1
|
Silva NR, Arjmand S, Domingos LB, Chaves-Filho AM, Mottin M, Real CC, Waszkiewicz AL, Gobira PH, Ferraro AN, Landau AM, Andrade CH, Müller HK, Wegener G, Joca SRL. Modulation of the endocannabinoid system by (S)-ketamine in an animal model of depression. Pharmacol Res 2025; 211:107545. [PMID: 39667543 DOI: 10.1016/j.phrs.2024.107545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Ketamine (KET) is recognized as rapid-acting antidepressant, but its mechanisms of action remain elusive. Considering the role of endocannabinoids (eCB) in stress and depression, we investigated if S-KET antidepressant effects involve the regulation of the eCB system using an established rat model of depression based on selective breeding: the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL). S-KET (15 mg/kg) effects were assessed in rats exposed to the open field and forced swimming test (FST), followed by analysis of the eCB signaling in the rat prefrontal cortex (PFC), a brain region involved in depression neurobiology. Changes in eCB receptors and enzymes were assessed at mRNA and protein levels (qPCR and western blot), CB1 binding ([3H]SR141716A autoradiography) and endocannabinoid content (lipidomics). The results demonstrated that the depressive behavior in FSL was negatively correlated with 2-AG levels, which were restored upon acute S-KET treatment. Although S-KET decreased CB1 and FAAH gene expression in FSL, there were no significant changes at protein levels. [3H]SR141716A binding to CB1 receptors was increased by S-KET and in silico analysis suggested that it binds to CB1, CB2, GPR55 and FAAH. Overall, S-KET effects correlated with an increased endocannabinoid signaling in the PFC, but systemic treatment with rimonabant failed to block its behavioral effects. Altogether, our results indicate that S-KET facilitates eCB signaling in the PFC of FSL. The inability of rimonabant to block the antidepressant effect of S-KET highlights the complexity of its interaction with the ECS, warranting further investigation into the molecular pathways.
Collapse
Affiliation(s)
- Nicole R Silva
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Luana B Domingos
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Adriano M Chaves-Filho
- Division of Medical Sciences, University of Victoria, Canada; Neuropharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Brazil
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Caroline C Real
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | | | - Pedro H Gobira
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | | | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | - Carolina H Andrade
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Heidi K Müller
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Sâmia R L Joca
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark.
| |
Collapse
|
2
|
Dragon J, Obuchowicz E. How depression and antidepressant drugs affect endocannabinoid system?-review of clinical and preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4511-4536. [PMID: 38280009 DOI: 10.1007/s00210-023-02938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/30/2023] [Indexed: 01/29/2024]
Abstract
As major depressive disorder is becoming a more and more common issue in modern society, it is crucial to discover new possible grip points for its diagnosis and antidepressive therapy. One of them is endocannabinoid system, which has been proposed as a manager of emotional homeostasis, and thus, endocannabinoid alterations have been found in animals undergoing various preclinical models of depression procedures as well as in humans suffering from depressive-like disorders. In this review article, studies regarding those alterations have been summed up and analyzed. Another important issue raised by the researchers is the impact of currently used antidepressive drugs on endocannabinoid system so that it would be possible to predict reversibility of endocannabinoid alterations following stress exposure and, in the future, to be able to design individually personalized therapies. Preclinical studies investigating this topic have been analyzed and described in this article. Unfortunately, too few clinical studies in this field exist, what indicates an urgent need for collecting such data, so that it would be possible to compare them with preclinical outcomes and draw reliable conclusions.
Collapse
Affiliation(s)
- Jonasz Dragon
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland.
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland
| |
Collapse
|
3
|
Coelho A, Lima-Bastos S, Gobira P, Lisboa S. Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders. Neuronal Signal 2023; 7:NS20220034. [PMID: 37520658 PMCID: PMC10372471 DOI: 10.1042/ns20220034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Stress exposure is associated with psychiatric conditions, such as depression, anxiety, and post-traumatic stress disorder (PTSD). It is also a vulnerability factor to developing or reinstating substance use disorder. Stress causes several changes in the neuro-immune-endocrine axis, potentially resulting in prolonged dysfunction and diseases. Changes in several transmitters, including serotonin, dopamine, glutamate, gamma-aminobutyric acid (GABA), glucocorticoids, and cytokines, are associated with psychiatric disorders or behavioral alterations in preclinical studies. Complex and interacting mechanisms make it very difficult to understand the physiopathology of psychiatry conditions; therefore, studying regulatory mechanisms that impact these alterations is a good approach. In the last decades, the impact of stress on biology through epigenetic markers, which directly impact gene expression, is under intense investigation; these mechanisms are associated with behavioral alterations in animal models after stress or drug exposure, for example. The endocannabinoid (eCB) system modulates stress response, reward circuits, and other physiological functions, including hypothalamus-pituitary-adrenal axis activation and immune response. eCBs, for example, act retrogradely at presynaptic neurons, limiting the release of neurotransmitters, a mechanism implicated in the antidepressant and anxiolytic effects after stress. Epigenetic mechanisms can impact the expression of eCB system molecules, which in turn can regulate epigenetic mechanisms. This review will present evidence of how the eCB system and epigenetic mechanisms interact and the consequences of this interaction in modulating behavioral changes after stress exposure in preclinical studies or psychiatric conditions. Moreover, evidence that correlates the involvement of the eCB system and epigenetic mechanisms in drug abuse contexts will be discussed.
Collapse
Affiliation(s)
- Arthur A. Coelho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sávio Lima-Bastos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Pedro H. Gobira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sabrina F. Lisboa
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
4
|
Ribeiro MA, Aguiar RP, Scarante FF, Fusse EJ, de Oliveira RMW, Guimarães FS, Campos AC. The Chronic Pharmacological Antagonism of the CB 1 Receptor is not Involved in the Behavioral Effects of Antidepressants Administered in Mice Submitted to Chronic Unpredictable Stress. Behav Brain Res 2023; 450:114502. [PMID: 37211222 DOI: 10.1016/j.bbr.2023.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Several pieces of evidence suggest that the monoaminergic theory of depression cannot fully explain all behavioral and neuroplastic changes observed after antidepressant chronic treatment. Other molecular targets, such as the endocannabinoid system, have been associated with the chronic effects of these drugs. In the present study, we hypothesized that the behavioral and neuroplastic effects observed after repeated treatment with the antidepressants (AD) Escitalopram (ESC) or venlafaxine (VFX) in chronically stressed mice depend on CB1 receptor activation. Male mice submitted to the chronic unpredictable stress (CUS) paradigm for 21 days were treated with Esc (10mg/kg) or VFX (20mg/kg) once a day in the presence or not of AM251 (0,3mg/kg), a CB1 receptor antagonist/inverse agonist. At the end of the CUS paradigm, we conducted behavior tests to evaluate depressive- and anxiety-like behaviors. Our results demonstrated that chronic blockade of the CB1 receptor does not attenuate the antidepressant- or the anxiolytic-like effects of ESC nor VFX. ESC increased the expression of CB1 in the hippocampus, but AM251 did not change the pro-proliferative effects of ESC in the dentate gyrus or the increased expression of synaptophysin induced by this AD in the hippocampus. Our results suggest that CB1 receptors are not involved in behavioral and hippocampal neuroplastic effects observed after repeated antidepressant treatment in mice submitted to CUS.
Collapse
Affiliation(s)
- Melissa A Ribeiro
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Ave, Maringá, Paraná- Brazil
| | - Rafael P Aguiar
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Ave, Maringá, Paraná- Brazil
| | - Franciele F Scarante
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Ave, Maringá, Paraná- Brazil
| | - Eduardo J Fusse
- Mental Health Graduate Program- Ribeirão Preto Medical School, University of São Paulo, 2650 Tenente Catão Roxo Ave, Ribeirão Preto, São Paulo, Brazil
| | - Rúbia M W de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Ave, Maringá, Paraná- Brazil
| | - Francisco S Guimarães
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Ave, Maringá, Paraná- Brazil
| | - Alline C Campos
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Ave, Maringá, Paraná- Brazil.
| |
Collapse
|
5
|
Kim HK, Zai G, Müller DJ, Husain MI, Lam RW, Frey BN, Soares CN, Parikh SV, Milev R, Foster JA, Turecki G, Farzan F, Mulsant BH, Kennedy SH, Tripathy SJ, Kloiber S. Identification of Endocannabinoid Predictors of Treatment Outcomes in Major Depressive Disorder: A Secondary Analysis of the First Canadian Biomarker Integration Network in Depression (CAN-BIND 1) Study. PHARMACOPSYCHIATRY 2022; 55:297-303. [PMID: 35793696 DOI: 10.1055/a-1872-0844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION An increasing number of studies are examining the link between the endocannabinoidome and major depressive disorder (MDD). We conducted an exploratory analysis of this system to identify potential markers of treatment outcomes. METHODS The dataset of the Canadian Biomarker Integration Network in Depression-1 study, consisting of 180 patients with MDD treated for eight weeks with escitalopram followed by eight weeks with escitalopram alone or augmented with aripiprazole was analyzed. Association between response Montgomery-Asberg Depression Rating Scale (MADRS; score reduction≥50%) or remission (MADRS score≤10) at weeks 8 and 16 and single nucleotide polymorphisms (SNPs), methylation, and mRNA levels of 33 endocannabinoid markers were examined. A standard genome-wide association studies protocol was used for identifying SNPs, and logistic regression was used to assess methylation and mRNA levels. RESULTS Lower methylation of CpG islands of the diacylglycerol lipase alpha gene (DAGLA) was associated with non-remission at week 16 (DAGLA; OR=0.337, p<0.003, q=0.050). Methylation of DAGLA was correlated with improvement in Clinical Global Impression (p=0.026), Quick Inventory of Depressive Symptomatology (p=0.010), and Snaith-Hamilton Pleasure scales (p=0.028). We did not find any association between SNPs or mRNA levels and treatment outcomes. DISCUSSION Methylation of DAGLA is a promising candidate as a marker of treatment outcomes for MDD and needs to be explored further.
