1
|
Icoz M, Yildiz Tasci Y, Erten Ş, Sarac O. Tomographic, Biomechanical, and In Vivo Confocal Microscopic Changes in Cornea in Chronic Gout Disease. Ocul Immunol Inflamm 2024; 32:2428-2435. [PMID: 39241174 DOI: 10.1080/09273948.2024.2397448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 09/08/2024]
Abstract
PURPOSE This study aimed to evaluate the tomographic, biomechanical, and in vivo confocal microscopic (IVCM) effects of chronic gout disease on human cornea. METHODS This prospective study included 60 eyes of 30 participants with chronic gout disease and 60 eyes of 30 healthy controls. Corneal thickness, keratometry (K) readings, and corneal aberrations were measured with Sirius 3 D corneal tomography system (Sirius, CSO, Italy). Corneal biomechanical properties (corneal hysteresis [CH], corneal resistance factor [CRF], and intraocular pressure [IOP] parameters) were assessed with an ocular response analyzer (ORA, Reichert Ophthalmic Instruments). The number and morphology of corneal endothelial cells and the number of basal epithelial cells were evaluated with IVCM (Confoscan 4.0). Tear breakup time (TBUT) was also evaluated. RESULTS The mean diagnosis time of the patients with gout was 91.2 ± 69.6 months (12-300 month). Among corneal tomography measurements, K readings were similar between the two groups, while total and higher-order aberrations(coma, trefoil,s pherical, and quadrafoil) were significantly higher in the gout group. In the evaluation of biomechanical measurements, the CH value was significantly lower and the corneal-compensated IOP value was significantly higher in the gout group (p = 0.02, p = 0.01, respectively). The two groups did not significantly differ regarding the CRF or Goldmann IOP (p = 0.61, p = 0.15, respectively). Among the IVCM parameters, the number of corneal basal epithelial cells and the percentage of corneal endothelial hexagonality were significantly lower in the gout group, but no significant difference was detected in terms of the number of endothelial cells or polymegathism (p = 0.02, p < 0.001, p = 0.18, p = 0.59, respectively). While TBUT was significantly lower in the gout group (p < 0.001). CONCLUSION This study showed that chronic gout disease increases the corneal aberrations and decreases the basal epithelial cell count, hexagonality ratio of endothelial cell and corneal biomechanics.
Collapse
Affiliation(s)
- Mehmet Icoz
- Department of Ophthalmology, Yozgat City Hospital, Yozgat, Turkey
| | - Yelda Yildiz Tasci
- Department of Ophthalmology, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Şükran Erten
- Department of Ophthalmology, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Ozge Sarac
- Department of Ophthalmology, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
- Department of Rheumatology, Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Sagaltici DA, Kurt E, Seymenoglu RG, Mayali H, Hekimsoy Z. The Effect of Diabetic Retinopathy and Blood Glucose Regulation on Corneal Biomechanical Parameters. Curr Eye Res 2024; 49:792-797. [PMID: 38587365 DOI: 10.1080/02713683.2024.2338219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE The aim of this study was to evaluate the effects of different stages of diabetic retinopathy (DR) and metabolic control of blood glucose levels on corneal biomechanical parameters. METHODS Diabetic patients were categorized into three groups: no DR group, nonproliferative DR (NPDR) group, and proliferative DR (PDR) group. Of the 141 eyes examined, 40 belonged to the control group, 34 to no DR group, 34 to NPDR group, and 33 to PDR group. Using an Ocular Response Analyzer to measure corneal hysteresis (CH), corneal resistance factor (CRF), Goldmann-correlated intraocular pressure (IOPg), and corneal-compensated IOP (IOPcc). IOP was assessed using a Tono-Pen, while central corneal thickness (CCT) was determined using an ultrasonic pachymeter. HbA1c levels were also recorded. We conducted comparisons among these groups across biomechanical parameters and IOP (tonopen), and CCT, while also investigating the impact of HbA1c levels on these parameters. RESULTS Among any groups show a statistically significant difference in CCT, IOP (tonopen), CH, CRF, IOPg, and IOPcc. In diabetic patients, CRF, CTT, and IOPg values were significantly higher in those with HbA1c levels ≥ 7 mg/dl than in those with HbA1c levels < 7 mg/dl (p = 0.009, p = 0.013, p = 0.038), respectively, while there was no statistically significant difference in IOPcc, CH, and IOP (tonopen). Linear regression analysis showed that CH was positively associated with CCT (p < 0.001) and negatively associated with IOPcc (p < 0.001), while CRF was positively associated with CCT (p < 0.001), HbA1c (p < 0.05), and negatively associated with diagnosis of DR (p < 0.05). CONCLUSION This study underscores the influence of metabolic control, as reflected by HbA1c levels, on corneal biomechanical parameters in diabetic patients, emphasizing the importance of monitoring and managing glycemic control in this population.
