1
|
Diao H, Wu J. Extreme precipitation reduces the recent photosynthetic carbon isotope signal detected in ecosystem respiration in an old-growth temperate forest. TREE PHYSIOLOGY 2024; 44:tpae118. [PMID: 39246247 PMCID: PMC11469762 DOI: 10.1093/treephys/tpae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
The successful utilization of stable carbon isotope approaches in investigating forest carbon dynamics has relied on the assumption that the carbon isotope compositions (δ13C) therein have detectable temporal variations. However, interpreting the δ13C signal transfer can be challenging, given the complexities involved in disentangling the effect of a single environmental factor, the isotopic dilution effect from background CO2 and the lack of high-resolution δ13C measurements. In this study, we conducted continuous in situ monitoring of atmospheric CO2 (δ13Ca) across a canopy profile in an old-growth temperate forest in northeast China during the normal year 2020 and the wet year 2021. Both years exhibited similar temperature conditions in terms of both seasonal variations and annual averages. We tracked the natural carbon isotope composition from δ13Ca to photosynthate (δ13Cp) and to ecosystem respiration (δ13CReco). We observed significant differences in δ13Ca between the two years. Contrary to in 2020, in 2021 there was a δ13Ca valley in the middle of the growing season, attributed to surges in soil CO2 efflux induced by precipitation, while in 2020 values peaked during that period. Despite substantial and similar seasonal variations in canopy photosynthetic discrimination (Δ13Ccanopy) in the two years, the variability of δ13Cp in 2021 was significantly lower than in 2020, due to corresponding differences in δ13Ca. Furthermore, unlike in 2020, we found almost no changes in δ13CReco in 2021, which we ascribed to the imprint of the δ13Cp signal on above-ground respiration and, more importantly, to the contribution of stable δ13C signals from soil heterotrophic respired CO2. Our findings suggest that extreme precipitation can impede the detectability of recent photosynthetic δ13C signals in ecosystem respiration in forests, thus complicating the interpretation of above- and below-ground carbon linkage using δ13CReco. This study provides new insights for unravelling precipitation-related variations in forest carbon dynamics using stable isotope techniques.
Collapse
Affiliation(s)
- Haoyu Diao
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China
| | - Jiabing Wu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China
| |
Collapse
|
2
|
Environmental Effects on Carbon Isotope Discrimination from Assimilation to Respiration in a Coniferous and Broad-Leaved Mixed Forest of Northeast China. FORESTS 2020. [DOI: 10.3390/f11111156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon (C) isotope discrimination during photosynthetic CO2 assimilation has been extensively studied, but the whole process of fractionation from leaf to soil has been less well investigated. In the present study, we investigated the δ13C signature along the C transfer pathway from air to soil in a coniferous and broad-leaved mixed forest in northeast China and examined the relationship between δ13C of respiratory fluxes (leaf, trunk, soil, and the entire ecosystem) and environmental factors over a full growing season. This study found that the δ13C signal of CO2 from canopy air was strongly imprinted in the organic and respiratory pools throughout C transfer due to the effects of discrimination and isotopic mixing on C assimilation, allocation, and respiration processes. A significant difference in isotopic patterns was found between conifer and broadleaf species in terms of seasonal variations in leaf organic matter. This study also found that δ13C in trunk respiration, compared with that in leaf and soil respiration, was more sensitive to seasonal variations of environmental factors, especially soil temperature and soil moisture. Variation in the δ13C of ecosystem respiration was correlated with air temperature with no time lag and correlated with soil temperature and vapor pressure deficit with a lag time of 10 days, but this correlation was relatively weak, indicating a delayed linkage between above- and belowground processes. The isotopic linkage might be confounded by variations in atmospheric aerodynamic and soil diffusion conditions. These results will help with understanding species differences in isotopic patterns and promoting the incorporation of more influencing factors related to isotopic variation into process-based ecosystem models.
Collapse
|
3
|
Vincent-Barbaroux C, Berveiller D, Lelarge-Trouverie C, Maia R, Máguas C, Pereira J, Chaves MM, Damesin C. Carbon-use strategies in stem radial growth of two oak species, one Temperate deciduous and one Mediterranean evergreen: what can be inferred from seasonal variations in the δ13C of the current year ring? TREE PHYSIOLOGY 2019; 39:1329-1341. [PMID: 31100150 DOI: 10.1093/treephys/tpz043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Tree ring synthesis is a key process in wood production; however, little is known of the origin and fate of the carbon involved. We used natural 13C abundance to investigate the carbon-use process for the ring development in a temperate deciduous (Quercus petraea (Matt.) Liebl.) and a Mediterranean evergreen (Quercus ilex L.) oak. The sapwood carbon reserves, phloem sucrose contents, stem respired CO2 efflux and their respective carbon isotope compositions (δ13C) were recorded over 1 year, in the native area of each species. The seasonal δ13C variation of the current year ring was determined in the total ring throughout the seasons, as well as in slices from the fully mature ring after the growth season (intra-ring pattern). Although the budburst dates of the two oaks were similar, the growth of Quercus ilex began 50 days later. Both species exhibited growth cessation during the hot and dry summer but only Q. ilex resumed in the autumn. In the deciduous oak, xylem starch storage showed clear variations during the radial growth. The intra-ring δ13C variations of the two species exhibited similar ranges, but contrasting patterns, with an early increase for Q. petraea. Comparison between δ13C of starch and total ring suggested that Q. petraea (but not Q. ilex) builds its rings using reserves during the first month of growth. Shifts in ring and soluble sugars δ13C suggested an interspecific difference in either the phloem unloading or the use of fresh assimilate inside the ring. A decrease in ring δ13C for both oaks between the end of the radial growth and the winter is attributed to a lignification of ring cell walls after stem increment. This study highlighted the differences in carbon-use during ring growth for evergreen and deciduous oaks, as well as the benefits of exploring the process using natural 13C abundance.
Collapse
Affiliation(s)
- Cécile Vincent-Barbaroux
- Laboratoire Biologie des Ligneux et des Grandes Cultures, INRA, Université d'Orléans, USC, Orléans cedex 2, France
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Daniel Berveiller
- Laboratoire Ecologie Systématique et Evolution, UMR, Université Paris-Sud, CNRS, AgroparisTech, Orsay, France
| | - Caroline Lelarge-Trouverie
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment, Orsay, France
| | - Rodrigo Maia
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Cristina Máguas
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - João Pereira
- Centro de Estudos Florestais Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Manuela M Chaves
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Claire Damesin
- Laboratoire Ecologie Systématique et Evolution, UMR, Université Paris-Sud, CNRS, AgroparisTech, Orsay, France
| |
Collapse
|
4
|
Riveros-Iregui DA, Lorenzo TM, Liang LL, Hu J. Summer dry-down modulates the isotopic composition of soil CO2 production in snow-dominated landscapes. PLoS One 2018; 13:e0197471. [PMID: 29746589 PMCID: PMC5945025 DOI: 10.1371/journal.pone.0197471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/02/2018] [Indexed: 11/23/2022] Open
Abstract
In mountainous landscapes, soil moisture is highly dynamic due to the effects of topography and the temporal variability imposed by seasonal precipitation, including rainfall and snow. Soil moisture is known to affect ecosystem carbon exchange both aboveground and belowground, as well as the stable isotopic composition of exchanged CO2. In this study we used an extensive suite of measurements to examine the effects of seasonal changes in soil moisture on the isotopic composition of soil CO2 production at the landscape level. We show that the seasonal decline in soil moisture (i.e., summer dry-down) appeared to impose a trend in the δ13C of soil CO2 production (δP) with more negative δP early in the growing season when soils were wet, and more positive δP as the growing season progressed and soils dried out. This seemingly generalizable pattern for a snow-dominated watershed is likely to represent the variability of recently assimilated C, tracked through the plant-soil system and imprinted in the respired CO2. Thus, our observations suggest that, at least for mountainous environments, seasonal changes in δP are largely mediated by soil moisture and their spatial variability is partially organized by topography.
