1
|
Nagashima S, Primadharsini PP, Takahashi M, Nishiyama T, Murata K, Okamoto H. Role of Rab13, Protein Kinase A, and Zonula Occludens-1 in Hepatitis E Virus Entry and Cell-to-Cell Spread: Comparative Analysis of Quasi-Enveloped and Non-Enveloped Forms. Pathogens 2024; 13:1130. [PMID: 39770389 PMCID: PMC11678111 DOI: 10.3390/pathogens13121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatitis E virus (HEV) exists in two distinct forms: a non-enveloped form (neHEV), which is present in feces and bile, and a quasi-enveloped form (eHEV), found in circulating blood and culture supernatants. This study aimed to elucidate the roles of Ras-associated binding 13 (Rab13) and protein kinase A (PKA) in the entry mechanisms of both eHEV and neHEV, utilizing small interfering RNA (siRNA) and chemical inhibitors. The results demonstrated that the entry of both viral forms is dependent on Rab13 and PKA. Further investigation into the involvement of tight junction (TJ) proteins revealed that the targeted knockdown of zonula occludens-1 (ZO-1) significantly impaired the entry of both eHEV and neHEV. In addition, in ZO-1 knockout (KO) cells inoculated with either viral form, HEV RNA levels in culture supernatants did not increase, even up to 16 days post-inoculation. Notably, the absence of ZO-1 did not affect the adsorption efficiency of eHEV or neHEV, nor did it influence HEV RNA replication. In cell-to-cell spread assays, ZO-1 KO cells inoculated with eHEV showed a lack of expression of HEV ORF2 and ORF3 proteins. In contrast, neHEV-infected ZO-1 KO cells showed markedly reduced ORF2 and ORF3 protein expression within virus-infected foci, compared to non-targeting knockout (NC KO) cells. These findings underscore the crucial role of ZO-1 in facilitating eHEV entry and mediating the cell-to-cell spread of neHEV in infected cells.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (P.P.P.); (M.T.); (T.N.); (K.M.)
| | | | | | | | | | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (P.P.P.); (M.T.); (T.N.); (K.M.)
| |
Collapse
|
2
|
Falkenhagen A, Panajotov J, Johne R. Colon-derived Caco-2 cells support replication of hepatitis E virus genotype 1 strain Sar55 generated by reverse genetics. Virus Res 2024; 347:199427. [PMID: 38917940 PMCID: PMC11261143 DOI: 10.1016/j.virusres.2024.199427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
The hepatitis E virus (HEV) is infecting over 20 million people annually with a high morbidity especially in pregnant women and immune-suppressed individuals. While HEV genotype 1 (HEV-1) infects only humans, genotype 3 (HEV-3) is zoonotic and commonly transmitted from infected animals to humans. Whereas a few reverse genetics systems enabling targeted genome manipulations exist for HEV-3, those for HEV-1 are still very limited, mainly because of inefficient cell culture replication. Here, the generation of HEV-1 strain Sar55 and HEV-3 strain 47832mc by transfecting in vitro-transcribed and capped virus genomes into different cell lines was attempted. Culture supernatants of colon-derived colorectal adenocarcinoma cell line Caco-2 contained HEV-1 and HEV-3 capable of infecting Caco-2 cells. Density gradient centrifugation analyses of culture supernatants confirmed that HEV-1 particles were quasi-enveloped in analogy to HEV-3 and that non-virion-associated capsid protein was secreted from cells. Following transfection or infection of Caco-2 cells, HEV-1 consistently reached higher titers than HEV-3 in culture supernatants, but HEV-1 generated by transfection of Caco-2 cells was unable to efficiently infect hepatoma cell lines PLC/PRF/5 or HuH7-Lunet BLR. Taken together, our results indicate that HEV-1 is able to exert a complete replication cycle in Caco-2 cells. An efficient cell culture system for this genotype will be useful for studying species tropism, but further research is required to determine the significance of HEV-1 replication in colon-derived cells.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Jessica Panajotov
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Reimar Johne
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
3
|
Wang X, Sheng Y, Ji P, Deng Y, Sun Y, Chen Y, Nan Y, Hiscox JA, Zhou EM, Liu B, Zhao Q. A Broad-specificity Neutralizing Nanobody against Hepatitis E Virus Capsid Protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:442-455. [PMID: 38905108 PMCID: PMC11299488 DOI: 10.4049/jimmunol.2300706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
Hepatitis E virus (HEV) is a worldwide zoonotic and public health concern. The study of HEV biology is helpful for designing viral vaccines and drugs. Nanobodies have recently been considered appealing materials for viral biological research. In this study, a Bactrian camel was immunized with capsid proteins from different genotypes (1, 3, 4, and avian) of HEV. Then, a phage library (6.3 × 108 individual clones) was constructed using peripheral blood lymphocytes from the immunized camel, and 12 nanobodies against the truncated capsid protein of genotype 3 HEV (g3-p239) were screened. g3-p239-Nb55 can cross-react with different genotypes of HEV and block Kernow-C1/P6 HEV from infecting HepG2/C3A cells. To our knowledge, the epitope recognized by g3-p239-Nb55 was determined to be a novel conformational epitope located on the surface of viral particles and highly conserved among different mammalian HEV isolates. Next, to increase the affinity and half-life of the nanobody, it was displayed on the surface of ferritin, which can self-assemble into a 24-subunit nanocage, namely, fenobody-55. The affinities of fenobody-55 to g3-p239 were ∼20 times greater than those of g3-p239-Nb55. In addition, the half-life of fenobody-55 was nine times greater than that of g3-p239-Nb55. G3-p239-Nb55 and fenobody-55 can block p239 attachment and Kernow-C1/P6 infection of HepG2/C3A cells. Fenobody-55 can completely neutralize HEV infection in rabbits when it is preincubated with nonenveloped HEV particles. Our study reported a case in which a nanobody neutralized HEV infection by preincubation, identified a (to our knowledge) novel and conserved conformational epitope of HEV, and provided new material for researching HEV biology.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Veterinary Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
| | - Yamin Sheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Deng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiyang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Ferrié M, Alexandre V, Montpellier C, Bouquet P, Tubiana T, Mézière L, Ankavay M, Bentaleb C, Dubuisson J, Bressanelli S, Aliouat-Denis CM, Rouillé Y, Cocquerel L. The AP-1 adaptor complex is essential for intracellular trafficking of the ORF2 capsid protein and assembly of Hepatitis E virus. Cell Mol Life Sci 2024; 81:335. [PMID: 39117755 PMCID: PMC11335258 DOI: 10.1007/s00018-024-05367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Although the Hepatitis E virus (HEV) is an emerging global health burden, little is known about its interaction with the host cell. HEV genome encodes three proteins including the ORF2 capsid protein that is produced in different forms, the ORF2i protein which is the structural component of viral particles, and the ORF2g/c proteins which are massively secreted but are not associated with infectious material. We recently demonstrated that the endocytic recycling compartment (ERC) is hijacked by HEV to serve as a viral factory. However, host determinants involved in the subcellular shuttling of viral proteins to viral factories are unknown. Here, we demonstrate that the AP-1 adaptor complex plays a pivotal role in the targeting of ORF2i protein to viral factories. This complex belongs to the family of adaptor proteins that are involved in vesicular transport between the trans-Golgi network and early/recycling endosomes. An interplay between the AP-1 complex and viral protein(s) has been described for several viral lifecycles. In the present study, we demonstrated that the ORF2i protein colocalizes and interacts with the AP-1 adaptor complex in HEV-producing or infected cells. We showed that silencing or drug-inhibition of the AP-1 complex prevents ORF2i protein localization in viral factories and reduces viral production in hepatocytes. Modeling of the ORF2i/AP-1 complex also revealed that the S domain of ORF2i likely interacts with the σ1 subunit of AP-1 complex. Hence, our study identified for the first time a host factor involved in addressing HEV proteins (i.e. ORF2i protein) to viral factories.
Collapse
Affiliation(s)
- Martin Ferrié
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Virginie Alexandre
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Claire Montpellier
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Peggy Bouquet
- Unit of Clinical Microbiology, Institut Pasteur de Lille, Lille, F-59000, France
| | - Thibault Tubiana
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Léa Mézière
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Maliki Ankavay
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
- Division of Gastroenterology and Hepatology, Institute of Microbiology, Lausanne, Switzerland
| | - Cyrine Bentaleb
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Stéphane Bressanelli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Cécile-Marie Aliouat-Denis
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Yves Rouillé
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Laurence Cocquerel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France.
| |
Collapse
|
5
|
Shahini E, Argentiero A, Andriano A, Losito F, Maida M, Facciorusso A, Cozzolongo R, Villa E. Hepatitis E Virus: What More Do We Need to Know? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:998. [PMID: 38929615 PMCID: PMC11205503 DOI: 10.3390/medicina60060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Hepatitis E virus (HEV) infection is typically a self-limiting, acute illness that spreads through the gastrointestinal tract but replicates in the liver. However, chronic infections are possible in immunocompromised individuals. The HEV virion has two shapes: exosome-like membrane-associated quasi-enveloped virions (eHEV) found in circulating blood or in the supernatant of infected cell cultures and non-enveloped virions ("naked") found in infected hosts' feces and bile to mediate inter-host transmission. Although HEV is mainly spread via enteric routes, it is unclear how it penetrates the gut wall to reach the portal bloodstream. Both virion types are infectious, but they infect cells in different ways. To develop personalized treatment/prevention strategies and reduce HEV impact on public health, it is necessary to decipher the entry mechanism for both virion types using robust cell culture and animal models. The contemporary knowledge of the cell entry mechanism for these two HEV virions as possible therapeutic target candidates is summarized in this narrative review.
