1
|
Hwang J, Okada J, Liu L, Pessin JE, Schwartz GJ, Jo YH. The development of hepatic steatosis depends on the presence of liver-innervating parasympathetic cholinergic neurons in mice fed a high-fat diet. PLoS Biol 2024; 22:e3002865. [PMID: 39436946 DOI: 10.1371/journal.pbio.3002865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/01/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Hepatic lipid metabolism is regulated by the autonomic nervous system of the liver, with the sympathetic innervation being extensively studied, while the parasympathetic efferent innervation is less understood despite its potential importance. In this study, we investigate the consequences of disrupted brain-liver communication on hepatic lipid metabolism in mice exposed to obesogenic conditions. We found that a subset of hepatocytes and cholangiocytes are innervated by parasympathetic nerve terminals originating from the dorsal motor nucleus of the vagus. The elimination of the brain-liver axis by deleting parasympathetic cholinergic neurons innervating the liver prevents hepatic steatosis and promotes browning of inguinal white adipose tissue (ingWAT). The loss of liver-innervating cholinergic neurons increases hepatic Cyp7b1 expression and fasting serum bile acid levels. Furthermore, knockdown of the G protein-coupled bile acid receptor 1 gene in ingWAT reverses the beneficial effects of the loss of liver-innervating cholinergic neurons, leading to the reappearance of hepatic steatosis. Deleting liver-innervating cholinergic neurons has a small but significant effect on body weight, which is accompanied by an increase in energy expenditure. Taken together, these data suggest that targeting the parasympathetic cholinergic innervation of the liver is a potential therapeutic approach for enhancing hepatic lipid metabolism in obesity and diabetes.
Collapse
Affiliation(s)
- Jiyeon Hwang
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Junichi Okada
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Li Liu
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jeffrey E Pessin
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gary J Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscince, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
2
|
Hwang J, Okada J, Liu L, Pessin JE, Schwartz GJ, Jo YH. The development of hepatic steatosis depends on the presence of liver-innervating parasympathetic cholinergic neurons in mice fed a high-fat diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.03.565494. [PMID: 38260695 PMCID: PMC10802435 DOI: 10.1101/2023.11.03.565494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Hepatic lipid metabolism is regulated by the autonomic nervous system of the liver, with the sympathetic innervation being extensively studied, while the parasympathetic efferent innervation is less understood despite its potential importance. In this study, we investigate the consequences of disrupted brain-liver communication on hepatic lipid metabolism in mice exposed to obesogenic conditions. We found that a subset of hepatocytes and cholangiocytes are innervated by parasympathetic nerve terminals originating from the dorsal motor nucleus of the vagus. The elimination of the brain-liver axis by deleting parasympathetic cholinergic neurons innervating the liver prevents hepatic steatosis and promotes browning of inguinal white adipose tissue (ingWAT). The loss of liver-innervating cholinergic neurons increases hepatic Cyp7b1 expression and fasting serum bile acid levels. Furthermore, knockdown of the G protein-coupled bile acid receptor 1 gene in ingWAT reverses the beneficial effects of the loss of liver-innervating cholinergic neurons, leading to the reappearance of hepatic steatosis. Deleting liver-innervating cholinergic neurons has a small but significant effect on body weight, which is accompanied by an increase in energy expenditure. Taken together, these data suggest that targeting the parasympathetic cholinergic innervation of the liver is a potential therapeutic approach for enhancing hepatic lipid metabolism in obesity and diabetes.
Collapse
|
3
|
Iwawaki T, Morishima I, Kanzaki Y, Morita Y, Watanabe N, Yoshioka N, Shibata N, Miyazawa H, Shimojo K, Yanagisawa S, Inden Y, Murohara T. Elevated liver fibrosis-4 index predicts recurrence after catheter ablation for atrial fibrillation in patients with heart failure. J Interv Card Electrophysiol 2024; 67:1093-1108. [PMID: 37855993 DOI: 10.1007/s10840-023-01661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The fibrosis-4 (FIB-4) index is a noninvasive scoring system that is used to assess the progression of liver fibrosis. This study aimed to assess whether the FIB-4 index is associated with recurrent atrial fibrillation (AF) after catheter ablation in patients with and without heart failure (HF). METHODS We included 1,184 patients who underwent initial AF catheter ablation between 2016 and 2021. The patients were classified into low-risk (< 1.3), intermediate-risk (1.3-2.67), and high-risk (> 2.67) groups based on their FIB-4 indices at baseline. The patients were divided into HF (n = 552) and non-HF groups (n = 632); the HF group was further divided into paroxysmal AF (PAF) and non-PAF groups. AF recurrence after catheter ablation was then compared among the groups. RESULTS In the non-HF group, no significant differences in recurrence after ablation were observed between the low-(n = 219), intermediate-(n = 364), and high-risk (n = 49) groups. In contrast, in the HF group, the intermediate-(n = 341) and high-risk (n = 112) groups had significantly higher recurrence rates than the low-risk group (n = 99) (log-rank test, p = 0.005). This association remained significant after multivariate analysis (hazard ratio [HR]:1.374; p = 0.027). The FIB-4 index increased incrementally as the brain natriuretic peptide levels and severity of tricuspid regurgitation increased. The FIB-4 index was an independent predictor of recurrence in the non-PAF HF group (HR:1.498; p = 0.007) but not in the PAF group. CONCLUSIONS The FIB-4 index may be a useful predictor of AF recurrence after catheter ablation in patients with HF, particularly in those with non-PAF.
Collapse
Affiliation(s)
- Tomoya Iwawaki
- Department of Cardiology, Ogaki Municipal Hospital, 4-86 Minaminokawa-Cho, Ogaki, 503-0864, Japan
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itsuro Morishima
- Department of Cardiology, Ogaki Municipal Hospital, 4-86 Minaminokawa-Cho, Ogaki, 503-0864, Japan.
| | - Yasunori Kanzaki
- Department of Cardiology, Ogaki Municipal Hospital, 4-86 Minaminokawa-Cho, Ogaki, 503-0864, Japan
| | - Yasuhiro Morita
- Department of Cardiology, Ogaki Municipal Hospital, 4-86 Minaminokawa-Cho, Ogaki, 503-0864, Japan
| | - Naoki Watanabe
- Department of Cardiology, Ogaki Municipal Hospital, 4-86 Minaminokawa-Cho, Ogaki, 503-0864, Japan
| | - Naoki Yoshioka
- Department of Cardiology, Ogaki Municipal Hospital, 4-86 Minaminokawa-Cho, Ogaki, 503-0864, Japan
| | - Naoki Shibata
- Department of Cardiology, Ogaki Municipal Hospital, 4-86 Minaminokawa-Cho, Ogaki, 503-0864, Japan
| | - Hiroyuki Miyazawa
- Department of Cardiology, Ogaki Municipal Hospital, 4-86 Minaminokawa-Cho, Ogaki, 503-0864, Japan
| | - Kazuki Shimojo
- Department of Cardiology, Ogaki Municipal Hospital, 4-86 Minaminokawa-Cho, Ogaki, 503-0864, Japan
| | - Satoshi Yanagisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuya Inden
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
4
|
Jun H, Liu S, Knights AJ, Zhu K, Ma Y, Gong J, Lenhart AE, Peng X, Huang Y, Ginder JP, Downie CH, Ramos ET, Kullander K, Kennedy RT, Xu XZS, Wu J. Signaling through the nicotinic acetylcholine receptor in the liver protects against the development of metabolic dysfunction-associated steatohepatitis. PLoS Biol 2024; 22:e3002728. [PMID: 39028754 PMCID: PMC11290650 DOI: 10.1371/journal.pbio.3002728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the progressive form of liver steatosis, the most common liver disease, and substantially increases the mortality rate. However, limited therapies are currently available to prevent MASH development. Identifying potential pharmacological treatments for the condition has been hampered by its heterogeneous and complex nature. Here, we identified a hepatic nonneuronal cholinergic signaling pathway required for metabolic adaptation to caloric overload. We found that cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) is highly expressed in hepatocytes of mice and humans. Further, CHRNA2 is activated by a subpopulation of local acetylcholine-producing macrophages during MASH development. The activation of CHRNA2 coordinates defensive programs against a broad spectrum of MASH-related pathogenesis, including steatosis, inflammation, and fibrosis. Hepatocyte-specific loss of CHRNA2 signaling accelerates the disease onset in different MASH mouse models. Activation of this pathway via pharmacological inhibition of acetylcholine degradation protects against MASH development. Our study uncovers a hepatic nicotinic cholinergic receptor pathway that constitutes a cell-autonomous self-defense route against prolonged metabolic stress and holds therapeutic potential for combatting human MASH.
Collapse
Affiliation(s)
- Heejin Jun
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Shanshan Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alexander J. Knights
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kezhou Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yingxu Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianke Gong
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Sciences and Technology, and Huazhong University of Science and Technology, Wuhan, China
| | - Ashley E. Lenhart
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaoling Peng
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yunying Huang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jared P. Ginder
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher H. Downie
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Erika Thalia Ramos
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - X. Z. Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
5
|
Berthoud HR, Münzberg H, Morrison CD, Neuhuber WL. Hepatic interoception in health and disease. Auton Neurosci 2024; 253:103174. [PMID: 38579493 PMCID: PMC11129274 DOI: 10.1016/j.autneu.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The liver is a large organ with crucial functions in metabolism and immune defense, as well as blood homeostasis and detoxification, and it is clearly in bidirectional communication with the brain and rest of the body via both neural and humoral pathways. A host of neural sensory mechanisms have been proposed, but in contrast to the gut-brain axis, details for both the exact site and molecular signaling steps of their peripheral transduction mechanisms are generally lacking. Similarly, knowledge about function-specific sensory and motor components of both vagal and spinal access pathways to the hepatic parenchyma is missing. Lack of progress largely owes to controversies regarding selectivity of vagal access pathways and extent of hepatocyte innervation. In contrast, there is considerable evidence for glucose sensors in the wall of the hepatic portal vein and their importance for glucose handling by the liver and the brain and the systemic response to hypoglycemia. As liver diseases are on the rise globally, and there are intriguing associations between liver diseases and mental illnesses, it will be important to further dissect and identify both neural and humoral pathways that mediate hepatocyte-specific signals to relevant brain areas. The question of whether and how sensations from the liver contribute to interoceptive self-awareness has not yet been explored.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
6
|
Kurabayashi A, Iwashita W, Furihata K, Fukuhara H, Inoue K. Potential effect of the non-neuronal cardiac cholinergic system on hepatic glucose and energy metabolism. Front Cardiovasc Med 2024; 11:1381721. [PMID: 38818213 PMCID: PMC11137232 DOI: 10.3389/fcvm.2024.1381721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
The vagus nerve belongs to the parasympathetic nervous system, which is involved in the regulation of organs throughout the body. Since the discovery of the non-neuronal cardiac cholinergic system (NNCCS), several studies have provided evidence for the positive role of acetylcholine (ACh) released from cardiomyocytes against cardiovascular diseases, such as sympathetic hyperreactivity-induced cardiac remodeling and dysfunction as well as myocardial infarction. Non-neuronal ACh released from cardiomyocytes is believed to regulate key physiological functions of the heart, such as attenuating heart rate, offsetting hypertrophic signals, maintaining action potential propagation, and modulating cardiac energy metabolism through the muscarinic ACh receptor in an auto/paracrine manner. Moreover, the NNCCS may also affect peripheral remote organs (e.g., liver) through the vagus nerve. Remote ischemic preconditioning (RIPC) and NNCCS activate the central nervous system and afferent vagus nerve. RIPC affects hepatic glucose and energy metabolism through the central nervous system and vagus nerve. In this review, we discuss the mechanisms and potential factors responsible for NNCCS in glucose and energy metabolism in the liver.