Collapse
Affiliation(s)
- Helena K Kim
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Gwyneth Zai
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Daniel J Müller
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Muhammad I Husain
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada.,Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Canada
| | - Claudio N Soares
- Department of Psychiatry, Queen's university School of Medicine, Kingston, Canada
| | - Sagar V Parikh
- Department of Psychiatry, University of Michigan, Ann Arbor, United States of America
| | - Roumen Milev
- Department of Psychiatry, Queen's university School of Medicine, Kingston, Canada.,Department of Psychiatry, Providence care, Kingston, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Gustavo Turecki
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, Canada
| | - Faranak Farzan
- eBrain Lab, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, Canada
| | - Benoit H Mulsant
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Shreejoy J Tripathy
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Krembil Center for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Stefan Kloiber
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
7
|
Epps SA. Commonalities for comorbidity: Overlapping features of the endocannabinoid system in depression and epilepsy. Front Psychiatry 2022; 13:1041460. [PMID: 36339877 PMCID: PMC9626804 DOI: 10.3389/fpsyt.2022.1041460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
A wealth of clinical and pre-clinical data supports a bidirectional comorbidity between depression and epilepsy. This suggests commonalities in underlying mechanisms that may serve as targets for more effective treatment strategies. Unfortunately, many patients with this comorbidity are highly refractory to current treatment strategies, while others experience a worsening of one arm of the comorbidity when treating the other arm. This highlights the need for novel pharmaceutical targets that may provide safe and effective relief for both depression and epilepsy symptoms. The endocannabinoid system (ECS) of the brain has become an area of intense interest for possible roles in depression and epilepsy. Several existing literature reviews have provided in-depth analysis of the involvement of various aspects of the ECS in depression or epilepsy separately, while others have addressed the effectiveness of different treatment strategies targeting the ECS in either condition individually. However, there is not currently a review that considers the ECS when both conditions are comorbid. This mini-review will address areas of common overlap between the ECS in depression and in epilepsy, such as commonalities in endocannabinoids themselves, their receptors, and degradative enzymes. These areas of overlap will be discussed alongside their implications for treatment of this challenging comorbidity.
Collapse
Affiliation(s)
- S Alisha Epps
- Department of Psychology, Whitworth University, Spokane, WA, United States
| |
Collapse
|
8
|
Gallego-Landin I, García-Baos A, Castro-Zavala A, Valverde O. Reviewing the Role of the Endocannabinoid System in the Pathophysiology of Depression. Front Pharmacol 2021; 12:762738. [PMID: 34938182 PMCID: PMC8685322 DOI: 10.3389/fphar.2021.762738] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Major depressive disorder is a high-impact, debilitating disease and it is currently considered the most prevalent mental illness. It is associated with disability, as well as increased morbidity and mortality. Despite its significant repercussions in our society, its exact pathophysiology remains unclear and therefore, available antidepressant treatment options are limited and, in some cases, ineffective. In the past years, research has focused on the development of a multifactorial theory of depression. Simultaneously, evidence supporting the role of the endocannabinoid system in the neurobiology of neuropsychiatric diseases has emerged. Studies have shown that the endocannabinoid system strongly impacts neurotransmission, and the neuroendocrine and neuroimmune systems, which are known to be dysfunctional in depressive patients. Accordingly, common antidepressants were shown to have a direct impact on the expression of cannabinoid receptors throughout the brain. Therefore, the relationship between the endocannabinoid system and major depressive disorder is worth consideration. Nevertheless, most studies focus on smaller pieces of what is undoubtedly a larger mosaic of interdependent processes. Therefore, the present review summarizes the existing literature regarding the role of the endocannabinoid system in depression aiming to integrate this information into a holistic picture for a better understanding of the relationship between the two.
Collapse
Affiliation(s)
- Ines Gallego-Landin
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
9
|
Peleg LC, Rabinovitch D, Lavie Y, Rabbie DM, Horowitz I, Fruchter E, Gruenwald I. Post-SSRI Sexual Dysfunction (PSSD): Biological Plausibility, Symptoms, Diagnosis, and Presumed Risk Factors. Sex Med Rev 2021; 10:91-98. [PMID: 34627736 DOI: 10.1016/j.sxmr.2021.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Post-SSRI sexual-dysfunction (PSSD) is an iatrogenicsyndrome, the underlying neurobiological mechanisms of which areunclear. Symptom onset follows cessation of serotonergicantidepressants i.e. Selective Serotonin and Norepinephrine ReuptakeInhibitors (SSRI's, SNRI's), and Tricyclic antidepressants (TCA's). PSSDsymptoms include genital anesthesia, erectile dysfunction andorgasmic/ejaculatory anhedonia, and should be differentiated fromdepression-related sexual-dysfunction. Recently, accumulated data of numerous case-reports suggest additional non-sexual symptoms including, anhedonia, apathy, and blunted affect. PSSD gained official recognition after the European medical agency concluded that PSSD is a medical condition that persists after discontinuation of SSRI's and SNRI's. OBJECTIVE To review possible underlying neurobiological mechanisms ofthis syndrome, update information on the pathophysiology, present a listof potential risk-factors and discuss potential management options forPSSD. METHODS Extensive literature review on the main symptom-patterns ofthis disorder was undertaken using PubMed. It includes introductoryexplications of relevant neurobiology with the objective of generatinghypothesis. RESULTS Precipitating factors for PSSD include previous exposure to certain drugs, genetic predisposition, psychological stress or chemical stressful reaction to antidepressants along pre-existing medical conditions affecting neuroplasticity. Different theories have been proposed to explain the pathophysiology of PSSD: epigenetic gene expression, dopamine-serotonin interactions, serotonin neurotoxicity and hormonal changes. The diagnosis of PSSD is by excluding all other etiologies of sexual-dysfunction. Treatment is challenging, and many strategies have been suggested without definitive outcomes. We offerthe contours of a future neurobiological research agenda, and propose several underlying mechanisms for the various symptoms of PSSD which could be the foundation for a future treatment algorithm. CONCLUSION There is a need for well-designed neurobiological research in this domain, as well as in the prevalence, pathophysiology, and treatment of PSSD. Practitioners should be alert to the distinctive features of PSSD. Misdiagnosing this syndrome might lead to harmful Sexual Medicine Reviews. Peleg LC, Rabinovitch D, Lavie Y, et al. Post-SSRI Sexual Dysfunction (PSSD): Biological Plausibility, Symptoms, Diagnosis, and Presumed Risk Factors. Sex Med Rev 2021;XX:XXX-XXX.
Collapse
Affiliation(s)
| | | | | | - Deya M Rabbie
- Ahram Canadian University, Neuropharmacology, 6th of October City, Egypt
| | - Itai Horowitz
- Rambam Healthcare Campus, Psychiatry Department, Haifa, Israel
| | | | - Ilan Gruenwald
- Rambam Healthcare Campus, Neuro-Urology Unit, Haifa, Israel.
| |
Collapse
|
10
|
Wilkerson JL, Bilbrey JA, Felix JS, Makriyannis A, McMahon LR. Untapped endocannabinoid pharmacological targets: Pipe dream or pipeline? Pharmacol Biochem Behav 2021; 206:173192. [PMID: 33932409 DOI: 10.1016/j.pbb.2021.173192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
It has been established that the endogenous cannabinoid (endocannabinoid) system plays key modulatory roles in a wide variety of pathological conditions. The endocannabinoid system comprises both cannabinoid receptors, their endogenous ligands including 2-arachidonoylglycerol (2-AG), N-arachidonylethanolamine (anandamide, AEA), and enzymes that regulate the synthesis and degradation of endogenous ligands which include diacylglycerol lipase alpha (DAGL-α), diacylglycerol lipase beta (DAGL-β), fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), α/β hydrolase domain 6 (ABHD6). As the endocannabinoid system exerts considerable involvement in the regulation of homeostasis and disease, much effort has been made towards understanding endocannabinoid-related mechanisms of action at cellular, physiological, and pathological levels as well as harnessing the various components of the endocannabinoid system to produce novel therapeutics. However, drug discovery efforts within the cannabinoid field have been slower than anticipated to reach satisfactory clinical endpoints and raises an important question into the validity of developing novel ligands that therapeutically target the endocannabinoid system. To answer this, we will first examine evidence that supports the existence of an endocannabinoid system role within inflammatory diseases, neurodegeneration, pain, substance use disorders, mood disorders, as well as metabolic diseases. Next, this review will discuss recent clinical studies, within the last 5 years, of cannabinoid compounds in context to these diseases. We will also address some of the challenges and considerations within the cannabinoid field that may be important in the advancement of therapeutics into the clinic.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Joshua A Bilbrey
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jasmine S Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Departments of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Tam FI, Steding J, Steinhäuser JL, Ritschel F, Gao W, Weidner K, Roessner V, Kirschbaum C, Ehrlich S. Hair endocannabinoid concentrations in individuals with acute and weight-recovered anorexia nervosa. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110243. [PMID: 33444649 DOI: 10.1016/j.pnpbp.2021.110243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The endocannabinoid system has been suggested to modulate energy metabolism and stress response and could be an important factor in the pathophysiology of anorexia nervosa (AN). In the context of AN, excessive physical activity may influence endocannabinoid concentrations. The objective of this study was to investigate hair endocannabinoid concentrations at different stages of the disorder. Measurement in hair allows for a cumulative assessment of endocannabinoid concentrations independent of circadian rhythms. METHODS In a combined cross-sectional and longitudinal design, we measured hair concentrations of the endocannabinoids anandamide and 2-arachidonoylglycerol and the endocannabinoid-related compounds palmitoylethanolamide, oleoylethanolamide, and stearoylethanolamide in female underweight patients with acute AN (n = 67, reassessment of n = 47 after short-term weight restoration with a body mass index increase of at least 14%), individuals long-term recovered from AN (n = 27), and healthy control participants (n = 84). RESULTS Hair concentrations of anandamide and all endocannabinoid-related compounds were elevated in acute AN and decreased over the course of short-term weight restoration. Anandamide concentrations remained elevated in long-term recovered AN patients. In long-term recovered patients, physical activity correlated positively with the concentrations of all endocannabinoid-related compounds. CONCLUSION The current study provides evidence for a significant alteration of the endocannabinoid system in acute AN, which may partly persist into long-term recovery. The endocannabinoid system may be a possible target for pharmaceutical interventions in AN, which should be explored in further preclinical and subsequently clinical randomized controlled trials.
