-arginine (100 micromol/L) completely reversed the inhibitory effects of longitudinal stretch suggesting that nitric oxide (NO) inhibited interneurons controlling peristaltic circuits. Ca(2+) imaging in preparations that were stretched in both axes revealed ongoing firing in nNOS +ve descending neurons, even when synaptic transmission was blocked. Inhibitory postsynaptic potentials were evoked in mechanosensitive interneurons that were blocked by N-omega-nitro-L-arginine (100 micromol/L). Pellet transit was inhibited by longitudinal stretch. Filling the colon with fluid led to colonic elongation and an inhibition of motility. CONCLUSIONS Our data support the novel hypothesis that slow transit and accommodation are generated by release of NO from descending (nNOS +ve) interneurons triggered by colonic elongation. We refer to this powerful inhibitory reflex as the intrinsic occult reflex (hidden from observation) because it withdraws motor activity from the muscle.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Mazzuoli G, Mazzoni M, Albanese V, Clavenzani P, Lalatta-Costerbosa G, Lucchi ML, Furness JB, Chiocchetti R. Morphology and Neurochemistry of Descending and Ascending Myenteric Plexus Neurons of Sheep Ileum. Anat Rec (Hoboken) 2007; 290:1480-91. [DOI: 10.1002/ar.20615] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Bartoo AC, Sprunger LK, Schneider DA. Expression of sodium channel Nav1.6 in cholinergic myenteric neurons of guinea pig proximal colon. Cell Tissue Res 2006; 325:203-9. [PMID: 16555052 DOI: 10.1007/s00441-006-0179-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 01/24/2006] [Indexed: 11/30/2022]
Abstract
We wished to establish the functional identity of Na(v)1.6-expressing myenteric neurons of the guinea pig proximal colon by determining the extent of colocalization of Na(v)1.6 and selected neurochemical markers. Na(v)1.6-like immunoreactivity (-li) was primarily localized to the hillock and initial segments of myenteric neurons located near junctions with internodal fiber tracts. Immunoreactivity for Na(v)1.6 was co-localized with choline-acetyltransferase-li, representing 96% of Na(v)1.6-immunoreactive neurons; about 5% of these neurons showed co-localization with calretinin-li, but none with substance-P-li. Cholinergic neurons expressing Na(v)1.6 were amongst the smallest (somal area <300 mum(2)) of all cholinergic myenteric neurons observed. Only three of 234 Na(v)1.6-immunoreactive neurons exhibited nNOS-li, and none co-localized with calbindin-li. These data suggest that Na(v)1.6 is expressed in a small uniform population of cholinergic myenteric neurons that lie within the guinea pig proximal colon and that are likely to function as excitatory motor neurons.
Collapse
Affiliation(s)
- A C Bartoo
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
16
|
Bartoo AC, Sprunger LK, Schneider DA. Expression of the sodium channel Nav1.2 in chemically identified myenteric neurons in the guinea pig. Cell Tissue Res 2005; 324:25-32. [PMID: 16372194 DOI: 10.1007/s00441-005-0107-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
Our purpose was to identify Na(v)1.2-expressing myenteric neurons of the small and large intestine of the guinea pig by using antibodies directed against Na(v)1.2 and selected neurochemical markers. Na(v)1.2-like immunoreactivity (-li) co-localized with immunoreactivity for choline acetyltransferase in all regions, representing 45%-67% of Na(v)1.2-positive neurons. Na(v)1.2-li co-localized with immunoreactivity for the neural form of nitric oxide synthase more frequently in the colon (20% of neurons exhibiting Na(v)1.2-li) than in the ileum (8%). Co-localization of Na(v)1.2-li with immunoreactivity for a form of neurofilament (NF145) was infrequently observed in the ileum and colon. Enkephalin-immunoreactive cell bodies co-localized with Na(v)1.2-li in all regions. Few myenteric cell bodies immunoreactive for neuropeptide Y were observed in the ileum, but all co-localized with Na(v)1.2-li. This and our previous data suggest that Na(v)1.2 is widely expressed within the guinea pig enteric nervous system, including the three main classes of myenteric neurons (sensory, motor, and interneurons), and is involved in both excitatory and inhibitory pathways. Notable exceptions include the excitatory motor neurons to the longitudinal smooth muscle, the ascending interneurons of the ileum, and the myenteric neurons immunoreactive for NF145, few of which are immunoreactive for Na(v)1.2.