Collapse
Affiliation(s)
| | - Waka Iwashita
- Department of Pathology, Kochi Medical School, Nankoku, Japan
| | - Kaoru Furihata
- Department of Pathology, Kochi Medical School, Nankoku, Japan
| | - Hideo Fukuhara
- Department of Urology, Kochi Medical School, Nankoku, Japan
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Nankoku, Japan
| |
Collapse
|
7
|
Ichimura-Shimizu M, Kurrey K, Miyata M, Dezawa T, Tsuneyama K, Kojima M. Emerging Insights into the Role of BDNF on Health and Disease in Periphery. Biomolecules 2024; 14:444. [PMID: 38672461 PMCID: PMC11048455 DOI: 10.3390/biom14040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor that promotes the survival and growth of developing neurons. It also enhances circuit formation to synaptic transmission for mature neurons in the brain. However, reduced BDNF expression and single nucleotide polymorphisms (SNP) are reported to be associated with functional deficit and disease development in the brain, suggesting that BDNF is a crucial molecule for brain health. Interestingly, BDNF is also expressed in the hypothalamus in appetite and energy metabolism. Previous reports demonstrated that BDNF knockout mice exhibited overeating and obesity phenotypes remarkably. Therefore, we could raise a hypothesis that the loss of function of BDNF may be associated with metabolic syndrome and peripheral diseases. In this review, we describe our recent finding that BDNF knockout mice develop metabolic dysfunction-associated steatohepatitis and recent reports demonstrating the role of one of the BDNF receptors, TrkB-T1, in some peripheral organ functions and diseases, and would provide an insight into the role of BDNF beyond the brain.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Khuleshwari Kurrey
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06520, USA;
| | - Misaki Miyata
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Takuya Dezawa
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Masami Kojima
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| |
Collapse
|
8
|
Xue R, Wu Q, Guo L, Ye D, Cao Q, Zhang M, Xian Y, Chen M, Yan K, Zheng J. Pyridostigmine attenuated high-fat-diet induced liver injury by the reduction of mitochondrial damage and oxidative stress via α7nAChR and M3AChR. J Biochem Mol Toxicol 2024; 38:e23671. [PMID: 38454809 DOI: 10.1002/jbt.23671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Obesity is a major cause of nonalcohol fatty liver disease (NAFLD), which is characterized by hepatic fibrosis, lipotoxicity, inflammation, and apoptosis. Previous studies have shown that an imbalance in the autonomic nervous system is closely related to the pathogenesis of NAFLD. In this study, we investigated the effects of pyridostigmine (PYR), a cholinesterase (AChE) inhibitor, on HFD-induced liver injury and explored the potential mechanisms involving mitochondrial damage and oxidative stress. A murine model of HFD-induced obesity was established using the C57BL/6 mice, and PYR (3 mg/kg/d) or placebo was administered for 20 weeks. PYR reduced the body weight and liver weight of the HFD-fed mice. Additionally, the serum levels of IL-6, TNF-α, cholesterol, and triglyceride were significantly lower in the PYR-treated versus the untreated mice, corresponding to a decrease in hepatic fibrosis, lipid accumulation, and apoptosis in the former. Furthermore, the mitochondrial morphology improved significantly in the PYR-treated group. Consistently, PYR upregulated ATP production and the mRNA level of the mitochondrial dynamic factors OPA1, Drp1 and Fis1, and the mitochondrial unfolded protein response (UPRmt) factors LONP1 and HSP60. Moreover, PYR treatment activated the Keap1/Nrf2 pathway and upregulated HO-1 and NQO-1, which mitigated oxidative injury as indicated by decreased 8-OHDG, MDA and H2 O2 levels, and increased SOD activity. Finally, PYR elevated acetylcholine (ACh) levels by inhibiting AChE, and upregulated the α7nAChR and M3AChR proteins in the HFD-fed mice. PYR alleviated obesity-induced hepatic injury in mice by mitigating mitochondrial damage and oxidative stress via α7nAChR and M3AChR.
Collapse
Affiliation(s)
- Runqing Xue
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Wu
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Lulu Guo
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Dan Ye
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Cao
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Meng Zhang
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Yushan Xian
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Minchun Chen
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Kangkang Yan
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Jie Zheng
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| |
Collapse
|
9
|
Xue J, Jiang T, Humaerhan J, Wang M, Ning J, Zhao H, Aji T, Shao Y. Impact of Liver Sympathetic Nervous System on Liver Fibrosis and Regeneration After Bile Duct Ligation in Rats. J Mol Neurosci 2024; 74:4. [PMID: 38183518 DOI: 10.1007/s12031-023-02176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
The sympathetic nervous system (SNS) affects many functions of the body. SNS fibers regulate many aspects of liver function, repair, and regeneration. However, in the model of bile duct ligation (BDL) in rats, the kind of impact caused by the regulation of liver SNS on liver fibrosis and liver regeneration is unclear. The main research objective of this experiment is to examine the effect of SNS on liver fibrosis and liver regeneration. Twenty-four male Sprague-Dawley (SD) rats were assigned randomly to four groups. These groups included the sham surgery group (sham), model group (BDL), 6-hydroxydopamine group (BDL+6-OHDA), and spinal cord injury group (BDL+SCI). In the sham group, only exploratory laparotomy was performed without BDL. In the 6-OHDA group, 6-OHDA was used to remove sympathetic nerves after BDL. In the spinal cord injury group, rats underwent simultaneous BDL and spinal cord injury. After 3 weeks of feeding, four groups of rats were euthanized using high-dose anesthesia without pain. Moreover, liver tissue and blood were taken to detect liver fibrosis and regeneration indicators. After intraperitoneal injection of 6-OHDA into BDL rats, liver fibrosis indicators decreased. The administration of the injection effectively alleviated liver fibrosis and inhibited liver regeneration. However, after SCI surgery in BDL rats, liver fibrosis indicators increased. This resulted in exacerbating liver fibrosis and activating liver regeneration. The SNS plays a role in contributing to the liver injury process in the rat BDL model. Therefore, regulating the SNS may become a novel method for liver injury treatment.
Collapse
Affiliation(s)
- Junlong Xue
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Tiemin Jiang
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, The First Clinical Medical College of Xinjiang Medical University, Urumqi, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Jiayidaer Humaerhan
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Maolin Wang
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Jianghong Ning
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Hanyue Zhao
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Tuerganaili Aji
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, The First Clinical Medical College of Xinjiang Medical University, Urumqi, China
| | - Yingmei Shao
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
- Xinjiang Clinical Research Center for Echinococcosis and Hepatobiliary Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
10
|
Lopes PKF, Costa SDO, Simino LADP, Chaves WF, Silva FA, Costa CL, Milanski M, Ignacio-Souza LM, Torsoni AS, Torsoni MA. Hypothalamic inflammation and the development of an obese phenotype induced by high-fat diet consumption is exacerbated in alpha7 nicotinic cholinergic receptor knockout mice. Food Res Int 2024; 176:113808. [PMID: 38163714 DOI: 10.1016/j.foodres.2023.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Hypothalamic inflammation and metabolic changes resulting from the consumption of high-fat diets have been linked to low grade inflammation and obesity. Inflammation impairs the hypothalamic expression of α7 nicotinic acetylcholine receptor (α7nAChR). The α7nAChR is described as the main component of the anti-inflammatory cholinergic pathway in different inflammation models. To assess whether the reduction in α7nAChR expression exacerbates hypothalamic inflammation induced by a high-fat diet (HFD), were used male and female global α7nAChR knockout mouse line in normal or high-fat diet for 4 weeks. Body weight gain, adiposity, glucose homeostasis, hypothalamic inflammation, food intake, and energy expenditure were evaluated. Insulin sensitivity was evaluated in neuronal cell culture. Consumption of an HFD for 4 weeks resulted in body weight gain and adiposity in male Chrna7-/- mice and the hypothalamus of male Chrna7-/- mice showed neuroinflammatory markers, with increased gene expression of pro-inflammatory cytokines and dysregulation in the nuclear factor kappa B pathway. Moreover, male Chrna7-/- mice consuming an HFD showed alterations in glucose homeostasis and serum of Chrna7-/- mice that consumed an HFD impaired insulin signalling in neuronal cell culture experiments. In general, female Chrna7-/- mice that consumed an HFD did not show the phenotypic and molecular changes found in male mice, indicating that there is sexual dimorphism in the analysed parameters. Thus, receptor deletion resulted in increased susceptibility to hypothalamic inflammation and metabolic damage associated with HFD consumption in male mice.
Collapse
Affiliation(s)
| | - Suleyma de Oliveira Costa
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Laís A de Paula Simino
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Wenicios Ferreira Chaves
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Franciely Alves Silva
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Caroline Lobo Costa
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil; Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Brazil
| | - Leticia Martins Ignacio-Souza
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil; Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil; Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil; Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Brazil.
| |
Collapse
|
11
|
Martínez-Meza S, Singh B, Nixon DF, Dopkins N, Gangcuangco LMA. The brain-liver cholinergic anti-inflammatory pathway and viral infections. Bioelectron Med 2023; 9:29. [PMID: 38115148 PMCID: PMC10731847 DOI: 10.1186/s42234-023-00132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023] Open
Abstract
Efferent cholinergic signaling is a critical and targetable source of immunoregulation. The vagus nerve (VN) is the primary source of cholinergic signaling in the body, and partially innervates hepatic functionality through the liver-brain axis. Virus-induced disruption of cholinergic signaling may promote pathogenesis in hepatotropic and neurotropic viruses. Therefore, restoring VN functionality could be a novel therapeutic strategy to alleviate pathogenic inflammation in hepatotropic and neurotropic viral infections alike. In this minireview, we discuss the physiological importance of cholinergic signaling in maintaining liver-brain axis homeostasis. Next, we explore mechanisms by which the VN is perturbed by viral infections, and how non-invasive restoration of cholinergic signaling pathways with bioelectronic medicine (BEM) might ameliorate hepatic inflammation and neuroinflammation in certain viral infections.
Collapse
Affiliation(s)
- Samuel Martínez-Meza
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Bhavya Singh
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas Dopkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Louie Mar A Gangcuangco
- Hawaii Center for AIDS, Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
12
|
Chan KL, Poller WC, Swirski FK, Russo SJ. Central regulation of stress-evoked peripheral immune responses. Nat Rev Neurosci 2023; 24:591-604. [PMID: 37626176 PMCID: PMC10848316 DOI: 10.1038/s41583-023-00729-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and the neuronal populations within them, that respond to stress and transmit signals to peripheral tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological function. We comprehensively summarize studies that have employed retrograde tracing to define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation or intracerebroventricular administration of peptide hormones to control somatic immune responses. Collectively, this growing body of literature illustrates potential mechanisms through which stress signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and comorbid pathophysiology.