Collapse
Affiliation(s)
- Diego A. Riveros-Iregui
- Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Theresa M. Lorenzo
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Liyin L. Liang
- School of Science and Environmental Research Institute, University of Waikato, Hamilton, New Zealand
| | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
5
|
Tan ZH, Wu ZX, Hughes AC, Schaefer D, Zeng J, Lan GY, Yang C, Tao ZL, Chen BQ, Tian YH, Song L, Jatoi MT, Zhao JF, Yang LY. On the ratio of intercellular to ambient CO 2 (c i/c a) derived from ecosystem flux. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:2059-2071. [PMID: 28707041 DOI: 10.1007/s00484-017-1403-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/13/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
The ratio of intercellular to ambient CO2 concentrations (c i/c a) plays a key role in ecophysiology, micrometeorology, and global climatic change. However, systematic investigation on c i/c a variation and its determinants are rare. Here, the c i/c a was derived from measuring ecosystem fluxes in an even-aged monoculture of rubber trees (Hevea brasiliensis). We tested whether c i/c a is constant across environmental gradients and if not, which dominant factors control c i/c a variations. Evidence indicates that c i/c a is not a constant. The c i/c a exhibits a clear "V"-shaped diurnal pattern and varies across the environmental gradient. Water vapor pressure deficit (D) is the dominant factor controls over the c i/c a variations. c i/c a consistently decreases with increasing D. c i/c a decreases with square root of D as predicted by the optimal stomatal model. The D-driving single-variable model could simulate c i/c a as well as that of sophisticated model. Many variables function on longer timescales than a daily cycle, such as soil water content, could improve c i/c a model prediction ability. Ecosystem flux can be effectively used to calculate c i/c a and use it to better understand various natural cycles.
Collapse
Affiliation(s)
- Zheng-Hong Tan
- Ecology Program, Institute for Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhi-Xiang Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China.
| | - Alice C Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
| | - Douglas Schaefer
- Key Lab of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 666303, China
| | - Jiye Zeng
- National Institute for Environmental Studies, Tsukuba, 305-0053, Japan
| | - Guo-Yu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Chuang Yang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Zhong-Liang Tao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Bang-Qian Chen
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Yao-Hua Tian
- Yunnan Institute of Tropical Crops, Jinghong, 666100, China
| | - Liang Song
- Key Lab of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 666303, China
| | - Muhammad Tahir Jatoi
- Ecology Program, Institute for Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Jun-Fu Zhao
- Ecology Program, Institute for Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Lian-Yan Yang
- Ecology Program, Institute for Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| |
Collapse
|
6
|
Kim D, Oren R, Clark JS, Palmroth S, Oishi AC, McCarthy HR, Maier CA, Johnsen K. Dynamics of soil CO 2 efflux under varying atmospheric CO 2 concentrations reveal dominance of slow processes. GLOBAL CHANGE BIOLOGY 2017; 23:3501-3512. [PMID: 28380283 DOI: 10.1111/gcb.13713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/05/2017] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
We evaluated the effect on soil CO2 efflux (FCO2 ) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2 ) ranging 1.0-1.8 times ambient did not affect FCO2 . FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer than the 10 days observed for decrease of FCO2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of FCO2 following the initiation of eCO2 . The reduction of FCO2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and FCO2 -temperature sensitivity. These asymmetric responses pose a tractable challenge to process-based models attempting to isolate the effect of individual processes on FCO2 .
Collapse
Affiliation(s)
- Dohyoung Kim
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Ram Oren
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - James S Clark
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Sari Palmroth
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - A Christopher Oishi
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, Otto, NC, USA
| | - Heather R McCarthy
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Chris A Maier
- USDA Forest Service, Southern Research Station, Research Triangle Park, NC, USA
| | - Kurt Johnsen
- USDA Forest Service, Southern Research Station, Asheville, NC, USA
| |
Collapse
|
7
|
Xiong X, Zhou W, Cheng P, Wu S, Niu Z, Du H, Lu X, Fu Y, Burr GS. Δ 14CO 2 from dark respiration in plants and its impact on the estimation of atmospheric fossil fuel CO 2. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 169-170:79-84. [PMID: 28092812 DOI: 10.1016/j.jenvrad.2017.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 06/06/2023]
Abstract
Radiocarbon (14C) has been widely used for quantification of fossil fuel CO2 (CO2ff) in the atmosphere and for ecosystem source partitioning studies. The strength of the technique lies in the intrinsic differences between the 14C signature of fossil fuels and other sources. In past studies, the 14C content of CO2 derived from plants has been equated with the 14C content of the atmosphere. Carbon isotopic fractionation mechanisms vary among plants however, and experimental study on fractionation associated with dark respiration is lacking. Here we present accelerator mass spectrometry (AMS) radiocarbon results of CO2 respired from 21 plants using a lab-incubation method and associated bulk organic matter. From the respired CO2 we determine Δ14Cres values, and from the bulk organic matter we determine Δ14Cbom values. A significant difference between Δ14Cres and Δ14Cbom (P < 0.01) was observed for all investigated plants, ranging from -42.3‰ to 10.1‰. The results show that Δ14Cres values are in agreement with mean atmospheric Δ14CO2 for several days leading up to the sampling date, but are significantly different from corresponding bulk organic Δ14C values. We find that although dark respiration is unlikely to significantly influence the estimation of CO2ff, an additional bias associated with the respiration rate during a plant's growth period should be considered when using Δ14C in plants to quantify atmospheric CO2ff.
Collapse
Affiliation(s)
- Xiaohu Xiong
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijian Zhou
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China.
| | - Peng Cheng
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| | - Shugang Wu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| | - Zhenchuan Niu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| | - Hua Du
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| | - Xuefeng Lu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| | - Yunchong Fu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| | - George S Burr
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an AMS Center, Xi'an 710061, China
| |
Collapse
|
8
|
Liesche J, Windt C, Bohr T, Schulz A, Jensen KH. Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance. TREE PHYSIOLOGY 2015; 35:376-86. [PMID: 25787331 DOI: 10.1093/treephys/tpv020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/10/2015] [Indexed: 05/09/2023]
Abstract
In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Angiosperm and gymnosperm trees have a fundamentally different phloem anatomy with respect to cell size, shape and connectivity. Whether these differences have an effect on the physiology of carbohydrate transport, however, is not clear. A meta-analysis of the experimental data on phloem transport speed in trees yielded average speeds of 56 cm h(-1) for angiosperm trees and 22 cm h(-1) for gymnosperm trees. Similar values resulted from theoretical modeling using a simple transport resistance model. Analysis of the model parameters clearly identified sieve element (SE) anatomy as the main factor for the significantly slower carbohydrate transport speed inside the phloem in gymnosperm compared with angiosperm trees. In order to investigate the influence of SE anatomy on the hydraulic resistance, anatomical data on SEs and sieve pores were collected by transmission electron microscopy analysis and from the literature for 18 tree species. Calculations showed that the hydraulic resistance is significantly higher in the gymnosperm than in angiosperm trees. The higher resistance is only partially offset by the considerably longer SEs of gymnosperms.