Collapse
Affiliation(s)
- Duygu Akbulut Sagaltici
- University of Health Sciences, Bagcilar Training and Research Hospital, Department of Ophthalmology, Istanbul, Turkey
| | - Emin Kurt
- Department of Ophthalmology, Manisa Celal Bayar University, Manisa, Turkey
| | | | - Huseyin Mayali
- Department of Ophthalmology, Manisa Celal Bayar University, Manisa, Turkey
| | - Zeliha Hekimsoy
- Department of Endocrinology and Metabolism, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
3
|
Erb C, Erb C, Kazakov A, Umetalieva M, Weisser B. Influence of Diabetes Mellitus on Glaucoma-Relevant Examination Results in Primary Open-Angle Glaucoma. Klin Monbl Augenheilkd 2024; 241:177-185. [PMID: 37643738 DOI: 10.1055/a-2105-0756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Primary open-angle glaucoma (POAG) is no longer considered an isolated eye pressure-dependent optic neuropathy, but a neurodegenerative disease in which oxidative stress and neuroinflammation are prominent. These processes may be exacerbated by additional systemic diseases. The most common are arterial hypertension, dyslipidemia, and diabetes mellitus. Using diabetes mellitus as an example, it will be shown how far-reaching the influence of such a systemic disease can be on both the functional and the structural diagnostic methods for POAG. This knowledge is essential, since these interferences can lead to misinterpretations of POAG, which can also affect therapeutic decisions.
Collapse
Affiliation(s)
- Carl Erb
- Augenklinik am Wittenbergplatz, Berlin, Deutschland
| | | | - Avaz Kazakov
- Department of External Relations and Development, Salymbekov University, Bishkek, Kyrgyzstan
| | - Maana Umetalieva
- Medical Faculty of Medicine, Salymbekov University, Bishkek, Kyrgyzstan
| | | |
Collapse
|
4
|
Markoulli M, Ahmad S, Arcot J, Arita R, Benitez-Del-Castillo J, Caffery B, Downie LE, Edwards K, Flanagan J, Labetoulle M, Misra SL, Mrugacz M, Singh S, Sheppard J, Vehof J, Versura P, Willcox MDP, Ziemanski J, Wolffsohn JS. TFOS Lifestyle: Impact of nutrition on the ocular surface. Ocul Surf 2023; 29:226-271. [PMID: 37100346 DOI: 10.1016/j.jtos.2023.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
Nutrients, required by human bodies to perform life-sustaining functions, are obtained from the diet. They are broadly classified into macronutrients (carbohydrates, lipids, and proteins), micronutrients (vitamins and minerals) and water. All nutrients serve as a source of energy, provide structural support to the body and/or regulate the chemical processes of the body. Food and drinks also consist of non-nutrients that may be beneficial (e.g., antioxidants) or harmful (e.g., dyes or preservatives added to processed foods) to the body and the ocular surface. There is also a complex interplay between systemic disorders and an individual's nutritional status. Changes in the gut microbiome may lead to alterations at the ocular surface. Poor nutrition may exacerbate select systemic conditions. Similarly, certain systemic conditions may affect the uptake, processing and distribution of nutrients by the body. These disorders may lead to deficiencies in micro- and macro-nutrients that are important in maintaining ocular surface health. Medications used to treat these conditions may also cause ocular surface changes. The prevalence of nutrition-related chronic diseases is climbing worldwide. This report sought to review the evidence supporting the impact of nutrition on the ocular surface, either directly or as a consequence of the chronic diseases that result. To address a key question, a systematic review investigated the effects of intentional food restriction on ocular surface health; of the 25 included studies, most investigated Ramadan fasting (56%), followed by bariatric surgery (16%), anorexia nervosa (16%), but none were judged to be of high quality, with no randomized-controlled trials.