Collapse
Affiliation(s)
- Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | | | - Alessandro Andriano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro Medical School, 70124 Bari, Italy;
| | - Francesco Losito
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, 93100 Caltanissetta, Italy;
| | - Antonio Facciorusso
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Erica Villa
- Gastroenterology Unit, CHIMOMO Department, University of Modena & Reggio Emilia, Via del Pozzo 71, 41121 Modena, Italy
| |
Collapse
|
6
|
Primadharsini PP, Takahashi M, Nishizawa T, Sato Y, Nagashima S, Murata K, Okamoto H. The Full-Genome Analysis and Generation of an Infectious cDNA Clone of a Genotype 6 Hepatitis E Virus Variant Obtained from a Japanese Wild Boar: In Vitro Cultivation in Human Cell Lines. Viruses 2024; 16:842. [PMID: 38932135 PMCID: PMC11209168 DOI: 10.3390/v16060842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis E virus (HEV) can cause self-limiting acute and chronic hepatitis infections, particularly in immunocompromised individuals. In developing countries, HEV is mainly transmitted via drinking contaminated water, whereas zoonotic transmission dominates the route of infection in developed countries, including Japan. Pigs are an important reservoir for HEV infection. Wild boars, which share the same genus and species as domestic pigs, are also an HEV reservoir. During our nationwide study of HEV infection in wild boar populations in Japan, a genotype 6 (HEV-6) strain, wbJHG_23, was isolated in Hyogo Prefecture in 2023. The genomic length was 7244 nucleotides, excluding the poly(A) tract. The wbJHG_23 strain exhibited the highest nucleotide identity throughout its genome with two previously reported HEV-6 strains (80.3-80.9%). Conversely, it displayed lower similarity (73.3-78.1%) with the HEV-1-5, HEV-7, and HEV-8 strains, indicating that, although closely related, the wbJHG_23 strain differs significantly from the reported HEV-6 strains and might represent a novel subtype. The wbJHG_23 strain successfully infected the human-derived cancer cell lines, PLC/PRF/5 and A549 1-1H8 cells, suggesting that HEV-6 has the potential for zoonotic infection. An infectious cDNA clone was constructed using a reverse genetics system, and a cell culture system supporting the efficient propagation of the HEV-6 strain was established, providing important tools for further studies on this genotype. Using this cell culture system, we evaluated the sensitivity of the wbJHG_23 strain to ribavirin treatment. Its good response to this treatment suggested that it could be used to treat human infections caused by HEV-6.
Collapse
Affiliation(s)
- Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; (P.P.P.); (M.T.); (T.N.); (S.N.); (K.M.)
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; (P.P.P.); (M.T.); (T.N.); (S.N.); (K.M.)
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; (P.P.P.); (M.T.); (T.N.); (S.N.); (K.M.)
| | - Yukihiro Sato
- Department of Internal Medicine, Kamiichi General Hospital, Nakaniikawa-Gun, Toyama 930-0391, Japan;
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; (P.P.P.); (M.T.); (T.N.); (S.N.); (K.M.)
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; (P.P.P.); (M.T.); (T.N.); (S.N.); (K.M.)
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; (P.P.P.); (M.T.); (T.N.); (S.N.); (K.M.)
| |
Collapse
|
7
|
Glitscher M, Spannaus IM, Behr F, Murra RO, Woytinek K, Bender D, Hildt E. The Protease Domain in HEV pORF1 Mediates the Replicase's Localization to Multivesicular Bodies and Its Exosomal Release. Cell Mol Gastroenterol Hepatol 2024; 17:589-605. [PMID: 38190941 PMCID: PMC10900777 DOI: 10.1016/j.jcmgh.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
BACKGROUND A peculiar feature of the hepatitis E virus (HEV) is its reliance on the exosomal route for viral release. Genomic replication is mediated via the viral polyprotein pORF1, yet little is known about its subcellular localization. METHODS Subcellular localization of pORF1 and its subdomains, generated and cloned based on a structural prediciton of the viral replicase, was analyzed via confocal laser scanning microscopy. Exosomes released from cells were isolated via ultracentrifugation and analyzed by isopycnic density gradient centrifugation. This was followed by fluorimetry or Western blot analyses or reverse transcriptase-polymerase chain reaction to analyze separated particles in more detail. RESULTS We found pORF1 to be accumulating within the endosomal system, most dominantly to multivesicular bodies (MVBs). Expression of the polyprotein's 7 subdomains revealed that the papain-like cysteine-protease (PCP) is the only domain localizing like the full-length protein. A PCP-deficient pORF1 mutant lost its association to MVBs. Strikingly, both pORF1 and PCP can be released via exosomes. Similarly, genomic RNA still is released via exosomes in the absence of pORF2/3. CONCLUSIONS Taken together, we found that pORF1 localizes to MVBs in a PCP-dependent manner, which is followed by exosomal release. This reveals new aspects of HEV life cycle, because replication and release could be coupled at the endosomal interface. In addition, this may mediate capsid-independent spread or may facilitate the spread of viral infection, because genomes entering the cell during de novo infection readily encounter exosomally transferred pORF1.
Collapse
Affiliation(s)
- Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Fabiane Behr
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | | | | | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany.
| |
Collapse
|
8
|
Ahmad I, Fatemi SN, Ghaheri M, Rezvani A, Khezri DA, Natami M, Yasamineh S, Gholizadeh O, Bahmanyar Z. An overview of the role of Niemann-pick C1 (NPC1) in viral infections and inhibition of viral infections through NPC1 inhibitor. Cell Commun Signal 2023; 21:352. [PMID: 38098077 PMCID: PMC10722723 DOI: 10.1186/s12964-023-01376-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses communicate with their hosts through interactions with proteins, lipids, and carbohydrate moieties on the plasma membrane (PM), often resulting in viral absorption via receptor-mediated endocytosis. Many viruses cannot multiply unless the host's cholesterol level remains steady. The large endo/lysosomal membrane protein (MP) Niemann-Pick C1 (NPC1), which is involved in cellular cholesterol transport, is a crucial intracellular receptor for viral infection. NPC1 is a ubiquitous housekeeping protein essential for the controlled cholesterol efflux from lysosomes. Its human absence results in Niemann-Pick type C disease, a deadly lysosomal storage disorder. NPC1 is a crucial viral receptor and an essential host component for filovirus entrance, infection, and pathogenesis. For filovirus entrance, NPC1's cellular function is unnecessary. Furthermore, blocking NPC1 limits the entry and replication of the African swine fever virus by disrupting cholesterol homeostasis. Cell entrance of quasi-enveloped variants of hepatitis A virus and hepatitis E virus has also been linked to NPC1. By controlling cholesterol levels, NPC1 is also necessary for the effective release of reovirus cores into the cytoplasm. Drugs that limit NPC1's activity are effective against several viruses, including SARS-CoV and Type I Feline Coronavirus (F-CoV). These findings reveal NPC1 as a potential therapeutic target for treating viral illnesses and demonstrate its significance for several viral infections. This article provides a synopsis of NPC1's function in viral infections and a review of NPC1 inhibitors that may be used to counteract viral infections. Video Abstract.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Ghaheri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Rezvani
- Anesthesiology Department, Case Western Reserve University, Cleveland, USA
| | - Dorsa Azizi Khezri
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Zahra Bahmanyar
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Nagashima S, Primadharsini PP, Nishiyama T, Takahashi M, Murata K, Okamoto H. Development of a HiBiT-tagged reporter hepatitis E virus and its utility as an antiviral drug screening platform. J Virol 2023; 97:e0050823. [PMID: 37681960 PMCID: PMC10537679 DOI: 10.1128/jvi.00508-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 09/09/2023] Open
Abstract
Previously, we developed an infectious hepatitis E virus (HEV) harboring the nanoKAZ gene in the hypervariable region of the open reading frame 1 (ORF1) of the HEV3b (JE03-1760F/P10) genome and demonstrated the usefulness for screening anti-HEV drugs that inhibit the early infection process. In the present study, we constructed another reporter HEV (HEV3b-HiBiT) by placing a minimized HiBiT tag derived from NanoLuc luciferase at the 3'-end of the viral capsid (ORF2) coding sequence. It replicated efficiently in PLC/PRF/5 cells, produced membrane-associated particles identical to those of the parental virus, and was genetically stable and infectious. The HiBiT tag was fused to both secreted ORF2s (ORF2s-HiBiT) and ORF2c capsid protein (ORF2c-HiBiT). The ORF2c-HiBiT formed membrane-associated HEV particles (eHEV3b-HiBiT). By treating these particles with digitonin, we demonstrated that the HiBiT tag was expressed on the surface of capsid and was present inside the lipid membrane. To simplify the measurement of luciferase activity and provide a more convenient screening platform, we constructed an ORF2s-defective mutant (HEV3b-HiBiT/ΔORF2s) in which the secreted ORF2s are suppressed. We used this system to evaluate the effects of introducing small interfering RNAs and treatment with an inhibitor or accelerator of exosomal release on HEV egress and demonstrated that the effects on virus release can readily be analyzed. Therefore, HEV3b-HiBiT and HEV3b-HiBiT/ΔORF2s reporters may be useful for investigating the virus life cycle and can serve as a more convenient screening platform to search for candidate drugs targeting the late stage of HEV infection such as particle formation and release. IMPORTANCE The construction of recombinant infectious viruses harboring a stable luminescence reporter gene is essential for investigations of the viral life cycle, such as viral replication and pathogenesis, and the development of novel antiviral drugs. However, it is difficult to maintain the stability of a large foreign gene inserted into the viral genome. In the present study, we successfully generated a recombinant HEV harboring the 11-amino acid HiBiT tag in the ORF2 coding region and demonstrated the infectivity, efficient virus growth, particle morphology, and genetic stability, suggesting that this recombinant HEV is useful for in vitro assays. Furthermore, this system can serve as a more convenient screening platform for anti-HEV drugs. Thus, an infectious recombinant HEV is a powerful approach not only for elucidating the molecular mechanisms of the viral life cycle but also for the screening and development of novel antiviral agents.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Takashi Nishiyama
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
10
|
Das A, Rivera-Serrano EE, Yin X, Walker CM, Feng Z, Lemon SM. Cell entry and release of quasi-enveloped human hepatitis viruses. Nat Rev Microbiol 2023; 21:573-589. [PMID: 37185947 PMCID: PMC10127183 DOI: 10.1038/s41579-023-00889-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Infectious hepatitis type A and type E are caused by phylogenetically distinct single-stranded, positive-sense RNA viruses that were once considered to be non-enveloped. However, studies show that both are released nonlytically from hepatocytes as 'quasi-enveloped' virions cloaked in host membranes. These virion types predominate in the blood of infected individuals and mediate virus spread within the liver. They lack virally encoded proteins on their surface and are resistant to neutralizing anti-capsid antibodies induced by infection, yet they efficiently enter cells and initiate new rounds of virus replication. In this Review, we discuss the mechanisms by which specific peptide sequences in the capsids of these quasi-enveloped virions mediate their endosomal sorting complexes required for transport (ESCRT)-dependent release from hepatocytes through multivesicular endosomes, what is known about how they enter cells, and the impact of capsid quasi-envelopment on host immunity and pathogenesis.
