1
|
Kartseva T, Aleksandrov V, Alqudah AM, Schierenbeck M, Tasheva K, Börner A, Misheva S. Exploring Novel Genomic Loci and Candidate Genes Associated with Plant Height in Bulgarian Bread Wheat via Multi-Model GWAS. PLANTS (BASEL, SWITZERLAND) 2024; 13:2775. [PMID: 39409644 PMCID: PMC11479123 DOI: 10.3390/plants13192775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
In the context of crop breeding, plant height (PH) plays a pivotal role in determining straw and grain yield. Although extensive research has explored the genetic control of PH in wheat, there remains an opportunity for further advancements by integrating genomics with growth-related phenomics. Our study utilizes the latest genome-wide association scan (GWAS) techniques to unravel the genetic basis of temporal variation in PH across 179 Bulgarian bread wheat accessions, including landraces, tall historical, and semi-dwarf modern varieties. A GWAS was performed with phenotypic data from three growing seasons, the calculated best linear unbiased estimators, and the leveraging genotypic information from the 25K Infinium iSelect array, using three statistical methods (MLM, FarmCPU, and BLINK). Twenty-five quantitative trait loci (QTL) associated with PH were identified across fourteen chromosomes, encompassing 21 environmentally stable quantitative trait nucleotides (QTNs), and four haplotype blocks. Certain loci (17) on chromosomes 1A, 1B, 1D, 2A, 2D, 3A, 3B, 4A, 5B, 5D, and 6A remain unlinked to any known Rht (Reduced height) genes, QTL, or GWAS loci associated with PH, and represent novel regions of potential breeding significance. Notably, these loci exhibit varying effects on PH, contribute significantly to natural variance, and are expressed during seedling to reproductive stages. The haplotype block on chromosome 6A contains five QTN loci associated with reduced height and two loci promoting height. This configuration suggests a substantial impact on natural variation and holds promise for accurate marker-assisted selection. The potentially novel genomic regions harbor putative candidate gene coding for glutamine synthetase, gibberellin 2-oxidase, auxin response factor, ethylene-responsive transcription factor, and nitric oxide synthase; cell cycle-related genes, encoding cyclin, regulator of chromosome condensation (RCC1) protein, katanin p60 ATPase-containing subunit, and expansins; genes implicated in stem mechanical strength and defense mechanisms, as well as gene regulators such as transcription factors and protein kinases. These findings enrich the pool of semi-dwarfing gene resources, providing the potential to further optimize PH, improve lodging resistance, and achieve higher grain yields in bread wheat.
Collapse
Affiliation(s)
- Tania Kartseva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| | - Vladimir Aleksandrov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Matías Schierenbeck
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466 Seeland, OT Gatersleben, Germany; (M.S.); (A.B.)
- CONICET CCT La Plata, 8 n°1467, La Plata 1900, Argentina
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466 Seeland, OT Gatersleben, Germany; (M.S.); (A.B.)
| | - Svetlana Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| |
Collapse
|
2
|
Lou T, Lv S, Wang J, Wang D, Lin K, Zhang X, Zhang B, Guo Z, Yi Z, Li Y. Cell size and xylem differentiation regulating genes from Salicornia europaea contribute to plant salt tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:2640-2659. [PMID: 38558078 DOI: 10.1111/pce.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Cell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear. Here, full-length transcriptome indicated cell wall-related genes were comprehensively regulated under salinity. The morphology and cell wall components in S. europaea shoot were largely modified under salinity. Through the weighted gene co-expression network analysis, SeXTH2 encoding xyloglucan endotransglucosylase/hydrolases, and two SeLACs encoding laccases were focused. Meanwhile, SeEXPB was focused according to expansin activity and the expression profiling. Function analysis in Arabidopsis validated the functions of these genes in enhancing salt tolerance. SeXTH2 and SeEXPB overexpression led to larger cells and leaves with hemicellulose and pectin content alteration. SeLAC1 and SeLAC2 overexpression led to more xylem vessels, increased secondary cell wall thickness and lignin content. Notably, SeXTH2 transgenic rice exhibited enhanced salt tolerance and higher grain yield. Altogether, these genes may function in the succulence and lignification process in S. europaea. This work throws light on the regulatory mechanism of cell wall remodelling in S. europaea under salinity and provides potential strategies for improving crop salt tolerance and yields.