Collapse
Affiliation(s)
- Maria Markoulli
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia.
| | - Sumayya Ahmad
- Icahn School of Medicine of Mt. Sinai, New York, NY, USA
| | - Jayashree Arcot
- Food and Health, School of Chemical Engineering, UNSW Sydney, Australia
| | - Reiko Arita
- Department of Ophthalmology, Itoh Clinic, Saitama, Japan
| | | | | | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Katie Edwards
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Judith Flanagan
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia; Vision CRC, USA
| | - Marc Labetoulle
- Ophthalmology Department, Hospital Bicêtre, APHP, Paris-Saclay University, Le Kremlin-Bicêtre, France; IDMIT (CEA-Paris Saclay-Inserm U1184), Fontenay-aux-Roses, France
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | | | - Sumeer Singh
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - John Sheppard
- Virginia Eye Consultants, Norfolk, VA, USA; Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jelle Vehof
- Departments of Ophthalmology and Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK; Department of Ophthalmology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Piera Versura
- Cornea and Ocular Surface Analysis - Translation Research Laboratory, Ophthalmology Unit, DIMEC Alma Mater Studiorum Università di Bologna, Italy; IRCCS AOU di Bologna Policlinico di Sant'Orsola, Bologna, Italy
| | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Jillian Ziemanski
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James S Wolffsohn
- College of Health & Life Sciences, School of Optometry, Aston University, Birmingham, UK
| |
Collapse
|
5
|
Lanza M, Mozzillo E, Boccia R, Fedi L, Di Candia F, Tinto N, Melillo P, Simonelli F, Franzese A. Analysis of Corneal Deformation in Paediatric Patients Affected by Maturity Onset Diabetes of the Young Type 2. Diagnostics (Basel) 2023; 13:diagnostics13081500. [PMID: 37189601 DOI: 10.3390/diagnostics13081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND To evaluate corneal deformation in Maturity Onset Diabetes of the Young type 2 (MODY2), paediatric subjects were analysed using a Scheimpflug-based device. The purpose of this analysis was to find new biomarkers for MODY2 disease and to gain a better understanding of the pathogenesis of the disease. METHODS A total of 15 patients with genetic and metabolic diagnoses of MODY2 (mean age 12.8 ± 5.66 years) and 15 age-matched healthy subjects were included. The biochemical and anthropometric data of MODY2 patients were collected from clinical records, and a complete ophthalmic check with a Pentacam HR EM-3000 Specular Microscope and Corvis ST devices was performed in both groups. RESULTS Highest concavity (HC) deflection length, Applanation 1 (A1) deflection amplitude, and A1 deflection area showed significantly lower values in MODY2 patients compared to healthy subjects. A significant positive correlation was observed between Body Mass Index (BMI) and HC deflection area and between waist circumference (WC) and the following parameters: maximum deformation amplitude, HC deformation amplitude, and HC deflection area. The glycosylated hemoglobin level (HbA1c) showed a significant positive correlation with Applanation 2 time and HC time. CONCLUSIONS The obtained results show, for the first time, differences regarding corneal distortion features in the MODY2 population compared with healthy eyes.