Collapse
Affiliation(s)
- Anshuman Das
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lentigen Technology, Inc., Gaithersburg, MD, USA
| | - Efraín E Rivera-Serrano
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, Elon University, Elon, NC, USA
| | - Xin Yin
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Zahmanova G, Takova K, Tonova V, Koynarski T, Lukov LL, Minkov I, Pishmisheva M, Kotsev S, Tsachev I, Baymakova M, Andonov AP. The Re-Emergence of Hepatitis E Virus in Europe and Vaccine Development. Viruses 2023; 15:1558. [PMID: 37515244 PMCID: PMC10383931 DOI: 10.3390/v15071558] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. Transmission of HEV mainly occurs via the fecal-oral route (ingesting contaminated water or food) or by contact with infected animals and their raw meat products. Some animals, such as pigs, wild boars, sheep, goats, rabbits, camels, rats, etc., are natural reservoirs of HEV, which places people in close contact with them at increased risk of HEV disease. Although hepatitis E is a self-limiting infection, it could also lead to severe illness, particularly among pregnant women, or chronic infection in immunocompromised people. A growing number of studies point out that HEV can be classified as a re-emerging virus in developed countries. Preventative efforts are needed to reduce the incidence of acute and chronic hepatitis E in non-endemic and endemic countries. There is a recombinant HEV vaccine, but it is approved for use and commercially available only in China and Pakistan. However, further studies are needed to demonstrate the necessity of applying a preventive vaccine and to create conditions for reducing the spread of HEV. This review emphasizes the hepatitis E virus and its importance for public health in Europe, the methods of virus transmission and treatment, and summarizes the latest studies on HEV vaccine development.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Valeria Tonova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Tsvetoslav Koynarski
- Department of Animal Genetics, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Laura L Lukov
- Faculty of Sciences, Brigham Young University-Hawaii, Laie, HI 96762, USA
| | - Ivan Minkov
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | - Maria Pishmisheva
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Stanislav Kotsev
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| | - Anton P Andonov
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
12
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
13
|
Mardi N, Haiaty S, Rahbarghazi R, Mobarak H, Milani M, Zarebkohan A, Nouri M. Exosomal transmission of viruses, a two-edged biological sword. Cell Commun Signal 2023; 21:19. [PMID: 36691072 PMCID: PMC9868521 DOI: 10.1186/s12964-022-01037-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
As a common belief, most viruses can egress from the host cells as single particles and transmit to uninfected cells. Emerging data have revealed en bloc viral transmission as lipid bilayer-cloaked particles via extracellular vesicles especially exosomes (Exo). The supporting membrane can be originated from multivesicular bodies during intra-luminal vesicle formation and autophagic response. Exo are nano-sized particles, ranging from 40-200 nm, with the ability to harbor several types of signaling molecules from donor to acceptor cells in a paracrine manner, resulting in the modulation of specific signaling reactions in target cells. The phenomenon of Exo biogenesis consists of multiple and complex biological steps with the participation of diverse constituents and molecular pathways. Due to similarities between Exo biogenesis and virus replication and the existence of shared pathways, it is thought that viruses can hijack the Exo biogenesis machinery to spread and evade immune cells. To this end, Exo can transmit complete virions (as single units or aggregates), separate viral components, and naked genetic materials. The current review article aims to scrutinize challenges and opportunities related to the exosomal delivery of viruses in terms of viral infections and public health. Video Abstract.
Collapse
Affiliation(s)
- Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Ju X, Dong L, Ding Q. Hepatitis E Virus Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:141-157. [PMID: 37223864 DOI: 10.1007/978-981-99-1304-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) infects over 20 million people worldwide per year, leading to 30,000-40,000 deaths. In most cases HEV infection in a self-limited, acute illness. However, chronic infections could occur in immunocompromised individuals. Due to scarcity of robust cell culture models in vitro and genetic tractable animal models in vivo, the details of HEV life cycle, as well as its interaction with host cells still remain elusive, which dampens antivirals discovery. In this chapter, we present an update in the HEV infectious cycle steps: entry, genome replication/subgenomic RNA transcription, assembly, and release. Moreover, we discussed the future prospective on HEV research and illustrates important questions urgently to be addressed.
Collapse
Affiliation(s)
- Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Lin Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
15
|
Xiang K, Zhuang H. Liver Organoid Potential Application for Hepatitis E Virus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:133-139. [PMID: 37223863 DOI: 10.1007/978-981-99-1304-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Despite the advances in hepatitis E virus (HEV) cell infection models' development, HEV infection efficacy in these cell models is still low, which hampers the further study of molecular mechanism of HEV infection and replication and even the interaction between HEV and host. Along with the advances in the technology for liver organoids generation, major efforts will be made to develop liver organoids for HEV infection. Here, we summarize the entire new and impressive cell culture system of liver organoids and discuss their potential application in HEV infection and pathogenesis. Liver organoids can be generated from tissue-resident cells isolated from biopsies of adult tissues or from iPSCs/ESCs differentiation, which can expand the large-scale experiments such as antiviral drug screening. Different types of liver cells working together can recapitulate the liver organ maintaining the physiological and biochemical microenvironments to support cell morphogenesis, migration, and response to viral infections. Efforts to optimize the protocols for liver organoids generation will speed up the research for HEV infection and pathogenesis and even the antiviral drug identification and evaluation.
Collapse
Affiliation(s)
- Kuanhui Xiang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
16
|
Zhang F, Wang Y. HEV Cell Culture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:119-131. [PMID: 37223862 DOI: 10.1007/978-981-99-1304-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cell culture is an important research method in virology. Although many attempts have been conducted to culture HEV in cells, only a few cell culture systems were considered to be efficient enough for usage. Concentration of virus stocks, host cells, and medium components affects the culture efficiency and the genetic mutations during HEV passage were found to be associated with the increased virulence in cell culture. As an alternative method for traditional cell culture, the infectious cDNA clones were constructed. The viral thermal stability, factors that impact the host range, post-translation of viral proteins, and function of different viral proteins were studied using the infectious cDNA clones. HEV cell culture studies on progeny virus showed that the viruses secreted from host cells have an envelope and its formation was associated with pORF3. This result explained the phenomenon that virus could infect host cells in the presence of anti-HEV antibodies.
Collapse
Affiliation(s)
- Feng Zhang
- Division of Therapeutical Monoclonal Antibodies, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan Province, China.
| |
Collapse
|
17
|
Zhou Y, Zhao C, Tian Y, Xu N, Wang Y. Characteristics and Functions of HEV Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:15-32. [PMID: 37223856 DOI: 10.1007/978-981-99-1304-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) is a non-enveloped virus containing a single-stranded, positive-sense RNA genome of 7.2 kb, which consists of a 5' non-coding region, three open reading frames (ORFs), and a 3' non-coding region. ORF1 is diverse between genotypes and encodes the nonstructural proteins, which include the enzymes needed for virus replication. In addition to its role in virus replication, the function of ORF1 is relevant to viral adaption in culture and may also relate to virus infection and HEV pathogenicity. ORF2 protein is the capsid protein, which is about 660 amino acids in length. It not only protects the integrity of the viral genome, but is also involved in many important physiological activities, such as virus assembly, infection, host interaction, and innate immune response. The main immune epitopes, especially neutralizing epitopes, are located on ORF2 protein, which is a candidate antigen for vaccine development. ORF3 protein is a phosphoprotein of 113 or 114 amino acids with a molecular weight of 13 kDa with multiple functions that can also induce strong immune reactivity. A novel ORF4 has been identified only in genotype 1 HEV and its translation promotes viral replication.
Collapse
Affiliation(s)
- Yan Zhou
- RegCMC, Great Regulatory Affairs, Sanofi (China) Investment Co., Ltd, Beijing, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yabin Tian
- Division II of In Vitro Diagnostics for Infectious Diseases, National Institutes for Food and Drug Control, Beijing, China
| | - Nan Xu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
| |
Collapse
|
18
|
Hepatitis Viruses Control Host Immune Responses by Modifying the Exosomal Biogenesis Pathway and Cargo. Int J Mol Sci 2022; 23:ijms231810862. [PMID: 36142773 PMCID: PMC9505460 DOI: 10.3390/ijms231810862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The development of smart immune evasion mechanisms is crucial for the establishment of acute and chronic viral hepatitis. Hepatitis is a major health problem worldwide arising from different causes, such as pathogens, metabolic disorders, and xenotoxins, with the five hepatitis viruses A, B, C, D, and E (HAV, HBV, HCV, HDV, and HEV) representing the majority of the cases. Most of the hepatitis viruses are considered enveloped. Recently, it was reported that the non-enveloped HAV and HEV are, in reality, quasi-enveloped viruses exploiting exosomal-like biogenesis mechanisms for budding. Regardless, all hepatitis viruses use exosomes to egress, regulate, and eventually escape from the host immune system, revealing another key function of exosomes apart from their recognised role in intercellular communication. This review will discuss how the hepatitis viruses exploit exosome biogenesis and transport capacity to establish successful infection and spread. Then, we will outline the contribution of exosomes in viral persistence and liver disease progression.