Collapse
Affiliation(s)
- Friederike I Tam
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Julius Steding
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jonas L Steinhäuser
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Franziska Ritschel
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Wei Gao
- Biopsychology, Technische Universität Dresden, Dresden, Germany
| | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital C. G. Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
12
|
Colangeli R, Teskey GC, Di Giovanni G. Endocannabinoid-serotonin systems interaction in health and disease. PROGRESS IN BRAIN RESEARCH 2021; 259:83-134. [PMID: 33541682 DOI: 10.1016/bs.pbr.2021.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endocannabinoid (eCB) and serotonin (5-HT) neuromodulatory systems work both independently and together to finely orchestrate neuronal activity throughout the brain to strongly sculpt behavioral functions. Surprising parallelism between the behavioral effects of 5-HT and eCB activity has been widely reported, including the regulation of emotional states, stress homeostasis, cognitive functions, food intake and sleep. The distribution pattern of the 5-HT system and the eCB molecular elements in the brain display a strong overlap and several studies report a functional interplay and even a tight interdependence between eCB/5-HT signaling. In this review, we examine the available evidence of the interaction between the eCB and 5-HT systems. We first introduce the eCB system, then we describe the eCB/5-HT crosstalk at the neuronal and synaptic levels. Finally, we explore the potential eCB/5-HT interaction at the behavioral level with the implication for psychiatric and neurological disorders. The precise elucidation of how this neuromodulatory interaction dynamically regulates biological functions may lead to the development of more targeted therapeutic strategies for the treatment of depressive and anxiety disorders, psychosis and epilepsy.
Collapse
Affiliation(s)
- Roberto Colangeli
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
13
|
Escartín Pérez RE, Mancilla Díaz JM, Cortés Salazar F, López Alonso VE, Florán Garduño B. CB1/5-HT/GABA interactions and food intake regulation. PROGRESS IN BRAIN RESEARCH 2021; 259:177-196. [PMID: 33541676 DOI: 10.1016/bs.pbr.2021.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite historically the serotonergic, GABAergic, and cannabinoid systems have been shown to play a crucial role in the central regulation of eating behavior, interest in the study of the interactions of these neurotransmission systems has only now been investigated. Current evidence suggests that serotonin may influence normal and pathological eating behavior in significantly more complex ways than was initially thought. This knowledge has opened the possibility of exploring the potential clinical utility of new therapeutic strategies more effective and safer than the current approaches to treat pathological eating behavior. Furthermore, the nature and complexity of the interactions between these neurotransmitter systems have provided a better understanding of the pathophysiological mechanisms not only of eating behavior and eating disorders but also of some of the comorbidities associated with modulation of cortical circuits, which are involved in high order cognitive processes. Accordingly, in the present chapter, the clinical and experimental findings of the interactions between serotonin, GABA, and cannabinoids are synthesized, emphasizing the pharmacological, neurophysiological, and neuroanatomical aspects that could potentially improve the current therapeutic approaches against pathological eating behavior.
Collapse
Affiliation(s)
- Rodrigo Erick Escartín Pérez
- Facultad de Estudios Superiores Iztacala, División de Investigación y Posgrado, Laboratorio de Neurobiología de la Alimentación, Universidad Nacional Autónoma de México, México, México.
| | - Juan Manuel Mancilla Díaz
- Facultad de Estudios Superiores Iztacala, División de Investigación y Posgrado, Laboratorio de Neurobiología de la Alimentación, Universidad Nacional Autónoma de México, México, México
| | - Felipe Cortés Salazar
- Facultad de Estudios Superiores Iztacala, División de Investigación y Posgrado, Laboratorio de Neurobiología de la Alimentación, Universidad Nacional Autónoma de México, México, México
| | - Verónica Elsa López Alonso
- Facultad de Estudios Superiores Iztacala, División de Investigación y Posgrado, Laboratorio de Neurobiología de la Alimentación, Universidad Nacional Autónoma de México, México, México
| | - Benjamín Florán Garduño
- Facultad de Estudios Superiores Iztacala, División de Investigación y Posgrado, Laboratorio de Neurobiología de la Alimentación, Universidad Nacional Autónoma de México, México, México
| |
Collapse
|
14
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Kumar R, Bungau S. Integrating Endocannabinoid Signalling In Depression. J Mol Neurosci 2021; 71:2022-2034. [PMID: 33471311 DOI: 10.1007/s12031-020-01774-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Depression is a common mental disorder and is the leading cause of suicide globally. Because of the significant diversity in mental disorders, accurate diagnosis is difficult. Hence, the investigation of novel biomarkers is a key research perspective in psychotherapy to enable an individually tailored treatment approach. The prefrontal cortex (PFC) is a vital cortical region whose circuitry has been implicated in the development of depressive disorder. The endocannabinoid system (ECS) has garnered increasing attention because of its involvement in several diverse physiological brain processes including regulation of emotional, motivational and cognitive functions. The current review article explores the function of the key elements of the ECS as a biomarker in depressive disorder. The activity of endocannabinoids is thought to be moderated by the CB1 receptors in the central nervous system (CNS). Variations in the concentration of endocannabinoids and the binding affinity of CB1 receptors and their density have been identified in the PFC of persons with depression. Such discoveries support our theory that alteration in endocannabinoid function leads to the pathophysiological features of depressive disorders. Moreover, evidence from animal and human studies has revealed that dysfunction in endocannabinoid signalling can produce depression-like behaviours; therefore, improvement of endocannabinoid signalling may represent a new therapeutic approach for the management of depressive disorders.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Distt. Shimla, Government College of Pharmacy, Himachal Pradesh, Rohru, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ravinder Kumar
- Cardiovascular Research Institute, Icahn School of Medicine, New York, USA
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
15
|
Soriano D, Brusco A, Caltana L. Further evidence of anxiety- and depression-like behavior for total genetic ablation of cannabinoid receptor type 1. Behav Brain Res 2020; 400:113007. [PMID: 33171148 DOI: 10.1016/j.bbr.2020.113007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Cannabinoid receptor type 1 (CB1R) is the most abundant cannabinoid receptor in central nervous system. Clinical studies and animal models have shown that the attenuation of endocannabinoid system signaling correlates with the development of psychiatric disorders such as anxiety, depression and schizophrenia. In the present work, multiple behavioral tests were performed to evaluate behaviors related to anxiety and depression in CB1R+/- and CB1R-/-. CB1R+/- mice had anxiety-related behavior similar to wild type (CB1R+/+) mice, whereas CB1R-/- mice displayed an anxious-like phenotype, which indicates that lower expression of CB1R is sufficient to maintain the neural circuits modulating anxiety. In addition, CB1R-/- mice exhibited alterations in risk assessment and less exploration, locomotion, grooming, body weight and appetite. These phenotypic characteristics observed in CB1R-/- mice could be associated with symptoms observed in human psychiatric disorders such as depression. A better knowledge of the neuromodulatory role of CB1R may contribute to understand scope and limitations of the development of medical treatments.
Collapse
Affiliation(s)
- Delia Soriano
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina; Universidad de Buenos Aires. CONICET, Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN), Buenos Aires, Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina; Universidad de Buenos Aires. CONICET, Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN), Buenos Aires, Argentina
| | - Laura Caltana
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina; Universidad de Buenos Aires. CONICET, Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN), Buenos Aires, Argentina.
| |
Collapse
|
16
|
The MAO Inhibitor Tranylcypromine Alters LPS- and Aβ-Mediated Neuroinflammatory Responses in Wild-type Mice and a Mouse Model of AD. Cells 2020; 9:cells9091982. [PMID: 32872335 PMCID: PMC7563969 DOI: 10.3390/cells9091982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Monoamine oxidase (MAO) has been implicated in neuroinflammation, and therapies targeting MAO are of interest for neurodegenerative diseases. The small-molecule drug tranylcypromine, an inhibitor of MAO, is currently used as an antidepressant and in the treatment of cancer. However, whether tranylcypromine can regulate LPS- and/or Aβ-induced neuroinflammation in the brain has not been well-studied. In the present study, we found that tranylcypromine selectively altered LPS-induced proinflammatory cytokine levels in BV2 microglial cells but not primary astrocytes. In addition, tranylcypromine modulated LPS-mediated TLR4/ERK/STAT3 signaling to alter neuroinflammatory responses in BV2 microglial cells. Importantly, tranylcypromine significantly reduced microglial activation as well as proinflammatory cytokine levels in LPS-injected wild-type mice. Moreover, injection of tranylcypromine in 5xFAD mice (a mouse model of AD) significantly decreased microglial activation but had smaller effects on astrocyte activation. Taken together, our results suggest that tranylcypromine can suppress LPS- and Aβ-induced neuroinflammatory responses in vitro and in vivo.