Collapse
Affiliation(s)
- Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control, Beijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Jinhui Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
3
|
Armer VJ, Urban M, Ashfield T, Deeks MJ, Hammond-Kosack KE. The trichothecene mycotoxin deoxynivalenol facilitates cell-to-cell invasion during wheat-tissue colonization by Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2024; 25:e13485. [PMID: 38877764 PMCID: PMC11178975 DOI: 10.1111/mpp.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.
Collapse
Affiliation(s)
- Victoria J Armer
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Biosciences, University of Exeter, Exeter, UK
| | - Martin Urban
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - Tom Ashfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Crop Health and Protection (CHAP), Rothamsted Research, Harpenden, UK
| | | | | |
Collapse
|
4
|
Wei N, Zhang S, Liu Y, Wang J, Wu B, Zhao J, Qiao L, Zheng X, Wang J, Zheng J. Genome-wide association study of coleoptile length with Shanxi wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1016551. [PMID: 36212294 PMCID: PMC9532578 DOI: 10.3389/fpls.2022.1016551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
In arid and semi-arid regions, coleoptile length is a vital agronomic trait for wheat breeding. The coleoptile length determines the maximum depth that seeds can be sown, and it is critical for establishment of the crop. Therefore, identifying loci associated with coleoptile length in wheat is essential. In the present study, 282 accessions from Shanxi Province representing wheat breeding for the Loess Plateau were grown under three experimental conditions to study coleoptile length. The results of phenotypic variation indicated that drought stress and light stress could lead to shortening of coleoptile length. Under drought stress the growth rate of environmentally sensitive cultivars decreased more than insensitive cultivars. The broad-sense heritability (H 2) of BLUP (best linear unbiased prediction) under various conditions showed G × E interaction for coleoptile length but was mainly influenced by heredity. Correlation analysis showed that correlation between plant height-related traits and coleoptile length was significant in modern cultivars whereas it was not significant in landraces. A total of 45 significant marker-trait associations (MTAs) for coleoptile length in the three conditions were identified using the 3VmrMLM (3 Variance-component multi-locus random-SNP-effect Mixed Linear Model) and MLM (mixed linear model). In total, nine stable genetic loci were identified via 3VmrMLM under the three conditions, explaining 2.94-7.79% of phenotypic variation. Five loci on chromosome 2B, 3A, 3B, and 5B have not been reported previously. Six loci had additive effects toward increasing coleoptile length, three of which are novel. Molecular markers for the loci with additive effects on coleoptile length can be used to breed cultivars with long coleoptiles.
Collapse
Affiliation(s)
- Naicui Wei
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - ShengQuan Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ye Liu
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Jie Wang
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Bangbang Wu
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jiajia Zhao
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Ling Qiao
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Xingwei Zheng
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Juanling Wang
- School of Life Sciences, Shanxi University, Taiyuan, China
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jun Zheng
- School of Life Sciences, Shanxi University, Taiyuan, China
- State Key Laboratory of Sustainable Dryland Agriculture, Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| |
Collapse
|
5
|
Shao Y, Feng X, Nakahara H, Irshad M, Eneji AE, Zheng Y, Fujimaki H, An P. Apical-root apoplastic acidification affects cell wall extensibility in wheat under salinity stress. PHYSIOLOGIA PLANTARUM 2021; 173:1850-1861. [PMID: 34402071 DOI: 10.1111/ppl.13527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Plant salt tolerance is associated with a high rate of root growth. Although root growth is governed by cell wall and apoplastic pH, the relationship between these factors in the root elongation zone under salinity stress remains unclear. Herein, we assess apoplastic pH, pH- and expansin-dependent cell wall extensibility, and expansin expression in the root elongation zone of salt-sensitive (Yongliang-15) and -tolerant (JS-7) cultivars under salinity stress. A six-day 80 mM NaCl treatment significantly reduced apical root apoplastic pH in both cultivars. Using a pH-dependent cell wall extensibility experiment, we found that, under 0 mM NaCl treatment, the optimal pH for cell wall loosening was 6.0 in the salinity-tolerant cultivar and 4.6 in the salinity-sensitive cultivar. Under 80 mM treatment, a pH of 5.0 mitigated the cell wall stiffness caused by salinity stress in the salinity-tolerant cultivar but promoted cell wall stiffening in the salinity-sensitive cultivar. Salinity stress altered expansin expression and differentially affecting cell wall extensibility under pH 5.0 and 6.0. TaEXPA8 might be relative to cell wall loosening at pH 5.0, whereas TaEXPA5 relative to cell wall loosening at pH 6.0. These results elucidate the relationship between expansins and cell wall extensibility in the root elongation zone, with important implications for enhancing plant growth under salinity stress.
