1
|
Jiang J, Liu Y, Qin J, Chen J, Wu J, Pizzi MP, Lazcano R, Yamashita K, Xu Z, Pei G, Cho KS, Chu Y, Sinjab A, Peng F, Yan X, Han G, Wang R, Dai E, Dai Y, Czerniak BA, Futreal A, Maitra A, Lazar A, Kadara H, Jazaeri AA, Cheng X, Ajani J, Gao J, Hu J, Wang L. METI: deep profiling of tumor ecosystems by integrating cell morphology and spatial transcriptomics. Nat Commun 2024; 15:7312. [PMID: 39181865 PMCID: PMC11344794 DOI: 10.1038/s41467-024-51708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Recent advances in spatial transcriptomics (ST) techniques provide valuable insights into cellular interactions within the tumor microenvironment (TME). However, most analytical tools lack consideration of histological features and rely on matched single-cell RNA sequencing data, limiting their effectiveness in TME studies. To address this, we introduce the Morphology-Enhanced Spatial Transcriptome Analysis Integrator (METI), an end-to-end framework that maps cancer cells and TME components, stratifies cell types and states, and analyzes cell co-localization. By integrating spatial transcriptomics, cell morphology, and curated gene signatures, METI enhances our understanding of the molecular landscape and cellular interactions within the tissue. We evaluate the performance of METI on ST data generated from various tumor tissues, including gastric, lung, and bladder cancers, as well as premalignant tissues. We also conduct a quantitative comparison of METI with existing clustering and cell deconvolution tools, demonstrating METI's robust and consistent performance.
Collapse
Affiliation(s)
- Jiahui Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiangjiang Qin
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingjing Wu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa P Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kohei Yamashita
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiyuan Xu
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyung Serk Cho
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yibo Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| | - Bogdan A Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Lazar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangdong Cheng
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jaffer Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Hu
- Department of Human Genetics, Emory School of Medicine, Atlanta, GA, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA.
| |
Collapse
|
2
|
Grimaldos Rodriguez C, Rimmer EF, Colleypriest B, Tosh D, Slack JMW, Jungwirth U. Ectopic expression of HNF4α in Het1A cells induces an invasive phenotype. Differentiation 2023; 134:1-10. [PMID: 37690144 DOI: 10.1016/j.diff.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Barrett's oesophagus (BO) is a pathological condition in which the squamous epithelium of the distal oesophagus is replaced by an intestinal-like columnar epithelium originating from the gastric cardia. Several somatic mutations contribute to the intestinal-like metaplasia. Once these have occurred in a single cell, it will be unable to expand further unless the altered cell can colonise the surrounding squamous epithelium of the oesophagus. The mechanisms by which this happens are still unknown. Here we have established an in vitro system for examining the competitive behaviour of two epithelia. We find that when an oesophageal epithelium model (Het1A cells) is confronted by an intestinal epithelium model (Caco-2 cells), the intestinal cells expand into the oesophageal domain. In this case the boundary involves overgrowth by the Caco-2 cells and the formation of isolated colonies. Two key transcription factors, normally involved in intestinal development, HNF4α and CDX2, are both expressed in BO. We examined the competitive ability of Het1A cells stably expressing HNF4α or CDX2 and placed in confrontation with unmodified Het1A cells. The key result is that stable expression of HNF4α, but not CDX2, increased the ability of the cells to migrate and push into the unmodified Het1A domain. In this situation the boundary between the cell types is a sharp one, as is normally seen in BO. The experiments were conducted using a variety of extracellular substrates, which all tended to increase the cell migration compared to uncoated plastic. These data provide evidence that HNF4α expression could have a potential role in the competitive spread of BO into the oesophagus as HNF4α increases the ability of cells to invade into the adjacent stratified squamous epithelium, thus enabling a single mutant cell eventually to generate a macroscopic patch of metaplasia.
Collapse
Affiliation(s)
| | - Ella F Rimmer
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Benjamin Colleypriest
- Department of Gastroenterology, Royal United Hospital Bath, Combe Park, Bath, BA1 3NG, UK
| | - David Tosh
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jonathan M W Slack
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Ute Jungwirth
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
3
|
Liu TC, Kalugin PN, Wilding JL, Bodmer WF. GMMchi: gene expression clustering using Gaussian mixture modeling. BMC Bioinformatics 2022; 23:457. [PMID: 36324085 PMCID: PMC9632092 DOI: 10.1186/s12859-022-05006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Cancer evolution consists of a stepwise acquisition of genetic and epigenetic changes, which alter the gene expression profiles of cells in a particular tissue and result in phenotypic alterations acted upon by natural selection. The recurrent appearance of specific genetic lesions across individual cancers and cancer types suggests the existence of certain "driver mutations," which likely make up the major contribution to tumors' selective advantages over surrounding normal tissue and as such are responsible for the most consequential aspects of the cancer cells' gene expression patterns and phenotypes. We hypothesize that such mutations are likely to cluster with specific dichotomous shifts in the expression of the genes they most closely control, and propose GMMchi, a Python package that leverages Gaussian Mixture Modeling to detect and characterize bimodal gene expression patterns across cancer samples, as a tool to analyze such correlations using 2 × 2 contingency table statistics. RESULTS Using well-defined simulated data, we were able to confirm the robust performance of GMMchi, reaching 85% accuracy with a sample size of n = 90. We were also able to demonstrate a few examples of the application of GMMchi with respect to its capacity to characterize background florescent signals in microarray data, filter out uninformative background probe sets, as well as uncover novel genetic interrelationships and tumor characteristics. Our approach to analysing gene expression analysis in cancers provides an additional lens to supplement traditional continuous-valued statistical analysis by maximizing the information that can be gathered from bulk gene expression data. CONCLUSIONS We confirm that GMMchi robustly and reliably extracts bimodal patterns from both colorectal cancer (CRC) cell line-derived microarray and tumor-derived RNA-Seq data and verify previously reported gene expression correlates of some well-characterized CRC phenotypes. AVAILABILITY The Python package GMMchi and our cell line microarray data used in this paper is available for downloading on GitHub at https://github.com/jeffliu6068/GMMchi .