Collapse
Affiliation(s)
- Michele Lanza
- Multidisciplinary Department of Medical Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Enza Mozzillo
- Department of Translational Medical Sciences, Regional Center of Pediatric Diabetes, Federico II University of Naples, 80131 Naples, Italy
| | - Rosa Boccia
- Multidisciplinary Department of Medical Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ludovica Fedi
- Department of Translational Medical Sciences, Regional Center of Pediatric Diabetes, Federico II University of Naples, 80131 Naples, Italy
| | - Francesca Di Candia
- Department of Translational Medical Sciences, Regional Center of Pediatric Diabetes, Federico II University of Naples, 80131 Naples, Italy
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, CEINGE Advanced Biotechnologies, Federico II University of Naples, 80131 Naples, Italy
| | - Paolo Melillo
- Multidisciplinary Department of Medical Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Adriana Franzese
- Department of Translational Medical Sciences, Regional Center of Pediatric Diabetes, Federico II University of Naples, 80131 Naples, Italy
| |
Collapse
|
6
|
Virtanen A, Haukka J, Loukovaara S, Harju M. Diabetes mellitus and risk of open-angle glaucoma-A population-based follow-up study. Acta Ophthalmol 2023; 101:160-169. [PMID: 35997222 DOI: 10.1111/aos.15240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of this study was to investigate the association of diabetes mellitus (DM) and risk of open-angle glaucoma (OAG). METHODS This population-based historic cohort consisted of individuals at age ≥ 40 years with DM treatment initiated 2001-2010 and a reference population matched by age, gender and hospital district. Incidence of OAG was compared between individuals with DM and their matched non-diabetic reference pairs. New glaucoma cases were identified from medication reimbursement certificates and hospital billing records. Incidence rate ratios (IRR) were analysed with Poisson regression models adjusted for age, sex, hospital district, socioeconomic status, systemic medications and chronic diseases. We analysed the sensitivity of the results with adapted input variables and performed a competing events analysis. RESULTS Of the 244 100 study subjects meeting inclusion criteria, 2721 (1.1%) developed OAG. Follow-up spanned from 2001 to 2017. DM was associated with a modestly reduced incidence of OAG when adjusted for confounding factors (IRR 0.92, CI 0.85-0.99). CONCLUSIONS In our longitudinal population-based study, we found a modest decrease in the risk of OAG for individuals with DM.
Collapse
Affiliation(s)
- Aapo Virtanen
- Department of Ophthalmology, Helsinki University Central Hospital Head and Neck Center, Helsinki, Finland.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jari Haukka
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sirpa Loukovaara
- Department of Ophthalmology, Helsinki University Central Hospital Head and Neck Center, Helsinki, Finland.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mika Harju
- Department of Ophthalmology, Helsinki University Central Hospital Head and Neck Center, Helsinki, Finland.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Luebke J. Individualized Treatment for Glaucoma Patients with Diabetes mellitus. Klin Monbl Augenheilkd 2023; 240:142-146. [PMID: 36634690 DOI: 10.1055/a-1961-7186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glaucoma and diabetes mellitus are two common chronic diseases in Europe and worldwide which require intensive therapy. Various pathophysiological mechanisms have been discussed which favour the development of glaucoma, especially in the presence of diabetes mellitus. Medicinal and surgical adjustment of intraocular pressure is associated with some limitations in patients with diabetes mellitus, for example, filtering interventions show lower success rates than in non-diabetic glaucoma patients. Besides pure ophthalmological endocrinological therapy, the psychological burden of two chronic diseases should also be considered and included in the individual therapy plan.