Collapse
|
19
|
Chew N, Situ J, Wu S, Yao W, Sridhar S. Independent Evaluation of Cell Culture Systems for Hepatitis E Virus. Viruses 2022; 14:v14061254. [PMID: 35746725 PMCID: PMC9227121 DOI: 10.3390/v14061254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis E virus (HEV) infection in humans is primarily caused by genotypes within Paslahepevirus species balayani (HEV-A). Rocahepevirus species ratti (HEV-C1, otherwise known as rat HEV) can also infect humans. HEV grows poorly in cell culture. Recent studies have reported that hyper-confluent cell layers, amphotericin B, MgCl2, progesterone, and dimethyl sulfoxide (DMSO) increase HEV yield in vitro. Here, we describe an independent evaluation of the effectiveness of these modifications in improving the yield of HEV-A genotype 4 (HEV-A4) and HEV-C1 from clinical samples in PLC/PRF/5 cells. We found that amphotericin B, MgCl2, and DMSO increased HEV yield from high-viral-load patient stool samples, while progesterone was not effective. Yield of HEV-C1 was lower than HEV-A4 across all medium conditions, but was boosted by DMSO. HEV-A4 could be maintained for over 18 months in amphotericin B- and MgCl2-containing medium, with the demonstration of viral antigen in supernatants and infected cells. We also evaluated various protocols to remove pseudo-envelopes from cell culture-derived HEV. Treating cell culture supernatant with NP-40 was the most effective. Our findings identify key modifications that boost HEV growth in vitro and illustrate the importance of independent verification of such studies using diverse HEV variants and cell lines.
Collapse
Affiliation(s)
- Nicholas Chew
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (N.C.); (J.S.); (S.W.); (W.Y.)
| | - Jianwen Situ
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (N.C.); (J.S.); (S.W.); (W.Y.)
| | - Shusheng Wu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (N.C.); (J.S.); (S.W.); (W.Y.)
| | - Weiming Yao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (N.C.); (J.S.); (S.W.); (W.Y.)
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (N.C.); (J.S.); (S.W.); (W.Y.)
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-22552408
| |
Collapse
|
20
|
Development of recombinant infectious hepatitis E virus harboring the nanoKAZ gene and its application in drug screening. J Virol 2022; 96:e0190621. [PMID: 35107380 DOI: 10.1128/jvi.01906-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis E virus (HEV) is a quasi-enveloped virus with a single-stranded positive-sense RNA genome belonging to family Hepeviridae. Studies on molecular aspects of HEV and drug screening have benefited from the discovery of bioluminescent reporter genes. However, the stability of large foreign genes is difficult to maintain after insertion into the viral genome. Currently, ribavirin is used to treat HEV-infected patients who require antiviral therapy. This has several major drawbacks. Thus, the development of novel anti-HEV drugs is of great importance. We developed a system consisting of recombinant infectious HEV harboring small luciferase gene (nanoKAZ) in the hypervariable region (HVR) of the open reading frame 1 (ORF1) (HEV-nanoKAZ). It replicated efficiently in cultured cells, was genetically stable, and had morphological characteristics similar to the parental virus. Both membrane-associated (eHEV-nanoKAZ) and membrane-unassociated (neHEV-nanoKAZ) particles were infectious. HEV particles circulating in the blood stream and attaching to hepatocytes in HEV-infected patients are membrane-associated, thus, eHEV-nanoKAZ was applied in drug screening. The eHEV-nanoKAZ system is able to cover at least the inhibitor of HEV entry and inhibitor of HEV RNA replication. Four drugs with anti-HEV activity were identified. Their effectiveness in cultured cells was confirmed in naïve and HEV-producing PLC/PRF/5 cells. Two hit drugs (azithromycin and ritonavir) strongly inhibited HEV production in culture supernatants, as well as intracellular expression of ORF2 protein, and may therefore be candidate novel anti-HEV drugs. The HEV-nanoKAZ system was developed and applied in drug screening, and is expected to be useful for investigating the HEV life cycle. IMPORTANCE Bioluminescent reporter viruses are essential tools in molecular virological research. It has been widely used to investigate viral life cycles and in the development of antiviral drugs. For drug screening, the use of a bioluminescent reporter virus helps shorten the time required to perform the assay. A system, consisting of recombinant infectious HEV harboring the nanoKAZ gene in the HVR of ORF1 (HEV-nanoKAZ), was developed in this study, and was successfully applied to drug screening in which four hit drugs with anti-HEV activity were identified. The results of this study provide evidence supporting the use of this system in more variable HEV studies. In addition, both forms of viral particles (eHEV-nanoKAZ and neHEV-nanoKAZ) are infectious, which will enable their application in HEV studies requiring both forms of viral particles, such as in the investigation of unknown HEV receptors and the elucidation of host factors important for HEV entry.
Collapse
|
21
|
Identification of hepatitis E virus in wild sika deer in Japan. Virus Res 2022; 308:198645. [PMID: 34822952 DOI: 10.1016/j.virusres.2021.198645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Hepatitis E virus (HEV) is a zoonotic agent mainly transmitted through the consumption of uncooked or undercooked meat products derived from infected animals. In Japan, domestic pigs and wild boars are the major animal reservoirs, and whether or not deer are an HEV reservoir remains controversial. We analyzed 395 serum and 199 liver samples from 405 sika deer (Cervus nippon) caught in the wild between 1997 and 2020 in 11 prefectures of Japan for markers of HEV infection. Overall, 17 deer had anti-HEV IgG (4.3%), while 1 (0.2%) had HEV RNA (genotype 3b), indicating the occurrence of ongoing HEV infection in wild deer in Japan. An analysis of the complete HEV genome (deJOI_14) recovered from a viremic deer in Oita Prefecture revealed only 88.8% identity with the first HEV strain in sika deer (JDEER-Hyo03L) in Japan, being closest (96.3%) to the HEV obtained from a hepatitis patient living in the same prefecture. Of note, the deJOI_14 strain was 8.7-9.0% different from the wild boar HEV strains obtained in the same habitat and the same year, suggesting that difference in infected HEV strains between boar and deer may be explained by the limited possibility of close contact with each other, although boars are a known source of HEV infection. Increased numbers of hepatitis E cases after consumption of raw or undercooked meat products of wild deer have been reported in Japan. These results suggest a low but nonnegligible zoonotic risk of HEV infection in wild deer in this country.
Collapse
|
22
|
Cancela F, Noceti O, Arbiza J, Mirazo S. Structural aspects of hepatitis E virus. Arch Virol 2022; 167:2457-2481. [PMID: 36098802 PMCID: PMC9469829 DOI: 10.1007/s00705-022-05575-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide. Hepatitis E is an enterically transmitted zoonotic disease that causes large waterborne epidemic outbreaks in developing countries and has become an increasing public-health concern in industrialized countries. In this setting, the infection is usually acute and self-limiting in immunocompetent individuals, although chronic cases in immunocompromised patients have been reported, frequently associated with several extrahepatic manifestations. Moreover, extrahepatic manifestations have also been reported in immunocompetent individuals with acute HEV infection. HEV belongs to the alphavirus-like supergroup III of single-stranded positive-sense RNA viruses, and its genome contains three partially overlapping open reading frames (ORFs). ORF1 encodes a nonstructural protein with eight domains, most of which have not been extensively characterized: methyltransferase, Y domain, papain-like cysteine protease, hypervariable region, proline-rich region, X domain, Hel domain, and RNA-dependent RNA polymerase. ORF2 and ORF3 encode the capsid protein and a multifunctional protein believed to be involved in virion release, respectively. The novel ORF4 is only expressed in HEV genotype 1 under endoplasmic reticulum stress conditions, and its exact function has not yet been elucidated. Despite important advances in recent years, the biological and molecular processes underlying HEV replication remain poorly understood, primarily due to a lack of detailed information about the functions of the viral proteins and the mechanisms involved in host-pathogen interactions. This review summarizes the current knowledge concerning HEV proteins and their biological properties, providing updated detailed data describing their function and focusing in detail on their structural characteristics. Furthermore, we review some unclear aspects of the four proteins encoded by the ORFs, highlighting the current key information gaps and discussing potential novel experimental strategies for shedding light on those issues.
Collapse
Affiliation(s)
- Florencia Cancela
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ofelia Noceti
- grid.414402.70000 0004 0469 0889Programa Nacional de Trasplante Hepático y Unidad Docente Asistencial Centro Nacional de Tratamiento Hepatobiliopancreatico. Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay
| | - Juan Arbiza
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mirazo
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,Av. Alfredo Navarro 3051, PC 11600 Montevideo, Uruguay
| |
Collapse
|
23
|
Fan M, Luo Y, Zhang B, Wang J, Chen T, Liu B, Sun Y, Nan Y, Hiscox JA, Zhao Q, Zhou EM. Cell Division Control Protein 42 Interacts With Hepatitis E Virus Capsid Protein and Participates in Hepatitis E Virus Infection. Front Microbiol 2021; 12:775083. [PMID: 34790187 PMCID: PMC8591454 DOI: 10.3389/fmicb.2021.775083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Hepatitis E Virus (HEV) causes viral hepatitis in humans worldwide, while a subset of HEV species, avian HEV, causes hepatitis-splenomegaly syndrome in chickens. To date, there are few reports on the host proteins interacting with HEV and being involved in viral infection. Previous pull-down assay combining mass spectrometry indicated that cell division control protein 42 (CDC42), a member belonging to the Rho GTPase family, was pulled down by avian HEV capsid protein. We confirmed the direct interaction between CDC42 and avian and mammalian HEV capsid proteins. The interaction can increase the amount of active guanosine triphosphate binding CDC42 state (GTP-CDC42). Subsequently, we determined that the expression and activity of CDC42 were positively correlated with HEV infection in the host cells. Using the different inhibitors of CDC42 downstream signaling pathways, we found that CDC42-MRCK (a CDC42-binding kinase)-non-myosin IIA (NMIIA) pathway is involved in naked avian and mammalian HEV infection, CDC42-associated p21-activated kinase 1 (PAK1)-NMIIA/Cofilin pathway is involved in quasi-enveloped mammalian HEV infection and CDC42-neural Wiskott-Aldrich syndrome protein-actin-polymerizing protein Arp2/3 pathway (CDC42-(N-)WASP-Arp2/3) pathway participates in naked and quasi-enveloped mammalian HEV infection. Collectively, these results demonstrated for the first time that HEV capsid protein can directly bind to CDC42, and non- and quasi-enveloped HEV use different CDC42 downstream signaling pathways to participate in viral infection. The study provided some new insights to understand the life cycle of HEV in host cells and a new target of drug design for combating HEV infection.