Collapse
Affiliation(s)
- Ta-Chun Liu
- grid.4991.50000 0004 1936 8948Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - Peter N. Kalugin
- grid.4991.50000 0004 1936 8948Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA
| | - Jennifer L. Wilding
- grid.4991.50000 0004 1936 8948Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - Walter F. Bodmer
- grid.4991.50000 0004 1936 8948Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| |
Collapse
|
4
|
Chen X, Li Y, Paiboonrungruang C, Li Y, Peters H, Kist R, Xiong Z. PAX9 in Cancer Development. Int J Mol Sci 2022; 23:5589. [PMID: 35628401 PMCID: PMC9147292 DOI: 10.3390/ijms23105589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Paired box 9 (PAX9) is a transcription factor of the PAX family functioning as both a transcriptional activator and repressor. Its functional roles in the embryonic development of various tissues and organs have been well studied. However, its roles and molecular mechanisms in cancer development are largely unknown. Here, we review the current understanding of PAX9 expression, upstream regulation of PAX9, and PAX9 downstream events in cancer development. Promoter hypermethylation, promoter SNP, microRNA, and inhibition of upstream pathways (e.g., NOTCH) result in PAX9 silencing or downregulation, whereas gene amplification and an epigenetic axis upregulate PAX9 expression. PAX9 may contribute to carcinogenesis through dysregulation of its transcriptional targets and related molecular pathways. In summary, extensive studies on PAX9 in its cellular and tissue contexts are warranted in various cancers, in particular, HNSCC, ESCC, lung cancer, and cervical SCC.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Chorlada Paiboonrungruang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yong Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
- Department of Thoracic Surgery, National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli Road, Beijing 100021, China
| | - Heiko Peters
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
| | - Ralf Kist
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
- School of Dental Sciences, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Zhaohui Xiong
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| |
Collapse
|
5
|
Fang Y, Li W, Chen X. P63 Deficiency and CDX2 Overexpression Lead to Barrett's-Like Metaplasia in Mouse Esophageal Epithelium. Dig Dis Sci 2021; 66:4263-4273. [PMID: 33469811 PMCID: PMC8286978 DOI: 10.1007/s10620-020-06756-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The cellular origin and molecular mechanisms of Barrett's esophagus (BE) are still controversial. Trans-differentiation is a mechanism characterized by activation of the intestinal differentiation program and inactivation of the squamous differentiation program. AIMS Renal capsule grafting (RCG) was used to elucidate whether CDX2 overexpression on the basis of P63 deficiency in the esophageal epithelium may generate intestinal metaplasia. METHODS P63-/-;Villin-Cdx2 embryos were generated by crossing P63+/- mice with Villin-Cdx2 mice. E18.5 esophagus was xenografted in a renal capsule grafting (RCG) model. At 1, 2, or 4 weeks after RCG, the mouse esophagus was immunostained for a proliferation marker (BrdU), squamous transcription factors (SOX2, PAX9), squamous differentiation markers (CK5, CK4, and CK1), intestinal transcription factors (CDX1, HNF1α, HNF4α, GATA4, and GATA6), intestinal columnar epithelial cell markers (A33, CK8), goblet cell marker (MUC2, TFF3), Paneth cell markers (LYZ and SOX9), enteroendocrine cell marker (CHA), and Tuft cell marker (DCAMKL1). RESULTS The P63-/-;Villin-Cdx2 RCG esophagus was lined with proliferating PAS/AB+ cuboidal cells and formed an intestinal crypt-like structure. The goblet cell markers (TFF3 and MUC2) and intestinal transcription factors (CDX1, HNF1α, HNF4α, GATA4, and GATA6) were expressed although no typical morphology of goblet cells was observed. Other intestinal cell markers including enteroendocrine cell marker (CHA), Paneth cell markers (LYZ and Sox9), and intestinal secretory cell marker (UEA/WGA) were also expressed in the P63-/-;Villin-Cdx2 RCG esophagus. Squamous cell markers (PAX9 and SOX2) were also expressed, suggesting a transitional phenotype. CONCLUSION CDX2 overexpression on the basis of P63 deficiency in esophageal epithelial cells induces Barrett's-like metaplasia in vivo. Additional factors may be needed to drive this transitional phenotype into full-blown BE.
Collapse
Affiliation(s)
- Yu Fang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400045, China,Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707. USA
| | - Wenbo Li
- Department of Gastroenterology, 960 Hospital, Clinical Teaching Hospital of JinZhou Medical University, Jinan 250031, China,Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707. USA
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707. USA
| |
Collapse
|
6
|
Control of Cell Identity by the Nuclear Receptor HNF4 in Organ Pathophysiology. Cells 2020; 9:cells9102185. [PMID: 32998360 PMCID: PMC7600215 DOI: 10.3390/cells9102185] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor family whose expression and activities are restricted to a limited number of organs including the liver and gastrointestinal tract. In this review, we present robust evidence pointing to HNF4 as a master regulator of cellular differentiation during development and a safekeeper of acquired cell identity in adult organs. Importantly, we discuss that transient loss of HNF4 may represent a protective mechanism upon acute organ injury, while prolonged impairment of HNF4 activities could contribute to organ dysfunction. In this context, we describe in detail mechanisms involved in the pathophysiological control of cell identity by HNF4, including how HNF4 works as part of cell-specific TF networks and how its expression/activities are disrupted in injured organs.
Collapse
|
7
|
Correia ACP, Calpe S, Mostafavi N, Hoefnagel SJM, Sancho-Serra MDC, de Koning PS, Krishnadath KK. Detection of circulating BMP5 as a risk factor for Barrett's esophagus. Sci Rep 2020; 10:15579. [PMID: 32968094 PMCID: PMC7511298 DOI: 10.1038/s41598-020-70760-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Barrett's esophagus (BE) predisposes for the malignant condition of esophageal adenocarcinoma (EAC). Since BE patients have few or no symptoms, most of these patients are not identified and not included in surveillance programs. These BE patients are at risk of developing advanced-stage EAC. At present, non-invasive tests to identify BE patients from the general population are lacking. We and others showed that Bone Morphogenetic Protein 4 (BMP4), and other BMPs are upregulated in BE. We aimed to determine if circulating BMPs can be identified and used as blood biomarkers to identify BE patients at high risk in the general population. In this study, we could detect the different BMPs in the blood of 112 BE patients and 134 age- and sex-matched controls. Concentration levels of BMP2, BMP4, and BMP5 were elevated in BE patients, with BMP2 and BMP5 significantly increased. BMP5 remained significant after multivariate analysis and was associated with an increased risk for BE with an OR of 1.49 (p value 0.01). Per log (pg/mL) of BMP5, the odds of having BE increased by 50%. Future optimization and validation studies might be needed to prove its utility as a non-invasive method for the detection of BE in high-risk populations and screening programs.
Collapse
Affiliation(s)
- Ana C P Correia
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Silvia Calpe
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Nahid Mostafavi
- Department of Gastroenterology and Hepatology, Subdivision Statistics, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Sanne Johanna Maria Hoefnagel
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Maria Del Carmen Sancho-Serra
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.,Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Patricia S de Koning
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Kausilia K Krishnadath
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands. .,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Pediatric Patient With Concurrent Eosinophilic Esophagitis, Erosive Reflux Esophagitis, and Barrett's Esophagus. ACG Case Rep J 2020; 7:e00399. [PMID: 33062776 PMCID: PMC7535652 DOI: 10.14309/crj.0000000000000399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Eosinophilic esophagitis and Barrett's esophagus are believed to be separate disease processes, with erosive esophagitis leading to Barrett's esophagus. We report a rare case of concurrent diagnoses in a pediatric patient and examine the relevant genetic profiles in the esophagus.
Collapse
|
9
|
Yeh MM, Bosch DE, Daoud SS. Role of hepatocyte nuclear factor 4-alpha in gastrointestinal and liver diseases. World J Gastroenterol 2019; 25:4074-4091. [PMID: 31435165 PMCID: PMC6700705 DOI: 10.3748/wjg.v25.i30.4074] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) is a highly conserved member of nuclear receptor superfamily of ligand-dependent transcription factors that is expressed in liver and gastrointestinal organs (pancreas, stomach, and intestine). In liver, HNF4α is best known for its role as a master regulator of liver-specific gene expression and essential for adult and fetal liver function. Dysregulation of HNF4α expression has been associated with many human diseases such as ulcerative colitis, colon cancer, maturity-onset diabetes of the young, liver cirrhosis, and hepatocellular carcinoma. However, the precise role of HNF4α in the etiology of these human pathogenesis is not well understood. Limited information is known about the role of HNF4α isoforms in liver and gastrointestinal disease progression. There is, therefore, a critical need to know how disruption of the expression of these isoforms may impact on disease progression and phenotypes. In this review, we will update our current understanding on the role of HNF4α in human liver and gastrointestinal diseases. We further provide additional information on possible use of HNF4α as a target for potential therapeutic approaches.