Collapse
Affiliation(s)
- Yang Shao
- Arid Land Research Center, Tottori University, Tottori City, Japan
| | - Xiaohui Feng
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Hiroki Nakahara
- Arid Land Research Center, Tottori University, Tottori City, Japan
| | - Muhammad Irshad
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - A Egrinya Eneji
- Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife Resources Management, University of Calabar, Calabar, Nigeria
| | - Yuanrun Zheng
- Key Laboratory of Resource Plants, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | - Ping An
- Arid Land Research Center, Tottori University, Tottori City, Japan
| |
Collapse
|
6
|
Abbasi A, Malekpour M, Sobhanverdi S. The Arabidopsis expansin gene (AtEXPA18) is capable to ameliorate drought stress tolerance in transgenic tobacco plants. Mol Biol Rep 2021; 48:5913-5922. [PMID: 34324115 DOI: 10.1007/s11033-021-06589-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Expansins are cell wall proteins loosening plant cell in pH-dependent manner. This study aimed to investigate the role of AtEXPA18 in different morphological, physiological, and cellular responses of transgenic tobacco plants to moderate and severe drought stress. METHODS AND RESULTS Previously synthesized AtEXPA18 gene construct was successfully transferred to the tobacco plants through an agrobacterium-mediate transformation system. Upon obtaining the second generation, tobacco transgenic plants were confirmed by conventional polymerase chain reaction (PCR) technique alongside reverse transcription PCR (RT-PCR) using specific primers. Under drought stress, the transgenic lines showed remarkable growth and significantly improved based on morphological traits such as height and stem diameter, leaf area, leaf number, root dry weight, and Abscisic acid levels of leaves compared control plants. As a result, the Cytokinin content of transgenic plants has increased under severe stress levels. Notably, the area's expansion for abaxial epidermal cells under the microscope confirmed in transgene cells compared with the -transgene cells. CONCLUSION These results, altogether, could support the AtEXPA18 gene implication in cell expansion and improving tolerance capacity of transgenic crops under drought stress.
Collapse
Affiliation(s)
- Alireza Abbasi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.
| | - Meysam Malekpour
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran
| | - Sajjad Sobhanverdi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran
| |
Collapse
|
7
|
Liu X, Yin C, Xiang L, Jiang W, Xu S, Mao Z. Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency. BMC PLANT BIOLOGY 2020; 20:448. [PMID: 33003994 PMCID: PMC7528333 DOI: 10.1186/s12870-020-02662-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Agricultural yield is closely associated with nitrogen application. Thus, reducing the application of nitrogen without affecting agricultural production remains a challenging task. To understand the metabolic, physiological, and morphological response of wheat (Triticum aestivum) to nitrogen deficiency, it is crucial to identify the genes involved in the activated signaling pathways. RESULTS We conducted a hydroponic experiment using a complete nutrient solution (N1) and a nutrient solution without nitrogen (N0). Wheat plants under nitrogen-deficient conditions (NDC) showed decreased crop height, leaf area, root volume, photosynthetic rate, crop weight, and increased root length, root surface area, root/shoot ratio. It indicates that nitrogen deficiency altered the phenotype of wheat plants. Furthermore, we performed a comprehensive analysis of the phenotype, transcriptome, GO pathways, and KEGG pathways of DEGs identified in wheat grown under NDC. It showed up-regulation of Exp (24), and Nrt (9) gene family members, which increased the nitrogen absorption and down-regulation of Pet (3), Psb (8), Nar (3), and Nir (1) gene family members hampered photosynthesis and nitrogen metabolism. CONCLUSIONS We identified 48 candidate genes that were involved in improved photosynthesis and nitrogen metabolism in wheat plants grown under NDC. These genes may serve as molecular markers for genetic breeding of crops.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, Shandong, China.