Collapse
Affiliation(s)
- Mengnan Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuhang Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Beibei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jiaxi Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Tianxiang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
24
|
Zhou Z, Xie Y, Wu C, Nan Y. The Hepatitis E Virus Open Reading Frame 2 Protein: Beyond Viral Capsid. Front Microbiol 2021; 12:739124. [PMID: 34690982 PMCID: PMC8529240 DOI: 10.3389/fmicb.2021.739124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen causing hepatitis in both human and animal hosts, which is responsible for acute hepatitis E outbreaks worldwide. The 7.2 kb genome of the HEV encodes three well-defined open reading frames (ORFs), where the ORF2 translation product acts as the major virion component to form the viral capsid. In recent years, besides forming the capsid, more functions have been revealed for the HEV-ORF2 protein, and it appears that HEV-ORF2 plays multiple functions in both viral replication and pathogenesis. In this review, we systematically summarize the recent research advances regarding the function of the HEV-ORF2 protein such as application in the development of a vaccine, regulation of the innate immune response and cellular signaling, involvement in host tropism and participation in HEV pathogenesis as a novel secretory factor. Progress in understanding more of the function of HEV-ORF2 protein beyond the capsid protein would contribute to improved control and treatment of HEV infection.
Collapse
Affiliation(s)
- Zhaobin Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yinqian Xie
- Shaanxi Animal Disease Prevention and Control Center, Xi’an, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| |
Collapse
|
25
|
Cellular Organelles Involved in Hepatitis E Virus Infection. Pathogens 2021; 10:pathogens10091206. [PMID: 34578238 PMCID: PMC8469867 DOI: 10.3390/pathogens10091206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis E virus (HEV), a major cause of acute hepatitis worldwide, infects approximately 20 million individuals annually. HEV can infect a wide range of mammalian and avian species, and cause frequent zoonotic spillover, increasingly raising public health concerns. To establish a successful infection, HEV needs to usurp host machineries to accomplish its life cycle from initial attachment to egress. However, relatively little is known about the HEV life cycle, especially the functional role(s) of cellular organelles and their associated proteins at different stages of HEV infection. Here, we summarize current knowledge regarding the relation of HEV with the different cell organelles during HEV infection. Furthermore, we discuss the underlying mechanisms by which HEV infection is precisely regulated in infected cells and the modification of host cell organelles and their associated proteins upon HEV infection.
Collapse
|
26
|
Yadav KK, Kenney SP. Hepatitis E Virus Immunopathogenesis. Pathogens 2021; 10:pathogens10091180. [PMID: 34578211 PMCID: PMC8465319 DOI: 10.3390/pathogens10091180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis E virus is an important emerging pathogen producing a lethal impact on the pregnant population and immunocompromised patients. Starting in 1983, it has been described as the cause for acute hepatitis transmitted via the fecal–oral route. However, zoonotic and blood transfusion transmission of HEV have been reported in the past few decades, leading to the detailed research of HEV pathogenesis. The reason behind HEV being highly virulent to the pregnant population particularly during the third trimester, leading to maternal and fetal death, remains unknown. Various host factors (immunological, nutritional, hormonal) and viral factors have been studied to define the key determinants assisting HEV to be virulent in pregnant and immunocompromised patients. Similarly, chronic hepatitis is seen particularly in solid organ transplant patients, resulting in fatal conditions. This review describes recent advances in the immunopathophysiology of HEV infections in general, pregnant, and immunocompromised populations, and further elucidates the in vitro and in vivo models utilized to understand HEV pathogenesis.
Collapse
|
27
|
Distribution and Pathogenicity of Two Cutthroat Trout Virus (CTV) Genotypes in Canada. Viruses 2021; 13:v13091730. [PMID: 34578311 PMCID: PMC8472430 DOI: 10.3390/v13091730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
The sole member of the Piscihepevirus genus (family Hepeviridae) is cutthroat trout virus (CTV) but recent metatranscriptomic studies have identified numerous fish hepevirus sequences including CTV-2. In the current study, viruses with sequences resembling both CTV and CTV-2 were isolated from salmonids in eastern and western Canada. Phylogenetic analysis of eight full genomes delineated the Canadian CTV isolates into two genotypes (CTV-1 and CTV-2) within the Piscihepevirus genus. Hepevirus genomes typically have three open reading frames but an ORF3 counterpart was not predicted in the Canadian CTV isolates. In vitro replication of a CTV-2 isolate produced cytopathic effects in the CHSE-214 cell line with similar amplification efficiency as CTV. Likewise, the morphology of the CTV-2 isolate resembled CTV, yet viral replication caused dilation of the endoplasmic reticulum lumen which was not previously observed. Controlled laboratory studies exposing sockeye (Oncorhynchus nerka), pink (O. gorbuscha), and chinook salmon (O. tshawytscha) to CTV-2 resulted in persistent infections without disease and mortality. Infected Atlantic salmon (Salmo salar) and chinook salmon served as hosts and potential reservoirs of CTV-2. The data presented herein provides the first in vitro and in vivo characterization of CTV-2 and reveals greater diversity of piscihepeviruses extending the known host range and geographic distribution of CTV viruses.
Collapse
|
28
|
Ideno S, Inoue T, Takahashi K, Urayama T, Maeno H, Takeuchi K, Sakai K. Phenotypic characterization of cell culture-derived hepatitis E virus subjected to different chemical treatments: Application in virus removal via nanofiltration. J Virol Methods 2021; 296:114244. [PMID: 34302862 DOI: 10.1016/j.jviromet.2021.114244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022]
Abstract
Safety evaluation for the hepatitis E virus (HEV) is required for plasma fractionation products. Plasma-derived HEV (pHEV) is quite unique in that it is associated with a lipid membrane, which, when stripped during manufacturing processes, induces morphological changes in the virus, making it difficult to select proper HEV phenotypes for clearance studies. We developed a convenient system for the preparation of a high titer cell culture-derived HEV (cHEV). In this system, PLC/PRF/5 cells transfected with the wild-type HEV genome generated lipid membrane-associated cHEV for a long period even after cryopreservation. We also examined how this lipid membrane-associated cHEV can be used to verify the robustness of pHEV removal via 19-nm nanofiltration. Sodium-deoxycholate and trypsin (NaDOC/T) treatment not only dissolved lipid but also digested membrane-associated proteins from pHEV and cHEV, making the resulting cHEV particle smaller in size than any pHEV phenotypes generated by ethanol or solvent-detergent treatment in this study. In both 19-nm and 35-nm nanofiltration, cHEV behaved identically to pHEV. These results indicate that cHEV is a useful resource for viral clearance studies in term of availability, and the use of NaDOC/T-treated cHEV ensured robust pHEV removal capacity via 19-nm nanofiltration.
Collapse
Affiliation(s)
- Shoji Ideno
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan.
| | - Takamasa Inoue
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Kadue Takahashi
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Takeru Urayama
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Hideki Maeno
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Kaoru Takeuchi
- Laboratory of Environmental Microbiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kaoru Sakai
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| |
Collapse
|
29
|
Glitscher M, Hildt E. Hepatitis E virus egress and beyond - the manifold roles of the viral ORF3 protein. Cell Microbiol 2021; 23:e13379. [PMID: 34272798 DOI: 10.1111/cmi.13379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Although the hepatitis E virus represents an uprising threat to the global community by representing the commonest cause of an acute viral hepatitis worldwide, its life cycle is grossly understudied. Albeit HEV is a non-enveloped virus, its progeny is released as quasi-enveloped virions. Thus, the responsible accessory protein pORF3 gained rising attention in the past years. It mediates viral release via the exosomal route by targeting the viral capsid to the endosomal system, more precisely to multivesicular bodies. As this is followed by quasi-envelopment, pORF3 may in terms represent a substitute to a conventional envelope protein. This feature proofs to be rather unique with respect to other enteric viruses, although the protein's role in the viral life cycle seems to reach far beyond simply maintaining release of progeny viruses. How pORF3 affects viral morphogenesis, how it mediates efficient viral release and how it supports viral spread is summarised in this microreview. With this, we aim to shed light on functions of pORF3 to gain further insights in still enigmatic aspects of the HEV life cycle. TAKE AWAYS: HEV is released as exosome via multivesicular bodies Viral pORF3 mediates release via endosomal complexes required for transport pORF3 modulates various cellular processes in infected cells Elucidation of pORF3-related processes imply novel clinical strategies.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department Virology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
30
|
A broadly cross-reactive monoclonal antibody against hepatitis E virus capsid antigen. Appl Microbiol Biotechnol 2021; 105:4957-4973. [PMID: 34129082 PMCID: PMC8236046 DOI: 10.1007/s00253-021-11342-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022]
Abstract
Abstract To generate a hepatitis E virus (HEV) genotype 3 (HEV-3)–specific monoclonal antibody (mAb), the Escherichia coli–expressed carboxy-terminal part of its capsid protein was used to immunise BALB/c mice. The immunisation resulted in the induction of HEV-specific antibodies of high titre. The mAb G117-AA4 of IgG1 isotype was obtained showing a strong reactivity with the homologous E. coli, but also yeast-expressed capsid protein of HEV-3. The mAb strongly cross-reacted with ratHEV capsid protein derivatives produced in both expression systems and weaker with an E. coli–expressed batHEV capsid protein fragment. In addition, the mAb reacted with capsid protein derivatives of genotypes HEV-2 and HEV-4 and common vole hepatitis E virus (cvHEV), produced by the cell-free synthesis in Chinese hamster ovary (CHO) and Spodoptera frugiperda (Sf21) cell lysates. Western blot and line blot reactivity of the mAb with capsid protein derivatives of HEV-1 to HEV-4, cvHEV, ratHEV and batHEV suggested a linear epitope. Use of truncated derivatives of ratHEV capsid protein in ELISA, Western blot, and a Pepscan analysis allowed to map the epitope within a partially surface-exposed region with the amino acid sequence LYTSV. The mAb was also shown to bind to human patient–derived HEV-3 from infected cell culture and to hare HEV-3 and camel HEV-7 capsid proteins from transfected cells by immunofluorescence assay. The novel mAb may serve as a useful tool for further investigations on the pathogenesis of HEV infections and might be used for diagnostic purposes. Key points • The antibody showed cross-reactivity with capsid proteins of different hepeviruses. • The linear epitope of the antibody was mapped in a partially surface-exposed region. • The antibody detected native HEV-3 antigen in infected mammalian cells. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11342-7.