Collapse
Affiliation(s)
- Matthew M Yeh
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Dustin E Bosch
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Sayed S Daoud
- Department of Pharmaceutical Sciences, Washington State University Health Sciences, Spokane, WA 99210, United States
| |
Collapse
|
10
|
Caspa Gokulan R, Garcia-Buitrago MT, Zaika AI. From genetics to signaling pathways: molecular pathogenesis of esophageal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2019; 1872:37-48. [PMID: 31152823 PMCID: PMC6692203 DOI: 10.1016/j.bbcan.2019.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Esophageal adenocarcinoma (EAC) has one of the fastest rising incidence rates in the U.S. and many other Western countries. One of the unique risk factors for EAC is gastroesophageal reflux disease (GERD), a chronic digestive condition in which acidic contents from the stomach, frequently mixed with duodenal bile, enter the esophagus resulting in esophageal tissue injury. At the cellular level, progression to EAC is underlined by continuous DNA damage caused by reflux and chronic inflammatory factors that increase the mutation rate and promote genomic instability. Despite recent successes in cancer diagnostics and treatment, EAC remains a poorly treatable disease. Recent research has shed new light on molecular alterations underlying progression to EAC and revealed novel treatment options. This review focuses on the genetic and molecular studies of EAC. The molecular changes that occur during the transformation of normal Barrett's esophagus to esophageal adenocarcinoma are also discussed.
Collapse
Affiliation(s)
| | | | - Alexander I Zaika
- Department of Surgery, University of Miami, Miami, FL, United States of America; Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, United States of America.
| |
Collapse
|
11
|
Ma S, Paiboonrungruan C, Yan T, Williams KP, Major MB, Chen XL. Targeted therapy of esophageal squamous cell carcinoma: the NRF2 signaling pathway as target. Ann N Y Acad Sci 2018; 1434:164-172. [PMID: 29752726 DOI: 10.1111/nyas.13681] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/04/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease that requires extensive research. Here, we review the current understanding of the functions of the nuclear factor erythroid-derived 2-like 2 (NRF2) signaling pathway in the esophagus. Genomic data suggest that gene mutations and several other mechanisms result in NRF2 hyperactivation in human ESCC. As a consequence, NRF2high ESCC is more resistant to chemoradiotherapy and associated with poorer survival than NRF2low ESCC. Mechanistically, we believe NRF2, functioning as a transcription factor, causes an esophageal phenotype through regulation of gene transcription. We discuss metabolism, mitochondria, proteasomes, and several signaling pathways as downstream players that may contribute to an esophageal phenotype due to NRF2 hyperactivation. Finally, strategies are proposed to target the NRF2 signaling pathway for therapy of NRF2high ESCC.
Collapse
Affiliation(s)
- Shaohua Ma
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, China.,Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| | - Chorlada Paiboonrungruan
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| | - Tiansheng Yan
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, China
| | - Kevin P Williams
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina
| | - M Ben Major
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xiaoxin Luke Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina.,Center for Esophageal Disease and Swallowing, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Xiong Z, Ren S, Chen H, Liu Y, Huang C, Zhang YL, Odera JO, Chen T, Kist R, Peters H, Garman K, Sun Z, Chen X. PAX9 regulates squamous cell differentiation and carcinogenesis in the oro-oesophageal epithelium. J Pathol 2018; 244:164-175. [PMID: 29055049 PMCID: PMC5842438 DOI: 10.1002/path.4998] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022]
Abstract
PAX9 is a transcription factor of the PAX family characterized by a DNA-binding paired domain. Previous studies have suggested a potential role of PAX9 in squamous cell differentiation and carcinogenesis of the oro-oesophageal epithelium. However, its functional roles in differentiation and carcinogenesis remain unclear. In this study, Pax9 deficiency in mouse oesophagus promoted cell proliferation, delayed cell differentiation, and altered the global gene expression profile. Ethanol exposure downregulated PAX9 expression in human oesophageal epithelial cells in vitro and mouse forestomach and tongue in vivo. We further showed that PAX9 was downregulated in human oro-oesophageal squamous cell carcinoma (OESCC), and its downregulation was associated with alcohol drinking and promoter hypermethylation. Moreover, ad libitum feeding with a liquid diet containing ethanol for 40 weeks or Pax9 deficiency promoted N-nitrosomethylbenzylamine-induced squamous cell carcinogenesis in mouse tongue, oesophagus, and forestomach. In conclusion, PAX9 regulates squamous cell differentiation in the oro-oesophageal epithelium. Alcohol drinking and promoter hypermethylation are associated with PAX9 silencing in human OESCC. PAX9 downregulation may contribute to alcohol-associated oro-oesophageal squamous cell carcinogenesis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhaohui Xiong
- Department of Oral Medicine, Beijing Hospital for Stomatology, Capital Medical University, 4 Tian-Tan-Xi-Li, Beijing 100050, China
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Shuang Ren
- Department of Oral Medicine, Beijing Hospital for Stomatology, Capital Medical University, 4 Tian-Tan-Xi-Li, Beijing 100050, China
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Hao Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Yao Liu
- Department of Oral Medicine, Beijing Hospital for Stomatology, Capital Medical University, 4 Tian-Tan-Xi-Li, Beijing 100050, China
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Caizhi Huang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Yawan Lyvia Zhang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Joab Otieno Odera
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, 410 West 12 Avenue, Columbus, OH 43210, USA
| | - Ralf Kist
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4BW, UK
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Heiko Peters
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Katherine Garman
- Division of Gastroenterology, Department of Medicine, Duke University, DUMC 3913, Durham, NC 27710, USA
| | - Zheng Sun
- Department of Oral Medicine, Beijing Hospital for Stomatology, Capital Medical University, 4 Tian-Tan-Xi-Li, Beijing 100050, China
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Srivastava S, Kern F, Sharma N, McKeon F, Xian W, Yeoh KG, Ho KY, Teh M. FABP1 and Hepar expression levels in Barrett's esophagus and associated neoplasia in an Asian population. Dig Liver Dis 2017; 49:1104-1109. [PMID: 28807490 DOI: 10.1016/j.dld.2017.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Barrett's esophagus (BE) is a premalignant condition associated with esophageal adenocarcinoma (EAC). Evidence highlights that EAC is associated with an estimated 5-year survival of approximately 10-15%. Therefore, there is a need to determine which biomarkers are of value in the diagnosis of BE and beyond. The aim of our study was to evaluate the clinical significance of markers known to be expressed across BE and associated neoplasia. METHODS Retrospective tissues were obtained from columnar lined esophagus (CLE) without goblet cells (n=22), BE (n=29), dysplasia (n=14), and EAC (n=10). Standardised immunohistochemistry for FABP1, Hepar, CDH17, and CDX2 were performed followed by quantitative staining and statistical analysis. RESULTS FABP1 expression was negligible in CLE and was highest in BE, with a further decrease in expression in dysplasia and EAC. Hepar expression was also negligible in CLE and was highest in dysplasia and BE, with a reduced expression in EAC. CDH17 and CDX2 showed a significantly higher expression in BE, dysplasia, and EAC compared to CLE. CONCLUSION All 4 markers were excellent diagnostic panels to clearly discriminate BE from CLE. Moreover, as FABP1 and Hepar have different expression levels in dysplasia and EAC, these markers could function as key diagnostic aids in helping to determine the state of disease progression.