Collapse
Affiliation(s)
- Jan Luebke
- Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Deutschland
| |
Collapse
|
8
|
Diabetic Retinopathy: Soluble and Imaging Ocular Biomarkers. J Clin Med 2023; 12:jcm12030912. [PMID: 36769560 PMCID: PMC9917666 DOI: 10.3390/jcm12030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Diabetic retinopathy (DR), the most common microvascular complication of diabetes mellitus, represents the leading cause of acquired blindness in the working-age population. Due to the potential absence of symptoms in the early stages of the disease, the identification of clinical biomarkers can have a crucial role in the early diagnosis of DR as well as for the detection of prognostic factors. In particular, imaging techniques are fundamental tools for screening, diagnosis, classification, monitoring, treatment planning and prognostic assessment in DR. In this context, the identification of ocular and systemic biomarkers is crucial to facilitate the risk stratification of diabetic patients; moreover, reliable biomarkers could provide prognostic information on disease progression as well as assist in predicting a patient's response to therapy. In this context, this review aimed to provide an updated and comprehensive overview of the soluble and anatomical biomarkers associated with DR.
Collapse
|
9
|
Zhao Y, Hu G, Yan Y, Wang Z, Liu X, Shi H. Biomechanical analysis of ocular diseases and its in vitro study methods. Biomed Eng Online 2022; 21:49. [PMID: 35870978 PMCID: PMC9308301 DOI: 10.1186/s12938-022-01019-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/13/2022] [Indexed: 12/25/2022] Open
Abstract
Ocular diseases are closely related to the physiological changes in the eye sphere and its contents. Using biomechanical methods to explore the relationship between the structure and function of ocular tissue is beneficial to reveal the pathological processes. Studying the pathogenesis of various ocular diseases will be helpful for the diagnosis and treatment of ocular diseases. We provide a critical review of recent biomechanical analysis of ocular diseases including glaucoma, high myopia, and diabetes. And try to summarize the research about the biomechanical changes in ocular tissues (e.g., optic nerve head, sclera, cornea, etc.) associated with those diseases. The methods of ocular biomechanics research in vitro in recent years are also reviewed, including the measurement of biomechanics by ophthalmic equipment, finite element modeling, and biomechanical analysis methods. And the preparation and application of microfluidic eye chips that emerged in recent years were summarized. It provides new inspiration and opportunity for the pathogenesis of eye diseases and personalized and precise treatment.
Collapse
|
10
|
Madjedi KM, Stuart KV, Chua SYL, Luben RN, Warwick A, Pasquale LR, Kang JH, Wiggs JL, Lentjes MAH, Aschard H, Sattar N, Foster PJ, Khawaja AP. The Association between Serum Lipids and Intraocular Pressure in 2 Large United Kingdom Cohorts. Ophthalmology 2022; 129:986-996. [PMID: 35500606 PMCID: PMC10444694 DOI: 10.1016/j.ophtha.2022.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Serum lipids are modifiable, routinely collected blood test features associated with cardiovascular health. We examined the association of commonly collected serum lipid measures (total cholesterol [TC], high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C], and triglycerides) with intraocular pressure (IOP). DESIGN Cross-sectional study in the UK Biobank and European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohorts. PARTICIPANTS We included 94 323 participants from the UK Biobank (mean age, 57 years) and 6230 participants from the EPIC-Norfolk (mean age, 68 years) cohorts with data on TC, HDL-C, LDL-C, and triglycerides collected between 2006 and 2009. METHODS Multivariate linear regression adjusting for demographic, lifestyle, anthropometric, medical, and ophthalmic covariables was used to examine the associations of serum lipids with corneal-compensated IOP (IOPcc). MAIN OUTCOME MEASURES Corneal-compensated IOP. RESULTS Higher levels of TC, HDL-C, and LDL-C were associated independently with higher IOPcc in both cohorts after adjustment for key demographic, medical, and lifestyle factors. For each 1-standard deviation increase in TC, HDL-C, and LDL-C, IOPcc was higher by 0.09 mmHg (95% confidence interval [CI], 0.06-0.11 mmHg; P < 0.001), 0.11 mmHg (95% CI, 0.08-0.13 mmHg; P < 0.001), and 0.07 mmHg (95% CI, 0.05-0.09 mmHg; P < 0.001), respectively, in the UK Biobank cohort. In the EPIC-Norfolk cohort, each 1-standard deviation increase in TC, HDL-C, and LDL-C was associated with a higher IOPcc by 0.19 mmHg (95% CI, 0.07-0.31 mmHg; P = 0.001), 0.14 mmHg (95% CI, 0.03-0.25 mmHg; P = 0.016), and 0.17 mmHg (95% CI, 0.06-0.29 mmHg; P = 0.003). An inverse association between triglyceride levels and IOP in the UK Biobank (-0.05 mmHg; 95% CI, -0.08 to -0.03; P < 0.001) was not replicated in the EPIC-Norfolk cohort (P = 0.30). CONCLUSIONS Our findings suggest that serum TC, HDL-C, and LDL-C are associated positively with IOP in 2 United Kingdom cohorts and that triglyceride levels may be associated negatively. Future research is required to assess whether these associations are causal in nature.