- ShanDong Shofine Seed Technology Co., Ltd., Jiangxiang, 272400, Shandong, China.
| | - Chengmiao Yin
- State Key Laboratory of Crop Biology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Li Xiang
- State Key Laboratory of Crop Biology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Weitao Jiang
- State Key Laboratory of Crop Biology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Shaozhuo Xu
- State Key Laboratory of Crop Biology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zhiquan Mao
- State Key Laboratory of Crop Biology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| |
Collapse
|
8
|
Luo H, Hill CB, Zhou G, Zhang XQ, Li C. Genome-wide association mapping reveals novel genes associated with coleoptile length in a worldwide collection of barley. BMC PLANT BIOLOGY 2020; 20:346. [PMID: 32698771 PMCID: PMC7374919 DOI: 10.1186/s12870-020-02547-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/08/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Drought is projected to become more frequent and severe in a changing climate, which requires deep sowing of crop seeds to reach soil moisture. Coleoptile length is a key agronomic trait in cereal crops such as barley, as long coleoptiles are linked to drought tolerance and improved seedling establishment under early water-limited growing conditions. RESULTS In this study, we detected large genetic variation in a panel of 328 diverse barley (Hordeum vulgare L.) accessions. To understand the overall genetic basis of barley coleoptile length, all accessions were germinated in the dark and phenotyped for coleoptile length after 2 weeks. The investigated barleys had significant variation for coleoptile length. We then conducted genome-wide association studies (GWASs) with more than 30,000 molecular markers and identified 8 genes and 12 intergenic loci significantly associated with coleoptile length in our barley panel. The Squamosa promoter-binding-like protein 3 gene (SPL3) on chromosome 6H was identified as a major candidate gene. The missense variant on the second exon changed serine to alanine in the conserved SBP domain, which likely impacted its DNA-binding activity. CONCLUSION This study provides genetic loci for seedling coleoptile length along with candidate genes for future potential incorporation in breeding programmes to enhance early vigour and yield potential in water-limited environments.
Collapse
Affiliation(s)
- Hao Luo
- Western Barley Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Camilla Beate Hill
- Western Barley Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Gaofeng Zhou
- Department of Primary Industries and Regional Development, Agriculture and Food, South Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.
| |
Collapse
|
9
|
Sidhu JS, Singh D, Gill HS, Brar NK, Qiu Y, Halder J, Al Tameemi R, Turnipseed B, Sehgal SK. Genome-Wide Association Study Uncovers Novel Genomic Regions Associated With Coleoptile Length in Hard Winter Wheat. Front Genet 2020; 10:1345. [PMID: 32117410 PMCID: PMC7025573 DOI: 10.3389/fgene.2019.01345] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/09/2019] [Indexed: 01/13/2023] Open
Abstract
Successful seedling establishment depends on the optimum depth of seed placement especially in drought-prone conditions, providing an opportunity to exploit subsoil water and increase winter survival in winter wheat. Coleoptile length is a key determinant for the appropriate depth at which seed can be sown. Thus, understanding the genetic basis of coleoptile length is necessary and important for wheat breeding. We conducted a genome-wide association study (GWAS) using a diverse panel of 298 winter wheat genotypes to dissect the genetic architecture of coleoptile length. We identified nine genomic regions associated with the coleoptile length on seven different chromosomes. Of the nine genomic regions, five have been previously reported in various studies, including one mapped to previously known Rht-B1 region. Three novel quantitative trait loci (QTLs), QCL.sdsu-2AS, QCL.sdsu-4BL, and QCL.sdsu-5BL were identified in our study. QCL.sdsu-5BL has a large substitution effect which is comparable to Rht-B1's effect and could be used to compensate for the negative effect of Rht-B1 on coleoptile length. In total, the nine QTLs explained 59% of the total phenotypic variation. Cultivars 'Agate' and 'MT06103' have the longest coleoptile length and interestingly, have favorable alleles at nine and eight coleoptile loci, respectively. These lines could be a valuable germplasm for longer coleoptile breeding. Gene annotations in the candidate regions revealed several putative proteins of specific interest including cytochrome P450-like, expansins, and phytochrome A. The QTLs for coleoptile length linked to single-nucleotide polymorphism (SNP) markers reported in this study could be employed in marker-assisted breeding for longer coleoptile in wheat. Thus, our study provides valuable insights into the genetic and molecular regulation of the coleoptile length in winter wheat.