Collapse
Affiliation(s)
- A C Bartoo
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
17
|
Lin A, Lourenssen S, Stanzel RDP, Blennerhassett MG. Nerve growth factor sensitivity is broadly distributed among myenteric neurons of the rat colon. J Comp Neurol 2005; 490:194-206. [PMID: 16052501 DOI: 10.1002/cne.20654] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nerve growth factor (NGF) acts on the two-receptor system of trkA and p75 to mediate neuroprotection and influence phenotype and function in the peripheral nervous system, but the effects of NGF on the enteric nervous system (ENS) are virtually unknown. To establish a basis for enteric responsiveness to NGF, we studied the presence and distribution of NGF-sensitive receptors in the myenteric neurons of the normal rat colon and examined their activation via trkA phosphorylation. Fluorescent immunocytochemistry on wholemounts showed that the two NGF receptors were abundantly present in the ENS, with 71% of all neurons positive for trkA and 78% for p75. More thanr 60% of the myenteric neurons expressed both receptors, and exogenous application of NGF resulted in trkA phosphorylation, evidence for high NGF sensitivity within the ENS. trkA was co-expressed with choline acetyltransferase (61% of trkA-positive neurons), neuronal nitric oxide synthase (22%), or calbindin (10%), suggesting widespread potential for NGF action. We conclude that functional receptors for NGF are widely distributed among the diverse enteric phenotypes and argue for a novel NGF-mediated regulatory system within the ENS.
Collapse
Affiliation(s)
- Agueda Lin
- Gastrointestinal Diseases Research Unit, Queen's University, Hotel Dieu Hospital, 166 Brock Street, Kingston, Ontario K7L 5G2, Canada
| | | | | | | |
Collapse
|
18
|
Pfannkuche H, Schellhorn C, Schemann M, Gäbel G. Intrinsic innervation patterns of the smooth muscle in the rumen and reticulum of lambs. J Anat 2004; 204:293-9. [PMID: 15061755 PMCID: PMC1571291 DOI: 10.1111/j.0021-8782.2004.00284.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rumen and reticulum of sheep serve as a fermentation chamber. Both compartments exhibit specific motility patterns. With developmental changes, the size of the reticulorumen dramatically increases when newborn lambs mature to adult sheep. This makes it possible to investigate the intrinsic innervation of the reticuloruminal muscles in lambs by taking the entire reticulum and rumen into account. The aim of the study was to analyse the projections and neurochemistry of myenteric neurons in the rumen and reticulum, which project to the inner or outer muscle layer, respectively. Therefore, we applied retrograde tracing with the fluorescent dye 1,1'-didodecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (DiI) and subsequent immunohistochemical detection of choline acetyltransferase (ChAT), substance P (SP) and vasoactive intestinal peptide (VIP). In both compartments innervation of both the inner and the outer muscle layer consisted mainly of cholinergic neurons (65-70%). The majority of them co-localized SP. The non-cholinergic neurons projecting to the muscle expressed immunoreactivity for VIP. Polarized innervation of the muscle layers was found neither in the rumen nor in the reticulum. Consequently, intrinsic innervation patterns for the smooth muscle layers in the rumen and reticulum differ from all gastrointestinal regions examined thus far.
Collapse
Affiliation(s)
- Helga Pfannkuche
- Veterinär-Physiologisches Institut, Veterinärmedizinische Fakultät, Universität Leipzig, Germany.