Collapse
Affiliation(s)
- Johannes Liesche
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Carel Windt
- Forschungszentrum Jülich, IBG-2: Plant Sciences, 52428 Jülich, Germany
| | - Tomas Bohr
- Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Kaare H Jensen
- Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
9
|
Ghashghaie J, Badeck FW. Opposite carbon isotope discrimination during dark respiration in leaves versus roots - a review. THE NEW PHYTOLOGIST 2014; 201:751-769. [PMID: 24251924 DOI: 10.1111/nph.12563] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/15/2013] [Indexed: 05/13/2023]
Abstract
In general, leaves are (13) C-depleted compared with all other organs (e.g. roots, stem/trunk and fruits). Different hypotheses are formulated in the literature to explain this difference. One of these states that CO2 respired by leaves in the dark is (13) C-enriched compared with leaf organic matter, while it is (13) C-depleted in the case of root respiration. The opposite respiratory fractionation between leaves and roots was invoked as an explanation for the widespread between-organ isotopic differences. After summarizing the basics of photosynthetic and post-photosynthetic discrimination, we mainly review the recent findings on the isotopic composition of CO2 respired by leaves (autotrophic organs) and roots (heterotrophic organs) compared with respective plant material (i.e. apparent respiratory fractionation) as well as its metabolic origin. The potential impact of such fractionation on the isotopic signal of organic matter (OM) is discussed. Some perspectives for future studies are also proposed .
Collapse
Affiliation(s)
- Jaleh Ghashghaie
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS UMR8079, Bâtiment 362, Université de Paris-Sud (XI), F-91405, Orsay Cedex, France
| | - Franz W Badeck
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Genomics research centre (CRA - GPG), Via San Protaso, 302, 29017, Fiorenzuola d'Arda (PC), Italy
- Potsdam Institute for Climate Impact Research (PIK), PF 60 12 03, 14412, Potsdam, Germany
| |
Collapse
|
10
|
Mortazavi B, Conte MH, Chanton JP, Weber JC, Martin TA, Cropper WP. Variability in the carbon isotopic composition of foliage carbon pools (soluble carbohydrates, waxes) and respiration fluxes in southeastern U.S. pine forests. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jg001867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Way DA, Oren R, Kim HS, Katul GG. How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jg001808] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Measuring carbon gains from fungal networks in understory plants from the tribe Pyroleae (Ericaceae): a field manipulation and stable isotope approach. Oecologia 2011; 169:307-17. [PMID: 22108855 DOI: 10.1007/s00442-011-2198-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
Partial mycoheterotrophy, a newly discovered form of mixotrophy in plants, has been described in at least two major lineages of angiosperms, the orchids and ericaceous plants in the tribe Pyroleae. Partial mycoheterotrophy entails carbon gains both directly from photosynthesis and via symbiotic mycorrhizal fungi, but determining the degree of plant dependence on fungal carbon is challenging. The purpose of this study was to determine if two chlorophyllous species of Pyroleae, Chimaphila umbellata and Pyrola picta, were receiving carbon via mycorrhizal networks and, if so, if their proportional dependency on fungal carbon gains increased under reduced light conditions. This was accomplished by a field experiment that manipulated light and plants' access to mycorrhizal networks, and by using the stable carbon isotope composition (δ(13)C) of leaf soluble sugars as a marker for the level of mycoheterotrophy. Based on leaf soluble sugars δ(13)C values, we calculated a site-independent isotope enrichment factor as a measure of fungal contributions to plant C. We found that, under each treatment and over time, the two test species demonstrated different isotopic responses caused by their different intrinsic physiologies. Our data, along with previously published studies, suggest that Chimaphila umbellata is primarily an autotrophic understory plant, while Pyrola picta may be capable of partial mycoheterotrophy. However, in this study, a 50% decrease in light availability did not significantly change the relative dependency of P. picta on carbon gains via mycoheterotrophy.
Collapse
|
13
|
Riveros-Iregui DA, Hu J, Burns SP, Bowling DR, Monson RK. An interannual assessment of the relationship between the stable carbon isotopic composition of ecosystem respiration and climate in a high-elevation subalpine forest. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jg001556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Prentice IC, Meng T, Wang H, Harrison SP, Ni J, Wang G. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. THE NEW PHYTOLOGIST 2011; 190:169-180. [PMID: 21182527 DOI: 10.1111/j.1469-8137.2010.03579.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The leaf carbon isotope ratio (δ(13) C) of C3 plants is inversely related to the drawdown of CO2 concentration during photosynthesis, which increases towards drier environments. We aimed to discriminate between the hypothesis of universal scaling, which predicts between-species responses of δ(13) C to aridity similar to within-species responses, and biotic homoeostasis, which predicts offsets in the δ(13) C of species occupying adjacent ranges. The Northeast China Transect spans 130-900 mm annual precipitation within a narrow latitude and temperature range. Leaves of 171 species were sampled at 33 sites along the transect (18 at ≥ 5 sites) for dry matter, carbon (C) and nitrogen (N) content, specific leaf area (SLA) and δ(13) C. The δ(13) C of species generally followed a common relationship with the climatic moisture index (MI). Offsets between adjacent species were not observed. Trees and forbs diverged slightly at high MI. In C3 plants, δ(13) C predicted N per unit leaf area (Narea) better than MI. The δ(13) C of C4 plants was invariant with MI. SLA declined and Narea increased towards low MI in both C3 and C4 plants. The data are consistent with optimal stomatal regulation with respect to atmospheric dryness. They provide evidence for universal scaling of CO2 drawdown with aridity in C3 plants.
Collapse
Affiliation(s)
- I Colin Prentice
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Grantham Institute and Division of Biology, Imperial College, Silwood Park, Ascot SL5 7PY, UK
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, 100093 Beijing, China
| | - Tingting Meng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, 100093 Beijing, China
| | - Han Wang
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, 100093 Beijing, China
| | - Sandy P Harrison
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, 100093 Beijing, China
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
| | - Jian Ni
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, 100093 Beijing, China
- Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, D-14473 Potsdam, Germany
| | - Guohong Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, 100093 Beijing, China
| |
Collapse
|
15
|
Ubierna N, Marshall JD. Vertical and seasonal variation in the δ¹³C of leaf-respired CO₂ in a mixed conifer forest. TREE PHYSIOLOGY 2011; 31:414-427. [PMID: 21551356 DOI: 10.1093/treephys/tpr026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The C-isotopic composition (δ¹³C) of leaf respiration (δ(LR)) has previously been shown to vary among functional groups, plant organs and times of day. We here investigated vertical and seasonal variation in δ(LR) through deep (~35 m) forest canopies. We measured δ(LR), δ¹³C of leaf bulk organic matter (δ(LB)), specific leaf area, net photosynthesis (A) and dark respiration in shade, middle and sun foliage in four conifer species from May to August. We used Keeling plots to estimate δ(LR); we developed a novel technique for ensuring that the respiratory substrate was not changing over the course of the measurement. Variables δ(LR) and δ(LB) displayed a vertical pattern in Abies grandis, Pseudotsuga menziesii and Thuja plicata, but were independent of canopy position in Larix occidentalis. Vertical gradients in δ(LB) (3.6‰) and δ(LR) (2.8‰) were similar. The respiratory enrichment (δ(LR)-δ(LB)) was smaller in expanding (3‰) than mature (4-8‰) foliage. There was a linear relationship between the respiratory enrichment and A. Our data support the hypothesis that δ(LR) values are related to patterns of C allocation among metabolic pathways. We demonstrated that considerable variation in δ(LR) occurs vertically through the canopy (3‰ gradient) and seasonally (3-7‰). Understanding sources of variation in respiratory signals is fundamental to comprehending C dynamics and for global model applications.