Collapse
|
31
|
Ji H, Chen S, He Q, Wang W, Gong S, Qian Z, Zhang Y, Wei D, Yu W, Huang F. The different replication between nonenveloped and quasi-enveloped hepatitis E virus. J Med Virol 2021; 93:6267-6277. [PMID: 34076903 DOI: 10.1002/jmv.27121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
Hepatitis E virus (HEV) is the major pathogen of viral hepatitis. However, the understanding of the HEV life cycle is limited. In the present study, cells were separately infected with nonenveloped HEV (derived from feces or bile) or quasi-enveloped HEV (derived from the cell culture after serial passages, eHEV) and observed by confocal fluorescence microscopy to investigate the life cycle of HEV. HEV finished its binding and entry into host cells at first 6 h postinoculation (hpi). Cells inoculated with eHEV showed less infectivity than cells inoculated with nonenveloped HEV. Newly synthesized progeny virions were released into the supernatant of cell cultures from 48 hpi. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis results showed that the supernatant's progeny viruses were infectious even after five serial passages. These results show the significant difference between nonenveloped HEV and eHEV, which will provide novel insights into the HEV replication cycle. The efficient cell culture of HEV will promote the development of anti-HEV drugs and vaccines.
Collapse
Affiliation(s)
- Hanbin Ji
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Shuangfeng Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Qiuxia He
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Wenjing Wang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Shilin Gong
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Zhongyao Qian
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Yike Zhang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Daqiao Wei
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Fen Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China.,Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, PR China
| |
Collapse
|
32
|
Yang YL, Nan YC. Open reading frame 3 protein of hepatitis E virus: Multi-function protein with endless potential. World J Gastroenterol 2021; 27:2458-2473. [PMID: 34092969 PMCID: PMC8160619 DOI: 10.3748/wjg.v27.i20.2458] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV), a fecal-orally transmitted foodborne viral pathogen, causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the identification of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. HEV-open reading frame (ORF) 3, the smallest ORF in HEV genomes, initially had been perceived as an unremarkable HEV accessory protein. However, as novel HEV-ORF3 function has been discovered that is related to the existence of a putative third virion structural form, referred to as “quasi-enveloped” HEV particles, HEV is challenging the conventional virion structure-based classification scheme, which assigns all viruses to two groups, “enveloped” or “non-enveloped”. In this review, we systematically describe recent progress that has identified multiple pathogenic roles of HEV-ORF3, including roles in HEV virion release, biogenesis of quasi-enveloped virus, regulation of the host innate immune response, and interference with host signaling pathways. In addition, implications of HEV-ORF3-associated quasi-enveloped virions are discussed to guide future development of improved vaccines against zoonotic HEV infection.
Collapse
Affiliation(s)
- Yong-Lin Yang
- Department of Infectious Diseases, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, Jiangsu Province, China
- Department of General Practice, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| | - Yu-Chen Nan
- Department of Preventive Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
33
|
Owusu IA, Quaye O, Passalacqua KD, Wobus CE. Egress of non-enveloped enteric RNA viruses. J Gen Virol 2021; 102:001557. [PMID: 33560198 PMCID: PMC8515858 DOI: 10.1099/jgv.0.001557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
A long-standing paradigm in virology was that non-enveloped viruses induce cell lysis to release progeny virions. However, emerging evidence indicates that some non-enveloped viruses exit cells without inducing cell lysis, while others engage both lytic and non-lytic egress mechanisms. Enteric viruses are transmitted via the faecal-oral route and are important causes of a wide range of human infections, both gastrointestinal and extra-intestinal. Virus cellular egress, when fully understood, may be a relevant target for antiviral therapies, which could minimize the public health impact of these infections. In this review, we outline lytic and non-lytic cell egress mechanisms of non-enveloped enteric RNA viruses belonging to five families: Picornaviridae, Reoviridae, Caliciviridae, Astroviridae and Hepeviridae. We discuss factors that contribute to egress mechanisms and the relevance of these mechanisms to virion stability, infectivity and transmission. Since most data were obtained in traditional two-dimensional cell cultures, we will further attempt to place them into the context of polarized cultures and in vivo pathogenesis. Throughout the review, we highlight numerous knowledge gaps to stimulate future research into the egress mechanisms of these highly prevalent but largely understudied viruses.
Collapse
Affiliation(s)
- Irene A. Owusu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Karla D. Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
- Henry Ford Health System, Detroit, MI 48202, USA
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| |
Collapse
|
34
|
Why Cells and Viruses Cannot Survive without an ESCRT. Cells 2021; 10:cells10030483. [PMID: 33668191 PMCID: PMC7995964 DOI: 10.3390/cells10030483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Intracellular organelles enwrapped in membranes along with a complex network of vesicles trafficking in, out and inside the cellular environment are one of the main features of eukaryotic cells. Given their central role in cell life, compartmentalization and mechanisms allowing their maintenance despite continuous crosstalk among different organelles have been deeply investigated over the past years. Here, we review the multiple functions exerted by the endosomal sorting complex required for transport (ESCRT) machinery in driving membrane remodeling and fission, as well as in repairing physiological and pathological membrane damages. In this way, ESCRT machinery enables different fundamental cellular processes, such as cell cytokinesis, biogenesis of organelles and vesicles, maintenance of nuclear–cytoplasmic compartmentalization, endolysosomal activity. Furthermore, we discuss some examples of how viruses, as obligate intracellular parasites, have evolved to hijack the ESCRT machinery or part of it to execute/optimize their replication cycle/infection. A special emphasis is given to the herpes simplex virus type 1 (HSV-1) interaction with the ESCRT proteins, considering the peculiarities of this interplay and the need for HSV-1 to cross both the nuclear-cytoplasmic and the cytoplasmic-extracellular environment compartmentalization to egress from infected cells.
Collapse
|
35
|
Advances in Hepatitis E Virus Biology and Pathogenesis. Viruses 2021; 13:v13020267. [PMID: 33572257 PMCID: PMC7915517 DOI: 10.3390/v13020267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the causative agents for liver inflammation across the world. HEV is a positive-sense single-stranded RNA virus. Human HEV strains mainly belong to four major genotypes in the genus Orthohepevirus A, family Hepeviridae. Among the four genotypes, genotype 1 and 2 are obligate human pathogens, and genotype 3 and 4 cause zoonotic infections. HEV infection with genotype 1 and 2 mainly presents as acute and self-limiting hepatitis in young adults. However, HEV infection of pregnant women with genotype 1 strains can be exacerbated to fulminant hepatitis, resulting in a high rate of case fatality. As pregnant women maintain the balance of maternal-fetal tolerance and effective immunity against invading pathogens, HEV infection with genotype 1 might dysregulate the balance and cause the adverse outcome. Furthermore, HEV infection with genotype 3 can be chronic in immunocompromised patients, with rapid progression, which has been a challenge since it was reported years ago. The virus has a complex interaction with the host cells in downregulating antiviral factors and recruiting elements to generate a conducive environment of replication. The virus-cell interactions at an early stage might determine the consequence of the infection. In this review, advances in HEV virology, viral life cycle, viral interference with the immune response, and the pathogenesis in pregnant women are discussed, and perspectives on these aspects are presented.
Collapse
|
36
|
Zhao L, Zheng H, Zhan K, Guo Y, Liu B, Xu G. Position of the Benzene Ring Substituent Regulates the Excited-State Deactivation Process of the Benzyluracil Systems. J Phys Chem A 2021; 125:165-174. [PMID: 33373221 DOI: 10.1021/acs.jpca.0c08980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A systematic theoretical study of the regulating effect of the substituent position on the photoinduced deactivation process of the benzyluracil systems has been performed based on the high-level static electronic structure calculations and on-the-fly full-dimensional excited-state dynamics simulations. Similarities and differences coexist for the two systems by comparative studies on the photoinduced deactivation process of the 5-benzyluracil (5-BU) and 6-benzyluracil (6-BU) systems. They both obey an S2 → S1 → S0 two-step decay pattern, and the decay coordinates of the S2 → S1 and S1 → S0 processes are mainly driven by the elongation of the bridging bond and the out-of-plane ring deformation motion, respectively. However, the puckering motion occurring at the C2 atom in the uracil fragment dominates the decay pathway of the 5-BU system. On the contrary, the puckering motion at the C5 atom in the benzene fragment mainly drives the decay coordinate of the 6-BU system. Therefore, the substituent position could play significant roles in the deactivation process of the benzyluracil systems. Moreover, the S1 → S0 decay process of the 6-BU system consists of five pathways, possessing a more complex deactivation picture than the 5-BU system. The fitted time scale of the puckering motion is compatible with the experimentally observed lifetimes. This work provides a fundamental understanding of the photophysical and photochemical properties of the benzyluracil systems and can give rational suggestions to further design or regulate the bionic molecular systems.