Collapse
|
17
|
Poleszak E, Wośko S, Sławińska K, Wyska E, Szopa A, Świąder K, Wróbel A, Szponar J, Doboszewska U, Wlaź P, Wlaź A, Serefko A. Influence of the endocannabinoid system on the antidepressant activity of bupropion and moclobemide in the behavioural tests in mice. Pharmacol Rep 2020; 72:1562-1572. [PMID: 32221841 PMCID: PMC7704509 DOI: 10.1007/s43440-020-00088-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022]
Abstract
Background Though there are several classes of antidepressant drugs available on the pharmaceutical market, depression that affects globally over 320 million people is still undertreated. Scientists have made attempts to develop novel therapeutical strategies to maximize effectiveness of therapy and minimize undesired reactions. One of the ideas is use of either dual-action agents or combined administration of two substances that affect diverse neurotransmissions. Thus, we investigated whether the selected CB receptor ligands (oleamide, AM251, JWH133, and AM630) can have an impact on the activity of bupropion and moclobemide. Bupropion belongs to the dual acting drugs, whereas moclobemide is an inhibitor of monoamine oxidase. Methods The mice forced swim test and the tail suspension test were applied in order to determine the potential antidepressant-like activity, whereas the HPLC method was used in order to assess the brain concentrations of the tested antidepressants. Results An intraperitoneal injection of sub-effective doses of oleamide (5 mg/kg), AM251 (0.25 mg/kg), and AM630 (0.25 mg/kg) increased activity of bupropion (10 mg/kg) in both behavioural tests. Effects of moclobemide (1.5 mg/kg) were potentiated only by AM251. These results were not influenced by the hypo- or hyperlocomotion of animals. Conclusion The outcomes of the present study revealed that particularly activation or inhibition of the CB1 receptor function may augment the antidepressant activity of bupropion, whereas only inhibition of the CB1 receptor function manages to increase activity of moclobemide. Most probably, an interplay between CB receptor ligands and bupropion or moclobemide takes place at the cellular level.
Collapse
Affiliation(s)
- Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Sylwia Wośko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Karolina Sławińska
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Katarzyna Świąder
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Jarosław Szponar
- Toxicology Clinic, Medical University of Lublin: Clinical Department of Toxicology and Cardiology, Stefan Wyszyński Regional Specialist Hospital in Lublin, Al. Kraśnicka 100, Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| |
Collapse
|
18
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
19
|
Coccurello R. Anhedonia in depression symptomatology: Appetite dysregulation and defective brain reward processing. Behav Brain Res 2019; 372:112041. [DOI: 10.1016/j.bbr.2019.112041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
|
20
|
Poleszak E, Wośko S, Sławińska K, Wyska E, Szopa A, Doboszewska U, Wlaź P, Wlaź A, Dudka J, Szponar J, Serefko A. Influence of the CB1 cannabinoid receptors on the activity of the monoaminergic system in the behavioural tests in mice. Brain Res Bull 2019; 150:179-185. [DOI: 10.1016/j.brainresbull.2019.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
|
21
|
Davis MP, Behm B, Mehta Z, Fernandez C. The Potential Benefits of Palmitoylethanolamide in Palliation: A Qualitative Systematic Review. Am J Hosp Palliat Care 2019; 36:1134-1154. [PMID: 31113223 DOI: 10.1177/1049909119850807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Palmitoylethanolamide (PEA) is a nutraceutical endocannabinoid that was retrospectively discovered in egg yolks. Feeding poor children with known streptococcal infections prevented rheumatic fever. Subsequently, it was found to alter the course of influenza. Unfortunately, there is little known about its pharmacokinetics. Palmitoylethanolamide targets nonclassical cannabinoid receptors rather than CB1 and CB2 receptors. Palmitoylethanolamide will only indirectly activate classical cannabinoid receptors by an entourage effect. There are a significant number of prospective and randomized trials demonstrating the pain-relieving effects of PEA. There is lesser evidence of benefit in patients with nonpain symptoms related to depression, Parkinson disease, strokes, and autism. There are no reported drug-drug interactions and very few reported adverse effects from PEA. Further research is needed to define the palliative benefits to PEA.
Collapse
|
22
|
Abstract
Chronic pain is a frequent condition that affects an estimated 20% of people worldwide, accounting for 15%-20% of doctors' appointments (Treede et al., 2015). It lacks the acute warning function of physiologic nociception, and instead involves the activation of multiple neurophysiologic mechanisms in the somatosensory system, a complex neuronal network under the control of powerful autoregulatory loops and able to undergo rapid neuroplastic alteration (Verdu et al., 2008). There is a growing body of research suggesting that some such pathways are shared by major psychologic disorders such as depression and anxiety, opening new avenues in co-treatment strategies. In particular, besides anticonvulsants, which are today used as analgesics, other psychopharmaceuticals, such as the tricyclic antidepressants, are displaying efficacy in the treatment of neuropathic and nociceptive chronic pain. The state of the art regarding the mechanisms of nociception and the pharmacology of both the neurotransmitters involved and the wide range of psychoactive compounds that may be useful in the treatment of chronic pain are discussed.
Collapse
|
23
|
Mato S, Pilar-Cuéllar F, Valdizán EM, González-Maeso J, Rodríguez-Puertas R, Meana J, Sallés J, Crespo-Facorro B, Pazos Á. Selective up-regulation of cannabinoid CB 1 receptor coupling to Go-proteins in suicide victims with mood disorders. Biochem Pharmacol 2018; 157:258-265. [PMID: 30099006 PMCID: PMC6263149 DOI: 10.1016/j.bcp.2018.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/08/2018] [Indexed: 01/11/2023]
Abstract
Brain endocannabinoid system is proposed to play a role in the pathogenesis of affective disorders. In the present study, we analyzed the functionality of the cannabinoid receptor type 1 (CB1 receptor) at different transduction levels in prefrontal cortex (PFC) of depressed suicide victims. We examined stimulation of [35S]GTPγS binding, activation of Gα protein subunits and inhibition of adenylyl cyclase by the cannabinoid agonist WIN55,212-2, as well as [3H]CP55,940 binding, in PFC homogenates from suicide victims with major depression (MD) and matched control subjects. CB1 receptor-stimulated [35S]GTPγS binding was significantly greater in the PFC of MD compared with matched controls (23%, p < 0.05). This increase was most evident in the PFC from MD subgroup with negative blood test for antidepressants (AD) at the time of death (AD-free) (38%, p < 0.05), being absent when comparing the AD-treated MD cases with their controls. The density of CB1 receptors and their coupling to adenylyl cyclase were similar between MD and control cases, regardless of the existence of AD intake. Analysis of [35S]GTPγS-labelled Gα subunits allowed for the detection of upregulated CB1 receptor coupling to Gαo, but not to Gαi1, Gαi2, Gαi3, Gαz subunits, in the PFC from AD-free MD suicides. These results suggest that increased CB1 receptor functionality at the Gαi/o protein level in the PFC of MD subjects is due to enhanced coupling to Gαo proteins and might be modulated by AD intake. These data provide new insights into the role of endocannabinoid neurotransmission in the pathobiology of MD and suggest its regulation by ADs.
Collapse
Affiliation(s)
- Susana Mato
- Department of Physiology and Pharmacology, University of Cantabria, E-39011 Santander, Spain
| | - Fuencisla Pilar-Cuéllar
- Department of Physiology and Pharmacology, University of Cantabria, E-39011 Santander, Spain; Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), E-39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain
| | - Elsa M Valdizán
- Department of Physiology and Pharmacology, University of Cantabria, E-39011 Santander, Spain; Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), E-39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain
| | - Javier González-Maeso
- Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Spain
| | | | - Javier Meana
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Spain
| | - Joan Sallés
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain; Hospital Universitario Marqués de Valdecilla, University of Cantabria-IDIVAL, School of Medicine, Department of Psychiatry, Santander, Spain
| | - Ángel Pazos
- Department of Physiology and Pharmacology, University of Cantabria, E-39011 Santander, Spain; Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), E-39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain.
| |
Collapse
|
24
|
The endocannabinoid system in mental disorders: Evidence from human brain studies. Biochem Pharmacol 2018; 157:97-107. [DOI: 10.1016/j.bcp.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
|
25
|
Scherma M, Masia P, Deidda M, Fratta W, Tanda G, Fadda P. New Perspectives on the Use of Cannabis in the Treatment of Psychiatric Disorders. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E107. [PMID: 30279403 PMCID: PMC6313625 DOI: 10.3390/medicines5040107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 12/11/2022]
Abstract
Following the discovery of the endocannabinoid system and its potential as a therapeutic target for various pathological conditions, growing interest led researchers to investigate the role of cannabis and its derivatives for medical purposes. The compounds Δ9-tetrahydrocannabinol and cannabidiol are the most abundant phytocannabinoids found in cannabis extracts, as well as the most studied. The present review aims to provide an overview of the current evidence for their beneficial effects in treating psychiatric disorders, including schizophrenia, anxiety, and depression. Nevertheless, further investigations are required to clarify many pending issues, especially those relative to the assessment of benefits and risks when using cannabis for therapeutic purposes, thereby also helping national and federal jurisdictions to remain updated.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Paolo Masia
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Matteo Deidda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Gianluigi Tanda
- Medication Development program, NIDA-IRP, NIH/DHHS, NIDA suite 3301, Baltimore, MD 21224, USA.
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, 09042 Monserrato, Italy.
- CNR Institute of Neuroscience ⁻ Cagliari, National Research Council, 09042 Monserrato, Italy.