Collapse
Affiliation(s)
- Kian M Madjedi
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom; Department of Ophthalmology, University of Calgary, Calgary, Canada.
| | - Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Sharon Y L Chua
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Robert N Luben
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom; MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Alasdair Warwick
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jae H Kang
- Brigham and Women's Hospital / Harvard Medical School, Boston, Massachusetts
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Marleen A H Lentjes
- Clinical Epidemiology and Biostatistics/Nutrient Gut-Brain Interaction, Örebro University, Örebro, Sweden
| | | | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom; MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| |
Collapse
|
11
|
Akowuah PK, Arthur C, Otabil FA, Ofori CA, Osei-Poku K, Fummey J, Boadi P, Dadzie EE. Association between diabetes and keratoconus-a systematic review and meta-analysis. Eur J Ophthalmol 2021; 32:23-30. [PMID: 34761685 DOI: 10.1177/11206721211053167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE To assess the association between diabetes mellitus and keratoconus. METHODS PubMed, Google Scholar, Web of Science, and Scopus databases were searched for literature on the association between diabetes and keratoconus. The last literature search was conducted on April 4, 2021. A secondary form of the literature search was conducted by manually scanning the reference list of retrieved eligible articles. Included studies were cohort, case-control, or cross-sectional study design that used odds ratio or risk ratio to evaluate the relationship between keratoconus and diabetes. Egger's test was used to assess the presence of publication bias. The quality of eligible studies was assessed using the Newcastle-Ottawa Scale. RESULTS Nine studies (six case-control and three cohort studies) published between 2000 and 2021 were included. The total number of keratoconus patients and controls were 27,311 and 53,732. respectively. Meta-analysis revealed no significant association between diabetes mellitus and keratoconus; the pooled odds ratio was 0.87 (95% confidence interval: 0.66-1.14; p = 0.314). There was significant heterogeneity (Q (df = 7) = 33.36, p < 0.001;I2 = 79.01, p < 0.001). Age of participants (p < 0.0001), study design (p < 0.001), and sample size (p = 0.024) were significant sources of heterogeneity. There was no evidence of publication bias. CONCLUSION The current meta-analysis revealed no significant association between diabetes mellitus and keratoconus. Well-designed longitudinal prospective studies are, however, needed to investigate any association between diabetes mellitus and keratoconus.
Collapse
Affiliation(s)
- Prince K Akowuah
- Department of Optometry, 98763Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,College of Optometry, 165995University of Houston, Houston, TX, USA
| | - Christabel Arthur
- Department of Optometry, 98763Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fredrick A Otabil
- Department of Optometry, 98763Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Kofi Osei-Poku
- Department of Optometry, 98763Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jeremiah Fummey
- Department of Optometry, 98763Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prince Boadi
- Department of Optometry, 98763Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emmanuella E Dadzie
- Department of Optometry, 98763Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
12
|
Shah R, Amador C, Tormanen K, Ghiam S, Saghizadeh M, Arumugaswami V, Kumar A, Kramerov AA, Ljubimov AV. Systemic diseases and the cornea. Exp Eye Res 2021; 204:108455. [PMID: 33485845 PMCID: PMC7946758 DOI: 10.1016/j.exer.2021.108455] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.
Collapse
Affiliation(s)
- Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithi Arumugaswami
- Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|