Collapse
Affiliation(s)
| | - Florian Kern
- Genome Institute of Singapore, A-STAR, Singapore
| | - Neel Sharma
- Department of Medicine, National University Health System, Singapore
| | - Frank McKeon
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Wa Xian
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Khay Guan Yeoh
- Department of Medicine, National University Health System, Singapore
| | - Khek Yu Ho
- Department of Medicine, National University Health System, Singapore
| | - Ming Teh
- Department of Pathology, National University Health System, Singapore.
| |
Collapse
|
14
|
Cummings LC, Thota PN, Willis JE, Chen Y, Cooper GS, Furey N, Bednarchik B, Alashkar BM, Dumot J, Faulx AL, Fink SP, Kresak AM, Abusneineh B, Barnholtz-Sloan J, Leahy P, Veigl ML, Chak A, Markowitz SD. A nonrandomized trial of vitamin D supplementation for Barrett's esophagus. PLoS One 2017; 12:e0184928. [PMID: 28922414 PMCID: PMC5602627 DOI: 10.1371/journal.pone.0184928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background Vitamin D deficiency may increase esophageal cancer risk. Vitamin D affects genes regulating proliferation, apoptosis, and differentiation and induces the tumor suppressor 15-hydroxyprostaglandin dehydrogenase (PGDH) in other cancers. This nonrandomized interventional study assessed effects of vitamin D supplementation in Barrett’s esophagus (BE). We hypothesized that vitamin D supplementation may have beneficial effects on gene expression including 15-PGDH in BE. Methods BE subjects with low grade or no dysplasia received vitamin D3 (cholecalciferol) 50,000 international units weekly plus a proton pump inhibitor for 12 weeks. Esophageal biopsies from normal plus metaplastic BE epithelium and blood samples were obtained before and after vitamin D supplementation. Serum 25-hydroxyvitamin D was measured to characterize vitamin D status. Esophageal gene expression was assessed using microarrays. Results 18 study subjects were evaluated. The baseline mean serum 25-hydroxyvitamin D level was 27 ng/mL (normal ≥30 ng/mL). After vitamin D supplementation, 25-hydroxyvitamin D levels rose significantly (median increase of 31.6 ng/mL, p<0.001). There were no significant changes in gene expression from esophageal squamous or Barrett’s epithelium including 15-PGDH after supplementation. Conclusion BE subjects were vitamin D insufficient. Despite improved vitamin D status with supplementation, no significant alterations in gene expression profiles were noted. If vitamin D supplementation benefits BE, a longer duration or higher dose of supplementation may be needed.
Collapse
Affiliation(s)
- Linda C. Cummings
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
- Medical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- * E-mail:
| | - Prashanthi N. Thota
- Digestive Diseases Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Joseph E. Willis
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yanwen Chen
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
| | - Gregory S. Cooper
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
| | - Nancy Furey
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Beth Bednarchik
- William T. Dahms Clinical Research Unit, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Bronia M. Alashkar
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - John Dumot
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ashley L. Faulx
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Medical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Stephen P. Fink
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
| | - Adam M. Kresak
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Basel Abusneineh
- Medical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | | | - Patrick Leahy
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
- Division of General Medical Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Martina L. Veigl
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
- Division of General Medical Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Amitabh Chak
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
| | - Sanford D. Markowitz
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
| |
Collapse
|
15
|
Manko A, Motta JP, Cotton JA, Feener T, Oyeyemi A, Vallance BA, Wallace JL, Buret AG. Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease. PLoS One 2017. [PMID: 28622393 PMCID: PMC5473565 DOI: 10.1371/journal.pone.0178647] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our understanding of polymicrobial gastrointestinal infections and their effects on host biology remains incompletely understood. Giardia duodenalis is an ubiquitous intestinal protozoan parasite infecting animals and humans. Concomitant infections with Giardia and other gastrointestinal pathogens commonly occur. In countries with poor sanitation, Giardia infection has been associated with decreased incidence of diarrheal disease and fever, and reduced serum inflammatory markers release, via mechanisms that remain obscure. This study analyzed Giardia spp. co-infections with attaching and effacing (A/E) pathogens, and assessed whether and how the presence of Giardia modulates host responses to A/E enteropathogens, and alters intestinal disease outcome. In mice infected with the A/E pathogen Citrobacter rodentium, co-infection with Giardia muris significantly attenuated weight loss, macro- and microscopic signs of colitis, bacterial colonization and translocation, while concurrently enhancing the production and secretion of antimicrobial peptides (AMPs) mouse β-defensin 3 and trefoil factor 3 (TFF3). Co-infection of human intestinal epithelial cells (Caco-2) monolayers with G. duodenalis trophozoites and enteropathogenic Escherichia coli (EPEC) enhanced the production of the AMPs human β-defensin 2 (HBD-2) and TFF3; this effect was inhibited with treatment of G. duodenalis with cysteine protease inhibitors. Collectively, these results suggest that Giardia infections are capable of reducing enteropathogen-induced colitis while increasing production of host AMPs. Additional studies also demonstrated that Giardia was able to directly inhibit the growth of pathogenic bacteria. These results reveal novel mechanisms whereby Giardia may protect against gastrointestinal disease induced by a co-infecting A/E enteropathogen. Our findings shed new light on how microbial-microbial interactions in the gut may protect a host during concomitant infections.
Collapse
Affiliation(s)
- Anna Manko
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Paul Motta
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - James A. Cotton
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Troy Feener
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
| | - Ayodele Oyeyemi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - John L. Wallace
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology & Pharmacology, University of Calgary, Alberta, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
16
|
Colleypriest BJ, Burke ZD, Griffiths LP, Chen Y, Yu WY, Jover R, Bock M, Biddlestone L, Quinlan JM, Ward SG, Mark Farrant J, Slack JMW, Tosh D. Hnf4α is a key gene that can generate columnar metaplasia in oesophageal epithelium. Differentiation 2016; 93:39-49. [PMID: 27875772 PMCID: PMC5293356 DOI: 10.1016/j.diff.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
Abstract
Barrett's metaplasia is the only known morphological precursor to oesophageal adenocarcinoma and is characterized by replacement of stratified squamous epithelium by columnar epithelium. The cell of origin is uncertain and the molecular mechanisms responsible for the change in cellular phenotype are poorly understood. We therefore explored the role of two transcription factors, Cdx2 and HNF4α in the conversion using primary organ cultures. Biopsy samples from cases of human Barrett's metaplasia were analysed for the presence of CDX2 and HNF4α. A new organ culture system for adult murine oesophagus is described. Using this, Cdx2 and HNF4α were ectopically expressed by adenoviral infection. The phenotype following infection was determined by a combination of PCR, immunohistochemical and morphological analyses. We demonstrate the expression of CDX2 and HNF4α in human biopsy samples. Our oesophageal organ culture system expressed markers characteristic of the normal SSQE: p63, K14, K4 and loricrin. Ectopic expression of HNF4α, but not of Cdx2 induced expression of Tff3, villin, K8 and E-cadherin. HNF4α is sufficient to induce a columnar-like phenotype in adult mouse oesophageal epithelium and is present in the human condition. These data suggest that induction of HNF4α is a key early step in the formation of Barrett's metaplasia and are consistent with an origin of Barrett's metaplasia from the oesophageal epithelium.