- National Institute of Neuroscience (INN), University of Cagliari, 09042 Monserrato, Italy.
| |
Collapse
|
26
|
Pandey P, Chaurasiya ND, Tekwani BL, Doerksen RJ. Interactions of endocannabinoid virodhamine and related analogs with human monoamine oxidase-A and -B. Biochem Pharmacol 2018; 155:82-91. [PMID: 29958841 PMCID: PMC6298601 DOI: 10.1016/j.bcp.2018.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022]
Abstract
The endocannabinoid system plays an important role in the pathophysiology of various neurological disorders, such as anxiety, depression, neurodegenerative diseases, and schizophrenia; however, little information is available on the coupling of the endocannabinoid system with the monoaminergic systems in the brain. In the present study, we tested four endocannabinoids and two anandamide analogs for inhibition of recombinant human MAO-A and -B (monoamine oxidase). Virodhamine inhibited both MAO-A and -B (IC50 values of 38.70 and 0.71 μM, respectively) with ∼55-fold greater inhibition of MAO-B. Two other endocannabinoids (noladin ether and anandamide) also showed good inhibition of MAO-B with IC50 values of 18.18 and 39.98 μM, respectively. Virodhamine was further evaluated for kinetic characteristics and mechanism of inhibition of human MAO-B. Virodhamine inhibited MAO-B (Ki value of 0.258 ± 0.037 μM) through a mixed mechanism/irreversible binding and showed a time-dependent irreversible mechanism. Treatment of Neuroscreen-1 (NS-1) cells with virodhamine produced significant inhibition of MAO activity. This observation confirms potential uptake of virodhamine by neuronal cells. A molecular modeling study of virodhamine with MAO-B and its cofactor flavin adenine dinucleotide (FAD) predicted virodhamine's terminal -NH2 group to be positioned near the N5 position of FAD, but for docking to MAO-A, virodhamine's terminal -NH2 group was far away (∼6.52 Å) from the N5 position of FAD, and encountered bad contacts with nearby water molecules. This difference could explain virodhamine's higher potency and preference for MAO-B. The binding free energies for the computationally-predicted poses also showed that virodhamine was selective for MAO-B. These findings suggest potential therapeutic applications of virodhamine for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Pankaj Pandey
- Department of BioMolecular Sciences and National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Narayan D Chaurasiya
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Babu L Tekwani
- Department of BioMolecular Sciences and National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States; National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States.
| | - Robert J Doerksen
- Department of BioMolecular Sciences and National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States; National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States.
| |
Collapse
|
27
|
Changes in the cannabinoids receptors in rats following treatment with antidepressants. Neurotoxicology 2017; 63:13-20. [DOI: 10.1016/j.neuro.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/17/2017] [Accepted: 08/24/2017] [Indexed: 11/23/2022]
|
28
|
Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev 2017; 76:56-66. [PMID: 28434588 PMCID: PMC5407316 DOI: 10.1016/j.neubiorev.2016.12.033] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022]
Abstract
The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential 'druggable' targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 (COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders.
Collapse
Affiliation(s)
- Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, USA; Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, USA
| | - Mathew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology & Neurogenetics, Munich, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Smaga I, Jastrzębska J, Zaniewska M, Bystrowska B, Gawliński D, Faron-Górecka A, Broniowska Ż, Miszkiel J, Filip M. Changes in the Brain Endocannabinoid System in Rat Models of Depression. Neurotox Res 2017; 31:421-435. [PMID: 28247204 PMCID: PMC5360820 DOI: 10.1007/s12640-017-9708-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/23/2022]
Abstract
A growing body of evidence implicates the endocannabinoid (eCB) system in the pathophysiology of depression. The aim of this study was to investigate the influence of changes in the eCB system, such as levels of neuromodulators, eCB synthesizing and degrading enzymes, and cannabinoid (CB) receptors, in different brain structures in animal models of depression using behavioral and biochemical analyses. Both models used, i.e., bulbectomized (OBX) and Wistar Kyoto (WKY) rats, were characterized at the behavioral level by increased immobility time. In the OBX rats, anandamide (AEA) levels were decreased in the prefrontal cortex, hippocampus, and striatum and increased in the nucleus accumbens, while 2-arachidonoylglycerol (2-AG) levels were increased in the prefrontal cortex and decreased in the nucleus accumbens with parallel changes in the expression of eCB metabolizing enzymes in several structures. It was also observed that CB1 receptor expression decreased in the hippocampus, dorsal striatum, and nucleus accumbens, and CB2 receptor expression decreased in the prefrontal cortex and hippocampus. In WKY rats, the levels of eCBs were reduced in the prefrontal cortex (2-AG) and dorsal striatum (AEA) and increased in the prefrontal cortex (AEA) with different changes in the expression of eCB metabolizing enzymes, while the CB1 receptor density was increased in several brain regions. These findings suggest that dysregulation in the eCB system is implicated in the pathogenesis of depression, although neurochemical changes were linked to the particular brain structure and the factor inducing depression (surgical removal of the olfactory bulbs vs. genetic modulation).
Collapse
Affiliation(s)
- Irena Smaga
- Department of Toxicology, Faculty of Pharmacy, College of Medicum, Jagiellonian University, Medyczna 9, PL 30-688, Kraków, Poland
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Joanna Jastrzębska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Magdalena Zaniewska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Beata Bystrowska
- Department of Toxicology, Faculty of Pharmacy, College of Medicum, Jagiellonian University, Medyczna 9, PL 30-688, Kraków, Poland
| | - Dawid Gawliński
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Agata Faron-Górecka
- Laboratory of Biochemical Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Żaneta Broniowska
- Department of Toxicology, Faculty of Pharmacy, College of Medicum, Jagiellonian University, Medyczna 9, PL 30-688, Kraków, Poland
| | - Joanna Miszkiel
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Małgorzata Filip
- Department of Toxicology, Faculty of Pharmacy, College of Medicum, Jagiellonian University, Medyczna 9, PL 30-688, Kraków, Poland.
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland.
| |
Collapse
|
30
|
McLaughlin PJ, Jagielo-Miller JE, Plyler ES, Schutte KK, Vemuri VK, Makriyannis A. Differential effects of cannabinoid CB1 inverse agonists and antagonists on impulsivity in male Sprague Dawley rats: identification of a possibly clinically relevant vulnerability involving the serotonin 5HT 1A receptor. Psychopharmacology (Berl) 2017; 234:1029-1043. [PMID: 28144708 DOI: 10.1007/s00213-017-4548-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/21/2017] [Indexed: 12/18/2022]
Abstract
RATIONALE Cannabinoid CB1 inverse agonists hold therapeutic promise as appetite suppressants but have produced suicidal behaviors among a small subpopulation in clinical trials. Anatomical and pharmacological evidence implicate the 5HT1A serotonin receptor in suicide in humans and impulsivity in humans and animals. OBJECTIVE The objective of the study is to assess whether 5HT1A blockade is necessary for CB1 ligands to produce impulsivity. METHODS Sprague Dawley rats were administered the CB1 inverse agonist AM 251, the CB1 antagonist AM 6527, or the peripherally restricted antagonist AM 6545, with or without pretreatment with the 5HT1A antagonist WAY 100,635 (WAY) on the paced fixed consecutive number (FCN) task, which measures choice to terminate a chain of responses prematurely. As FCN is sensitive to changes in time perception, which have been demonstrated with CB1 blockade, a novel variable consecutive number task with discriminative stimulus (VCN-S D ) was also performed and proposed to be less sensitive to changes in timing. RESULTS Pretreatment with WAY enabled mild but significant reductions in FCN accuracy for AM 251 and AM 6527. No effects were found for AM 6545. On the VCN-S D task, substantial impairments were found for the combination of WAY and AM 251. CONCLUSIONS AM 251, but not the antagonists AM 6527 or AM 6545, produced impulsivity only following systemic 5HT1A blockade. Although preliminary, the results may indicate that disrupted serotonin signaling produces a vulnerability to undesirable effects of CB1 inverse agonists, which is not evident in the general population. Furthermore, neutral CB1 antagonists do not produce this effect and therefore may have greater safety.
Collapse
Affiliation(s)
- Peter J McLaughlin
- Department of Psychology, Edinboro University of Pennsylvania, 210 East Normal Street, Edinboro, PA, 16444, USA.
| | - Julia E Jagielo-Miller
- Department of Psychology, Edinboro University of Pennsylvania, 210 East Normal Street, Edinboro, PA, 16444, USA.,Department of Psychology, University of Kentucky, Lexington, KY, 40506, USA
| | - Emily S Plyler
- Department of Psychology, Edinboro University of Pennsylvania, 210 East Normal Street, Edinboro, PA, 16444, USA.,Department of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Kerry K Schutte
- Department of Psychology, Edinboro University of Pennsylvania, 210 East Normal Street, Edinboro, PA, 16444, USA.,Department of Counseling, Psychology, and Special Education, Duquesne University, 600 Forbes Avenue, G8B Canevin Hall, Pittsburgh, PA, 15282, USA
| | - V Kiran Vemuri
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| |
Collapse
|
31
|
Finberg JPM, Rabey JM. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology. Front Pharmacol 2016; 7:340. [PMID: 27803666 PMCID: PMC5067815 DOI: 10.3389/fphar.2016.00340] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/12/2016] [Indexed: 01/24/2023] Open
Abstract
Inhibitors of MAO-A and MAO-B are in clinical use for the treatment of psychiatric and neurological disorders respectively. Elucidation of the molecular structure of the active sites of the enzymes has enabled a precise determination of the way in which substrates and inhibitor molecules are metabolized, or inhibit metabolism of substrates, respectively. Despite the knowledge of the strong antidepressant efficacy of irreversible MAO inhibitors, their clinical use has been limited by their side effect of potentiation of the cardiovascular effects of dietary amines (“cheese effect”). A number of reversible MAO-A inhibitors which are devoid of cheese effect have been described in the literature, but only one, moclobemide, is currently in clinical use. The irreversible inhibitors of MAO-B, selegiline and rasagiline, are used clinically in treatment of Parkinson's disease, and a recently introduced reversible MAO-B inhibitor, safinamide, has also been found efficacious. Modification of the pharmacokinetic characteristics of selegiline by transdermal administration has led to the development of a new drug form for treatment of depression. The clinical potential of MAO inhibitors together with detailed knowledge of the enzyme's binding site structure should lead to future developments with these drugs.