Collapse
Affiliation(s)
- Nerea Ubierna
- Department of Forest Resources, University of Idaho, PO Box 441133, Moscow, ID 83844-1133, USA.
| | | |
Collapse
|
16
|
Powers EM, Marshall JD. Pulse labeling of dissolved (13) C-carbonate into tree xylem: developing a new method to determine the fate of recently fixed photosynthate. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:33-40. [PMID: 21154652 DOI: 10.1002/rcm.4829] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Stable carbon isotopes are often employed as tracers in plant and soil systems to study the fate and transformations of carbon as is it assimilated by the forest canopies and then translocated into the soil matrix and soil microorganisms. This experiment tested a new method of (13) C-labeling. We dissolved (13) C-carbonate into 12 mL of water and injected it into the xylem of a 6-cm diameter tree. The isotopic composition of foliage, stem CO(2) , and phloem contents were measured before the experiment and up to two weeks after the pulse label. Isotopic enrichments of 6.1‰ and 7.7‰ were observed in stem CO(2) and phloem contents, respectively. No enrichment in bulk foliage was observed. The pulse came through the phloem five days after the label was injected, consistent with expectations based on transport rates through the tree. The application of this xylem pulse-labeling method may provide new insights into labile carbon sequestration in trees, perhaps even in much larger trees. Furthermore, the method could be applied under experimental treatments that would elucidate the mechanisms controlling the fate and transformation of recently fixed photosynthate in forests.
Collapse
Affiliation(s)
- Elizabeth M Powers
- Idaho Stable Isotopes Laboratory, University of Idaho, College of Natural Resources, Moscow, ID 83844, USA.
| | | |
Collapse
|
17
|
Wingate L, Ogée J, Burlett R, Bosc A, Devaux M, Grace J, Loustau D, Gessler A. Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration. THE NEW PHYTOLOGIST 2010; 188:576-89. [PMID: 20663061 DOI: 10.1111/j.1469-8137.2010.03384.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• Photosynthetic carbon (C) isotope discrimination (Δ(Α)) labels photosynthates (δ(A) ) and atmospheric CO(2) (δ(a)) with variable C isotope compositions during fluctuating environmental conditions. In this context, the C isotope composition of respired CO(2) within ecosystems is often hypothesized to vary temporally with Δ(Α). • We investigated the relationship between Δ(Α) and the C isotope signals from stem (δ(W)), soil (δ(S)) and ecosystem (δ(E)) respired CO(2) to environmental fluctuations, using novel tuneable diode laser absorption spectrometer instrumentation in a mature maritime pine forest. • Broad seasonal changes in Δ(Α) were reflected in δ(W,) δ(S) and δ(E). However, respired CO(2) signals had smaller short-term variations than Δ(A) and were offset and delayed by 2-10 d, indicating fractionation and isotopic mixing in a large C pool. Variations in δ(S) did not follow Δ(A) at all times, especially during rainy periods and when there is a strong demand for C allocation above ground. • It is likely that future isotope-enabled vegetation models will need to develop transfer functions that can account for these phenomena in order to interpret and predict the isotopic impact of biosphere gas exchange on the C isotope composition of atmospheric CO(2).
Collapse
Affiliation(s)
- Lisa Wingate
- School of GeoSciences, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tcherkez G, Schäufele R, Nogués S, Piel C, Boom A, Lanigan G, Barbaroux C, Mata C, Elhani S, Hemming D, Maguas C, Yakir D, Badeck FW, Griffiths H, Schnyder H, Ghashghaie J. On the 13C/12C isotopic signal of day and night respiration at the mesocosm level. PLANT, CELL & ENVIRONMENT 2010; 33:900-913. [PMID: 20082670 DOI: 10.1111/j.1365-3040.2010.02115.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
While there is currently intense effort to examine the (13)C signal of CO(2) evolved in the dark, less is known on the isotope composition of day-respired CO(2). This lack of knowledge stems from technical difficulties to measure the pure respiratory isotopic signal: day respiration is mixed up with photorespiration, and there is no obvious way to separate photosynthetic fractionation (pure c(i)/c(a) effect) from respiratory effect (production of CO(2) with a different delta(13)C value from that of net-fixed CO(2)) at the ecosystem level. Here, we took advantage of new simple equations, and applied them to sunflower canopies grown under low and high [CO(2)]. We show that whole mesocosm-respired CO(2) is slightly (13)C depleted in the light at the mesocosm level (by 0.2-0.8 per thousand), while it is slightly (13)C enriched in darkness (by 1.5-3.2 per thousand). The turnover of the respiratory carbon pool after labelling appears similar in the light and in the dark, and accordingly, a hierarchical clustering analysis shows a close correlation between the (13)C abundance in day- and night-evolved CO(2). We conclude that the carbon source for respiration is similar in the dark and in the light, but the metabolic pathways associated with CO(2) production may change, thereby explaining the different (12)C/(13)C respiratory fractionations in the light and in the dark.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Ecologie Systématique Evolution, Bâtiment 362, Université Paris-Sud 11, 91405 Orsay cedex, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Unger S, Máguas C, Pereira JS, Aires LM, David TS, Werner C. Disentangling drought-induced variation in ecosystem and soil respiration using stable carbon isotopes. Oecologia 2010; 163:1043-57. [PMID: 20217141 DOI: 10.1007/s00442-010-1576-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
Combining C flux measurements with information on their isotopic composition can yield a process-based understanding of ecosystem C dynamics. We studied the variations in both respiratory fluxes and their stable C isotopic compositions (delta(13)C) for all major components (trees, understory, roots and soil microorganisms) in a Mediterranean oak savannah during a period with increasing drought. We found large drought-induced and diurnal dynamics in isotopic compositions of soil, root and foliage respiration (delta(13)C(res)). Soil respiration was the largest contributor to ecosystem respiration (R (eco)), exhibiting a depleted isotopic signature and no marked variations with increasing drought, similar to ecosystem respired delta(13)CO(2), providing evidence for a stable C-source and minor influence of recent photosynthate from plants. Short-term and diurnal variations in delta(13)C(res) of foliage and roots (up to 8 and 4 per thousand, respectively) were in agreement with: (1) recent hypotheses on post-photosynthetic fractionation processes, (2) substrate changes with decreasing assimilation rates in combination with increased respiratory demand, and (3) decreased phosphoenolpyruvate carboxylase activity in drying roots, while altered photosynthetic discrimination was not responsible for the observed changes in delta(13)C(res). We applied a flux-based and an isotopic flux-based mass balance, yielding good agreement at the soil scale, while the isotopic mass balance at the ecosystem scale was not conserved. This was mainly caused by uncertainties in Keeling plot intercepts at the ecosystem scale due to small CO(2) gradients and large differences in delta(13)C(res) of the different component fluxes. Overall, stable isotopes provided valuable new insights into the drought-related variations of ecosystem C dynamics, encouraging future studies but also highlighting the need of improved methodology to disentangle short-term dynamics of isotopic composition of R (eco).