| | | | | | | |
Collapse
|
19
|
Kang SH, Vanden Berghe P, Smith TK. Ca2+-activated Cl- current in cultured myenteric neurons from murine proximal colon. Am J Physiol Cell Physiol 2003; 284:C839-47. [PMID: 12456397 DOI: 10.1152/ajpcell.00437.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole cell patch-clamp recordings were made from cultured myenteric neurons taken from murine proximal colon. The micropipette contained Cs(+) to remove K(+) currents. Depolarization elicited a slowly activating time-dependent outward current (I(tdo)), whereas repolarization was followed by a slowly deactivating tail current (I(tail)). I(tdo) and I(tail) were present in approximately 70% of neurons. We identified these currents as Cl(-) currents (I(Cl)), because changing the transmembrane Cl(-) gradient altered the measured reversal potential (E(rev)) of both I(tdo) and I(tail) with that for I(tail) shifted close to the calculated Cl(-) equilibrium potential (E(Cl)). I(Cl) are Ca(2+)-activated Cl(-) current [I(Cl(Ca))] because they were Ca(2+) dependent. E(Cl), which was measured from the E(rev) of I(Cl(Ca)) using a gramicidin perforated patch, was -33 mV. This value is more positive than the resting membrane potential (-56.3 +/- 2.7 mV), suggesting myenteric neurons accumulate intracellular Cl(-). omega-Conotoxin GIVA [0.3 microM; N-type Ca(2+) channel blocker] and niflumic acid [10 microM; known I(Cl(Ca)) blocker], decreased the I(Cl(Ca)). In conclusion, these neurons have I(Cl(Ca)) that are activated by Ca(2+) entry through N-type Ca(2+) channels. These currents likely regulate postspike frequency adaptation.
Collapse
Affiliation(s)
- Sok Han Kang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
20
|
Spencer NJ, Hennig GW, Smith TK. Stretch-activated neuronal pathways to longitudinal and circular muscle in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2003; 284:G231-41. [PMID: 12388186 DOI: 10.1152/ajpgi.00291.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of the longitudinal muscle (LM) layer during the peristaltic reflex in the small and large intestine is unclear. In this study, we have made double and quadruple simultaneous intracellular recordings from LM and circular muscle (CM) cells of guinea pig distal colon to correlate the electrical activities in the two different muscle layers during circumferential stretch. Simultaneous recordings from LM and CM cells (<200 microm apart) at the oral region of the colon showed that excitatory junction potentials (EJPs) discharged synchronously in both muscle layers for periods of up to 6 h. Similarly, at the anal region of the colon, inhibitory junction potentials (IJPs) discharged synchronously in the two muscle layers. Quadruple recordings from LM and CM orally at the same time as from the LM and CM anally revealed that IJPs occurred synchronously in the LM and CM anally at the same time as EJPs in LM and CM located 20 mm orally. Oral EJPs and anal IJPs were linearly related in amplitude between the two muscle layers. Spatiotemporal maps generated from simultaneous video imaging of the movements of the colon, combined with intracellular recordings, revealed that some LM contractions orally could be correlated in time with IJPs in CM cells anally. N(omega)-nitro-L-arginine (L-NA; 100 microM) abolished the IJP in LM, whereas a prominent L-NA-resistant "fast" IJP was always observed in CM. In summary, in stretched preparations, synchronized EJPs in both LM and CM orally are generated by synchronized firing of many ascending interneurons, which simultaneously activate excitatory motor neurons to both muscle layers. Similarly, synchronized IJPs in both LM and CM anally are generated by synchronized firing of many descending interneurons, which simultaneously activate inhibitory motor neurons to both muscle layers. This synchronized motor activity ensures that both muscles around the entire circumference are excited orally at the same time as inhibited anally, thus producing net aboral propulsion.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
21
|
Manning BP, Sharkey KA, Mawe GM. Effects of PGE2 in guinea pig colonic myenteric ganglia. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1388-97. [PMID: 12388206 DOI: 10.1152/ajpgi.00141.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PGE(2) is a proinflammatory mediator that can influence many cell types. This study was conducted to determine whether PGE(2) alters the electrical activity of distal colonic myenteric neurons, because colitis is typically associated with altered motility and changes in neural signaling may be involved. The electrical properties of intact myenteric neurons were evaluated with intracellular microelectrodes. Acute application of PGE(2) elicited a prolonged depolarization in both AH and S neurons with little effect on input resistance or electrical excitability. PGE(2) effects were suppressed by tetrodotoxin (TTX) or neurokinin (NK) receptor antagonists, indicating that PGE(2) acts directly and indirectly to depolarize colonic neurons. PGE(2)-evoked depolarization was concentration dependent (approximately 3 microM EC(50)) and was attenuated by the E prostanoid (EP)1/2 receptor antagonist, AH-6809. When preparations were maintained for 48 h in the presence of the stable PGE(2) analog PGE(2)-ethanolamide (10 microM), neurons exhibited a significant membrane depolarization and enhanced excitability. These results suggest that PGE(2) can play a role in altered motility in colitis by evoking changes in the electrical properties of myenteric neurons.