Collapse
Affiliation(s)
- John P M Finberg
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology Haifa, Israel
| | - Jose M Rabey
- Assaf Harofe Medical Center, Affiliated to Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
32
|
Gunduz-Cinar O, Flynn S, Brockway E, Kaugars K, Baldi R, Ramikie TS, Cinar R, Kunos G, Patel S, Holmes A. Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids. Neuropsychopharmacology 2016; 41:1598-609. [PMID: 26514583 PMCID: PMC4832021 DOI: 10.1038/npp.2015.318] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/11/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023]
Abstract
Pharmacologically elevating brain endocannabinoids (eCBs) share anxiolytic and fear extinction-facilitating properties with classical therapeutics, including the selective serotonin reuptake inhibitor, fluoxetine. There are also known functional interactions between the eCB and serotonin systems and preliminary evidence that antidepressants cause alterations in brain eCBs. However, the potential role of eCBs in mediating the facilitatory effects of fluoxetine on fear extinction has not been established. Here, to test for a possible mechanistic contribution of eCBs to fluoxetine's proextinction effects, we integrated biochemical, electrophysiological, pharmacological, and behavioral techniques, using the extinction-impaired 129S1/Sv1mJ mouse strain. Chronic fluoxetine treatment produced a significant and selective increase in levels of anandamide in the BLA, and an associated decrease in activity of the anandamide-catabolizing enzyme, fatty acid amide hydrolase. Slice electrophysiological recordings showed that fluoxetine-induced increases in anandamide were associated with the amplification of eCB-mediated tonic constraint of inhibitory, but not excitatory, transmission in the BLA. Behaviorally, chronic fluoxetine facilitated extinction retrieval in a manner that was prevented by systemic or BLA-specific blockade of CB1 receptors. In contrast to fluoxetine, citalopram treatment did not increase BLA eCBs or facilitate extinction. Taken together, these findings reveal a novel, obligatory role for amygdala eCBs in the proextinction effects of a major pharmacotherapy for trauma- and stressor-related disorders and anxiety disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA,Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Room 2N09, Rockville, MD 20852-9411, USA, Tel: +1 301 443 4052, Fax: +1 301 480 8035, E-mail: or
| | - Shaun Flynn
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emma Brockway
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Katherine Kaugars
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rita Baldi
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Teniel S Ramikie
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Resat Cinar
- Laboratory of Physiological Studies, NIAAA, NIH, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiological Studies, NIAAA, NIH, Bethesda, MD, USA
| | - Sachin Patel
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA,Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Room 2N09, Rockville, MD 20852-9411, USA, Tel: +1 301 443 4052, Fax: +1 301 480 8035, E-mail: or
| |
Collapse
|
33
|
Fitzgibbon M, Finn DP, Roche M. High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity. Int J Neuropsychopharmacol 2015; 19:pyv095. [PMID: 26342110 PMCID: PMC4815466 DOI: 10.1093/ijnp/pyv095] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023] Open
Abstract
Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction.
Collapse
Affiliation(s)
| | | | - Michelle Roche
- Physiology (Ms Fitzgibbon and Dr Roche), and Pharmacology and Therapeutics (Dr Finn), School of Medicine, Galway Neuroscience Centre and Centre for Pain Research (Ms Fitzgibbon, Dr Finn, and Dr Roche), National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland.
| |
Collapse
|
34
|
Mansur RB, Brietzke E, McIntyre RS. Is there a "metabolic-mood syndrome"? A review of the relationship between obesity and mood disorders. Neurosci Biobehav Rev 2015; 52:89-104. [PMID: 25579847 DOI: 10.1016/j.neubiorev.2014.12.017] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 12/19/2014] [Accepted: 12/31/2014] [Indexed: 12/12/2022]
Abstract
Obesity and mood disorders are highly prevalent and co-morbid. Epidemiological studies have highlighted the public health relevance of this association, insofar as both conditions and its co-occurrence are associated with a staggering illness-associated burden. Accumulating evidence indicates that obesity and mood disorders are intrinsically linked and share a series of clinical, neurobiological, genetic and environmental factors. The relationship of these conditions has been described as convergent and bidirectional; and some authors have attempted to describe a specific subtype of mood disorders characterized by a higher incidence of obesity and metabolic problems. However, the nature of this association remains poorly understood. There are significant inconsistencies in the studies evaluating metabolic and mood disorders; and, as a result, several questions persist about the validity and the generalizability of the findings. An important limitation in this area of research is the noteworthy phenotypic and pathophysiological heterogeneity of metabolic and mood disorders. Although clinically useful, categorical classifications in both conditions have limited heuristic value and its use hinders a more comprehensive understanding of the association between metabolic and mood disorders. A recent trend in psychiatry is to move toward a domain specific approach, wherein psychopathology constructs are agnostic to DSM-defined diagnostic categories and, instead, there is an effort to categorize domains based on pathogenic substrates, as proposed by the National Institute of Mental Health (NIMH) Research Domain Criteria Project (RDoC). Moreover, the substrates subserving psychopathology seems to be unspecific and extend into other medical illnesses that share in common brain consequences, which includes metabolic disorders. Overall, accumulating evidence indicates that there is a consistent association of multiple abnormalities in neuropsychological constructs, as well as correspondent brain abnormalities, with broad-based metabolic dysfunction, suggesting, therefore, that the existence of a "metabolic-mood syndrome" is possible. Nonetheless, empirical evidence is necessary to support and develop this concept. Future research should focus on dimensional constructs and employ integrative, multidisciplinary and multimodal approaches.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil.
| | - Elisa Brietzke
- Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Smaga I, Bystrowska B, Gawliński D, Przegaliński E, Filip M. The endocannabinoid/endovanilloid system and depression. Curr Neuropharmacol 2014; 12:462-74. [PMID: 25426013 PMCID: PMC4243035 DOI: 10.2174/1570159x12666140923205412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/15/2014] [Accepted: 09/12/2014] [Indexed: 12/20/2022] Open
Abstract
Depression is one of the most frequent causes of disability in the 21st century. Despite the many preclinical and clinical studies that have addressed this brain disorder, the pathophysiology of depression is not well understood and the available antidepressant drugs are therapeutically inadequate in many patients. In recent years, the potential role of lipid-derived molecules, particularly endocannabinoids (eCBs) and endovanilloids, has been highlighted in the pathogenesis of depression and in the action of antidepressants. There are many indications that the eCB/endovanilloid system is involved in the pathogenesis of depression, including the localization of receptors, modulation of monoaminergic transmission, inhibition of the stress axis and promotion of neuroplasticity in the brain. Preclinical pharmacological and genetic studies of eCBs in depression also suggest that facilitating the eCB system exerts antidepressant-like behavioral responses in rodents. In this article, we review the current knowledge of the role of the eCB/endovanilloid system in depression, as well as the effects of its ligands, models of depression and antidepressant drugs in preclinical and clinical settings.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland
| | - Beata Bystrowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland
| | - Dawid Gawliński
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland
| | - Edmund Przegaliński
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - Małgorzata Filip
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland ; Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
36
|
Smaga I, Bystrowska B, Gawliński D, Pomierny B, Stankowicz P, Filip M. Antidepressants and changes in concentration of endocannabinoids and N-acylethanolamines in rat brain structures. Neurotox Res 2014; 26:190-206. [PMID: 24652522 PMCID: PMC4067538 DOI: 10.1007/s12640-014-9465-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/26/2014] [Accepted: 03/06/2014] [Indexed: 12/26/2022]
Abstract
The endocannabinoid (eCB) system has recently been implicated in both the pathogenesis of depression and the action of antidepressants. Here, we investigated the effect of acutely or chronically administering antidepressants [imipramine (IMI) (15 mg/kg), escitalopram (ESC) (10 mg/kg), and tianeptine (10 mg/kg)] on the levels of both eCBs [anandamide (AEA) and 2-arachidonoylglycerol (2-AG)] and N-acylethanolamines (NAEs) [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)] in various rat brain regions. We also examined the ability of the acute and chronic administration of N-acetylcysteine (NAC) (a mucolytic drug; 100 mg/kg) or URB597 (a fatty acid amide hydrolase inhibitor; 0.3 mg/kg), which have both elicited antidepressant activity in preclinical studies, to affect eCB and NAE levels. Next, we determined whether the observed effects are stable 10 days after the chronic administration of these drugs was halted. We report that the chronic administration of all investigated drugs increased AEA levels in the hippocampus and also increased both AEA and 2-AG levels in the dorsal striatum. NAE levels in limbic regions also increased after treatment with IMI (PEA/OEA), ESC (PEA), and NAC (PEA/OEA). Removing chronic ESC treatment for 10 days affected eCB and NAE levels in the frontal cortex, hippocampus, dorsal striatum, and cerebellum, while a similar tianeptine-free period enhanced accumbal NAE levels. All other drugs maintained their effects after the 10-day washout period. Therefore, the eCB system appears to play a significant role in the mechanism of action of clinically effective and potential antidepressants and may serve as a target for drug design and discovery.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Toxicology, Faculty of Pharmacy, College of Medicum, Jagiellonian University, 9, Medyczna Street, 30-688, Kraków, Poland,
| | | | | | | | | | | |
Collapse
|
37
|
Rezapoor N, Shahidi S, Komaki A. Effects of Agents Influencing Serotonergic and Cannabinoid Systems on Memory in the Avoidance Test in Mice. NEUROPHYSIOLOGY+ 2014. [DOI: 10.1007/s11062-014-9417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Anti-depressive mechanism of repetitive transcranial magnetic stimulation in rat: the role of the endocannabinoid system. J Psychiatr Res 2014; 51:79-87. [PMID: 24479995 DOI: 10.1016/j.jpsychires.2014.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/11/2013] [Accepted: 01/08/2014] [Indexed: 12/23/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) to treat depression has been thoroughly investigated in recent years. However, the underlying mechanisms are not fully understood. In this study, a chronic unpredictable mild stress (CUMS) paradigm was applied to male Sprague Dawley rats. Then rTMS was performed for 7 consecutive days, and the anti-depressive effects were evaluated by the sucrose preference test (SPT), the forced swimming test (FST), and the open-field test (OFT). Hippocampal cannabinoid type I receptor (CB1) expression was measured, and the expression levels of brain-derived neurotrophic factor (BDNF), Bcl-2, and Bax and the number of bromodeoxyuridine (BrdU)-positive cells were also investigated. These parameters were also observed after the selective CB1 receptor antagonist AM251 was used as a blocking agent. The results showed that CUMS induced a significant decrease in sucrose preference, a significant increase in immobility time in the FST, and a significantly decreased horizontal distance in the OFT. In addition, reduced hippocampal CB1 receptor, BDNF, and Bcl-2/Bax protein expression levels in CUMS rats, as well as decreased cell proliferation were also observed in the dentate gyrus. Meanwhile, rTMS treatment up-regulated cell proliferation; elevated CB1 receptor, BDNF, and Bcl-2/Bax expression levels in the hippocampus; and ameliorated depressive-like behaviors. All of these beneficial effects were abolished by AM251. These results indicate that rTMS increases BDNF production and hippocampal cell proliferation to protect against CUMS-induced changes through its effect on CB1 receptors.