Collapse
Affiliation(s)
- Kenny L Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Wolfram C Poller
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Yang K, Huang Z, Wang S, Zhao Z, Yi P, Chen Y, Xiao M, Quan J, Hu X. The Hepatic Nerves Regulated Inflammatory Effect in the Process of Liver Injury: Is Nerve the Key Treating Target for Liver Inflammation? Inflammation 2023; 46:1602-1611. [PMID: 37490221 DOI: 10.1007/s10753-023-01854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 07/26/2023]
Abstract
Liver injury is a common pathological basis for various liver diseases. Chronic liver injury is often an important initiating factor in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Currently, hepatitis A and E infections are the most common causes of acute liver injury worldwide, whereas drug toxicity (paracetamol overdose) in the USA and part of Western Europe. In recent years, chronic liver injury has become a common disease that harms human health. Meanwhile, the main causes of chronic liver injury are viral hepatitis (B, C) and long-term alcohol consumption worldwide. During the process of liver injury, massive inflammatory cytokines are stimulated by these hazardous factors, leading to a systemic inflammatory response syndrome, followed by a compensatory anti-inflammatory response, which causes immune cell dysfunction and sepsis, subsequent multi-organ failure. Cytokine release and immune cell infiltration-mediated aseptic inflammation are the most important features of the pathobiology of liver failure. From this perspective, diminishing the onset and progression of liver inflammation is of clinical importance in the treatment of liver injury. Although many studies have hinted at the critical role of nerves in regulating inflammation, there largely remains undetermined how hepatic nerves mediate immune inflammation and how the inflammatory factors released by these nerves are involved in the process of liver injury. Therefore, the purpose of this article is to summarize previous studies in the field related to hepatic nerve and inflammation as well as future perspectives on the aforementioned questions. Our findings were presented in three aspects: types of nerve distribution in the liver, how these nerves regulate immunity, and the role of liver nerves in hepatitis and liver failure.
Collapse
Affiliation(s)
- Kaili Yang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zebing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shuyi Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhihong Zhao
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Panpan Yi
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yayu Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Meifang Xiao
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Quan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xingwang Hu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, 87Th of Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
14
|
Chicherova I, Hernandez C, Mann F, Zoulim F, Parent R. Axon guidance molecules in liver pathology: Journeys on a damaged passport. Liver Int 2023; 43:1850-1864. [PMID: 37402699 DOI: 10.1111/liv.15662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND AND AIMS The liver is an innervated organ that develops a variety of chronic liver disease (CLD). Axon guidance cues (AGCs), of which ephrins, netrins, semaphorins and slits are the main representative, are secreted or membrane-bound proteins that can attract or repel axons through interactions with their growth cones that contain receptors recognizing these messengers. While fundamentally implicated in the physiological development of the nervous system, the expression of AGCs can also be reinduced under acute or chronic conditions, such as CLD, that necessitate redeployment of neural networks. METHODS This review considers the ad hoc literature through the neglected canonical neural function of these proteins that is also applicable to the diseased liver (and not solely their observed parenchymal impact). RESULTS AGCs impact fibrosis regulation, immune functions, viral/host interactions, angiogenesis, and cell growth, both at the CLD and HCC levels. Special attention has been paid to distinguishing correlative and causal data in such datasets in order to streamline data interpretation. While hepatic mechanistic insights are to date limited, bioinformatic evidence for the identification of AGCs mRNAs positive cells, protein expression, quantitative regulation, and prognostic data have been provided. Liver-pertinent clinical studies based on the US Clinical Trials database are listed. Future research directions derived from AGC targeting are proposed. CONCLUSION This review highlights frequent implication of AGCs in CLD, linking traits of liver disorders and the local autonomic nervous system. Such data should contribute to diversifying current parameters of patient stratification and our understanding of CLD.
Collapse
Affiliation(s)
- Ievgeniia Chicherova
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
| | - Charlotte Hernandez
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
| | - Fanny Mann
- Aix-Marseille University, CNRS, IBDM, Marseille, France
| | - Fabien Zoulim
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
- Hepatogastroenterology Service, Croix-Rousse University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Romain Parent
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
| |
Collapse
|
15
|
Mukherjee S, Skrede S, Haugstøyl M, López M, Fernø J. Peripheral and central macrophages in obesity. Front Endocrinol (Lausanne) 2023; 14:1232171. [PMID: 37720534 PMCID: PMC10501731 DOI: 10.3389/fendo.2023.1232171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 09/19/2023] Open
Abstract
Obesity is associated with chronic, low-grade inflammation. Excessive nutrient intake causes adipose tissue expansion, which may in turn cause cellular stress that triggers infiltration of pro-inflammatory immune cells from the circulation as well as activation of cells that are residing in the adipose tissue. In particular, the adipose tissue macrophages (ATMs) are important in the pathogenesis of obesity. A pro-inflammatory activation is also found in other organs which are important for energy metabolism, such as the liver, muscle and the pancreas, which may stimulate the development of obesity-related co-morbidities, including insulin resistance, type 2 diabetes (T2D), cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Interestingly, it is now clear that obesity-induced pro-inflammatory signaling also occurs in the central nervous system (CNS), and that pro-inflammatory activation of immune cells in the brain may be involved in appetite dysregulation and metabolic disturbances in obesity. More recently, it has become evident that microglia, the resident macrophages of the CNS that drive neuroinflammation, may also be activated in obesity and can be relevant for regulation of hypothalamic feeding circuits. In this review, we focus on the action of peripheral and central macrophages and their potential roles in metabolic disease, and how macrophages interact with other immune cells to promote inflammation during obesity.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Martha Haugstøyl
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Xu GX, Wei S, Yu C, Zhao SQ, Yang WJ, Feng YH, Pan C, Yang KX, Ma Y. Activation of Kupffer cells in NAFLD and NASH: mechanisms and therapeutic interventions. Front Cell Dev Biol 2023; 11:1199519. [PMID: 37261074 PMCID: PMC10228659 DOI: 10.3389/fcell.2023.1199519] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are emerging as the leading causes of liver disease worldwide. These conditions can lead to cirrhosis, liver cancer, liver failure, and other related ailments. At present, liver transplantation remains the sole treatment option for end-stage NASH, leading to a rapidly growing socioeconomic burden. Kupffer cells (KCs) are a dominant population of macrophages that reside in the liver, playing a crucial role in innate immunity. Their primary function includes phagocytosing exogenous substances, presenting antigens, and triggering immune responses. Moreover, they interact with other liver cells during the pathogenesis of NAFLD, and this crosstalk may either delay or exacerbate disease progression. Stimulation by endogenous signals triggers the activation of KCs, resulting in the expression of various inflammatory factors and chemokines, such as NLRP3, TNF-α, IL-1B, and IL-6, and contributing to the inflammatory cascade. In the past 5 years, significant advances have been made in understanding the biological properties and immune functions of KCs in NAFLD, including their interactions with tissue molecules, underlying molecular mechanisms, signaling pathways, and relevant therapeutic interventions. Having a comprehensive understanding of these mechanisms and characteristics can have enormous potential in guiding future strategies for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Ma
- *Correspondence: Kun-Xing Yang, ; Yong Ma,
| |
Collapse
|
17
|
Adori M, Bhat S, Gramignoli R, Valladolid-Acebes I, Bengtsson T, Uhlèn M, Adori C. Hepatic Innervations and Nonalcoholic Fatty Liver Disease. Semin Liver Dis 2023; 43:149-162. [PMID: 37156523 PMCID: PMC10348844 DOI: 10.1055/s-0043-57237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. Increased sympathetic (noradrenergic) nerve tone has a complex role in the etiopathomechanism of NAFLD, affecting the development/progression of steatosis, inflammation, fibrosis, and liver hemodynamical alterations. Also, lipid sensing by vagal afferent fibers is an important player in the development of hepatic steatosis. Moreover, disorganization and progressive degeneration of liver sympathetic nerves were recently described in human and experimental NAFLD. These structural alterations likely come along with impaired liver sympathetic nerve functionality and lack of adequate hepatic noradrenergic signaling. Here, we first overview the anatomy and physiology of liver nerves. Then, we discuss the nerve impairments in NAFLD and their pathophysiological consequences in hepatic metabolism, inflammation, fibrosis, and hemodynamics. We conclude that further studies considering the spatial-temporal dynamics of structural and functional changes in the hepatic nervous system may lead to more targeted pharmacotherapeutic advances in NAFLD.
Collapse
Affiliation(s)
- Monika Adori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sadam Bhat
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ismael Valladolid-Acebes
- Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Mathias Uhlèn
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Csaba Adori
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Ahmed O, Caravaca AS, Crespo M, Dai W, Liu T, Guo Q, Leiva M, Sabio G, Shavva VS, Malin SG, Olofsson PS. Hepatic stellate cell activation markers are regulated by the vagus nerve in systemic inflammation. Bioelectron Med 2023; 9:6. [PMID: 36997988 PMCID: PMC10064698 DOI: 10.1186/s42234-023-00108-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND The liver is an important immunological organ and liver inflammation is part of the pathophysiology of non-alcoholic steatohepatitis, a condition that may promote cirrhosis, liver cancer, liver failure, and cardiovascular disease. Despite dense innervation of the liver parenchyma, little is known about neural regulation of liver function in inflammation. Here, we study vagus nerve control of the liver response to acute inflammation. METHODS Male C57BL/6 J mice were subjected to either sham surgery, surgical vagotomy, or electrical vagus nerve stimulation followed by intraperitoneal injection of the TLR2 agonist zymosan. Animals were euthanized and tissues collected 12 h after injection. Samples were analyzed by qPCR, RNAseq, flow cytometry, or ELISA. RESULTS Hepatic mRNA levels of pro-inflammatory mediators Ccl2, Il-1β, and Tnf-α were significantly higher in vagotomized mice compared with mice subjected to sham surgery. Differences in liver Ccl2 levels between treatment groups were largely reflected in the plasma chemokine (C-C motif) ligand 2 (CCL2) concentration. In line with this, we observed a higher number of macrophages in the livers of vagotomized mice compared with sham as measured by flow cytometry. In mice subjected to electrical vagus nerve stimulation, hepatic mRNA levels of Ccl2, Il1β, and Tnf-α, and plasma CCL2 levels, were significantly lower compared with sham. Interestingly, RNAseq revealed that a key activation marker for hepatic stellate cells (HSC), Pnpla3, was the most significantly differentially expressed gene between vagotomized and sham mice. Of note, several HSC-activation associated transcripts were higher in vagotomized mice, suggesting that signals in the vagus nerve contribute to HSC activation. In support of this, we observed significantly higher number of activated HSCs in vagotomized mice as compared with sham as measured by flow cytometry. CONCLUSIONS Signals in the cervical vagus nerve controlled hepatic inflammation and markers of HSC activation in zymosan-induced peritonitis.