Collapse
Affiliation(s)
- Brian P Manning
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
22
|
Spencer NJ, Hennig GW, Smith TK. A rhythmic motor pattern activated by circumferential stretch in guinea-pig distal colon. J Physiol 2002; 545:629-48. [PMID: 12456839 PMCID: PMC2290691 DOI: 10.1113/jphysiol.2002.028647] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Simultaneous intracellular recordings were made from pairs of circular muscle (CM) cells, at the oral and anal ends of a segment of guinea-pig distal colon, to investigate the neuronal mechanisms underlying faecal pellet propulsion. When a minimum degree of circumferential stretch was applied to sheet preparations of colon, recordings from CM cells revealed either no ongoing junction potentials, or alternatively, small potentials usually < 5 mV in amplitude. Maintained circumferential stretch applied to these preparations evoked an ongoing discharge of excitatory junction potentials (EJPs) at the oral recording site (range: 1-25 mV), which lasted for up to 6 h. The onset of each large oral EJP was time-locked with the onset of an inhibitory junction potential (IJP) at an anal recording electrode, located 2 cm from the oral recording. Similar results were obtained in isolated intact tube preparations of colon, when recordings were made immediately oral and anal of an artificial faecal pellet. The amplitudes of many large (> 5 mV) oral EJPs were linearly related to the amplitudes of anal IJPs occurring 20 mm apart. In the absence of an L-type Ca(2+) channel blocker, action potentials occurred on each large oral EJP. Synchronized discharges of stretch-activated EJPs and IJPs were preserved following pretreatment with capsaicin (10 microM), were unaffected by nifedipine (1 microM) and did not require the mucosa or submucous plexus. EJPs and IJPs were abolished by hexamethonium (300 microM) or tetrodotoxin (1 microM), but persisted in the presence of pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 10 microM) or an NK(3) tachykinin receptor antagonist (Neurokinin A 4-10; 100 nM to 5 microM). In summary, maintained circumferential stretch of the distal colon activates a population of intrinsic mechanosensory neurons that generate repetitive firing of ascending excitatory and descending inhibitory pathways to CM. These mechanosensory neurons, which may be interneurons, are stretch sensitive, rather than muscle tension sensitive, since they are resistant to muscular paralysis. We suggest the synchrony in onset of oral EJPs and anal IJPs over large regions of colon is due to synchronous synaptic activation of ascending and descending interneurons.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
23
|
Pasula R, Weaver T, Martinez MA, Martin WJ. Morphologic detection and functional assessment of reconstituted normal alveolar macrophages in the lungs of SCID mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4504-10. [PMID: 12370387 DOI: 10.4049/jimmunol.169.8.4504] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alveolar macrophages (AMs) from immunocompetent animals were isolated from bronchoalveolar lavage and labeled with the fluorescent marker 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). These AMs were administered intratracheally into mechanically ventilated SCID mice. From 1 to 28 days later, the recipient mice underwent bronchoalveolar lavage to isolate their AMs. To determine whether reconstituted AMs were still immunocompetent, the recovered AMs were assayed for their ability to phagocytose fluorescein-labeled zymosan-coated beads. After incubation with the beads, samples were assayed using a fluorescent-activated cell sorter to identify DiI-labeled reconstituted AMs, unlabeled resident AMs, and the proportion of these two groups undergoing phagocytosis. DiI-labeled AMs accounted for approximately 50% of all returned AMs. Additionally, the reconstituted AMs from normal BALB/c mice retained phagocytic activity compared with AMs from immunodeficient SCID mice. Reconstituted AMs demonstrated enhanced phagocytic activity compared with resident SCID AMs for up to 28 days following reconstitution. These results indicate that immunocompetent AMs can be successfully reconstituted into an immunodeficient host to partially restore alveolar host defense.