Collapse
|
39
|
McPartland JM, Guy GW, Di Marzo V. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLoS One 2014; 9:e89566. [PMID: 24622769 PMCID: PMC3951193 DOI: 10.1371/journal.pone.0089566] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
Background The “classic” endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the “eCB deficiency syndrome” as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system—ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. Methodology/Principal Findings We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as “complementary and alternative medicine” also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances—alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Conclusions/Significance Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.
Collapse
Affiliation(s)
- John M. McPartland
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
- Department of Family Medicine, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Geoffrey W. Guy
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomoleculare, CNR, Via Campi Flegrei, Pozzuoli, Napoli, Italy
| |
Collapse
|
40
|
Finberg JPM. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther 2014; 143:133-52. [PMID: 24607445 DOI: 10.1016/j.pharmthera.2014.02.010] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/23/2022]
Abstract
Inhibitors of monoamine oxidase (MAO) were initially used in medicine following the discovery of their antidepressant action. Subsequently their ability to potentiate the effects of an indirectly-acting sympathomimetic amine such as tyramine was discovered, leading to their limitation in clinical use, except for cases of treatment-resistant depression. More recently, the understanding that: a) potentiation of indirectly-acting sympathomimetic amines is caused by inhibitors of MAO-A but not by inhibitors of MAO-B, and b) that reversible inhibitors of MAO-A cause minimal tyramine potentiation, has led to their re-introduction to clinical use for treatment of depression (reversible MAO-A inhibitors and new dose form MAO-B inhibitor) and treatment of Parkinson's disease (MAO-B inhibitors). The profound neuroprotective properties of propargyl-based inhibitors of MAO-B in preclinical experiments have drawn attention to the possibility of employing these drugs for their neuroprotective effect in neurodegenerative diseases, and have raised the question of the involvement of the MAO-mediated reaction as a source of reactive free radicals. Despite the long-standing history of MAO inhibitors in medicine, the way in which they affect neuronal release of monoamine neurotransmitters is still poorly understood. In recent years, the detailed chemical structure of MAO-B and MAO-A has become available, providing new possibilities for synthesis of mechanism-based inhibitors. This review describes the latest advances in understanding the way in which MAO inhibitors affect the release of the monoamine neurotransmitters dopamine, noradrenaline and serotonin (5-HT) in the CNS, with an accent on the importance of these effects for the clinical actions of the drugs.
Collapse
|
41
|
McLaughlin RJ, Hill MN, Gorzalka BB. A critical role for prefrontocortical endocannabinoid signaling in the regulation of stress and emotional behavior. Neurosci Biobehav Rev 2014; 42:116-31. [PMID: 24582908 DOI: 10.1016/j.neubiorev.2014.02.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/31/2014] [Accepted: 02/18/2014] [Indexed: 12/21/2022]
Abstract
The prefrontal cortex (PFC) provides executive control of the brain in humans and rodents, coordinating cognitive, emotional, and behavioral responses to threatening stimuli and subsequent feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis. The endocannabinoid system has emerged as a fundamental regulator of HPA axis feedback inhibition and an important modulator of emotional behavior. However, the precise role of endocannabinoid signaling within the PFC with respect to stress coping and emotionality has only recently been investigated. This review discusses the current state of knowledge regarding the localization and function of the endocannabinoid system in the PFC, its sensitivity to stress and its role in modulating the neuroendocrine and behavioral responses to aversive stimuli. We propose a model whereby steady-state endocannabinoid signaling in the medial PFC indirectly regulates the outflow of pyramidal neurons by fine-tuning GABAergic inhibition. Local activation of this population of CB1 receptors increases the downstream targets of medial PFC activation, which include inhibitory interneurons in the basolateral amygdala, inhibitory relay neurons in the bed nucleus of the stria terminalis and monoamine cell bodies such as the dorsal raphe nucleus. This ultimately produces beneficial effects on emotionality (active coping responses to stress and reduced anxiety) and assists in constraining activation of the HPA axis. Under conditions of chronic stress, or in individuals suffering from mood disorders, this system may be uniquely recruited to help maintain appropriate function in the face of adversity, while breakdown of the endocannabinoid system in the medial PFC may be, in and of itself, sufficient to produce neuropsychiatric illness. Thus, we suggest that endocannabinoid signaling in the medial PFC may represent an attractive target for the treatment of stress-related disorders.
Collapse
Affiliation(s)
| | - Matthew N Hill
- Department of Cell Biology & Anatomy and Department of Psychiatry, Calgary, AB, Canada; Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Boris B Gorzalka
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
42
|
Hillard CJ, Liu QS. Endocannabinoid signaling in the etiology and treatment of major depressive illness. Curr Pharm Des 2014; 20:3795-811. [PMID: 24180398 PMCID: PMC4002665 DOI: 10.2174/13816128113196660735] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/23/2013] [Indexed: 12/28/2022]
Abstract
The purpose of this review is to examine human and preclinical data that are relevant to the following hypotheses. The first hypothesis is that deficient CB1R-mediated signaling results in symptoms that mimic those seen in depression. The second hypothesis is that activation of CB1R-mediated signaling results in behavioral, endocrine and other effects that are similar to those produced by currently used antidepressants. The third hypothesis is that conventional antidepressant therapies act through enhanced CB1R mediated signaling. Together the available data indicate that activators of CB1R signaling, particularly inhibitors of fatty acid amide hydrolase, should be considered for clinical trials for the treatment of depression.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Brain/drug effects
- Brain/enzymology
- Brain/metabolism
- Brain/pathology
- Cannabis
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/etiology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/pathology
- Disease Models, Animal
- Endocannabinoids/genetics
- Endocannabinoids/metabolism
- Humans
- Magnetic Resonance Imaging
- Neurogenesis/drug effects
- Polymorphism, Genetic
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
| | - Qing-song Liu
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226.
| |
Collapse
|
43
|
Carradori S, D'Ascenzio M, Chimenti P, Secci D, Bolasco A. Selective MAO-B inhibitors: a lesson from natural products. Mol Divers 2013; 18:219-43. [PMID: 24218136 DOI: 10.1007/s11030-013-9490-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/21/2013] [Indexed: 12/30/2022]
Abstract
Monoamine oxidases (MAOs) are mitochondrial bound enzymes, which catalyze the oxidative deamination of monoamine neurotransmitters. Inside the brain, MAOs are present in two isoforms: MAO-A and MAO-B. The activity of MAO-B is generally higher in patients affected by neurodegenerative diseases like Alzheimer's and Parkinson's. Therefore, the search for potent and selective MAO-B inhibitors is still a challenge for medicinal chemists. Nature has always been a source of inspiration for the discovery of new lead compounds. Moreover, natural medicine is a major component in all traditional medicine systems. In this review, we present the latest discoveries in the search for selective MAO-B inhibitors from natural sources. For clarity, compounds have been classified on the basis of structural analogy or source: flavonoids, xanthones, tannins, proanthocyanidins, iridoid glucosides, curcumin, alkaloids, cannabinoids, and natural sources extracts. MAO inhibition values reported in the text are not always consistent due to the high variability of MAO sources (bovine, pig, rat brain or liver, and human) and to the heterogeneity of the experimental protocols used.
Collapse
Affiliation(s)
- Simone Carradori
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 , Rome, Italy
| | | | | | | | | |
Collapse
|
44
|
Fogaça MV, Galve-Roperh I, Guimarães FS, Campos AC. Cannabinoids, Neurogenesis and Antidepressant Drugs: Is there a Link? Curr Neuropharmacol 2013; 11:263-75. [PMID: 24179463 PMCID: PMC3648779 DOI: 10.2174/1570159x11311030003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/14/2012] [Accepted: 01/04/2013] [Indexed: 11/22/2022] Open
Abstract
Similar to clinically used antidepressants, cannabinoids can also regulate anxiety and depressive symptoms. Although the mechanisms of these effects are not completely understood, recent evidence suggests that changes in endocannabinoid system could be involved in some actions of antidepressants. Chronic antidepressant treatment modifies the expression of CB1 receptors and endocannabinoid (EC) content in brain regions related to mood and anxiety control. Moreover, both antidepressant and cannabinoids activate mitogen-activated protein (MAP) kinase and phosphoinositide 3-kinase(PI3-K)/Akt or PKB signaling, intracellular pathways that regulate cell proliferation and neural cell survival. Facilitation of hippocampal neurogenesis is proposed as a common effect of chronic antidepressant treatment. Genetic or pharmacological manipulations of cannabinoid receptors (CB1 and CB2) or enzymes responsible for endocannabinoid-metabolism have also been shown to control proliferation and neurogenesis in the hippocampus. In the present paper we reviewed the studies that have investigated the potential contribution of cannabinoids and neurogenesisto antidepressant effects. Considering the widespread brain distribution of the EC system, a better understanding of this possible interaction could contribute to the development of therapeutic alternatives to mood and anxiety disorders.