Collapse
Affiliation(s)
- Osman Ahmed
- Department of Medicine Solna, Laboratory of Immunobiology, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Biochemistry, Faculty of Medicine, Khartoum University, Khartoum, Sudan
- Department of Medicine Solna, Stockholm Center for Bioelectronic Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - April S Caravaca
- Department of Medicine Solna, Laboratory of Immunobiology, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine Solna, Stockholm Center for Bioelectronic Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Crespo
- Spanish National Center for Cardiovascular Research (CNIC), Madrid, Spain
| | - Wanmin Dai
- Department of Medicine Solna, Laboratory of Immunobiology, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine Solna, Stockholm Center for Bioelectronic Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ting Liu
- Department of Medicine Solna, Laboratory of Immunobiology, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine Solna, Stockholm Center for Bioelectronic Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Qi Guo
- Department of Medicine Solna, Laboratory of Immunobiology, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine Solna, Stockholm Center for Bioelectronic Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Magdalena Leiva
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Guadalupe Sabio
- Spanish National Center for Cardiovascular Research (CNIC), Madrid, Spain
| | - Vladimir S Shavva
- Department of Medicine Solna, Laboratory of Immunobiology, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine Solna, Stockholm Center for Bioelectronic Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Stephen G Malin
- Department of Medicine Solna, Laboratory of Immunobiology, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peder S Olofsson
- Department of Medicine Solna, Laboratory of Immunobiology, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine Solna, Stockholm Center for Bioelectronic Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
19
|
Metz M, Beghini M, Wolf P, Pfleger L, Hackl M, Bastian M, Freudenthaler A, Harreiter J, Zeyda M, Baumgartner-Parzer S, Marculescu R, Marella N, Hannich JT, Györi G, Berlakovich G, Roden M, Krebs M, Risti R, Lõokene A, Trauner M, Kautzky-Willer A, Krššák M, Stangl H, Fürnsinn C, Scherer T. Leptin increases hepatic triglyceride export via a vagal mechanism in humans. Cell Metab 2022; 34:1719-1731.e5. [PMID: 36220067 DOI: 10.1016/j.cmet.2022.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Recombinant human leptin (metreleptin) reduces hepatic lipid content in patients with lipodystrophy and overweight patients with non-alcoholic fatty liver disease and relative hypoleptinemia independent of its anorexic action. In rodents, leptin signaling in the brain increases very-low-density lipoprotein triglyceride (VLDL-TG) secretion and reduces hepatic lipid content via the vagus nerve. In this randomized, placebo-controlled crossover trial (EudraCT Nr. 2017-003014-22), we tested whether a comparable mechanism regulates hepatic lipid metabolism in humans. A single metreleptin injection stimulated hepatic VLDL-TG secretion (primary outcome) and reduced hepatic lipid content in fasted, lean men (n = 13, age range 20-38 years) but failed to do so in metabolically healthy liver transplant recipients (n = 9, age range 26-62 years) who represent a model for hepatic denervation. In an independent cohort of lean men (n = 10, age range 23-31 years), vagal stimulation by modified sham feeding replicated the effects of metreleptin on VLDL-TG secretion. Therefore, we propose that leptin has anti-steatotic properties that are independent of food intake by stimulating hepatic VLDL-TG export via a brain-vagus-liver axis.
Collapse
Affiliation(s)
- Matthäus Metz
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Marianna Beghini
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Peter Wolf
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Lorenz Pfleger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Martina Hackl
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Magdalena Bastian
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Angelika Freudenthaler
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Jürgen Harreiter
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Maximilian Zeyda
- Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Department for Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna 1090, Austria
| | - Sabina Baumgartner-Parzer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Nara Marella
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - J Thomas Hannich
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Georg Györi
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna 1090, Austria
| | - Gabriela Berlakovich
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna 1090, Austria
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf 40225, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf 40225, Germany
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Robert Risti
- Department of Chemistry, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Aivar Lõokene
- Department of Chemistry, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Herbert Stangl
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Clemens Fürnsinn
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
20
|
Zhang S, Lu S, Li Z. Extrahepatic factors in hepatic immune regulation. Front Immunol 2022; 13:941721. [PMID: 36052075 PMCID: PMC9427192 DOI: 10.3389/fimmu.2022.941721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The liver is a site of complex immune activity. The hepatic immune system tolerates harmless immunogenic loads in homeostasis status, shelters liver function, while maintaining vigilance against possible infectious agents or tissue damage and providing immune surveillance at the same time. Activation of the hepatic immunity is initiated by a diverse repertoire of hepatic resident immune cells as well as non-hematopoietic cells, which can sense "danger signals" and trigger robust immune response. Factors that mediate the regulation of hepatic immunity are elicited not only in liver, but also in other organs, given the dual blood supply of the liver via both portal vein blood and arterial blood. Emerging evidence indicates that inter-organ crosstalk between the liver and other organs such as spleen, gut, lung, adipose tissue, and brain is involved in the pathogenesis of liver diseases. In this review, we present the features of hepatic immune regulation, with particular attention to the correlation with factors from extrahepatic organ. We describe the mechanisms by which other organs establish an immune association with the liver and then modulate the hepatic immune response. We discuss their roles and distinct mechanisms in liver homeostasis and pathological conditions from the cellular and molecular perspective, highlighting their potential for liver disease intervention. Moreover, we review the available animal models and methods for revealing the regulatory mechanisms of these extrahepatic factors. With the increasing understanding of the mechanisms by which extrahepatic factors regulate liver immunity, we believe that this will provide promising targets for liver disease therapy.
Collapse
Affiliation(s)
- Shaoying Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shemin Lu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, China
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Owaki T, Kamimura K, Ko M, Nagayama I, Nagoya T, Shibata O, Oda C, Morita S, Kimura A, Sato T, Setsu T, Sakamaki A, Kamimura H, Yokoo T, Terai S. The liver-gut peripheral neural axis and nonalcoholic fatty liver disease pathologies via hepatic serotonin receptor 2A. Dis Model Mech 2022; 15:276108. [PMID: 35765850 PMCID: PMC9346519 DOI: 10.1242/dmm.049612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Serotonin (5-HT) is one of the key bioamines of nonalcoholic fatty liver disease (NAFLD). Its mechanism of action in autonomic neural signal pathways remains unexplained; hence, we evaluated the involvement of 5-HT and related signaling pathways via autonomic nerves in NAFLD. Diet-induced NAFLD animal models were developed using wild-type and melanocortin 4 receptor (MC4R) knockout (MC4RKO) mice, and the effects of the autonomic neural axis on NAFLD physiology, 5-HT and its receptors (HTRs), and lipid metabolism-related genes were assessed by applying hepatic nerve blockade. Hepatic neural blockade retarded the progression of NAFLD by reducing 5-HT in the small intestine, hepatic HTR2A and hepatic lipogenic gene expression, and treatment with an HTR2A antagonist reproduced these effects. The effects were milder in MC4RKO mice, and brain 5-HT and HTR2C expression did not correlate with peripheral neural blockade. Our study demonstrates that the autonomic liver-gut neural axis is involved in the etiology of diet-induced NAFLD and that 5-HT and HTR2A are key factors, implying that the modulation of the axis and use of HTR2A antagonists are potentially novel therapeutic strategies for NAFLD treatment. This article has an associated First Person interview with the first author of the paper. Summary: The hepatic-gut neural axis plays a role in NAFLD progression via serotonin and the serotonin receptor HTR2A in hepatocytes, suggesting that HTR2A antagonists are potential therapeutic agents for NAFLD.
Collapse
Affiliation(s)
- Takashi Owaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan.,Department of General Medicine, Niigata University School of Medicine, Niigata, Niigata, 951-8510, Japan
| | - Masayoshi Ko
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Itsuo Nagayama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takuro Nagoya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Osamu Shibata
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Chiyumi Oda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Shinichi Morita
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Atsushi Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takeki Sato
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| |
Collapse
|
22
|
Su Y, Zhang W, Zhang R, Yuan Q, Wu R, Liu X, Wuri J, Li R, Yan T. Activation of Cholinergic Anti-Inflammatory Pathway Ameliorates Cerebral and Cardiac Dysfunction After Intracerebral Hemorrhage Through Autophagy. Front Immunol 2022; 13:870174. [PMID: 35812436 PMCID: PMC9260497 DOI: 10.3389/fimmu.2022.870174] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is the devastating subtype of stroke with cardiovascular complications, resulting in high rates of mortality and morbidity with the release of inflammatory factors. Previous studies have demonstrated that activation of α7nAChR can reduce immune and inflammation-related diseases by triggering the cholinergic anti-inflammatory pathway (CAIP). α7nAChR mediates protection from nervous system inflammation through AMPK-mTOR-p70S6K-associated autophagy. Therefore, the purpose of this study is to explore whether the activation of α7nAChR improves cerebral and cardiac dysfunction after ICH through autophagy. Methods Male C57BL/6 mice were randomly divided into five groups (1): Control + saline (2), ICH+ saline (3), ICH + PNU-282987 (4), ICH+ PNU-282987 + MLA (5), ICH + PNU-282987 + 3-MA. The neurological function was evaluated at multiple time points. Brain water content was measured at 3 days after ICH to assess the severity of brain edema. PCR, immunofluorescence staining, and Western Blot were performed at 7 days after ICH to detect inflammation and autophagy. Picro-Sirius Red staining was measured at 30 days after ICH to evaluate myocardial fibrosis, echocardiography was performed at 3 and 30 days to measure cardiac function. Results Our results indicated that the PNU-282987 reduced inflammatory factors (MCP-1, IL-1β, MMP-9, TNF-α, HMGB1, TLR2), promoted the polarization of macrophage/microglia into anti-inflammatory subtypes(CD206), repaired blood-brain barrier injury (ZO-1, Claudin-5, Occludin), alleviated acute brain edema and then recovered neurological dysfunction. Echocardiography and PSR indicated that activation of α7nAChR ameliorated cardiac dysfunction. Western Blot showed that activation of α7nAChR increased autophagy protein (LC3, Beclin) and decreased P62. It demonstrated that the activation of α7nAChR promotes autophagy and then recovers brain and heart function after ICH. Conclusions In conclusion, PNU-282987 promoted the cerebral and cardiac functional outcomes after ICH in mice through activated α7nAChR, which may be attributable to promoting autophagy and then reducing inflammatory reactions after ICH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tao Yan
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma, Neurorepair, and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
23
|
Low heart rate variability from 10-s electrocardiograms is associated with development of non-alcoholic fatty liver disease. Sci Rep 2022; 12:1062. [PMID: 35058515 PMCID: PMC8776891 DOI: 10.1038/s41598-022-05037-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Reduced heart rate variability (HRV) is reflective of autonomic imbalance. However, its impact on non-alcoholic fatty liver disease (NAFLD) is unknown. We investigated the association between 10-s HRV and incident NAFLD. A cohort of 154,286 Korean adults with no NAFLD at baseline were followed up. 10-s electrocardiograms were used to estimate two time-domain HRV, the standard deviation of normal-to-normal intervals (SDNN) and the root mean square of successive differences in RR intervals (RMSSD). Hepatic steatosis (HS) and liver fibrosis were assessed using ultrasonography and the fibrosis-4 index (FIB-4). A total of 27,279 incident HS (median follow up of 4.2 years) and 1250 incident HS plus high FIB-4 (median follow up of 4.2 years) cases were identified at follow-up. The multivariable adjusted hazard ratios (aHRs) (95% confidence intervals [CIs]) in a model with time-dependent variables for incident HS, comparing the lowest quintile to the highest and reference quintile of the RMSSD, was 1.43 (1.37-1.49), and the corresponding HR for incident HS plus intermediate/high FIB-4 was 1.70 (1.35-2.15). Similarly, SDNN was inversely associated with incident HS and HS plus intermediate/high FIB-4. The results were similar using the NAFLD fibrosis score. Autonomic imbalance assessed by HRV may help to identify individuals at a high risk of HS and its progression and warrant further studies.