Collapse
Affiliation(s)
- Jagdeep Singh Sidhu
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Dilkaran Singh
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Harsimardeep Singh Gill
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Navreet Kaur Brar
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Yeyan Qiu
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Rami Al Tameemi
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Brent Turnipseed
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Sunish Kumar Sehgal
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
10
|
Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). BMC Genomics 2019; 20:101. [PMID: 30709338 PMCID: PMC6359794 DOI: 10.1186/s12864-019-5455-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Expansin loosens plant cell walls and involves in cell enlargement and various abiotic stresses. Plant expansin superfamily contains four subfamilies: α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). In this work, we performed a comprehensive study on the molecular characterization, phylogenetic relationship and expression profiling of common wheat (Triticum aestivum) expansin gene family using the recently released wheat genome database (IWGSC RefSeq v1.1 with a coverage rate of 94%). Results Genome-wide analysis identified 241 expansin genes in the wheat genome, which were grouped into three subfamilies (EXPA, EXPB and EXLA) by phylogenetic tree. Molecular structure analysis showed that wheat expansin gene family showed high evolutionary conservation although some differences were present in different subfamilies. Some key amino acid sites that contribute to functional divergence, positive selection, and coevolution were detected. Evolutionary analysis revealed that wheat expansin gene superfamily underwent strong positive selection. The transcriptome map and qRT-PCR analysis found that wheat expansin genes had tissue/organ expression specificity and preference, and generally highly expressed in the roots. The expression levels of some expansin genes were significantly induced by NaCl and polyethylene glycol stresses, which was consistent with the differential distribution of the cis-elements in the promoter region. Conclusions Wheat expansin gene family showed high evolutionary conservation and wide range of functional divergence. Different selection constraints may influence the evolution of the three expansin subfamilies. The different expression patterns demonstrated that expansin genes could play important roles in plant growth and abiotic stress responses. This study provides new insights into the structures, evolution and functions of wheat expansin gene family. Electronic supplementary material The online version of this article (10.1186/s12864-019-5455-1) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Ren Y, Chen Y, An J, Zhao Z, Zhang G, Wang Y, Wang W. Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:245-256. [PMID: 29576078 DOI: 10.1016/j.plantsci.2018.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) is a severe and toxic heavy metal pollutant that affects plant growth and development. In this study, we found that the expression of an expansin gene, TaEXPA2, was upregulated in wheat leaves under CdCl2 toxicity. We characterized the involvement of TaEXPA2 in conferring Cd tolerance. Tobacco plants overexpressing TaEXPA2 showed higher germination rate, root elongation, and biomass accumulation compared to the wild-type (WT) plants upon CdCl2 treatment. The improved photosynthetic parameters and lesser cellular damage in transgenic plants exposed to Cd compared to that in the WT plants suggest that TaEXPA2 overexpression improves Cd tolerance in plants. Furthermore, we noticed that Cd was efficiently effluxed out of the cytoplasm in the transgenic plants owing to the enhanced activities of H+-ATPase, V-ATPase, and PPase, which helped in conferring Cd tolerance. Moreover, Cd concentration and ROS accumulation were lower in the transgenic plants than in WT plants as a consequence of enhanced antioxidant enzyme activities in the former. In addition, atexpa2, an Arabidopsis mutant, exhibited lower biomass and shorter primary root compared to its WT under Cd toxicity; however, the phenotype was recovered upon expression of TaEXPA2 in these mutants. Our results demonstrate that TaEXPA2 confers tolerance to Cd toxicity. The changed absorption/transportation of Cd and the antioxidative capacity may be involved in the improved tolerance of the transgenic plants with overexpression of TaEXPA2 to CdCl2 toxicity.