Collapse
Affiliation(s)
- Li Zhao
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Haixia Zheng
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Kaiyun Zhan
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Yahui Guo
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Bing Liu
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Guiyin Xu
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Abstract
Hepatitis A virus (HAV) and hepatitis E virus (HEV) infections are the main causes for acute hepatitis worldwide. Both viruses had long been considered as nonenveloped viruses. However, recent work has uncovered that both viruses circulate in the bloodstream as membrane-cloaked, "quasi-enveloped" particles that are, surprisingly, infectious and likely the only form mediating virus spread within the host. The discovery of quasi-enveloped HAV and HEV particles has fundamentally changed the traditional view on the life cycle and pathogenesis of these viruses. However, because HAV and HEV are phylogenetically unrelated and their capsid assembly processes are quite distinct, it is not clear whether they use similar or different mechanisms for envelopment and exit. This review provides an overview of the current knowledge about the assembly and exit processes of HAV and HEV and perspectives for future studies.
Collapse
Affiliation(s)
- Zongdi Feng
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States.
| |
Collapse
|
38
|
Virus-Host Cell Interplay during Hepatitis E Virus Infection. Trends Microbiol 2020; 29:309-319. [PMID: 32828646 PMCID: PMC7437515 DOI: 10.1016/j.tim.2020.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
The molecular interplay between cellular host factors and viral proteins is a continuous process throughout the viral life cycle determining virus host range and pathogenesis. The hepatitis E virus (HEV) is a long-neglected RNA virus and the major causative agent of acute viral hepatitis in humans worldwide. However, the mechanisms of liver pathology and clinical disease remain poorly understood for HEV infection. This review summarizes our current understanding of HEV-host cell interactions and highlights experimental strategies and techniques to identify novel host components required for the viral life cycle as well as restriction factors. Understanding these interactions will provide insight into the viral life cycle of HEV and might further help to devise novel therapeutic strategies and antiviral targets.
Collapse
|
39
|
Abstract
Human norovirus (HuNoV) is a leading cause of acute gastroenteritis. Outbreaks normally occur via the fecal-oral route. HuNoV infection is thought to occur by viral particle transmission, but increasing evidence suggests a function for exosomes in HuNoV infection. HuNoV is contained within stool-derived exosomes, and exosome-associated HuNoV has been shown to replicate in human intestinal enteroids. In this study, we examine exosome-associated HuNoV infection of Vero cells and show that exosomes containing HuNoV may attach, infect, and be passaged in Vero cells. These findings support earlier findings and have implications for developing HuNoV disease intervention strategies.
Collapse
|
40
|
On the Host Side of the Hepatitis E Virus Life Cycle. Cells 2020; 9:cells9051294. [PMID: 32456000 PMCID: PMC7291229 DOI: 10.3390/cells9051294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) infection is one of the most common causes of acute hepatitis in the world. HEV is an enterically transmitted positive-strand RNA virus found as a non-enveloped particle in bile as well as stool and as a quasi-enveloped particle in blood. Current understanding of the molecular mechanisms and host factors involved in productive HEV infection is incomplete, but recently developed model systems have facilitated rapid progress in this area. Here, we provide an overview of the HEV life cycle with a focus on the host factors required for viral entry, RNA replication, assembly and release. Further developments of HEV model systems and novel technologies should yield a broader picture in the future.
Collapse
|
41
|
Marion O, Lhomme S, Nayrac M, Dubois M, Pucelle M, Requena M, Migueres M, Abravanel F, Peron JM, Carrere N, Suc B, Delobel P, Kamar N, Izopet J. Hepatitis E virus replication in human intestinal cells. Gut 2020; 69:901-910. [PMID: 31727684 DOI: 10.1136/gutjnl-2019-319004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Hepatitis E virus (HEV), one of the most common agent of acute hepatitis worldwide, is mainly transmitted enterically, via contaminated water for HEV genotypes 1 (HEV1) and HEV2, or by eating raw or undercooked infected meat for HEV genotype 3 (HEV3) and HEV4. However, little is known about how the ingested HEV reaches the liver or its ability to replicate in intestinal cells. DESIGN We developed human primary cultures of small intestine epithelial cells and intestinal explants obtained from small bowel resections. The epithelial cells were also polarised on transwells. Cells were infected with Kernow-p6 strain or clinically derived virions. RESULTS Primary intestinal cells supported the growth of Kernow-p6 strain and HEV1 and HEV3 clinically derived virions. Polarised enterocytes infected with HEV1 and HEV3 strains released HEV particles vectorially: mostly into the apical compartment with a little basally. Iodixanol density gradient centrifugation of enterocyte-derived HEV virions gave bands at a density of 1.06-1.08 g/cm3, corresponding to that of quasi-enveloped HEV particles. Ribavirin therapy inhibited HEV excretion from the basal surface but not from the apical side of infected human enterocytes. HEV virions also infected intestinal tissue explants. Lastly, HEV RNA and antigen were detected in the intestinal crypts of a chronically infected patient. CONCLUSION HEV can replicate in intestinal cells and reaches the liver as quasi-enveloped virions.
Collapse
Affiliation(s)
- Olivier Marion
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, Toulouse, France.,INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Paul Sabatier University, Toulouse, France
| | - Sebastien Lhomme
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Paul Sabatier University, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| | - Manon Nayrac
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France
| | - Martine Dubois
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| | - Mélanie Pucelle
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| | - Mary Requena
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| | - Marion Migueres
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| | - Florence Abravanel
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Paul Sabatier University, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| | - Jean Marie Peron
- Paul Sabatier University, Toulouse, France.,Hepatology and Gastroenterology Department, Toulouse Rangueil University Hospital, Toulouse, France
| | - Nicolas Carrere
- Paul Sabatier University, Toulouse, France.,Digestive Surgery Department, Toulouse Rangueil University Hospital, Toulouse, France
| | - Bertrand Suc
- Paul Sabatier University, Toulouse, France.,Digestive Surgery Department, Toulouse Rangueil University Hospital, Toulouse, France
| | - Pierre Delobel
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Paul Sabatier University, Toulouse, France.,Department of Infectious and Tropical Diseases, Toulouse Purpan University Hospital, Toulouse, France
| | - Nassim Kamar
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, Toulouse, France.,INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Paul Sabatier University, Toulouse, France
| | - Jacques Izopet
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France .,Paul Sabatier University, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| |
Collapse
|
42
|
Shiota T, Li TC, Nishimura Y, Yoshizaki S, Sugiyama R, Shimojima M, Saijo M, Shimizu H, Suzuki R, Wakita T, Muramatsu M, Ishii K. Integrin α3 is involved in non-enveloped hepatitis E virus infection. Virology 2019; 536:119-124. [PMID: 31421623 DOI: 10.1016/j.virol.2019.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Hepatitis E virus (HEV) causes acute and fulminant hepatitis worldwide. Although enveloped (e) and non-enveloped (ne) forms of HEV have been discovered, host factors involved in infection, including receptors, remain to be elucidated. Here, we identified integrin α3 (encoded by ITGA3), a protein that binds and responds to the extracellular matrix, as an essential host factor for HEV infection. Integrin α3 expression was lower in four HEV-non-permissive cell subclones than in an HEV-permissive subclone. ITGA3 knockout cells lost HEV permissibility, suggesting that integrin α3 is critical for HEV infection. Stable expression of integrin α3 in an HEV-non-permissive subclone provided permissibility only to infection by neHEV; expression of integrin α3 lacking the ectodomain did not. Direct interaction between neHEV and the integrin α3 ectodomain was confirmed by co-precipitation using a soluble integrin α3-Fc. These results strongly suggest that integrin α3 is a key molecule for cellular attachment and entry of neHEV.
Collapse
Affiliation(s)
- Tomoyuki Shiota
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Yorihiro Nishimura
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Sayaka Yoshizaki
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Ryuichi Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Koji Ishii
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan.
| |
Collapse
|
43
|
Fu RM, Decker CC, Dao Thi VL. Cell Culture Models for Hepatitis E Virus. Viruses 2019; 11:E608. [PMID: 31277308 PMCID: PMC6669563 DOI: 10.3390/v11070608] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/29/2019] [Indexed: 12/14/2022] Open
Abstract
Despite a growing awareness, hepatitis E virus (HEV) remains understudied and investigations have been historically hampered by the absence of efficient cell culture systems. As a result, the pathogenesis of HEV infection and basic steps of the HEV life cycle are poorly understood. Major efforts have recently been made through the development of HEV infectious clones and cellular systems that significantly advanced HEV research. Here, we summarize these systems, discussing their advantages and disadvantages for HEV studies. We further capitalize on the need for HEV-permissive polarized cell models to better recapitulate the entire HEV life cycle and transmission.
Collapse
Affiliation(s)
- Rebecca Menhua Fu
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Charlotte Caroline Decker
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Viet Loan Dao Thi
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany.
| |
Collapse
|
44
|
Hepatitis E Virus Assembly and Release. Viruses 2019; 11:v11060539. [PMID: 31181848 PMCID: PMC6631228 DOI: 10.3390/v11060539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E is an underestimated threat to public health, caused by the hepatitis E virus (HEV). HEV is the most common cause of acute viral hepatitis in the world, with no available direct-acting antiviral treatment. According to a recent WHO report, 20 million people become infected with HEV annually, resulting in 44,000 deaths. However, due to the scarcity of efficient in vitro cell culture systems for HEV, our knowledge of the life cycle of HEV is incomplete. Recently, significant progress has been made towards gaining a more comprehensive view of the HEV life cycle, as several in vitro culturing systems have been developed in recent years. Here, we review current knowledge and recent advances with regard to the HEV life cycle, with a particular focus on the assembly and release of viral particles. We also discuss the knowledge gaps in HEV assembly and release. Meanwhile, we highlight experimental platforms that could potentially be utilized to fill these gaps. Lastly, we offer perspectives on the future of research into HEV virology and its interaction with host cells.