Collapse
Affiliation(s)
- Stephan Unger
- Department of Experimental and Systems Ecology, University of Bielefeld, Universitätsstrasse 25 W4-114, 33615 Bielefeld, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Mencuccini M, Hölttä T. The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked. THE NEW PHYTOLOGIST 2010; 185:189-203. [PMID: 19825019 DOI: 10.1111/j.1469-8137.2009.03050.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ecosystem respiration is known to vary following changes in canopy photosynthesis. However, the timing of this coupling is not well understood. Here, we summarize the literature on soil and ecosystem respiration where the speed of transfer of photosynthetic sugars from the plant canopy via the phloem to the roots was determined. Estimates of the transfer speed can be grouped according to whether the study employed isotopic or canopy/soil flux-based techniques. These two groups should provide different estimates of transfer times because transport of sucrose molecules, and pressure-concentration waves, in phloem differ. A steady-state and a dynamic photosynthesis/phloem-transport/soil gas diffusion model were employed to interpret our results. Starch storage and partly soil gas diffusion affected transfer times, but phloem path-length strongly controlled molecule transfer times. Successful modelling required substantially different phloem properties (higher specific conductivity and turgor pressure difference) in tall compared with small plants, which is significant for our understanding of tall trees' physiology. Finally, we compared isotopic and flux-based approaches for the determination of the link between canopy photosynthesis and ecosystem respiration. We conclude that isotopic approaches are not well suited to document whether changes in photosynthesis of tall trees can rapidly affect soil respiration.
Collapse
Affiliation(s)
- Maurizio Mencuccini
- University of Edinburgh, School of GeoSciences, Crew Building, West Mains Road, EH9 3JN Edinburgh, UK.
| | | |
Collapse
|
21
|
Mortazavi B, Conte MH, Chanton JP, Smith MC, Weber JC, Crumsey J, Ghashghaie J. Does the (13)C of foliage-respired CO(2) and biochemical pools reflect the (13)C of recently assimilated carbon? PLANT, CELL & ENVIRONMENT 2009; 32:1310-1323. [PMID: 19453481 DOI: 10.1111/j.1365-3040.2009.01999.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Isotopic labelling experiments were conducted to assess relationships among (13)C of recently assimilated carbon (deltaC(A)), foliage respiration (deltaC(F)), soluble carbohydrate (deltaC(SC)), leaf waxes (deltaC(LW)) and bulk organic matter (deltaC(OM)). Slash pine, sweetgum and maize were grown under (13)C depleted CO(2) to label biomass and then placed under ambient conditions to monitor the loss of label. In pine and sweetgum, deltaC(F) of labelled plants (approximately -44 and -35 per thousand, respectively) rapidly approached control values but remained depleted by approximately 4-6 per thousand after 3-4 months. For these tree species, no or minimal label was lost from deltaC(SC), deltaC(LW) and deltaC(OM) during the observation periods. deltaC(F) and deltaC(SC) of labelled maize plants rapidly changed and were indistinguishable from controls after 1 month, while deltaC(LW) and deltaC(OM) more slowly approached control values and remained depleted by 2-6 per thousand. Changes in deltaC(F) in slash pine and sweetgum fit a two-pool exponential model, with the fast turnover metabolic pool (approximately 3-4 d half-life) constituting only 1-2% of the total. In maize, change in deltaC(F) fits a single pool model with a half-life of 6.4 d. The (13)C of foliage respiration and biochemical pools reflect temporally integrated values of deltaC(A), with change in isotopic composition dampened by the size of metabolic carbon reserves and turnover rates.
Collapse
Affiliation(s)
- Behzad Mortazavi
- Florida State University, Department of Oceanography, Tallahassee, FL 32306, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Katul GG, Palmroth S, Oren R. Leaf stomatal responses to vapour pressure deficit under current and CO(2)-enriched atmosphere explained by the economics of gas exchange. PLANT, CELL & ENVIRONMENT 2009; 32:968-79. [PMID: 19389053 DOI: 10.1111/j.1365-3040.2009.01977.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Using the economics of gas exchange, early studies derived an expression of stomatal conductance (g) assuming that water cost per unit carbon is constant as the daily loss of water in transpiration (f(e)) is minimized for a given gain in photosynthesis (f(c)). Other studies reached identical results, yet assumed different forms for the underlying functions and defined the daily cost parameter as carbon cost per unit water. We demonstrated that the solution can be recovered when optimization is formulated at time scales commensurate with the response time of g to environmental stimuli. The optimization theory produced three emergent gas exchange responses that are consistent with observed behaviour: (1) the sensitivity of g to vapour pressure deficit (D) is similar to that obtained from a previous synthesis of more than 40 species showing g to scale as 1 - m log(D), where m is in [0.5,0.6], (2) the theory is consistent with the onset of an apparent 'feed-forward' mechanism in g, and (3) the emergent non-linear relationship between the ratio of intercellular to atmospheric [CO(2)] (c(i)/c(a)) and D agrees with the results available on this response. We extended the theory to diagnosing experimental results on the sensitivity of g to D under varying c(a).
Collapse
Affiliation(s)
- Gabriel G Katul
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA.
| | | | | |
Collapse
|
23
|
Bahn M, Schmitt M, Siegwolf R, Richter A, Brüggemann N. Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? THE NEW PHYTOLOGIST 2009; 182:451-460. [PMID: 19220762 PMCID: PMC2950940 DOI: 10.1111/j.1469-8137.2008.02755.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soil respiration is the largest flux of carbon (C) from terrestrial ecosystems to the atmosphere. Here, we tested the hypothesis that photosynthesis affects the diurnal pattern of grassland soil-respired CO(2) and its C isotope composition (delta(13)C(SR)). A combined shading and pulse-labelling experiment was carried out in a mountain grassland. delta(13)C(SR) was monitored at a high time resolution with a tunable diode laser absorption spectrometer. In unlabelled plots a diurnal pattern of delta(13)C(SR) was observed, which was not explained by soil temperature, moisture or flux rates and contained a component that was also independent of assimilate supply. In labelled plots delta(13)C(SR) reflected a rapid transfer and respiratory use of freshly plant-assimilated C and a diurnal shift in the predominant respiratory C source from recent (i.e. at least 1 d old) to fresh (i.e. photoassimilates produced on the same day). We conclude that in grasslands the plant-derived substrates used for soil respiratory processes vary during the day, and that photosynthesis provides an important and immediate C source. These findings indicate a tight coupling in the plant-soil system and the importance of plant metabolism for soil CO(2) fluxes.