Collapse
Affiliation(s)
- Manoela Viar Fogaça
- Department of Pharmacology; School of Medicine of RibeirãoPreto- University of São Paulo, Brazil ; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | | | | | | |
Collapse
|
45
|
Song MS, Matveychuk D, MacKenzie EM, Duchcherer M, Mousseau DD, Baker GB. An update on amine oxidase inhibitors: multifaceted drugs. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:118-24. [PMID: 23410524 DOI: 10.1016/j.pnpbp.2013.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 02/08/2023]
Abstract
Although not used as extensively as other antidepressants for the treatment of depression, the monoamine oxidase (MAO) inhibitors continue to hold a niche in psychiatry and to have a relatively broad spectrum with regard to treatment of psychiatric and neurological disorders. Experimental and clinical research on MAO inhibitors has been expanding in the past few years, primarily because of exciting findings indicating that these drugs have neuroprotective properties (often independently of their ability to inhibit MAO). The non-selective and irreversible MAO inhibitors tranylcypromine (TCP) and phenelzine (PLZ) have demonstrated neuroprotective properties in numerous studies targeting elements of apoptotic cascades and neurogenesis. l-Deprenyl and rasagiline, both selective MAO-B inhibitors, are used in the management of Parkinson's disease, but these drugs may be useful in the treatment of other neurodegenerative disorders given that they demonstrate neuroprotective/neurorescue properties in a wide variety of models in vitro and in vivo. Although the focus of studies on the involvement of MAO inhibitors in neuroprotection has been on MAO-B inhibitors, there is a growing body of evidence demonstrating that MAO-A inhibitors may also have neuroprotective properties. In addition to MAO inhibition, PLZ also inhibits primary amine oxidase (PrAO), an enzyme implicated in the etiology of Alzheimer's disease, diabetes and cardiovascular disease. These multifaceted aspects of amine oxidase inhibitors and some of their metabolites are reviewed herein.
Collapse
Affiliation(s)
- Mee-Sook Song
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Fišar Z. Cannabinoids and monoamine neurotransmission with focus on monoamine oxidase. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:68-77. [PMID: 22234284 DOI: 10.1016/j.pnpbp.2011.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/11/2011] [Accepted: 12/21/2011] [Indexed: 12/19/2022]
Abstract
Progress in understanding the mechanisms of action of cannabinoids was made after discovery of cannabinoid receptors and finding their endogenous ligands. New findings are obtained using both endogenous cannabinoids and plant or synthetic cannabinoids. Activation of cannabinoid receptors on synaptic terminals results in regulation of ion channels, neurotransmitter release and synaptic plasticity. Neuromodulation of synapses by cannabinoids is proving to have a wide range of functional effects, making them potential targets as medical preparations in a variety of illnesses, including some neurodegenerative and mental disorders. Brain monoamines are involved in many of the same processes affected by neuropsychiatric disorders and by different psychotropic drugs, including cannabinoids. Basic information is summarized in the paper about mechanisms of action of cannabinoids on monoaminergic systems, with a view to inhibition of monoamine oxidase.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| |
Collapse
|
47
|
Assareh N, ElBatsh MM, Marsden CA, Kendall DA. The effects of chronic administration of tranylcypromine and rimonabant on behaviour and protein expression in brain regions of the rat. Pharmacol Biochem Behav 2012; 100:506-12. [DOI: 10.1016/j.pbb.2011.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/03/2011] [Accepted: 10/14/2011] [Indexed: 01/13/2023]
|
48
|
Putative role of endocannabinoid signaling in the etiology of depression and actions of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1575-85. [PMID: 21111017 DOI: 10.1016/j.pnpbp.2010.11.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 11/23/2022]
Abstract
In the last few years, there have been several advances in the determination of the role of the endocannabinoid system in the etiology of depression and the functional actions of antidepressant drugs. Specifically, a deficiency in endocannabinoid signaling is sufficient to produce a "depressive-like" phenotype at the preclinical level (including changes in rewarding, emotional and cognitive behavior and biological changes such as increased HPA axis activity, impaired stress adaptation, reduced neurogenesis and altered serotonin negative feedback), and capable of inducing symptoms of depression in humans at a clinical level. In line with these findings, clinical populations diagnosed with depression are found to have reduced levels of circulating endocannabinoids and preclinical models of depression reveal a deficit in central endocannabinoid signaling. Moreover, facilitation of endocannabinoid signaling is sufficient to produce all of the behavioral and biochemical effects of conventional antidepressant treatments. Further, many forms of antidepressant treatments significantly alter endocannabinoid signaling, and in some of these cases this recruitment of endocannabinoid signaling is involved in the neuroadaptive effects of these treatments. Ultimately, these data present a compelling picture of the putative role of the endocannabinoid system in the processes subserving both the development and treatment of depression.
Collapse
|
49
|
The cannabinergic system is implicated in the upregulation of central NGF protein by psychotropic drugs. Psychopharmacology (Berl) 2011; 215:129-41. [PMID: 21170518 DOI: 10.1007/s00213-010-2120-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/26/2010] [Indexed: 02/06/2023]
Abstract
RATIONALE Studies on the regulation of nerve growth factor (NGF) levels by psychotropics are limited in scope and the mechanism(s) remain elusive which merit further elucidation. OBJECTIVES We aimed to perform a more comprehensive investigation on the possible effects of pharmacologically heterogeneous groups of psychotropic drugs on NGF contents in the brain regions involved in the modulation of emotions. As a mechanistic approach, we looked at the role of the cannabinergic system which is linked to depression and/or antidepressant effect and appears to interact with neurotrophin signaling. METHODS Following psychotropic treatment, NGF or endocannabinoid (eCB) contents were quantified by Bio-Rad protein assay and isotope-dilution liquid chromatography/mass spectrometry, respectively. In case of any significant change, the effects of pretreatment with the CB(1) receptor neutral antagonist AM4113 were investigated. RESULTS Single injection of nortriptyline, isocarboxazid, citalopram, diazepam, risperidone (2.5, 5, and 10 mg/kg, each), and fluphenazine (0.25, 0.5, and 1 mg/kg) into rats did not alter NGF or eCB contents. Following 4-week treatment, all drugs except diazepam elevated NGF or eCB levels in dose-dependent and brain region-specific fashion. Pretreatment with the highest dose of AM4113 (5.6 mg/kg) prevented psychotropic-induced NGF or eCB elevation. AM4113 had no effect by itself. CONCLUSIONS The cannabinergic system is implicated in the mechanisms of action of certain psychotropic drugs including the upregulation of brain NGF levels. This provides a better understanding of the pathophysiological mechanisms underlying neuropsychiatric disorders, leading to novel drug design.
Collapse
|
50
|
Hassanzadeh P, Hassanzadeh A. The Role of the Endocannabinoids in Suppression of the Hypothalamic-pituitary-adrenal Axis Activity by Doxepin. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2011; 14:414-21. [PMID: 23493814 PMCID: PMC3586843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 11/20/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The mechanism(s) by which antidepressants regulate the hypothalamic-pituitary-adrenal (HPA) axis remain elusive. The endocannabinoid system (eCBs) which exhibits antidepressant potential, appears to regulate the HPA axis activity. Therefore, we aimed to investigate the role of the eCBs in the action of doxepin including its effect on the HPA axis. MATERIALS AND METHODS Male Wistar rats received acute and four-week intraperitoneal injections of doxepin (3, 5, and 10 mg/kg) or its vehicle (0.9% saline). One hr after the last injection, animals were exposed to a 5 min swim stress session. In other cohorts of animals, the CB1 receptor antagonist AM251 (0.25, 0.5, and 1mg/kg) was injected 30 min before the administration of doxepin. Plasma corticosterone concentration was measured by enzyme-immunoassay at 45 min following stressing. 1, 5, and 12 hr after the last injection of doxepin, the contents of endocacannabinoids (anandamide and 2-arachidonylglycerol) within the lipid extracts of the prefrontal cortex, amygdala, hippocampus, and hypothalamus were determined using isotope-dilution liquid chromatography-mass spectrometry. RESULTS Chronic treatment with doxepin (10 mg/kg) significantly reduced the secretion of corticosterone due to 5 min exposure to swim stress. Acute administration of doxepin evoked no effect. Pre-application of AM251 (1 mg/kg) abolished the ability of doxepin to reduce corticosterone secretion. Chronic administration of doxepin (10 mg/kg) led to a significant elevation of the endocannabinoids in the examined brain regions. CONCLUSION It appears that doxepin exerts its effects, at least in part, through activation of the eCBs and the CB1 cannabinoid receptors play a major role in this regard.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Research Centre for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Neuropsychopharmacology Research Center, AJA University of Medical Sciences, Tehran, Iran,Corresponding author: Tel: +98-21-22432515; Fax: +98-21-22432517;
| | - Anna Hassanzadeh
- Department of Molecular Biology, Faculty of Molecular & Cellular Sciences, Islamic Azad University, Parand, Iran
| |
Collapse
|