Collapse
Affiliation(s)
- Benjamin J Colleypriest
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Gastroenterology, Royal United Hospital, Combe Park, Bath BA1 3NG, UK
| | - Zoë D Burke
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Leonard P Griffiths
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Gastroenterology, Royal United Hospital, Combe Park, Bath BA1 3NG, UK
| | - Yu Chen
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Wei-Yuan Yu
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Ramiro Jover
- Unidad Mixta Hepatologia Experimental & CIBERehd, Departamento de Bioquimica y Biologia Molecular, Universidad de Valencia, Spain
| | - Michael Bock
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Leigh Biddlestone
- Department of Gastroenterology, Royal United Hospital, Combe Park, Bath BA1 3NG, UK
| | - Jonathan M Quinlan
- Department of Gastroenterology, Royal United Hospital, Combe Park, Bath BA1 3NG, UK
| | - Stephen G Ward
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - J Mark Farrant
- Department of Gastroenterology, Royal United Hospital, Combe Park, Bath BA1 3NG, UK
| | - Jonathan M W Slack
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; Stem Cell Institute, University of Minnesota, Minneapolis 55455, USA
| | - David Tosh
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
17
|
Cardoso J, Mesquita M, Dias Pereira A, Bettencourt-Dias M, Chaves P, Pereira-Leal JB. CYR61 and TAZ Upregulation and Focal Epithelial to Mesenchymal Transition May Be Early Predictors of Barrett's Esophagus Malignant Progression. PLoS One 2016; 11:e0161967. [PMID: 27583562 PMCID: PMC5008832 DOI: 10.1371/journal.pone.0161967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022] Open
Abstract
Barrett's esophagus is the major risk factor for esophageal adenocarcinoma. It has a low but non-neglectable risk, high surveillance costs and no reliable risk stratification markers. We sought to identify early biomarkers, predictive of Barrett's malignant progression, using a meta-analysis approach on gene expression data. This in silico strategy was followed by experimental validation in a cohort of patients with extended follow up from the Instituto Português de Oncologia de Lisboa de Francisco Gentil EPE (Portugal). Bioinformatics and systems biology approaches singled out two candidate predictive markers for Barrett's progression, CYR61 and TAZ. Although previously implicated in other malignancies and in epithelial-to-mesenchymal transition phenotypes, our experimental validation shows for the first time that CYR61 and TAZ have the potential to be predictive biomarkers for cancer progression. Experimental validation by reverse transcriptase quantitative PCR and immunohistochemistry confirmed the up-regulation of both genes in Barrett's samples associated with high-grade dysplasia/adenocarcinoma. In our cohort CYR61 and TAZ up-regulation ranged from one to ten years prior to progression to adenocarcinoma in Barrett's esophagus index samples. Finally, we found that CYR61 and TAZ over-expression is correlated with early focal signs of epithelial to mesenchymal transition. Our results highlight both CYR61 and TAZ genes as potential predictive biomarkers for stratification of the risk for development of adenocarcinoma and suggest a potential mechanistic route for Barrett's esophagus neoplastic progression.
Collapse
Affiliation(s)
- Joana Cardoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Ophiomics—Precision Medicine, Lisboa, Portugal
- * E-mail:
| | - Marta Mesquita
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- Faculdade de Ciências da Saúde–Universidade da Beira Interior, Covilhã, Portugal
| | - António Dias Pereira
- Faculdade de Ciências da Saúde–Universidade da Beira Interior, Covilhã, Portugal
- Serviço de Gastrenterologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
| | | | - Paula Chaves
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- Faculdade de Ciências da Saúde–Universidade da Beira Interior, Covilhã, Portugal
| | - José B. Pereira-Leal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Ophiomics—Precision Medicine, Lisboa, Portugal
| |
Collapse
|
18
|
Chen H, Beasley A, Hu Y, Chen X. A Zebrafish Model for Studies on Esophageal Epithelial Biology. PLoS One 2015; 10:e0143878. [PMID: 26630178 PMCID: PMC4667901 DOI: 10.1371/journal.pone.0143878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/10/2015] [Indexed: 11/23/2022] Open
Abstract
Mammalian esophagus exhibits a remarkable change in epithelial structure during the transition from embryo to adult. However, the molecular mechanisms of esophageal epithelial development are not well understood. Zebrafish (Danio rerio), a common model organism for vertebrate development and gene function, has not previously been characterized as a model system for esophageal epithelial development. In this study, we characterized a piece of non-keratinized stratified squamous epithelium similar to human esophageal epithelium in the upper digestive tract of developing zebrafish. Under the microscope, this piece was detectable at 5dpf and became stratified at 7dpf. Expression of esophageal epithelial marker genes (Krt5, P63, Sox2 and Pax9) was detected by immunohistochemistry and in situ hybridization. Knockdown of P63, a gene known to be critical for esophageal epithelium, disrupted the development of this epithelium. With this model system, we found that Pax9 knockdown resulted in loss or disorganization of the squamous epithelium, as well as down-regulation of the differentiation markers Krt4 and Krt5. In summary, we characterized a region of stratified squamous epithelium in the zebrafish upper digestive tract which can be used for functional studies of candidate genes involved in esophageal epithelial biology.
Collapse
Affiliation(s)
- Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, 27707, United States of America
| | - Andrea Beasley
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, 27707, United States of America
| | - Yuhui Hu
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, 27707, United States of America
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, 27707, United States of America
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
- * E-mail:
| |
Collapse
|
19
|
Golgi phosphoprotein 2 (GOLPH2) is a novel bile acid-responsive modulator of oesophageal cell migration and invasion. Br J Cancer 2015; 113:1332-42. [PMID: 26461057 PMCID: PMC4815786 DOI: 10.1038/bjc.2015.350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The aetiology of Barrett's oesophagus (BO) and oesophageal cancer is poorly understood. We previously demonstrated that Golgi structure and function is altered in oesophageal cancer cells. A Golgi-associated protein, GOLPH2, was previously established as a tissue biomarker for BO. Cellular functions for GOLPH2 are currently unknown, therefore in this study we sought to investigate functional roles for this Golgi-associated protein in oesophageal disease. METHODS Expression, intracellular localisation and secretion of GOLPH2 were identified by immunofluorescence, immunohistochemistry and western blot. GOLPH2 expression constructs and siRNA were used to identify cellular functions for GOLPH2. RESULTS We demonstrate that the structure of the Golgi is fragmented and the intracellular localisation of GOLPH2 is altered in BO and oesophageal adenocarcinoma tissue. GOLPH2 is secreted by oesophageal cancer cells and GOLPH2 expression, cleavage and secretion facilitate cell migration and invasion. Furthermore, exposure of cells to DCA, a bile acid component of gastric refluxate and known tumour promoter for oesophageal cancer, causes disassembly of the Golgi structure into ministacks, resulting in cleavage and secretion of GOLPH2. CONCLUSIONS This study demonstrates that GOLPH2 may be a useful tissue biomarker for oesophageal disease. We provide a novel mechanistic insight into the aetiology of oesophageal cancer and reveal novel functions for GOLPH2 in regulating tumour cell migration and invasion, important functions for the metastatic process in oesophageal cancer.
Collapse
|
20
|
Krishnadath KK, Wang KK. Molecular pathogenesis of Barrett esophagus: current evidence. Gastroenterol Clin North Am 2015; 44:233-47. [PMID: 26021192 DOI: 10.1016/j.gtc.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article focuses on recent findings on the molecular mechanisms involved in esophageal columnar metaplasia. Signaling pathways and their downstream targets activate specific transcription factors leading to the expression of columnar and the more specific intestinal-type of genes, which gives rise to Barrett metaplasia. Several animal models have been generated to validate and study these distinct molecular pathways but also to identify the Barrett progenitor cell. Currently, the many aspects involved in the development of esophageal metaplasia that have been elucidated can serve to develop novel molecular therapies to improve treatment or prevent metaplasia. Nevertheless, several key events are still poorly understood and require further investigation.