Collapse
|
45
|
US3 Kinase-Mediated Phosphorylation of Tegument Protein VP8 Plays a Critical Role in the Cellular Localization of VP8 and Its Effect on the Lipid Metabolism of Bovine Herpesvirus 1-Infected Cells. J Virol 2019; 93:JVI.02151-18. [PMID: 30626671 DOI: 10.1128/jvi.02151-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 02/04/2023] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) infects bovine species, causing respiratory infections, genital disorders and abortions. VP8 is the most abundant tegument protein of BoHV-1 and is critical for virus replication in cattle. In this study, the cellular transport of VP8 in BoHV-1-infected cells and its ability to alter the cellular lipid metabolism were investigated. A viral kinase, US3, was found to be involved in regulating these processes. In the early stages of infection VP8 was localized in the nucleus. Subsequently, presumably after completion of its role in the nucleus, VP8 was translocated to the cytoplasm. When US3 was deleted or the essential US3 phosphorylation site of VP8 was mutated in BoHV-1, the majority of VP8 was localized in the nuclei of infected cells. This suggests that phosphorylation by US3 may be critical for cytoplasmic localization of VP8. Eventually, the cytoplasmic VP8 was accumulated in the cis-Golgi apparatus but not in the trans-Golgi network, implying that VP8 was not involved in virion transport toward and budding from the cell membrane. VP8 caused lipid droplet (LD) formation in the nuclei of transfected cells and increased cellular cholesterol levels. Lipid droplets were not found in the nuclei of BoHV-1-infected cells when VP8 was cytoplasmic in the presence of US3. However, when US3 was deleted or phosphorylation residues in VP8 were mutated, nuclear VP8 and LDs appeared in BoHV-1-infected cells. The total cholesterol level was increased in BoHV-1-infected cells but not in ΔUL47-BoHV-1-infected cells, further supporting a role for VP8 in altering the cellular lipid metabolism during infection.IMPORTANCE Nuclear localization signals (NLSs) and nuclear export signals (NESs) are important elements directing VP8 to the desired locations in the BoHV-1-infected cell. In this study, a critical regulator that switches the nuclear and cytoplasmic localization of VP8 in BoHV-1-infected cells was identified. BoHV-1 used viral kinase US3 to regulate the cellular localization of VP8. Early during BoHV-1 infection VP8 was localized in the nucleus, where it performs various functions; once US3 was expressed, phosphorylated VP8 was cytoplasmic and ultimately accumulated in the cis-Golgi apparatus, presumably to be incorporated into virions. The Golgi localization of VP8 was only observed in virus-infected cells and not in US3-cotransfected cells, suggesting that this is mediated by other viral factors. Interestingly, VP8 was shown to cause increased cholesterol levels, which is a novel function for VP8 and a potential strategy to supply lipid for viral replication.
Collapse
|
46
|
Dao Thi VL, Wu X, Rice CM. Stem Cell-Derived Culture Models of Hepatitis E Virus Infection. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031799. [PMID: 29686039 DOI: 10.1101/cshperspect.a031799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Similar to other hepatotropic viruses, hepatitis E virus (HEV) has been notoriously difficult to propagate in cell culture, limiting studies to unravel its biology. Recently, major advances have been made by passaging primary HEV isolates and selecting variants that replicate efficiently in carcinoma cells. These adaptations, however, can alter HEV biology. We have explored human embryonic or induced pluripotent stem cell (hESC/iPSC)-derived hepatocyte-like cells (HLCs) as an alternative to conventional hepatoma and hepatocyte cell culture systems for HEV studies. HLCs are permissive for nonadapted HEV isolate genotypes (gt)1-4 replication and can be readily genetically manipulated. HLCs, therefore, enable studies of pan-genotype HEV biology and will serve as a platform for testing anti-HEV treatments. Finally, we discuss how hepatocyte polarity is likely an important factor in the maturation and spread of infectious HEV particles.
Collapse
Affiliation(s)
- Viet Loan Dao Thi
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065
| | - Xianfang Wu
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065
| | - Charles M Rice
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065
| |
Collapse
|
47
|
Palmitoylation mediates membrane association of hepatitis E virus ORF3 protein and is required for infectious particle secretion. PLoS Pathog 2018; 14:e1007471. [PMID: 30532200 PMCID: PMC6307819 DOI: 10.1371/journal.ppat.1007471] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 12/27/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is a positive-strand RNA virus encoding 3 open reading frames (ORF). HEV ORF3 protein is a small, hitherto poorly characterized protein involved in viral particle secretion and possibly other functions. Here, we show that HEV ORF3 protein forms membrane-associated oligomers. Immunoblot analyses of ORF3 protein expressed in cell-free vs. cellular systems suggested a posttranslational modification. Further analyses revealed that HEV ORF3 protein is palmitoylated at cysteine residues in its N-terminal region, as corroborated by 3H-palmitate labeling, the investigation of cysteine-to-alanine substitution mutants and treatment with the palmitoylation inhibitor 2-bromopalmitate (2-BP). Abrogation of palmitoylation by site-directed mutagenesis or 2-BP treatment altered the subcellular localization of ORF3 protein, reduced the stability of the protein and strongly impaired the secretion of infectious particles. Moreover, selective membrane permeabilization coupled with immunofluorescence microscopy revealed that HEV ORF3 protein is entirely exposed to the cytosolic side of the membrane, allowing to propose a model for its membrane topology and interactions required in the viral life cycle. In conclusion, palmitoylation determines the subcellular localization, membrane topology and function of HEV ORF3 protein in the HEV life cycle. Hepatitis E virus (HEV) infection is believed to be the most common cause of acute hepatitis and jaundice in the world. HEV is a positive-strand RNA virus found as a non-enveloped virion in bile and feces or as a quasi-enveloped virion in blood and in cell culture. The HEV ORF3 protein is involved in viral particle secretion likely through the exosomal pathway. Here, we provide evidence for palmitoylation of ORF3 protein at its N-terminal cysteine-rich domain. Palmitoylation of ORF3 protein determines its subcellular localization and function in particle secretion. In addition, our data indicate a membrane topology where HEV ORF3 protein is entirely exposed to the cytosol, providing important insight into its interactions in the viral life cycle.
Collapse
|
48
|
Life cycle and morphogenesis of the hepatitis E virus. Emerg Microbes Infect 2018; 7:196. [PMID: 30498191 PMCID: PMC6265337 DOI: 10.1038/s41426-018-0198-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis E virus (HEV) is transmitted primarily via contaminated water and food by the fecal oral route and causes epidemics in developing countries. In industrialized countries, zoonotic transmission of HEV is prevalent. In addition, HEV is the major cause of acute hepatitis in healthy adults and can cause chronic hepatitis in immunocompromised patients, with pregnant HEV-infected women having increased mortality rates of approximately 25%. HEV was once an understudied and neglected virus. However, in recent years, the safety of blood products with respect to HEV has increasingly been considered to be a public health problem. The establishment of HEV infection models has enabled significant progress to be made in understanding its life cycle. HEV infects cells via a receptor (complex) that has yet to be identified. The HEV replication cycle is initiated immediately after the (+) stranded RNA genome is released into the cell cytosol. Subsequently, infectious viral particles are released by the ESCRT complex as quasi-enveloped viruses (eHEVs) into the serum, whereas feces and urine contain only nonenveloped infectious viral progeny. The uncoating of the viral envelope takes place in the biliary tract, resulting in the generation of a nonenveloped virus that is more resistant to environmental stress and possesses a higher infectivity than that of eHEV. This review summarizes the current knowledge regarding the HEV life cycle, viral morphogenesis, established model systems and vaccine development.
Collapse
|
49
|
Bochud M, Schäfer W, Roth NJ, Ros C. Characterization of a quasi-enveloped, fast replicating hepevirus from fish and its use as hepatitis E virus surrogate. J Virol Methods 2018; 263:111-119. [PMID: 30399394 DOI: 10.1016/j.jviromet.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis E virus (HEV) is an emerging concern for the safety of plasma-derived medicinal products. The lack of an efficient cell culture system hampers the studies on HEV biology as well as validation studies to test the capacity of virus reduction steps to clear HEV. Hence, a surrogate hepevirus that can efficiently replicate in cell culture is needed. Cutthroat trout virus (CTV) is a non-pathogenic fish hepevirus, which can replicate in cell culture to high titers. Under interferon inhibition, CTV replication reached up to 5 × 107 genome equivalents per μL in 4-5 days. The intracellular CTV progeny was already lipid-associated, suggesting that the envelope is acquired from intracellular membranes. Transmission electron microscopy of purified quasi-enveloped virus revealed exosome-like structures with an average size of 40 nm, in contrast to 27-34 nm for the non-enveloped virus. The quasi-enveloped virus was significantly less infectious than the non-enveloped virus. Assays based on quantitative RT-PCR, immunofluorescence and immunocytochemistry were established to evaluate virus inactivation. Cold ethanol fractionation removed 3.0 log of CTV and pasteurization of human albumin inactivated more than 3.7 log to below the limit of detection. Similar to HEV, virus replication was promoted in the presence of 17β-estradiol, an effect that can contribute to the understanding of the exacerbated virulence of HEV in pregnant women. These results together reveal substantial similarities between the human and fish HEV and validate CTV as a practical virus model to use in some applications for evaluating the HEV reduction capacity of biological manufacturing process steps.
Collapse
Affiliation(s)
- Maëlle Bochud
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Wolfram Schäfer
- CSL Behring GmbH, Emil-von-Behring-Strasse 76, 35041, Marburg, Germany
| | - Nathan J Roth
- CSL Behring AG, Wankdorfstrasse 10, 3000, Bern 22, Switzerland
| | - Carlos Ros
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
50
|
Syed SF, Zhao Q, Umer M, Alagawany M, Ujjan IA, Soomro F, Bangulzai N, Baloch AH, Abd El-Hack M, Zhou EM, Arain MA. Past, present and future of hepatitis E virus infection: Zoonotic perspectives. Microb Pathog 2018; 119:103-108. [DOI: 10.1016/j.micpath.2018.03.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/08/2023]
|