Collapse
Affiliation(s)
- Michael Bahn
- Institute of Ecology, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, Austria
| | - Michael Schmitt
- Institute of Ecology, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, Austria
| | - Rolf Siegwolf
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Andreas Richter
- Department of Chemical Ecology & Ecosystem Research, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Nicolas Brüggemann
- Institute of Meteorology & Climate Research, Atmospheric Environmental Research Division (IMK-IFU), Forschungszentrum Karlsruhe, Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| |
Collapse
|
24
|
Drake JE, Stoy PC, Jackson RB, DeLucia EH. Fine-root respiration in a loblolly pine (Pinus taeda L.) forest exposed to elevated CO2 and N fertilization. PLANT, CELL & ENVIRONMENT 2008; 31:1663-1672. [PMID: 18684240 DOI: 10.1111/j.1365-3040.2008.01869.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Forest ecosystems release large amounts of carbon to the atmosphere from fine-root respiration (R(r)), but the control of this flux and its temperature sensitivity (Q(10)) are poorly understood. We attempted to: (1) identify the factors limiting this flux using additions of glucose and an electron transport uncoupler (carbonyl cyanide m-chlorophenylhydrazone); and (2) improve yearly estimates of R(r) by directly measuring its Q(10)in situ using temperature-controlled cuvettes buried around intact, attached roots. The proximal limits of R(r) of loblolly pine (Pinus taeda L.) trees exposed to free-air CO(2) enrichment (FACE) and N fertilization were seasonally variable; enzyme capacity limited R(r) in the winter, and a combination of substrate supply and adenylate availability limited R(r) in summer months. The limiting factors of R(r) were not affected by elevated CO(2) or N fertilization. Elevated CO(2 )increased annual stand-level R(r) by 34% whereas the combination of elevated CO(2) and N fertilization reduced R(r) by 40%. Measurements of in situ R(r) with high temporal resolution detected diel patterns that were correlated with canopy photosynthesis with a lag of 1 d or less as measured by eddy covariance, indicating a dynamic link between canopy photosynthesis and root respiration. These results suggest that R(r) is coupled to daily canopy photosynthesis and increases with carbon allocation below ground.
Collapse
Affiliation(s)
- John E Drake
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana - Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
25
|
Pypker TG, Hauck M, Sulzman EW, Unsworth MH, Mix AC, Kayler Z, Conklin D, Kennedy AM, Barnard HR, Phillips C, Bond BJ. Toward using delta13C of ecosystem respiration to monitor canopy physiology in complex terrain. Oecologia 2008; 158:399-410. [PMID: 18839214 DOI: 10.1007/s00442-008-1154-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 09/08/2008] [Indexed: 11/30/2022]
Abstract
In 2005 and 2006, air samples were collected at the base of a Douglas-fir watershed to monitor seasonal changes in the delta13CO2 of ecosystem respiration (delta13C(ER)). The goals of this study were to determine whether variations in delta13C(ER) correlated with environmental variables and could be used to predict expected variations in canopy-average stomatal conductance (Gs). Changes in delta13C(ER) correlated weakly with changes in vapor pressure deficit (VPD) measured 0 and 3-7 days earlier and significantly with soil matric potential (psi(m)) (P value <0.02) measured on the same day. Midday G (s) was estimated using sapflow measurements (heat-dissipation method) at four plots located at different elevations within the watershed. Values of midday Gs from 0 and 3-7 days earlier were correlated with delta13C(ER), with the 5-day lag being significant (P value <0.05). To examine direct relationships between delta13C(ER) and recent Gs, we used models relating isotope discrimination to stomatal conductance and photosynthetic capacity at the leaf level to estimate values of stomatal conductance ("Gs-I") that would be expected if respired CO2 were derived entirely from recent photosynthate. We compared these values with estimates of Gs using direct measurement of transpiration at multiple locations in the watershed. Considering that the approach based on isotopes considers only the effect of photosynthetic discrimination on delta13C(ER), the magnitude and range in the two values were surprisingly similar. We conclude that: (1) delta13C(ER) is sensitive to variations in weather, and (2) delta13C(ER) potentially could be used to directly monitor average, basin-wide variations in Gs in complex terrain if further research improves understanding of how delta13C(ER) is influenced by post-assimilation fractionation processes.
Collapse
Affiliation(s)
- T G Pypker
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kodama N, Barnard RL, Salmon Y, Weston C, Ferrio JP, Holst J, Werner RA, Saurer M, Rennenberg H, Buchmann N, Gessler A. Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: from newly assimilated organic carbon to respired carbon dioxide. Oecologia 2008; 156:737-50. [DOI: 10.1007/s00442-008-1030-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 03/14/2008] [Indexed: 11/25/2022]
|
27
|
Bowling DR, Pataki DE, Randerson JT. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. THE NEW PHYTOLOGIST 2008; 178:24-40. [PMID: 18179603 DOI: 10.1111/j.1469-8137.2007.02342.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Stable carbon isotopes are used extensively to examine physiological, ecological, and biogeochemical processes related to ecosystem, regional, and global carbon cycles and provide information at a variety of temporal and spatial scales. Much is known about the processes that regulate the carbon isotopic composition (delta(13)C) of leaf, plant, and ecosystem carbon pools and of photosynthetic and respiratory carbon dioxide (CO(2)) fluxes. In this review, systematic patterns and mechanisms underlying variation in delta(13)C of plant and ecosystem carbon pools and fluxes are described. We examine the hypothesis that the delta(13)C of leaf biomass can be used as a reference point for other carbon pools and fluxes, which differ from the leaf in delta(13)C in a systematic fashion. Plant organs are typically enriched in (13)C relative to leaves, and most ecosystem pools and respiratory fluxes are enriched relative to sun leaves of dominant plants, with the notable exception of root respiration. Analysis of the chemical and isotopic composition of leaves and leaf respiration suggests that growth respiration has the potential to contribute substantially to the observed offset between the delta(13)C values of ecosystem respiration and the bulk leaf. We discuss the implications of systematic variations in delta(13)C of ecosystem pools and CO(2) fluxes for studies of carbon cycling within ecosystems, as well as for studies that use the delta(13)C of atmospheric CO(2) to diagnose changes in the terrestrial biosphere over annual to millennial time scales.
Collapse
Affiliation(s)
- David R Bowling
- Department of Biology, 257 South, 1400 East, University of Utah, Salt Lake City, UT 84112-0820, USA
| | - Diane E Pataki
- Department of Earth System Science and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
28
|
Cai M, Qiu D, Yuan T, Ding X, Li H, Duan L, Xu C, Li X, Wang S. Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. PLANT, CELL & ENVIRONMENT 2008; 31:435-53. [PMID: 17986178 DOI: 10.1111/j.1365-3040.2008.01773.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The WRKY transcription factor superfamily controls diverse developmental and physiological processes in plants. However, little is known about the factors that directly regulate the function of WRKY genes. In this study, we identified cis-acting elements and their binding proteins of rice OsWRKY13, a gene that plays a pivotal role in disease resistance against bacterial and fungal pathogens. Two novel pathogen-responsive cis-elements, PRE2 and PRE4, were characterized from the promoter region of OsWRKY13. The two cis-elements negatively regulate gene expression without pathogen challenge, and positively regulate gene expression after pathogen-induced protein binding. OsWRKY13 binds to PRE4, which harbours a novel W-like box. Another five proteins (Rad51-like; tubby-like; SWIM zinc finger and nucleotide-binding adaptor shared by APAF-1, certain R proteins and CED-4 (NB-ARC) domain containing proteins; and an unknown protein) also bind to one of the two cis-elements. Different proteins interacting with the same cis-element appear to have different DNA-binding core sequences. These proteins localize in the nucleus and show differential expression upon pathogen challenge. These results suggest that OsWRKY13 expression is regulated by multiple factors to achieve disease resistance.