Collapse
Affiliation(s)
- Kausilia K Krishnadath
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| | | |
Collapse
|
21
|
Nakagawa H, Whelan K, Lynch JP. Mechanisms of Barrett's oesophagus: intestinal differentiation, stem cells, and tissue models. Best Pract Res Clin Gastroenterol 2015; 29:3-16. [PMID: 25743452 PMCID: PMC4352719 DOI: 10.1016/j.bpg.2014.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/02/2014] [Indexed: 01/31/2023]
Abstract
Barrett's oesophagus (BE) is defined as any metaplastic columnar epithelium in the distal oesophagus which replaces normal squamous epithelium and which predisposes to cancer development. It is this second requirement, the predisposition to cancer, which makes this condition both clinically highly relevant and an important area for ongoing research. While BE has been defined pathologically since the 1950's (Allison and Johnstone, Thorax 1955), and identified as a risk factor for esophageal adenocarcinoma since the 1970's (Naef A.P., et al J Thorac Cardiovasc Surg. 1975), our understanding of the molecular events giving rise to this condition remains limited. Herein we will examine what is known about the intestinal features of BE and how well it recapitulates the intestinal epithelium, including stem identity and function. Finally, we will explore laboratory models of this condition presently in use and under development, to identify new insights they may provide into this important clinical condition.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Research Associate Professor of Medicine, Division of Gastroenterology, 421 Curie Boulevard, 956 Biomedical Research Building, Philadelphia, PA 19104, Office: 215-573-1867, Fax: 215-573-2024
| | - Kelly Whelan
- Division of Gastroenterology, 421 Curie Boulevard, 956 Biomedical Research Building, Philadelphia, PA, 19104, USA.
| | - John P Lynch
- Division of Gastroenterology, 421 Curie Boulevard, 956 Biomedical Research Building, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Wang DH, Tiwari A, Kim ME, Clemons NJ, Regmi NL, Hodges WA, Berman DM, Montgomery EA, Watkins DN, Zhang X, Zhang Q, Jie C, Spechler SJ, Souza RF. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett's metaplasia. J Clin Invest 2014; 124:3767-80. [PMID: 25083987 DOI: 10.1172/jci66603] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/12/2014] [Indexed: 12/20/2022] Open
Abstract
Metaplasia can result when injury reactivates latent developmental signaling pathways that determine cell phenotype. Barrett's esophagus is a squamous-to-columnar epithelial metaplasia caused by reflux esophagitis. Hedgehog (Hh) signaling is active in columnar-lined, embryonic esophagus and inactive in squamous-lined, adult esophagus. We showed previously that Hh signaling is reactivated in Barrett's metaplasia and overexpression of Sonic hedgehog (SHH) in mouse esophageal squamous epithelium leads to a columnar phenotype. Here, our objective was to identify Hh target genes involved in Barrett's pathogenesis. By microarray analysis, we found that the transcription factor Foxa2 is more highly expressed in murine embryonic esophagus compared with postnatal esophagus. Conditional activation of Shh in mouse esophageal epithelium induced FOXA2, while FOXA2 expression was reduced in Shh knockout embryos, establishing Foxa2 as an esophageal Hh target gene. Evaluation of patient samples revealed FOXA2 expression in Barrett's metaplasia, dysplasia, and adenocarcinoma but not in esophageal squamous epithelium or squamous cell carcinoma. In esophageal squamous cell lines, Hh signaling upregulated FOXA2, which induced expression of MUC2, an intestinal mucin found in Barrett's esophagus, and the MUC2-processing protein AGR2. Together, these data indicate that Hh signaling induces expression of genes that determine an intestinal phenotype in esophageal squamous epithelial cells and may contribute to the development of Barrett's metaplasia.
Collapse
|
23
|
Mari L, Milano F, Parikh K, Straub D, Everts V, Hoeben KK, Fockens P, Buttar NS, Krishnadath KK. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia. Cell Rep 2014; 7:1197-210. [PMID: 24794431 DOI: 10.1016/j.celrep.2014.03.074] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 12/13/2013] [Accepted: 03/31/2014] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms leading to epithelial metaplasias are poorly understood. Barrett's esophagus is a premalignant metaplastic change of the esophageal epithelium into columnar epithelium, occurring in patients suffering from gastroesophageal reflux disease. Mechanisms behind the development of the intestinal subtype, which is associated with the highest cancer risk, are unclear. In humans, it has been suggested that a nonspecialized columnar metaplasia precedes the development of intestinal metaplasia. Here, we propose that a complex made up of at least two factors needs to be activated simultaneously to drive the expression of intestinal type of genes. Using unique animal models and robust in vitro assays, we show that the nonspecialized columnar metaplasia is a precursor of intestinal metaplasia and that pSMAD/CDX2 interaction is essential for the switch toward an intestinal phenotype.
Collapse
Affiliation(s)
- Luigi Mari
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Francesca Milano
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Section of Hematology and Clinical Immunology, Department of Internal and Experimental Medicine, Ospedale S. Maria della Misericordia, University of Perugia, 06156 Perugia, Italy
| | - Kaushal Parikh
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Danielle Straub
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Vincent Everts
- Core facility Cellular Imaging/LCAM-AMC, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Kees K Hoeben
- Core facility Cellular Imaging/LCAM-AMC, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Paul Fockens
- Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Navtej S Buttar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55902, USA
| | - Kausilia K Krishnadath
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Green NH, Nicholls Z, Heath PR, Cooper-Knock J, Corfe BM, MacNeil S, Bury JP. Pulsatile exposure to simulated reflux leads to changes in gene expression in a 3D model of oesophageal mucosa. Int J Exp Pathol 2014; 95:216-28. [PMID: 24713057 DOI: 10.1111/iep.12083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 03/07/2014] [Indexed: 01/11/2023] Open
Abstract
Oesophageal exposure to duodenogastroesophageal refluxate is implicated in the development of Barrett's metaplasia (BM), with increased risk of progression to oesophageal adenocarcinoma. The literature proposes that reflux exposure activates NF-κB, driving the aberrant expression of intestine-specific caudal-related homeobox (CDX) genes. However, early events in the pathogenesis of BM from normal epithelium are poorly understood. To investigate this, our study subjected a 3D model of the normal human oesophageal mucosa to repeated, pulsatile exposure to specific bile components and examined changes in gene expression. Initial 2D experiments with a range of bile salts observed that taurochenodeoxycholate (TCDC) impacted upon NF-κB activation without causing cell death. Informed by this, the 3D oesophageal model was repeatedly exposed to TCDC in the presence and absence of acid, and the epithelial cells underwent gene expression profiling. We identified ~300 differentially expressed genes following each treatment, with a large and significant overlap between treatments. Enrichment analysis (Broad GSEA, DAVID and Metacore™; GeneGo Inc) identified multiple gene sets related to cell signalling, inflammation, proliferation, differentiation and cell adhesion. Specifically NF-κB activation, Wnt signalling, cell adhesion and targets for the transcription factors PTF1A and HNF4α were highlighted. Our data suggest that HNF4α isoform switching may be an early event in Barrett's pathogenesis. CDX1/2 targets were, however, not enriched, suggesting that although CDX1/2 activation reportedly plays a role in BM development, it may not be an initial event. Our findings highlight new areas for investigation in the earliest stages of BM pathogenesis of oesophageal diseases and new potential therapeutic targets.
Collapse
Affiliation(s)
- Nicola H Green
- Kroto Research Institute, North Campus, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Hyland PL, Hu N, Rotunno M, Su H, Wang C, Wang L, Pfeiffer RM, Gherman B, Giffen C, Dykes C, Dawsey SM, Abnet CC, Johnson KM, Acosta RD, Young PE, Cash BD, Taylor PR. Global changes in gene expression of Barrett's esophagus compared to normal squamous esophagus and gastric cardia tissues. PLoS One 2014; 9:e93219. [PMID: 24714516 PMCID: PMC3979678 DOI: 10.1371/journal.pone.0093219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/03/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Barrett's esophagus (BE) is a metaplastic precursor lesion of esophageal adenocarcinoma (EA), the most rapidly increasing cancer in western societies. While the prevalence of BE is increasing, the vast majority of EA occurs in patients with undiagnosed BE. Thus, we sought to identify genes that are altered in BE compared to the normal mucosa of the esophagus, and which may be potential biomarkers for the development or diagnosis of BE. DESIGN We performed gene expression analysis using HG-U133A Affymetrix chips on fresh frozen tissue samples of Barrett's metaplasia and matched normal mucosa from squamous esophagus (NE) and gastric cardia (NC) in 40 BE patients. RESULTS Using a cut off of 2-fold and P<1.12E-06 (0.05 with Bonferroni correction), we identified 1324 differentially-expressed genes comparing BE vs NE and 649 differentially-expressed genes comparing BE vs NC. Except for individual genes such as the SOXs and PROM1 that were dysregulated only in BE vs NE, we found a subset of genes (n = 205) whose expression was significantly altered in both BE vs NE and BE vs NC. These genes were overrepresented in different pathways, including TGF-β and Notch. CONCLUSION Our findings provide additional data on the global transcriptome in BE tissues compared to matched NE and NC tissues which should promote further understanding of the functions and regulatory mechanisms of genes involved in BE development, as well as insight into novel genes that may be useful as potential biomarkers for the diagnosis of BE in the future.