Collapse
|
24
|
Matsubara Y, Kiyohara H, Teratani T, Mikami Y, Kanai T. Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacology 2021; 205:108915. [PMID: 34919906 DOI: 10.1016/j.neuropharm.2021.108915] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The liver is the largest organ in the human body and is responsible for the metabolism and storage of the three principal nutrients: carbohydrates, fats, and proteins. In addition, the liver contributes to the breakdown and excretion of alcohol, medicinal agents, and toxic substances and the production and secretion of bile. In addition to its role as a metabolic centre, the liver has recently attracted attention for its function in the liver-brain axis, which interacts closely with the central nervous system via the autonomic nervous system, including the vagus nerve. The liver-brain axis influences the control of eating behaviour in the central nervous system through stimuli from the liver. Conversely, neural signals from the central nervous system influence glucose, lipid, and protein metabolism in the liver. The liver also receives a constant influx of nutrients and hormones from the intestinal tract and compounds of bacterial origin via the portal system. As a result, the intestinal tract and liver are involved in various immunological interactions. A good example is the co-occurrence of primary sclerosing cholangitis and ulcerative colitis. These heterogeneous roles of the liver-brain axis are mediated via the vagus nerve in an asymmetrical manner. In this review, we provide an overview of these interactions, mainly with the liver but also with the brain and gut.
Collapse
Affiliation(s)
- Yuta Matsubara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
25
|
Miller BM, Oderberg IM, Goessling W. Hepatic Nervous System in Development, Regeneration, and Disease. Hepatology 2021; 74:3513-3522. [PMID: 34256416 PMCID: PMC8639644 DOI: 10.1002/hep.32055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/10/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
The liver is innervated by autonomic and sensory fibers of the sympathetic and parasympathetic nervous systems that regulate liver function, regeneration, and disease. Although the importance of the hepatic nervous system in maintaining and restoring liver homeostasis is increasingly appreciated, much remains unknown about the specific mechanisms by which hepatic nerves both influence and are influenced by liver diseases. While recent work has begun to illuminate the developmental mechanisms underlying recruitment of nerves to the liver, evolutionary differences contributing to species-specific patterns of hepatic innervation remain elusive. In this review, we summarize current knowledge on the development of the hepatic nervous system and its role in liver regeneration and disease. We also highlight areas in which further investigation would greatly enhance our understanding of the evolution and function of liver innervation.
Collapse
Affiliation(s)
- Bess M. Miller
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Isaac M. Oderberg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA.,corresponding author: Contact Information: Wolfram Goessling, MD, PhD, Wang 539B, 55 Fruit Street, Boston, MA 02114,
| |
Collapse
|
26
|
Deng J, Jiang Y, Wang M, Shao L, Deng C. Activation of vagovagal reflex prevents hepatic ischaemia-reperfusion-induced lung injury via anti-inflammatory and antioxidant effects. Exp Physiol 2021; 106:2210-2222. [PMID: 34533881 DOI: 10.1113/ep089865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does vagus nerve stimulation have protective effects against both direct liver damage and distant lung injury in a rat model of hepatic ischaemia-reperfusion? What is the main finding and its importance? Vagus nerve stimulation provides protection through anti-inflammatory and anti-oxidative stress effects, possibly achieved by the vagovagal reflex. ABSTRACT Hepatic ischaemia-reperfusion (I/R) is not an isolated event; instead, it can result in remote organ dysfunction. The aim of this study was to investigate whether vagus nerve stimulation (VNS) can alleviate hepatic I/R-induced lung injury and to explore the underlying mechanism. Thirty male Sprague-Dawley rats were randomly allocated into five groups (n = 6 each): the sham group (without I/R or VNS), the I/R group (hepatic I/R) and three different VNS treatment groups (hepatic I/R plus VNS). The hepatic I/R group was subjected to occlusion of the portal vein and hepatic artery for 1 h, followed by 6 h of reperfusion. The intact afferent and efferent cervical vagus nerves were stimulated throughout the I/R process. During VNS, cervical neural activity was recorded. At the end of the experiment, liver function, the wet-to-dry lung weight ratio, histology of the liver and lung and inflammatory/oxidative indices were evaluated. We found that VNS significantly mitigated lung injury, as demonstrated by alleviation of pulmonary oedema and pathological alterations, by limiting inflammatory cytokine infiltration and increasing antioxidant capability. This proof-of-concept study suggested that VNS might protect patients from lung injury induced by hepatic I/R related to various circumstances.
Collapse
Affiliation(s)
- Jielin Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yunqiu Jiang
- Department of Internal Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Meng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ling Shao
- Department of Cardiology, The First People's Hospital of Jingmen, Jingmen, China
| | - Changjin Deng
- Department of Cardiology, The First People's Hospital of Jingmen, Jingmen, China
| |
Collapse
|
27
|
Zhang L, Wu Z, Zhou J, Lu S, Wang C, Xia Y, Ren H, Tong Z, Ke L, Li W. Electroacupuncture Ameliorates Acute Pancreatitis: A Role for the Vagus Nerve-Mediated Cholinergic Anti-Inflammatory Pathway. Front Mol Biosci 2021; 8:647647. [PMID: 34055878 PMCID: PMC8155617 DOI: 10.3389/fmolb.2021.647647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/21/2021] [Indexed: 01/30/2023] Open
Abstract
Organ failure resulting from excessive inflammation is the leading cause of death in the early phase of acute pancreatitis (AP). The autonomic nervous system was reported to be involved in AP, and the vagus nerve could exert anti-inflammatory effects through α7 nicotinic acetylcholine receptor (α7nAChR) signaling. Acupuncture has been widely used in traditional Asian medicine, and recent studies suggested the inflammation modulating effect of electroacupuncture (EA) might be mediated by the autonomic nervous system. In this study, we aimed to investigate the effects of EA in AP animal models. Two independent AP mouse models were used, namely, caerulein hyperstimulation and pancreatic duct ligation. We found that EA at Zusanli acupoint increased vagus nerve activity, suppressed systemic inflammation, and alleviated the histopathological manifestations and leukocyte infiltrations of the pancreas. Induction of AP resulted in a remarkable decrease in the frequency of α7nAchR+ macrophages in the pancreas, while EA counteracted this phenomenon. The anti-inflammatory, pancreatic protective and upregulation of α7nAchR effects of EA were reduced in mice with vagotomy. Moreover, the therapeutic effects of EA were attenuated in mice treated with methyllycaconitine citrate, a selective α7nAChR antagonist. Taken together, EA could modulate inflammation, thereby exerting protective effects in AP. The mechanism may include activating the vagus nerve through the cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Pathology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyang Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jing Zhou
- Department of Critical Care Medicine, Jinling Clinical Medical College of Southeast University, Nanjing, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chaofan Wang
- Department of Pathology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqiu Xia
- Department of Pathology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongyan Ren
- Department of Pathology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Ke
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Nobs SP, Kopf M. Tissue-resident macrophages: guardians of organ homeostasis. Trends Immunol 2021; 42:495-507. [PMID: 33972166 DOI: 10.1016/j.it.2021.04.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Tissue-resident macrophages (MTR) have recently emerged as a key rheostat capable of regulating the balance between organ health and disease. In most organs, ontogenetically and functionally distinct macrophage subsets fulfill a plethora of functions specific to their tissue environment. In this review, we summarize recent findings regarding the ontogeny and functions of macrophage populations in different mammalian tissues, describing how these cells regulate tissue homeostasis and how they can contribute to inflammation. Furthermore, we highlight new developments concerning certain general principles of tissue macrophage biology, including the importance of metabolism for understanding macrophage activation states and the influence of intrinsic and extrinsic factors on macrophage metabolic control. We also shed light on certain open questions in the field and how answering these might pave the way for tissue-specific therapeutic approaches.
Collapse
Affiliation(s)
- Samuel Philip Nobs
- Department of Immunology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
29
|
Mizuno K, Haga H, Okumoto K, Hoshikawa K, Katsumi T, Nishina T, Saito T, Katagiri H, Ueno Y. Intrahepatic distribution of nerve fibers and alterations due to fibrosis in diseased liver. PLoS One 2021; 16:e0249556. [PMID: 33852613 PMCID: PMC8046205 DOI: 10.1371/journal.pone.0249556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/21/2021] [Indexed: 01/23/2023] Open
Abstract
Autonomic nerve fibers in the liver are distributed along the portal tract, being involved in the regulation of blood flow, bile secretion and hepatic metabolism, thus contributing to systemic homeostasis. The present study investigated changes in hepatic nerve fibers in liver biopsy specimens from patients with normal liver, viral hepatitis and non-alcoholic steatohepatitis, in relation to clinical background. The areal ratio of nerve fibers to the total portal area was automatically calculated for each sample. The nerve fiber areal ratios (NFAR) for total nerve fibers and sympathetic nerve fibers were significantly lower in liver affected by chronic hepatitis, particularly viral hepatitis, and this was also the case for advanced liver fibrosis. However, the degree of inflammatory activity did not affect NFAR for either whole nerves or sympathetic nerves. Comparison of samples obtained before and after antiviral treatment for HCV demonstrated recovery of NFAR along with improvement of liver fibrosis.