Collapse
Affiliation(s)
- Meng Cai
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bathellier C, Badeck FW, Couzi P, Harscoët S, Mauve C, Ghashghaie J. Divergence in delta(13)C of dark respired CO(2) and bulk organic matter occurs during the transition between heterotrophy and autotrophy in Phaseolus vulgaris plants. THE NEW PHYTOLOGIST 2007; 177:406-418. [PMID: 17953651 DOI: 10.1111/j.1469-8137.2007.02246.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Substantial evidence has been published in recent years demonstrating that postphotosynthetic fractionations occur in plants, leading to (13)C-enrichment in heterotrophic (as compared with autotrophic) organs. However, less is known about the mechanism responsible for changes in these responses during plant development. The isotopic signature of both organic matter and respired CO(2) for different organs of French bean (Phaseolus vulgaris) was investigated during early ontogeny, in order to identify the developmental stage at which isotopic changes occur. Isotopic analyses of metabolites and mass balance calculations helped to constrain the metabolic processes involved. At the plant scale, apparent respiratory fractionation was constantly positive in the heterotrophic phase (c. 1 per thousand) and turned negative with autotrophy acquisition (down to -3.08 per thousand). Initially very close to that of the dry seed (-26.83 +/- 0.69 per thousand), isotopic signatures of organic matter and respired CO(2) diverged (in opposite directions) in leaves and roots after onset of photosynthesis. Respired CO(2) reached values up to -20 per thousand in leaves and became (13)C-depleted down to -29 per thousand in roots. It was concluded that isotopic differences between organs occurred subsequent to metabolic changes in the seedling during the transition from heterotrophy to autotrophy. They were especially related to respiration and respiratory fractionation.
Collapse
Affiliation(s)
- Camille Bathellier
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, F-91405 Orsay cedex, France
| | - Franz-W Badeck
- Potsdam Institute for Climate Impact Research (PIK), PO Box 601203, D-14412 Potsdam, Germany
| | - Philippe Couzi
- Institut National de Recherche Agronomique (INRA), UMR 1272, Physiologie de l'Insecte: Signalisation et Communication (PISC), Route de Saint Cyr, F-78026 Versailles cedex, France
| | - Sébastien Harscoët
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, F-91405 Orsay cedex, France
| | - Caroline Mauve
- Plateforme 'Métabolisme-Métabolome', IFR 87 Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, F-91405 Orsay cedex, France
| | - Jaleh Ghashghaie
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, F-91405 Orsay cedex, France
| |
Collapse
|
30
|
Stoy PC, Palmroth S, Oishi AC, Siqueira MBS, Juang JY, Novick KA, Ward EJ, Katul GG, Oren R. Are ecosystem carbon inputs and outputs coupled at short time scales? A case study from adjacent pine and hardwood forests using impulse-response analysis. PLANT, CELL & ENVIRONMENT 2007; 30:700-10. [PMID: 17470146 DOI: 10.1111/j.1365-3040.2007.01655.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A number of recent studies have attributed a large proportion of soil respiration (R(soil)) to recently photoassimilated carbon (C). Time lags (tau(PR)) associated with these pulses of photosynthesis and responses of R(soil) have been found on time scales of hours to weeks for different ecosystems, but most studies find evidence for tau(PR) on the order of 1-5 d. We showed that such time scales are commensurate with CO(2) diffusion time scales from the roots to the soil surface, and may thus be independent from photosynthetic pulses. To further quantify the role of physical (i.e. edaphic) and biological (i.e. vegetative) controls on such lags, we investigated tau(PR) at adjacent planted pine (PP) and hardwood (HW) forest ecosystems over six and four measurement years, respectively, using both autocorrelation analysis on automated soil surface flux measurements and their lagged cross-correlations with drivers for and surrogates of photosynthesis. Evidence for tau(PR) on the order of 1-3 d was identified in both ecosystems and using both analyses, but this lag could not be attributed to recently photoassimilated C because the same analysis yielded comparable lags at HW during leaf-off periods. Future efforts to model ecosystem C inputs and outputs in a pulse-response framework must combine measurements of transport in the physical and biological components of terrestrial ecosystems.
Collapse
Affiliation(s)
- Paul C Stoy
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Han GH, Yoshikoshi H, Nagai H, Yamada T, Ono K, Mano M, Miyata A. Isotopic disequilibrium between carbon assimilated and respired in a rice paddy as influenced by methanogenesis from CO2. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jg000219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Werner C, Hasenbein N, Maia R, Beyschlag W, Máguas C. Evaluating high time-resolved changes in carbon isotope ratio of respired CO2 by a rapid in-tube incubation technique. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:1352-60. [PMID: 17348086 DOI: 10.1002/rcm.2970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recent insights into fractionation during dark respiration and rapid dynamics in isotope signatures of leaf- and ecosystem-respired CO(2) indicate the need for new methods for high time-resolved measurements of the isotopic signature of respired CO(2) (delta(13)C(res)). We present a rapid and simple method to analyse delta(13)C(res) using an in-tube incubation technique and an autosampler for small septum-capped vials. The effect of storage on the delta(18)O and delta(13)C ratios of ambient CO(2) concentrations was tested with different humidity and temperatures. delta(13)C ratios remained stable over 72 h, whereas delta(18)O ratios decreased after 24 h. Storage at 4 degrees C improved the storage time for delta(18)O. Leaves or leaf discs were incubated in the vials, flushed with CO(2)-free air and respired CO(2) was automatically sampled within 5 min on a microGas autosampler interfaced to a GV-Isoprime isotope ratio mass spectrometer. Results were validated by simultaneous on-line gas-exchange measurements of delta(13)C(res) of attached leaves. This method was used to evaluate the short-term (5-60 min) and diurnal dynamics of delta(13)C(res) in an evergreen oak (Quercus ilex) and a herb (Tolpis barbata). An immediate depletion of 2-4 per thousand from the initial delta(13)C(res) value occurred during the first 30 min of darkening. Q. ilex exhibited further a substantial diurnal enrichment in delta(13)C(res) of 8 per thousand, followed by a progressive depletion during the night. In contrast, T. barbata did not exhibit a distinct diurnal pattern. This is in accordance with recent theory on fractionation in metabolic pathways and may be related to the different utilisation of the respiratory substrate in the fast-growing herb and the evergreen oak. These data indicate substantial and rapid dynamics (within minutes to hours) in delta(13)C(res), which differed between species and probably the growth status of the plant. The in-tube incubation method enables both high time-resolved analysis and extensive sampling across different organs, species and functional types.