Collapse
Affiliation(s)
- Paula L. Hyland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melissa Rotunno
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hua Su
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chaoyu Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lemin Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Carol Giffen
- Information Management Services, Inc, Silver Spring, Maryland, United States of America
| | - Cathy Dykes
- Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | - Sanford M. Dawsey
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christian C. Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathryn M. Johnson
- Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | - Ruben D. Acosta
- Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | - Patrick E. Young
- Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | - Brooks D. Cash
- Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | - Philip R. Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
26
|
Weaver JMJ, Ross-Innes CS, Fitzgerald RC. The '-omics' revolution and oesophageal adenocarcinoma. Nat Rev Gastroenterol Hepatol 2014; 11:19-27. [PMID: 23982683 DOI: 10.1038/nrgastro.2013.150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oesophageal adenocarcinoma (OAC) is the eighth most common cancer type worldwide with a dismal 5-year survival. Barrett oesophagus, the replacement of the normal squamous epithelia with glandular cells, is the first step in the pathway towards OAC. Although most patients with OAC present de novo, the presence of the easily detectable OAC precursor lesion, Barrett oesophagus, enables the possibility of early detection of high-risk patients who are more likely to progress. Currently, identification of high-risk patients depends on histopathological assessment of dysplasia with no regards to molecular pathogenesis. In the future, screening and risk stratification initiatives for Barrett oesophagus that incorporate molecular profiles might permit improved early diagnosis and intervention strategies with the possibility of preventing OAC. For the majority of patients presenting de novo at an advanced stage, combining so-called -omics datasets with current clinical staging algorithms might enable OACs to be better classified according to distinct molecular programmes, thereby leading to better targeted treatment strategies as well as cancer monitoring regimes. This Review discusses how the latest advances in -omics technologies have improved our understanding of the development and biology of OAC, and how this development might alter patient management in the future.
Collapse
Affiliation(s)
- Jamie M J Weaver
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Caryn S Ross-Innes
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Rebecca C Fitzgerald
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
27
|
Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12. Cancer Metastasis Rev 2013; 31:493-500. [PMID: 22684366 DOI: 10.1007/s10555-012-9360-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scaffolding proteins such as SSeCKS/Gravin/AKAP12 ("AKAP12") are thought to control oncogenic signaling pathways by regulating key mediators in a spatiotemporal manner. The downregulation of AKAP12 in many human cancers, often associated with promoter hypermethylation, or the loss of its locus at 6q24-25.2, correlates with progression to malignancy and metastasis. The forced re-expression of AKAP12 in cancer cell lines suppresses in vitro parameters of oncogenic growth, invasiveness, and cell motility through its ability to scaffold protein kinase C (PKC), F-actin, cyclins, Src, and phosphoinositides, and possibly through additional scaffolding domains for PKA, calmodulin, β1,4-galactosyltransferase-polypeptide-1, β2-adrenergic receptors, and cAMP-specific 3',5'-cyclic phosphodiesterase 4D. Moreover, AKAP12 re-expression in tumor models results in metastasis suppression through the inhibition of Src-regulated, VEGF-mediated neovascularization at distal sites. The current review will describe the emerging understanding of how AKAP12 regulates cellular senescence and oncogenic progression at the level of tumor cells and tumor-associated microenvironment via its multiple scaffolding functions.
Collapse
|
28
|
Garman KS, Orlando RC, Chen X. Review: Experimental models for Barrett's esophagus and esophageal adenocarcinoma. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1231-43. [PMID: 22421618 PMCID: PMC4380479 DOI: 10.1152/ajpgi.00509.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several different cell culture systems and laboratory animal models have been used over the years to study Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Most of the existing models have key differences with the human esophagus and complex pathogenesis of disease. None of the models offers an ideal system for the complex study of environmental exposure, genetic risk, and prevention strategies. In fact, different model systems may be required to answer different specific research questions about the pathogenesis of BE and EAC. Given the high mortality associated with EAC and the fact that current screening strategies miss most cases of EAC, advances in basic and translational science related to esophageal injury, repair, and carcinogenesis are clearly needed. This review describes several of the existing and potential model systems for BE and EAC with their benefits and disadvantages.
Collapse
Affiliation(s)
- Katherine S. Garman
- 1Division of Gastroenterology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Center, Durham;
| | - Roy C. Orlando
- 2Division of Gastroenterology and Hepatology, Center for Esophageal Diseases and Swallowing, University of North Carolina at Chapel Hill, Chapel Hill; and
| | - Xiaoxin Chen
- 3Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| |
Collapse
|
29
|
von Holzen U, Enders GH. A surprise cell of origin for Barrett's esophagus. Cancer Biol Ther 2012; 13:588-91. [PMID: 22549156 DOI: 10.4161/cbt.20088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Barrett's esophagus is a metaplasia of the distal esophagus that is the only recognized precursor of esophageal adenocarcinoma. Despite a characteristic histology, the pathogenesis of Barrett's has remained obscure. A recent paper from the laboratories of Wa Xian and Frank McKeon presents evidence for a novel cell of origin of Barrett's. Their work is based on studies of mice engineered to lack the squamous epithelial stem cell survival factor p63. These mice develop a metaplasia of the proximal stomach and esophagus that harbors substantial histological and molecular features of Barrett's. The metaplasia appears to form from embryonic progenitor cells that normally persists post-natally only at the squamo-columnar junction. Moreover, in their model, the metaplasia is initiated not by mutation but by reduced competition between these cells and squamous epithelial cells.
Collapse
Affiliation(s)
- Urs von Holzen
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
30
|
Chen H, Li J, Li H, Hu Y, Tevebaugh W, Yamamoto M, Que J, Chen X. Transcript profiling identifies dynamic gene expression patterns and an important role for Nrf2/Keap1 pathway in the developing mouse esophagus. PLoS One 2012; 7:e36504. [PMID: 22567161 PMCID: PMC3342176 DOI: 10.1371/journal.pone.0036504] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/02/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND AIMS Morphological changes during human and mouse esophageal development have been well characterized. However, changes at the molecular level in the course of esophageal morphogenesis remain unclear. This study aims to globally profile critical genes and signaling pathways during the development of mouse esophagus. By using microarray analysis this study also aims to determine how the Nrf2/Keap1 pathway regulates the morphogenesis of the esophageal epithelium. METHODS Gene expression microarrays were used to survey gene expression in the esophagus at three critical phases: specification, metaplasia and maturation. The esophagi were isolated from wild-type, Nrf2(-/-), Keap1(-/-), or Nrf2(-/-)Keap1(-/-) embryos or young adult mice. Array data were statistically analyzed for differentially expressed genes and pathways. Histochemical and immunohistochemical staining were used to verify potential involvement of the Wnt pathway, Pparβ/δ and the PI3K/Akt pathway in the development of esophageal epithelium. RESULTS Dynamic gene expression patterns accompanied the morphological changes of the developing esophagus at critical phases. Particularly, the Nrf2/Keap1 pathway had a baseline activity in the metaplasia phase and was further activated in the maturation phase. The Wnt pathway was active early and became inactive later in the metaplasia phase. In addition, Keap1(-/-) mice showed increased expression of Nrf2 downstream targets and genes involved in keratinization. Microarray and immunostaining data also suggested that esophageal hyperkeratosis in the Keap1(-/-) mice was due to activation of Pparβ/δ and the PI3K/Akt pathway. CONCLUSIONS Morphological changes of the esophageal epithelium are associated with dynamic changes in gene expression. Nrf2/Keap1 pathway activity is required for maturation of mouse esophageal epithelium.