Collapse
Affiliation(s)
- Kei Mizuno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Hiroaki Haga
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Kazuo Okumoto
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kyoko Hoshikawa
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Tomohiro Katsumi
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Taketo Nishina
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Takafumi Saito
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| |
Collapse
|
30
|
Li SW, Takahara T, Que W, Fujino M, Guo WZ, Hirano SI, Ye LP, Li XK. Hydrogen-rich water protects against liver injury in nonalcoholic steatohepatitis through HO-1 enhancement via IL-10 and Sirt 1 signaling. Am J Physiol Gastrointest Liver Physiol 2021; 320:G450-G463. [PMID: 33439102 DOI: 10.1152/ajpgi.00158.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) could progress to hepatic fibrosis in the absence of effective control. The purpose of our experiment was to investigate the protective effect of drinking water with a high concentration of hydrogen, namely, hydrogen-rich water (HRW), on mice with nonalcoholic fatty liver disease to elucidate the mechanism underlying the therapeutic action of molecular hydrogen. The choline-supplemented, l-amino acid-defined (CSAA) or the choline-deficient, l-amino acid-defined (CDAA) diet for 20 wk was used to induce NASH and fibrosis in the mice model and simultaneously treated with the high-concentration 7-ppm HRW for different periods (4 wk, 8 wk, and 20 wk). Primary hepatocytes were stimulated by palmitate to mimic liver lipid metabolism during fatty liver formation. Primary hepatocytes were cultured in a closed vessel filled with 21% O2 + 5% CO2 + 3.8% H2 and N2 as the base gas to verify the response of primary hepatocytes in a high concentration of hydrogen gas in vitro. Mice in the CSAA + HRW group had lower serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and milder histological damage. The inflammatory cytokines were expressed at lower levels in the HRW group than in the CSAA group. Importantly, HRW reversed hepatocyte fatty acid oxidation and lipogenesis as well as hepatic inflammation and fibrosis in preexisting hepatic fibrosis specimens. Molecular hydrogen inhibits the lipopolysaccharide-induced production of inflammation cytokines through increasing heme oxygenase-1 (HO-1) expression. Furthermore, HRW improved hepatic steatosis in the CSAA + HRW group. Sirtuin 1 (Sirt1) induction by molecular hydrogen via the HO-1/adenosine monophosphate activated protein kinase (AMPK)/peroxisome proliferator-activated receptor α (PPARα)/peroxisome proliferator-activated receptor γ (PPAR-γ) pathway suppresses palmitate-mediated abnormal fat metabolism. Orally administered HRW suppressed steatosis induced by CSAA and attenuated fibrosis induced by CDAA, possibly by reducing oxidative stress and the inflammation response.NEW & NOTEWORTHY The mRNA expression of inflammatory cytokines in the HRW group was lower than in the CSAA group. HRW reversed hepatocyte apoptosis as well as hepatic inflammation and fibrosis in NASH specimens. Molecular hydrogen inhibits LPS-induced inflammation via an HO-1/interleukin 10 (IL-10)-independent pathway. HRW improved hepatic steatosis in the CSAA + HRW group. Sirt1 induction by molecular hydrogen via the HO-1/AMPK/PPARα/PPARγ pathway suppresses palmitate-mediated abnormal fat metabolism.
Collapse
Affiliation(s)
- Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Terumi Takahara
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Li-Ping Ye
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Jung I, Lee DY, Lee MY, Kwon H, Rhee EJ, Park CY, Oh KW, Lee WY, Park SW, Park SE. Autonomic Imbalance Increases the Risk for Non-alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2021; 12:752944. [PMID: 34819920 PMCID: PMC8606663 DOI: 10.3389/fendo.2021.752944] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although autonomic imbalance is associated with an increased risk for metabolic disease, its effects on nonalcoholic fatty liver disease (NAFLD) remains unclear. We aimed to evaluate whether autonomic dysfunction predicts the risk for nonalcoholic fatty liver disease (NAFLD). METHODS A total of 33,899 participants without NAFLD who underwent health screening programs between 2011 and 2018 were enrolled. NAFLD was identified by ultrasonography. Autonomic activity was estimated using heart rate variability (HRV). Time domain [standard deviation of the normal-to-normal interval (SDNN) and root mean square difference (RMSSD)]; frequency domain [total power (TP), low frequency (LF), and high frequency (HF), and LF/HF ratio were analyzed. FINDINGS A total 6,466 participants developed NAFLD within a median of 5.7 years. Subjects with incident NAFLD showed decreased overall autonomic modulation and vagal activity with lowered SDNN, RMSSD, HF, normalized HF, compared to those without NAFLD. As the SDNN, RMSSD, TP, LF, and HF tertiles increased, the risk of NAFLD decreased with tertile 1 being the reference group [the hazard ratios (95% confidence intervals) of tertile 3 were 0.90 (0.85-0.96), 0.83 (0.78-0.88), 0.91 (0.86-0.97), 0.93 (0.87-0.99) and 0.89 (0.83-0.94), respectively] after adjusting for potential confounders. The risk for NAFLD was significantly higher in subjects in whom sustained elevated heart rate, normalized LF, and LF/HF ratio values than in those with sustained decrease in these parameters during follow-up. CONCLUSIONS Overall autonomic imbalance, decreased parasympathetic activity, and recently increased sympathetic activity might increase the risk of NAFLD.
Collapse
Affiliation(s)
- Inha Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Da Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Mi Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki-Won Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung-Woo Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
- *Correspondence: Se Eun Park,
| |
Collapse
|
32
|
Jo BG, Kim SH, Namgung U. Vagal afferent fibers contribute to the anti-inflammatory reactions by vagus nerve stimulation in concanavalin A model of hepatitis in rats. Mol Med 2020; 26:119. [PMID: 33272194 PMCID: PMC7713005 DOI: 10.1186/s10020-020-00247-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background Increasing number of studies provide evidence that the vagus nerve stimulation (VNS) dampens inflammation in peripheral visceral organs. However, the effects of afferent fibers of the vagus nerve (AFVN) on anti-inflammation have not been clearly defined. Here, we investigate whether AFVN are involved in VNS-mediated regulation of hepatic production of proinflammatory cytokines. Methods An animal model of hepatitis was generated by intraperitoneal (i.p.) injection of concanavalin A (ConA) into rats, and electrical stimulation was given to the hepatic branch of the vagus nerve. AFVN activity was regulated by administration of capsaicin (CAP) or AP-5/CNQX and the vagotomy at the hepatic branch of the vagus nerve (hVNX). mRNA and protein expression in target tissues was analyzed by RT-PCR, real-time PCR, western blotting and immunofluorescence staining. Hepatic immune cells were analyzed by flow cytometry. Results TNF-α, IL-1β, and IL-6 mRNAs and proteins that were induced by ConA in the liver macrophages were significantly reduced by the electrical stimulation of the hepatic branch of the vagus nerve (hVNS). Alanine transaminase (ALT) and aspartate transaminase (AST) levels in serum and the number of hepatic CD4+ and CD8+ T cells were increased by ConA injection and downregulated by hVNS. CAP treatment deteriorated transient receptor potential vanilloid 1 (TRPV1)-positive neurons and increased caspase-3 signals in nodose ganglion (NG) neurons. Concomitantly, CAP suppressed choline acetyltransferase (ChAT) expression that was induced by hVNS in DMV neurons of ConA-injected animals. Furthermore, hVNS-mediated downregulation of TNF-α, IL-1β, and IL-6 expression was hampered by CAP treatment and similarly regulated by hVNX and AP-5/CNQX inhibition of vagal feedback loop pathway in the brainstem. hVNS elevated the levels of α7 nicotinic acetylcholine receptors (α7 nAChR) and phospho-STAT3 (Tyr705; pY-STAT3) in the liver, and inhibition of AFVN activity by CAP, AP-5/CNQX and hVNX or the pharmacological blockade of hepatic α7 nAChR decreased STAT3 phosphorylation. Conclusions Our data indicate that the activity of AFVN contributes to hepatic anti-inflammatory responses mediated by hVNS in ConA model of hepatitis in rats.
Collapse
Affiliation(s)
- Byung Gon Jo
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea
| | - Seung-Hyung Kim
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea
| | - Uk Namgung
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea.
| |
Collapse
|
33
|
Hascup KN, Findley CA, Britz J, Esperant-Hilaire N, Broderick SO, Delfino K, Tischkau S, Bartke A, Hascup ER. Riluzole attenuates glutamatergic tone and cognitive decline in AβPP/PS1 mice. J Neurochem 2020; 156:513-523. [PMID: 33107040 DOI: 10.1111/jnc.15224] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
We have previously demonstrated hippocampal hyperglutamatergic signaling occurs prior to plaque accumulation in AβPP/PS1 mice. Here, we evaluate 2-Amino-6-(trifluoromethoxy) benzothiazole (riluzole) as an early intervention strategy for Alzheimer's disease (AD), aimed at restoring glutamate neurotransmission prior to substantial Beta amyloid (Aβ) plaque accumulation and cognitive decline. Male AβPP/PS1 mice, a model of progressive cerebral amyloidosis, were treated with riluzole from 2-6 months of age. Morris water maze, in vivo electrochemistry, and immunofluorescence were performed to assess cognition, glutamatergic neurotransmission, and pathology, respectively, at 12 months. Four months of prodromal riluzole treatment in AβPP/PS1 mice resulted in long-lasting procognitive effects and attenuated glutamatergic tone that was observed six months after discontinuing riluzole treatment. Riluzole-treated AβPP/PS1 mice had significant improvement in long-term memory compared to vehicle-treated AβPP/PS1 mice that was similar to normal aging C57BL/6J control mice. Furthermore, basal glutamate concentration and evoked-glutamate release levels, which were elevated in vehicle-treated AβPP/PS1 mice, were restored to levels observed in age-matched C57BL/6J mice in AβPP/PS1 mice receiving prodromal riluzole treatment. Aβ plaque accumulation was not altered with riluzole treatment. This study supports that interventions targeting the glutamatergic system during the early stages of AD progression have long-term effects on disease outcome, and importantly may prevent cognitive decline. Our observations provide preclinical support for targeting glutamate neurotransmission in patients at risk for developing AD. Read the Editorial Highlight for this article on page 399.
Collapse
Affiliation(s)
- Kevin N Hascup
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.,Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Caleigh A Findley
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Jesse Britz
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Nahayo Esperant-Hilaire
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Sarah O Broderick
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kristin Delfino
- Department of Surgery, Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shelley Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.,Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Andrzej Bartke
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.,Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R Hascup
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
34
|
|
35
|
Acupuncture stimulation attenuates TNF-α production via vagal modulation in the concanavalin A model of hepatitis. Acupunct Med 2020; 38:417-425. [DOI: 10.1177/0964528420907338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: A growing body of evidence shows that neuronal activity is involved in modulating the efficacy of acupuncture therapy. However, it has been seldom investigated whether neuronal activity following acupuncture stimulation is effective at regulating hepatic inflammation. Objective: Using the concanavalin A (ConA) model of hepatitis, we investigated the regulation of inflammatory cytokine tumor necrosis factor (TNF)-α in the liver tissue and the blood after acupuncture stimulation at ST36. Methods: Mice were subjected to ConA injection, acupuncture stimulation at ST36 by manual acupuncture (MA) or electroacupuncture (EA) procedures, and vagotomy (VNX). Liver tissue and blood were collected for TNF-α analysis. TNF-α mRNA was analyzed by real-time polymerase chain reaction (PCR), and TNF-α, CD11b, CD68, and Erk1/2 proteins were analyzed by Western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay. Results: TNF-α mRNA and protein were induced in CD11b-positive hepatic cells and the plasma at 6–24 h after ConA injection. The application of MA or EA was very effective at attenuating the production of TNF-α. Anti-inflammatory effects of acupuncture were greatly suppressed by VNX in ConA-injected animals, suggesting the requirement of vagus nerve activity in acupuncture-mediated anti-inflammatory responses. Electrical stimulation of the sciatic nerve (SNS) resulted in an anti-inflammatory effect similar to acupuncture stimulation. In parallel with TNF-α, production of phospho-Erk1/2, which was induced in the liver tissue, was downregulated by MA and EA in liver cells. Conclusion: The regulatory effects of acupuncture stimulation on inflammatory responses in the liver may be modulated through the activation of the vagus nerve pathway.