Collapse
Affiliation(s)
- Yuanqing Ren
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Yanhui Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China; Research Institute of Pomology of Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China
| | - Jie An
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Zhongxian Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Yong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China.
| |
Collapse
|
12
|
Zhang JF, Xu YQ, Dong JM, Peng LN, Feng X, Wang X, Li F, Miao Y, Yao SK, Zhao QQ, Feng SS, Hu BZ, Li FL. Genome-wide identification of wheat (Triticum aestivum) expansins and expansin expression analysis in cold-tolerant and cold-sensitive wheat cultivars. PLoS One 2018; 13:e0195138. [PMID: 29596529 PMCID: PMC5875846 DOI: 10.1371/journal.pone.0195138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
Plant expansins are proteins involved in cell wall loosening, plant growth, and development, as well as in response to plant diseases and other stresses. In this study, we identified 128 expansin coding sequences from the wheat (Triticum aestivum) genome. These sequences belong to 45 homoeologous copies of TaEXPs, including 26 TaEXPAs, 15 TaEXPBs and four TaEXLAs. No TaEXLB was identified. Gene expression and sub-expression profiles revealed that most of the TaEXPs were expressed either only in root tissues or in multiple organs. Real-time qPCR analysis showed that many TaEXPs were differentially expressed in four different tissues of the two wheat cultivars—the cold-sensitive ‘Chinese Spring (CS)’ and the cold-tolerant ‘Dongnongdongmai 1 (D1)’ cultivars. Our results suggest that the differential expression of TaEXPs could be related to low-temperature tolerance or sensitivity of different wheat cultivars. Our study expands our knowledge on wheat expansins and sheds new light on the functions of expansins in plant development and stress response.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yong-Qing Xu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia-Min Dong
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Li-Na Peng
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xu Feng
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xu Wang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fei Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yu Miao
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shu-Kuan Yao
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiao-Qin Zhao
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shan-Shan Feng
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bao-Zhong Hu
- Harbin University, Harbin, Heilongjiang, China
- * E-mail: (BZH); (FLL)
| | - Feng-Lan Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- * E-mail: (BZH); (FLL)
| |
Collapse
|
13
|
Sun X, Lian H, Liu X, Zhou S, Liu S. The garlic NF-YC gene, AsNF-YC8, positively regulates non-ionic hyperosmotic stress tolerance in tobacco. PROTOPLASMA 2017; 254:1353-1366. [PMID: 27650870 DOI: 10.1007/s00709-016-1026-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
To investigate the relationship between nuclear factor Y (NF-Y) and stress tolerance in garlic, we cloned a NF-Y family gene AsNF-YC8 from garlic, which was largely upregulated at dehydrate stage. Expression pattern analyses in garlic revealed that AsNF-YC8 is induced through abscisic acid (ABA) and abiotic stresses, such as NaCl and PEG. Compared with wild-type plants, the overexpressing-AsNF-YC8 transgenic tobacco plants showed higher seed germination rates, longer root length and better plant growth under salt and drought stresses. Under drought stress, the transgenic plants maintained higher relative water content (RWC), net photosynthesis, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than wild-type control plants. These results indicate the high tolerance of the transgenic plants to drought stress compared to the WT. The transgenic tobacco lines accumulated less reactive oxygen species (ROS) and exhibited higher antioxidative enzyme activities compared with wild-type (WT) plants under drought stress, which suggested that the overexpression of AsNF-YC8 improves the antioxidant defense system by regulating the activities of these antioxidant enzymes, which in turn protect transgenic lines against drought stress. These results suggest that AsNF-YC8 plays an important role in tolerance to drought and salt stresses.