Collapse
Affiliation(s)
- Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, United States of America
| | - Jianying Li
- Frontier Bioinformatics Solution, LLC, Cary, North Carolina, United States of America
| | - Haiyan Li
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
| | - Yuhui Hu
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, United States of America
| | - Whitney Tevebaugh
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, United States of America
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jianwen Que
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States of America
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, United States of America
- Division of Gastroenterology and Hepatology, Center of Esophageal Disease and Swallowing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
31
|
Math1/Atoh1 contributes to intestinalization of esophageal keratinocytes by inducing the expression of Muc2 and Keratin-20. Dig Dis Sci 2012; 57:845-57. [PMID: 22147253 PMCID: PMC3407817 DOI: 10.1007/s10620-011-1998-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 11/22/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Esophageal intestinal metaplasia, also known as Barrett's esophagus, is the replacement of the normal epithelium with one that resembles the intestine morphologically. Generally, this includes intestinal mucin-secreting goblet cells. Barrett's esophagus is an important risk factor for adenocarcinoma development. In-vitro models for Barrett's esophagus have not, to date, focused on the induction of goblet cells in Barrett's epithelium. AIMS To explore the contribution of Math1/Atoh1 to induction of Barrett's esophagus and intestinal mucin-secreting goblet cells from normal human esophageal epithelium. METHODS We explored the level and pattern of Math1/Atoh1 mRNA and protein expression in human Barrett's esophagus. Then, using retroviral-mediated gene expression, we induced Math1 mRNA and protein expression in a human esophageal keratinocyte cell line. We evaluated the effects of this ectopic Math1 expression on cell proliferation and gene expression patterns in cells cultured under two-dimensional and three-dimensional tissue-engineering conditions. RESULTS Math1/Atoh1 mRNA and protein are detected in human Barrett's esophagus specimens, but the mRNA levels vary substantially. In the keratinocyte expression studies, we observed that Math1/Atoh1 ectopic expression significantly reduced cell proliferation and altered cell morphology. Moreover, Math1/Atoh1 expression is associated with a more intestinalized gene expression pattern that is distinct from that reported in after studies using other intestinal transcription factors. Most significantly, we observe the induction of the Barrett's esophagus markers Mucin-2 and Keratin-20 with Math1/Atoh1 expression. CONCLUSIONS We conclude that ectopic Math1/Atoh1 expression makes unique contributions to intestinalization of the esophageal epithelium in Barrett's esophagus.
Collapse
|
32
|
Chen H, Fang Y, Tevebaugh W, Orlando RC, Shaheen NJ, Chen X. Molecular mechanisms of Barrett's esophagus. Dig Dis Sci 2011; 56:3405-20. [PMID: 21984436 PMCID: PMC3750118 DOI: 10.1007/s10620-011-1885-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/16/2011] [Indexed: 12/11/2022]
Abstract
Barrett's esophagus (BE) is defined as the metaplastic conversion of esophageal squamous epithelium to intestinalized columnar epithelium. As a premalignant lesion of esophageal adenocarcinoma (EAC), BE develops as a result of chronic gastroesophageal reflux disease (GERD). Many studies have been conducted to understand the molecular mechanisms of this disease. This review summarizes recent results involving squamous and intestinal transcription factors, signaling pathways, stromal factors, microRNAs, and other factors in the development of BE. A conceptual framework is proposed to guide future studies. We expect elucidation of the molecular mechanisms of BE to help in the development of improved management of GERD, BE, and EAC.
Collapse
Affiliation(s)
- Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Yu Fang
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Whitney Tevebaugh
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Roy C. Orlando
- Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7080, USA
| | - Nicholas J. Shaheen
- Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7080, USA
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA,Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7080, USA,Corresponding authors: Xiaoxin Luke Chen, MD, PhD, Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA. Tel: 919-530-6425; Fax: 919-530-7780;
| |
Collapse
|
33
|
Dvorak K, Goldman A, Kong J, Lynch JP, Hutchinson L, Houghton JM, Chen H, Chen X, Krishnadath KK, Westra WM. Molecular mechanisms of Barrett's esophagus and adenocarcinoma. Ann N Y Acad Sci 2011; 1232:381-91. [PMID: 21950830 DOI: 10.1111/j.1749-6632.2011.06062.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The following on molecular mechanisms of Barrett's esophagus and adenocarcinoma contains commentaries on the mechanism of bile and gastric acid induced damage; the roles of BMP-4 and CDX-2 in the development of intestinal metaplasia; the transcription factors driving intestinalization in Barrett's esophagus; the contribution of bone marrow to metaplasia and adenocarcinoma; activation and inactivation of transcription factors; and a novel study design targeting molecular pathways in Barrett's esophagus.
Collapse
Affiliation(s)
- Katerina Dvorak
- Department of Cell Biology and Anatomy, College of Medicine, Tucson, Arizona, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gelman IH. Emerging Roles for SSeCKS/Gravin/AKAP12 in the Control of Cell Proliferation, Cancer Malignancy, and Barriergenesis. Genes Cancer 2011; 1:1147-56. [PMID: 21779438 DOI: 10.1177/1947601910392984] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Emerging data suggest that SSeCKS/Gravin/AKAP12 ("AKAP12"), originally identified as an autoantigen in cases of myasthenia gravis, controls multiple biological processes through its ability to scaffold key signaling proteins such as protein kinase (PK) C and A, calmodulin, cyclins, phosphoinositides, "long" β-1,4 galactosyltransferase (GalTase) isoform, Src, as well as the actin cytoskeleton in a spatiotemporal manner. Specialized functions attributed to AKAP12 include the suppression of cancer malignancy, especially aspects of metastatic progression, regulation of blood-brain and blood-retina barrier formation, and resensitization of β2-adrenergic pain receptors. Recent data identify a direct role for AKAP12 in cytokinesis completion, further suggesting a function as a negative regulator of cell senescence. The current review will discuss the emerging knowledge base of AKAP12-related biological roles and how the factors that affect AKAP12 expression or that interact with AKAP12 at the protein level control cancer progression and blood-tissue barrier formation.
Collapse
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
35
|
Residual embryonic cells as precursors of a Barrett's-like metaplasia. Cell 2011; 145:1023-35. [PMID: 21703447 DOI: 10.1016/j.cell.2011.05.026] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/11/2011] [Accepted: 05/19/2011] [Indexed: 12/22/2022]
Abstract
Barrett's esophagus is an intestine-like metaplasia and precursor of esophageal adenocarcinoma. Triggered by gastroesophageal reflux disease, the origin of this metaplasia remains unknown. p63-deficient mice, which lack squamous epithelia, may model acid-reflux damage. We show here that p63 null embryos rapidly develop intestine-like metaplasia with gene expression profiles similar to Barrett's metaplasia. We track its source to a unique embryonic epithelium that is normally undermined and replaced by p63-expressing cells. Significantly, we show that a discrete population of these embryonic cells persists in adult mice and humans at the squamocolumnar junction, the source of Barrett's metaplasia. We show that upon programmed damage to the squamous epithelium, these embryonic cells migrate toward adjacent, specialized squamous cells in a process that may recapitulate early Barrett's. Our findings suggest that certain precancerous lesions, such as Barrett's, initiate not from genetic alterations but from competitive interactions between cell lineages driven by opportunity.
Collapse
|
36
|
|