Collapse
|
36
|
Deng J, Wang M, Guo Y, Fischer H, Yu X, Kem D, Li H. Activation of α7nAChR via vagus nerve prevents obesity-induced insulin resistance via suppressing endoplasmic reticulum stress-induced inflammation in Kupffer cells. Med Hypotheses 2020; 140:109671. [PMID: 32182560 DOI: 10.1016/j.mehy.2020.109671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
Obesity is a major risk factor for type 2 diabetes mellitus and insulin resistance (IR). In the state of obesity, excess fat accumulates in the liver, a key organ in systemic metabolism, altering the inflammatory and metabolic signals contributing substantially to the development of hepatic IR. Current therapies for these metabolic disorders have not been able to reverse their rapidly rising prevalence. One of the reasons is that the effects of existing drugs are predominantly non-lasting [1,2]. The vagus nerve (VN) is known to play an essential role in maintaining metabolic homeostasis while decreased VN activity has been suggested to contribute to obesity associated metabolic syndrome [3,4]. Several studies have reported that activation of α7 nicotinic acetylcholine receptor (α7nAChR) cholinergic signaling with or without VN intervention has protective effects against obesity-related inflammation and other metabolic complications [5]. However, the molecular mechanisms are still not elucidated. Exaggerated endoplasmic reticulum (ER) stress and consequent dysregulated inflammation has been implicated in the development of lipid accumulation and IR [6]. Whether targeting α7nAChR can regulate IR through these pathways is rarely reported. Accordingly, the present proposal posits that activation of the α7nAChR by VNS attenuates ER stress induced inflammation, thus ameliorating hepatic IR in Kupffer cell. We will focus on the specific interaction between vagal cholinergic activity and the modulation of ER stress induced inflammation via the α7nAChR associated pathway during IR development. Recently, the Endocrine Society has emphasized the absence of specific evidence from basic science, clinical, and epidemiological literature to assess current knowledge regarding underlying mechanisms of obesity [7]. In this proposal, we assign a significant role to α7nAChR in obesity-induced hepatic IR, and suggest a possible therapeutic strategy with VNS intervention.
Collapse
Affiliation(s)
- Jielin Deng
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Meng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yankai Guo
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China; Cardiac Pacing and Electrophysiology Department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hayley Fischer
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China
| | - Xichun Yu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China
| | - David Kem
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China
| | - Hongliang Li
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, China.
| |
Collapse
|
37
|
Hajiasgharzadeh K, Somi MH, Sadigh-Eteghad S, Mokhtarzadeh A, Shanehbandi D, Mansoori B, Mohammadi A, Doustvandi MA, Baradaran B. The dual role of alpha7 nicotinic acetylcholine receptor in inflammation-associated gastrointestinal cancers. Heliyon 2020; 6:e03611. [PMID: 32215331 PMCID: PMC7090353 DOI: 10.1016/j.heliyon.2020.e03611] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) is one of the main subtypes of nAChRs that modulates various cancer-related properties including proliferative, anti-apoptotic, pro-angiogenic and pro-metastatic activities in most of the cancers. It also plays a crucial role in inflammation control through the cholinergic anti-inflammatory pathway in numerous pathophysiological contexts. Such diverse physiological and pathological functions that initiate from this receptor may have significant impacts in determining the outcome of different cancers. Various tissues of gastrointestinal (GI) cancers such as gastric, colorectal, pancreatic and liver cancers have shown the up-regulated expression of α7nAChR as compared to normal adjacent tissues. According to the well-established connection between inflammation and tumorigenesis in the digestive system, there are mounting studies demonstrated either stimulatory or inhibitory effects of α7nAChR signaling in the development of GI cancers. To date, the precise underlying mechanisms related to this receptor in patients with GI cancers have not been fully elucidated. Regarding the paradoxical modulatory effects of this receptor in carcinogenesis, in this review, we aim to summarize the accumulated evidence about the involvement of α7nAChR in inflammation-associated GI cancers. It seems that the complex influences of α7nAChR may be a promising target in designing novel strategies in the treatment of such pathologic conditions.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Amir M, Yu M, He P, Srinivasan S. Hepatic Autonomic Nervous System and Neurotrophic Factors Regulate the Pathogenesis and Progression of Non-alcoholic Fatty Liver Disease. Front Med (Lausanne) 2020; 7:62. [PMID: 32175323 PMCID: PMC7056867 DOI: 10.3389/fmed.2020.00062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease represents a continuum of excessive hepatic steatosis, inflammation and fibrosis. It is a growing epidemic in the United States of America and worldwide. Progression of non-alcoholic fatty liver disease can lead to morbidity and mortality due to complications such as cirrhosis or hepatocellular carcinoma. Pathogenesis of non-alcoholic fatty liver disease is centered on increased hepatic lipogenesis and decreased hepatic lipolysis in the setting of hepatic and systemic insulin resistance. Adipose tissue and hepatic inflammation can further perpetuate the severity of illness. Currently there are no approved therapies for non-alcoholic fatty liver disease. Most of the drugs being explored for non-alcoholic fatty liver disease focus on classical pathogenic pathways surrounding hepatic lipid accumulation, inflammation or fibrosis. Studies have demonstrated that the autonomic nervous system innervating the liver plays a crucial role in regulation of hepatic lipid homeostasis, inflammation and fibrosis. Additionally, there is growing evidence that neurotrophic factors can modulate all stages of non-alcoholic fatty liver disease. Both the autonomic nervous system and neurotrophic factors are altered in patients and murine models of non-alcoholic fatty liver disease. In this review we focus on the pathophysiological role of the autonomic nervous system and neurotrophic factors that could be potential targets for novel therapeutic approaches to treat non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Muhammad Amir
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Michael Yu
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Research-Gastroenterology, Atlanta VA Health Care System, Decatur, GA, United States
| |
Collapse
|
39
|
Dysregulated Choline, Methionine, and Aromatic Amino Acid Metabolism in Patients with Wilson Disease: Exploratory Metabolomic Profiling and Implications for Hepatic and Neurologic Phenotypes. Int J Mol Sci 2019; 20:ijms20235937. [PMID: 31779102 PMCID: PMC6928853 DOI: 10.3390/ijms20235937] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Wilson disease (WD) is a genetic copper overload condition characterized by hepatic and neuropsychiatric symptoms with a not well-understood pathogenesis. Dysregulated methionine cycle is reported in animal models of WD, though not verified in humans. Choline is essential for lipid and methionine metabolism. Defects in neurotransmitters as acetylcholine, and biogenic amines are reported in WD; however, less is known about their circulating precursors. We aimed to study choline, methionine, aromatic amino acids, and phospholipids in serum of WD subjects. Hydrophilic interaction chromatography-quadrupole time-of-flight mass spectrometry was employed to profile serum of WD subjects categorized as hepatic, neurologic, and pre-clinical. Hepatic transcript levels of genes related to choline and methionine metabolism were verified in the Jackson Laboratory toxic milk mouse model of WD (tx-j). Compared to healthy subjects, choline, methionine, ornithine, proline, phenylalanine, tyrosine, and histidine were significantly elevated in WD, with marked alterations in phosphatidylcholines and reductions in sphingosine-1-phosphate, sphingomyelins, and acylcarnitines. In tx-j mice, choline, methionine, and phosphatidylcholine were similarly dysregulated. Elevated choline is a hallmark dysregulation in WD interconnected with alterations in methionine and phospholipid metabolism, which are relevant to hepatic steatosis. The elevated phenylalanine, tyrosine, and histidine carry implications for neurologic manifestations and are worth further investigation.
Collapse
|
40
|
Oikawa S, Kai Y, Mano A, Sugama S, Mizoguchi N, Tsuda M, Muramoto K, Kakinuma Y. Potentiating a non-neuronal cardiac cholinergic system reinforces the functional integrity of the blood brain barrier associated with systemic anti-inflammatory responses. Brain Behav Immun 2019; 81:122-137. [PMID: 31176726 DOI: 10.1016/j.bbi.2019.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022] Open
Abstract
We previously reported that the heart-specific choline acetyltransferase (ChAT) gene overexpressing mice (ChAT tg) show specific phenotypes including ischemic tolerance and the CNS stress tolerance. In the current study, we focused on molecular mechanisms responsible for systemic and localized anti-inflammatory phenotypes of ChAT tg. ChAT tg were resistant to systemic inflammation induced by lipopolysaccharides due to an attenuated cytokine response. In addition, ChAT tg, originally equipped with less reactive Kupffer cells, were refractory to brain cold injury, with decreased blood brain barrier (BBB) permeability and reduced inflammation. This is because ChAT tg brain endothelial cells expressed more claudin-5, and their astrocytes were less reactive, causing decreased hypertrophy. Moreover, reconstruction of the BBB integrity in vitro confirmed the consolidation of ChAT tg. ChAT tg were also resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neuronal toxicity due to lower mortality rate and neuronal loss of substantia nigra. Additionally, ChAT tg subjected to MPTP showed attenuated BBB disruption, as evident from reduced sodium fluorescein levels in the brain parenchyma. The activated central cholinergic pathway of ChAT tg lead to anti-convulsive effects like vagus nerve stimulation. However, DSP-4, a noradrenergic neuron-selective neurotoxin against the CNS including the locus ceruleus, abrogated the beneficial phenotype and vagotomy attenuated expression of claudin-5, suggesting the link between the cholinergic pathway and BBB function. Altogether, these findings indicate that ChAT tg possess an anti-inflammatory response potential, associated with upregulated claudin-5, leading to the consolidation of BBB integrity. These characteristics protect ChAT tg against systemic and localized inflammatory pathological disorders, which targets the CNS.
Collapse
Affiliation(s)
- Shino Oikawa
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Yuko Kai
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Asuka Mano
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Shuei Sugama
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Naoko Mizoguchi
- Department of Physiology, School of Dentistry, Meikai University, Sakaido, Saitama 350-0283, Japan
| | - Masayuki Tsuda
- Institute for Laboratory Animal Research, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Kazuyo Muramoto
- Department of Physiology, School of Dentistry, Meikai University, Sakaido, Saitama 350-0283, Japan
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
41
|
Bruinstroop E, Fliers E, Kalsbeek A. Restoring the autonomic balance to reduce liver steatosis. J Physiol 2019; 597:4683-4684. [PMID: 31393006 PMCID: PMC6851570 DOI: 10.1113/jp278567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Eveline Bruinstroop
- Department of Cardiovascular & Metabolic Disorders (CVMD), Duke-NUS Medical School, Singapore.,Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Netherlands Institute for Neuroscience, Hypothalamic Integration Mechanisms, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Neuroimmune Interactions in the Gut and Their Significance for Intestinal Immunity. Cells 2019; 8:cells8070670. [PMID: 31269754 PMCID: PMC6679154 DOI: 10.3390/cells8070670] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) have a complex, multifactorial pathophysiology with an unmet need for effective treatment. This calls for novel strategies to improve disease outcome and quality of life for patients. Increasing evidence suggests that autonomic nerves and neurotransmitters, as well as neuropeptides, modulate the intestinal immune system, and thereby regulate the intestinal inflammatory processes. Although the autonomic nervous system is classically divided in a sympathetic and parasympathetic branch, both play a pivotal role in the crosstalk with the immune system, with the enteric nervous system acting as a potential interface. Pilot clinical trials that employ vagus nerve stimulation to reduce inflammation are met with promising results. In this paper, we review current knowledge on the innervation of the gut, the potential of cholinergic and adrenergic systems to modulate intestinal immunity, and comment on ongoing developments in clinical trials.