Collapse
Affiliation(s)
- Rajamouli Pasula
- Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
24
|
Bayer S, Crenner F, Aunis D, Angel F. Effects of GABA on circular smooth muscle spontaneous activities of rat distal colon. Life Sci 2002; 71:911-25. [PMID: 12084388 DOI: 10.1016/s0024-3205(02)01771-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GABAergic regulation of intestinal motility through the modulation of non-adrenergic non-cholinergic (NANC) neurons remains poorly understood especially in rat colon where very few studies have been undertaken. Therefore, the effects of GABA on circular preparations of rat distal colon were investigated using classical organ bath chambers to record spontaneous mechanical activities (SMA). SMA was characterized by the occurrence of rhythmic phasic contractions (type-I) or by spontaneously occurring large contractions superimposed on small rhythmic contractions (type-II). In the presence of atropine and guanethidine (NANC conditions), these large contractions were inhibited by bicuculline, a GABA(A)-receptor antagonist as well as by TTX, L-NAME and apamin together, or L 732-138, a NK1-receptor antagonist. In NANC conditions, GABA induced a transient monophasic relaxation or a biphasic effect characterized by a relaxation followed by a tonic contraction in both type-I and -II preparations. Both the inhibitory and excitatory effects of GABA were blocked by TTX and L-NAME + apamin; the GABA-induced contraction was also sensitive to L 732-138. The responses to GABA were mimicked by the GABA(A)-receptor agonist, muscimol, whereas baclofen and CACA, respectively GABA(B) and GABA(C)-receptors agonists showed no effect. These results demonstrated that only GABA(A)-receptors seem to be involved in the regulation of SMA in rat distal colon in NANC conditions. Release of NANC inhibitory transmitter (NO and probably ATP) and NANC excitatory transmitter (maybe substance P) might be involved.
Collapse
Affiliation(s)
- S Bayer
- INSERM Unité 338. Groupe de Neurogastroentérologie. Pavillon Poincaré. Hôpital Civil. 67000 Strasbourg, France
| | | | | | | |
Collapse
|
25
|
Pfannkuche H, Reiche D, Hoppe S, Schemann M. Cholinergic and noncholinergic innervation of the smooth muscle layers in the bovine abomasum. THE ANATOMICAL RECORD 2002; 267:70-7. [PMID: 11984794 DOI: 10.1002/ar.10087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The intrinsic innervation of muscle layers in the mammalian gastrointestinal tract has been mainly studied in nonruminants. The aim of this study was to identify intrinsic motor neurones in the bovine abomasum that innervate the circular and longitudinal muscles. Circular (CMN) and longitudinal muscle motor neurones (LMN) were selectively labeled by application of the retrograde tracer 1,1'-didodecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (DiI) onto the muscle layers. The transmitter phenotype was determined by immunohistochemical detection of choline acetyltransferase (ChAT), nitric oxide synthase (NOS), and neurone-specific enolase (NSE). On average, the myenteric ganglia contained 61 +/- 19 NSE-positive cell bodies, of which 89% were ChAT-positive and 10% were NOS-positive. Only 0.7% of NSE-positive neurones (41 of 5,777) contained both ChAT and NOS. Application of DiI onto the circular and longitudinal muscles revealed on average 60 +/- 27 (n = 4) and 68 +/- 36 (n = 4), respectively, labeled cell bodies in the myenteric plexus. For the circular and longitudinal muscles the proportions of ascending to descending neurones were 76 : 24% and 54 : 46%, respectively. While most ascending CMN were ChAT-positive (96%), 51% of the descending CMN were ChAT-negative. All ascending and 95% of descending LMN were ChAT-positive. It was concluded that cholinergic excitatory innervation is predominant in both muscle layers of the abomasum. Whereas the circular muscle receives cholinergic excitatory and nitrergic inhibitory innervation, the longitudinal muscle is only innervated by cholinergic pathways. This innervation pattern is different from that in gastric muscle layers in monogastric animals.
Collapse
Affiliation(s)
- Helga Pfannkuche
- Veterinär-Physiologisches Institut, Veterinärmedizinische Fakultät, Universität Leipzig, Leipzig, Germany.
| | | | | | | |
Collapse
|