Collapse
Affiliation(s)
- Christiane Werner
- Experimental and Systems Ecology, University of Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
33
|
Maunoury F, Berveiller D, Lelarge C, Pontailler JY, Vanbostal L, Damesin C. Seasonal, daily and diurnal variations in the stable carbon isotope composition of carbon dioxide respired by tree trunks in a deciduous oak forest. Oecologia 2006; 151:268-79. [PMID: 17115189 DOI: 10.1007/s00442-006-0592-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
The stable C isotope composition (delta13C) of CO2 respired by trunks was examined in a mature temperate deciduous oak forest (Quercus petraea). Month-to-month, day-to-day and diurnal, measurements were made to determine the range of variations at different temporal scales. Trunk growth and respiration rates were assessed. Phloem tissue was sampled and was analysed for total organic matter and soluble sugar 13C composition. The CO2 respired by trunk was always enriched in 13C relative to the total organic matter, sometimes by as much as 5 per thousand. The delta13C of respired CO2 exhibited a large seasonal variation (3.3 per thousand), with a relative maximum at the beginning of the growth period. The lowest values occurred in summer when the respiration rates were maximal. After the cessation of radial trunk growth, the respired CO2 delta13C values showed a progressive increase, which was linked to a parallel increase in soluble sugar content in the phloem tissue (R=0.95; P<0.01). At the same time, the respiration rates declined. This limited use of the substrate pool might allow the discrimination during respiration to be more strongly expressed. The late-season increase in CO2 delta13C might also be linked to a shift from recently assimilated C to reserves. At the seasonal scale, CO2 delta13C was negatively correlated with air temperature (R=-0.80; P<0.01). The diurnal variation sometimes reached 3 per thousand, but the range and the pattern depended on the period within the growing season. Contrary to expectations, diurnal variations were maximal in winter and spring when the leaves were missing or not totally functional. By contrast to the seasonal scale, these diurnal variations were not related to air temperature or sugar content. Our study shows that seasonal and diurnal variations of respired 13C exhibited a similar large range but were probably explained by different mechanisms.
Collapse
Affiliation(s)
- Florence Maunoury
- Laboratoire d'Ecologie, Systématique et Evolution (ESE), Université Paris XI, CNRS UMR 8079, Bâtiment 362, 91405, Orsay Cedex, France.
| | | | | | | | | | | |
Collapse
|
34
|
Tissue DT, Barbour MM, Hunt JE, Turnbull MH, Griffin KL, Walcroft AS, Whitehead D. Spatial and temporal scaling of intercellular CO2 concentration in a temperate rain forest dominated by Dacrydium cupressinum in New Zealand. PLANT, CELL & ENVIRONMENT 2006; 29:497-510. [PMID: 17080602 DOI: 10.1111/j.1365-3040.2005.01427.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Seven methods, including measurements of photosynthesis (A) and stomatal conductance (g(s)), carbon isotope discrimination, ecosystem CO2 and water vapour exchange using eddy covariance and the use of a multilayer canopy model and ecosystem Keeling plots, were employed to derive estimates of intercellular CO2 concentration (Ci) across a range of spatial and temporal scales in a low productivity rain forest ecosystem dominated by the conifer Dacrydium cupressinum Lamb. in New Zealand. Estimates of shoot and canopy Ci across temporal scales ranging from minutes to years were remarkably similar (range of 274-294 micromol mol(-1)). The gradual increase in shoot Ci with depth in the canopy was more likely attributable to decreases in A resulting from lower irradiance (Q) than to increases in g, due to changes in air saturation deficit (D). The lack of marked vertical gradients in A and g(s) at saturating Q through the canopy and the low seasonal variability in environmental conditions contributed to the efficacy of scaling Ci. However, the canopy Ci estimate calculated from the carbon isotope composition of respired ecosystem CO2 (delta13CR; 236 micromol mol(-1)) was much lower than other estimates of canopy Ci. Partitioning delta13CR into four components (soil, roots, litter and foliage) indicated root respiration as the dominant (> 50%) contributor to delta13CR. Variable time lags and differences in isotopic composition during photosynthesis and respiration make the direct estimation of canopy Ci from delta 13CR problematic.
Collapse
Affiliation(s)
- David T Tissue
- Department of Biology, Texas Tech University, Lubbock, TX 79409-3131, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Prater JL, Mortazavi B, Chanton JP. Diurnal variation of the delta 13C of pine needle respired CO2 evolved in darkness. PLANT, CELL & ENVIRONMENT 2006; 29:202-11. [PMID: 17080636 DOI: 10.1111/j.1365-3040.2005.01413.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The delta 13C of pine needle CO2 evolved in darkness (delta 13Cr) for slash pine trees (Pinus elliottii) was determined by placing recently collected pine needles in darkness and collecting respired CO2 over a short time period (<15 min). Delta 13Cr measurements were made over several 24 h periods to test the hypothesis that significant variation in delta 13Cr would be observed during a diurnal cycle. The delta 13Cr measurements from the 24 h time series trials showed a consistent midday 13C-enrichment (5-10 per thousand) relative to bulk biomass. The delta 13Cr values became more 13C-depleted at night and following shading, and approached bulk-biomass delta 13C values by dawn. The effect of night-time respired 13C-enriched CO2 on the delta 13C value of the remaining assimilate is shown to be minimal (13C depleted by 0.22 per thousand) under field conditions for P. elliottii needles.
Collapse
Affiliation(s)
- James L Prater
- Department of Oceanography, Florida State University, Tallahassee, Florida 32306-4320, USA.
| | | | | |
Collapse
|
36
|
Werner C, Unger S, Pereira JS, Maia R, David TS, Kurz-Besson C, David JS, Máguas C. Importance of short-term dynamics in carbon isotope ratios of ecosystem respiration (delta13C(R)) in a Mediterranean oak woodland and linkage to environmental factors. THE NEW PHYTOLOGIST 2006; 172:330-46. [PMID: 16995920 DOI: 10.1111/j.1469-8137.2006.01836.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Temporal dynamics in carbon isotope ratios of ecosystem respiration (delta13C(R)) were evaluated on hourly, daily and annual timescales in a Mediterranean woodland. Emphasis was given to the periods of transition from wet to dry season and vice versa, when the system turns from a net carbon sink to a source. The constancy of nocturnal delta13C(R) was tested. The relationship between delta13C(R) (determined through Keeling plots) and environmental factors was evaluated through time-lag analysis. Delta13C(R) exhibited high annual variation (> 7). During the transition periods, delta13C(R) correlated significantly with factors influencing photosynthetic discrimination, soil respiration, and whole-canopy conductance. Time-lags differed between below- and above-ground variables, and between seasons. A shift in regression parameters with environmental factors indicated seasonal differences in ecosystem responsiveness (e.g. temperature acclimation). Delta13C(R) exhibited substantial nocturnal enrichment (> 4) from dusk to dawn. These data indicate pronounced short-term dynamics in delta13C(R) at hourly to daily timescales and a modulated response to environmental drivers. Substantial short-term changes in nocturnal delta13C(R) may have important implications for the sampling protocols of nocturnal Keeling plots.
Collapse
Affiliation(s)
- Christiane Werner
- Exp. and Systems Ecology, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Juang JY, Katul GG, Siqueira MBS, Stoy PC, Palmroth S, McCarthy HR, Kim HS, Oren R. Modeling nighttime ecosystem respiration from measured CO2concentration and air temperature profiles using inverse methods. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd005976] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|