Collapse
|
43
|
Kimura K, Inaba Y, Watanabe H, Matsukawa T, Matsumoto M, Inoue H. Nicotinic alpha-7 acetylcholine receptor deficiency exacerbates hepatic inflammation and fibrosis in a mouse model of non-alcoholic steatohepatitis. J Diabetes Investig 2019; 10:659-666. [PMID: 30369082 PMCID: PMC6497582 DOI: 10.1111/jdi.12964] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/04/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022] Open
Abstract
AIMS/INTRODUCTION Non-alcoholic steatohepatitis (NASH), which occurs in association with insulin resistance and hepatic fat accumulation, is characterized by chronic liver injury and fibrosis. NASH onset and progression is closely related to hepatic inflammation, which is partly regulated by the vagus nerve through the α7 nicotinic acetylcholine receptor (α7nAchR). Hepatic α7nAchR action is impeded in obesity and insulin resistance. In the present study, using α7nAchR knockout (α7KO) mice, we elucidated the effect of α7nAchR deficiency on NASH-related inflammation and fibrosis. MATERIALS AND METHODS α7KO mice were fed an atherogenic high-fat diet (AD) for 32 weeks or methionine/choline-deficient diet (MCD) for 6 weeks, both of which induce NASH. Mice were then examined for the degree of NASH-related inflammation and fibrosis by hepatic gene expression analysis and Sirius red histological staining. RESULTS Hepatic triglyceride accumulation and elevated plasma transaminase levels were observed in both AD and MCD mice, but the plasma transaminase level increase was higher in α7KO mice than in control mice. α7KO mice fed an AD showed significant upregulation of the Col1a1 gene encoding alpha-1 type I collagen, which is involved in liver fibrosis, and the Ccl2 gene encoding C-C motif chemokine ligand 2, a pro-inflammatory chemokine; α7KO mice fed an MCD had significant upregulation of the Col1a1 gene and the Tnf gene, an inflammatory cytokine. Histological analysis showed that AD and MCD exacerbated liver fibrosis in α7KO mice. CONCLUSIONS The results of this study suggest that α7nAchR deficiency exacerbates hepatic inflammation and fibrosis in a diet-induced mouse model of NASH.
Collapse
Affiliation(s)
- Kumi Kimura
- Metabolism and Nutrition Research UnitInstitute for Frontier Science InitiativeKanazawa UniversityKanazawaJapan
| | - Yuka Inaba
- Metabolism and Nutrition Research UnitInstitute for Frontier Science InitiativeKanazawa UniversityKanazawaJapan
| | - Hitoshi Watanabe
- Metabolism and Nutrition Research UnitInstitute for Frontier Science InitiativeKanazawa UniversityKanazawaJapan
| | - Toshiya Matsukawa
- Department of Molecular Metabolic RegulationDiabetes Research CenterResearch InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic RegulationDiabetes Research CenterResearch InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research UnitInstitute for Frontier Science InitiativeKanazawa UniversityKanazawaJapan
| |
Collapse
|
44
|
Chang EH, Chavan SS, Pavlov VA. Cholinergic Control of Inflammation, Metabolic Dysfunction, and Cognitive Impairment in Obesity-Associated Disorders: Mechanisms and Novel Therapeutic Opportunities. Front Neurosci 2019; 13:263. [PMID: 31024226 PMCID: PMC6460483 DOI: 10.3389/fnins.2019.00263] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/06/2019] [Indexed: 12/26/2022] Open
Abstract
Obesity and obesity-associated disorders have become world-wide epidemics, substantially increasing the risk of debilitating morbidity and mortality. A characteristic feature of these disorders, which include the metabolic syndrome (MetS) and type 2 diabetes, is chronic low-grade inflammation stemming from metabolic and immune dysregulation. Inflammation in the CNS (neuroinflammation) and cognitive impairment have also been associated with obesity-driven disorders. The nervous system has a documented role in the regulation of metabolic homeostasis and immune function, and recent studies have indicated the important role of vagus nerve and brain cholinergic signaling in this context. In this review, we outline relevant aspects of this regulation with a specific focus on obesity-associated conditions. We outline accumulating preclinical evidence for the therapeutic efficacy of cholinergic stimulation in alleviating obesity-associated inflammation, neuroinflammation, and metabolic derangements. Recently demonstrated beneficial effects of galantamine, a centrally acting cholinergic drug and cognitive enhancer, in patients with MetS are also summarized. These studies provide a rationale for further therapeutic developments using pharmacological and bioelectronic cholinergic modulation for clinical benefit in obesity-associated disorders.
Collapse
Affiliation(s)
- Eric H. Chang
- Center for Bioelectronic Medicine and Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Sangeeta S. Chavan
- Center for Bioelectronic Medicine and Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Valentin A. Pavlov
- Center for Bioelectronic Medicine and Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
45
|
Metz CN, Pavlov VA. Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome. Am J Physiol Gastrointest Liver Physiol 2018; 315:G651-G658. [PMID: 30001146 PMCID: PMC6293249 DOI: 10.1152/ajpgi.00195.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Improved understanding of neuroimmune communication and the neural regulation of immunity and inflammation has recently led to proposing the concept of the "neuroimmune communicatome." This advance is based on experimental evidence for an organized and brain-integrated reflex-like relationship and dialogue between the nervous and the immune systems. A key circuitry in this communicatome is provided by efferent vagus nerve fibers and cholinergic signaling. Inflammation and metabolic alterations coexist in many disorders affecting the liver and the gastrointestinal (GI) tract, including obesity, metabolic syndrome, fatty liver disease, liver injury, and liver failure, as well as inflammatory bowel disease. Here, we outline mechanistic insights regarding the role of the vagus nerve and cholinergic signaling in the regulation of inflammation linked to metabolic derangements and the pathogenesis of these disorders in preclinical settings. Recent clinical advances using this knowledge in novel therapeutic neuromodulatory approaches within the field of bioelectronic medicine are also briefly summarized.
Collapse
Affiliation(s)
- Christine N. Metz
- 1Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York,2Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Valentin A. Pavlov
- 1Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York,2Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| |
Collapse
|
46
|
Ehrlich L, O’Brien A, Hall C, White T, Chen L, Wu N, Venter J, Scrushy M, Mubarak M, Meng F, Dostal D, Wu C, Lairmore TC, Alpini G, Glaser S. α7-nAChR Knockout Mice Decreases Biliary Hyperplasia and Liver Fibrosis in Cholestatic Bile Duct-Ligated Mice. Gene Expr 2018; 18:197-207. [PMID: 29580318 PMCID: PMC6190116 DOI: 10.3727/105221618x15216453076707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
α7-nAChR is a nicotinic acetylcholine receptor [specifically expressed on hepatic stellate cells (HSCs), Kupffer cells, and cholangiocytes] that regulates inflammation and apoptosis in the liver. Thus, targeting α7-nAChR may be therapeutic in biliary diseases. Bile duct ligation (BDL) was performed on wild-type (WT) and α7-nAChR-/- mice. We first evaluated the expression of α7-nAChR by immunohistochemistry (IHC) in liver sections. IHC was also performed to assess intrahepatic bile duct mass (IBDM), and Sirius Red staining was performed to quantify the amount of collagen deposition. Immunofluorescence was performed to assess colocalization of α7-nAChR with bile ducts (costained with CK-19) and HSCs (costained with desmin). The mRNA expression of α7-nAChR, Ki-67/PCNA (proliferation), fibrosis genes (TGF-β1, fibronectin-1, Col1α1, and α-SMA), and inflammatory markers (IL-6, IL-1β, and TNF-α) was measured by real-time PCR. Biliary TGF-β1 and hepatic CD68 (Kupffer cell marker) expression was assessed using IHC. α7-nAChR immunoreactivity was observed in both bile ducts and HSCs and increased following BDL. α7-nAChR-/- BDL mice exhibited decreased (i) bile duct mass, liver fibrosis, and inflammation, and (ii) immunoreactivity of TGF-β1 as well as expression of fibrosis genes compared to WT BDL mice. α7-nAChR activation triggers biliary proliferation and liver fibrosis and may be a therapeutic target in managing extrahepatic biliary obstruction.
Collapse
Affiliation(s)
- Laurent Ehrlich
- *Department of Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, TX, USA
| | - April O’Brien
- †Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Chad Hall
- ‡Surgery, Baylor Scott & White and Texas A&M University Health Science Center, Temple, TX, USA
| | - Tori White
- †Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Lixian Chen
- *Department of Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, TX, USA
| | - Nan Wu
- *Department of Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, TX, USA
| | - Julie Venter
- *Department of Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, TX, USA
| | - Marinda Scrushy
- *Department of Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, TX, USA
| | - Muhammad Mubarak
- *Department of Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, TX, USA
| | - Fanyin Meng
- *Department of Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, TX, USA
- †Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Gastroenterology, Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, TX, USA
| | - David Dostal
- *Department of Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, TX, USA
| | - Chaodong Wu
- ¶Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Terry C. Lairmore
- ‡Surgery, Baylor Scott & White and Texas A&M University Health Science Center, Temple, TX, USA
| | - Gianfranco Alpini
- *Department of Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, TX, USA
- †Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Gastroenterology, Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, TX, USA
| | - Shannon Glaser
- *Department of Medical Physiology, Baylor Scott & White and Texas A&M University Health Science Center, Temple, TX, USA
- †Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Gastroenterology, Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, TX, USA
| |
Collapse
|
47
|
Hajiasgharzadeh K, Baradaran B. Cholinergic Anti-Inflammatory Pathway and the Liver. Adv Pharm Bull 2017; 7:507-513. [PMID: 29399541 PMCID: PMC5788206 DOI: 10.15171/apb.2017.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 01/06/2023] Open
Abstract
The hepatic vagus branches innervate the liver and serve an important role in liver-brain connection. It appears that brain modulates inflammatory responses by activation of vagal efferent fibers. This activation and subsequent acetylcholine releases from vagus nerve terminals leads to inhibition of inflammatory cytokines through α7 nicotinic acetylcholine receptors (α7nAChRs) which located on the surface of different cell types such as liver Kupffer cells. This protective role of vagus-α7nAChR axis in liver diseases has been shown in several experimental studies. On the other hand, accumulated evidence clearly demonstrate that, autonomic dysfunction which is reduced functioning of both vagal and sympathetic nervous system, occurs during chronic liver disease and is well-known complication of patients suffering from cirrhosis. This review describes the impact and significance of cholinergic anti-inflammatory pathway in the liver and discusses about its disease-related dysfunction on the progression of cirrhosis. Considering the fact that sepsis is major cause of death in cirrhotic patients, convergence of these findings, may lead to designing novel therapeutic strategies in the field of chronic liver diseases management involving selective drug targeting and electrical nerve stimulation.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|