Collapse
Affiliation(s)
- Xiudong Sun
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Haifeng Lian
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Xingchen Liu
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Shumei Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Shiqi Liu
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
14
|
Chen Y, Han Y, Kong X, Kang H, Ren Y, Wang W. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na + /K + and antioxidant competence. PHYSIOLOGIA PLANTARUM 2017; 159:161-177. [PMID: 27545692 DOI: 10.1111/ppl.12492] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/19/2016] [Accepted: 07/11/2016] [Indexed: 05/13/2023]
Abstract
High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2-overexpressing tobacco lines exhibited lower Na+ but higher K+ accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na+ /K+ homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2-regulated salt stress tolerance.
Collapse
Affiliation(s)
- Yanhui Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| | - Yangyang Han
- Plastic Surgery Institute of Weifang Medical University, Weifang, P. R. China
| | - Xiangzhu Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| | - Hanhan Kang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| | - Yuanqing Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, P. R. China
| |
Collapse
|
15
|
Chen Y, Han Y, Zhang M, Zhou S, Kong X, Wang W. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants. PLoS One 2016; 11:e0153494. [PMID: 27073898 PMCID: PMC4830583 DOI: 10.1371/journal.pone.0153494] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/30/2016] [Indexed: 11/19/2022] Open
Abstract
Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants.
Collapse
Affiliation(s)
- Yanhui Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| | - Yangyang Han
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
- Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong, 261041, P. R. China
| | - Meng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| | - Shan Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| | - Xiangzhu Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| |
Collapse
|
16
|
Kutschera U, Wang ZY. Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation. PROTOPLASMA 2016; 253:3-14. [PMID: 25772679 PMCID: PMC6609159 DOI: 10.1007/s00709-015-0787-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/27/2015] [Indexed: 05/08/2023]
Abstract
The shoot of grass coleoptiles consists of the mesocotyl, the node, and the coleoptile (with enclosed primary leaf). Since the 1930s, it is known that auxin (indole-3-acetic acid, IAA), produced in the tip of the coleoptile, is the central regulator of turgor-driven organ growth. Fifty years ago, it was discovered that antibiotics that suppress protein biosynthesis, such as cycloheximide, inhibit auxin (IAA)-induced cell elongation in excised sections of coleoptiles and stems. Based on such inhibitor studies, the concept of "growth-limiting proteins (GLPs)" emerged that was subsequently elaborated and modified. Here, we summarize the history of this idea with reference to IAA-mediated shoot elongation in maize (Zea mays) seedlings and recent studies on the molecular mechanism underlying auxin action in Arabidopsis thaliana. In addition, the analysis of light-induced inhibition of shoot elongation in intact corn seedlings is discussed. We propose a concept to account for the GLP-mediated epidermal wall-loosening process in coleoptile segments and present a more general model of growth regulation in intact maize seedlings. Quantitative proteomic and genomic studies led to a refinement of the classic "GLP concept" to explain phytohormone-mediated cell elongation at the molecular level (i.e., the recently proposed theory of a "central growth regulation network," CGRN). Novel data show that mesocotyl elongation not only depends on auxin but also on brassinosteroids (BRs). However, the biochemical key processes that regulate the IAA/BR-mediated loosening of the expansion-limiting epidermal wall(s) have not yet been elucidated.
Collapse
Affiliation(s)
- Ulrich Kutschera
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
17
|
Zhou S, Han YY, Chen Y, Kong X, Wang W. The involvement of expansins in response to water stress during leaf development in wheat. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:64-74. [PMID: 26092364 DOI: 10.1016/j.jplph.2015.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/24/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Expansins are cell wall proteins that are generally considered to be the key regulator of cell wall extension during plant growth. In this study, we used two different wheat (Triticum aestivum L.) cultivars to demonstrate that expansins are involved in wheat leaf growth and response to water stress, by regulating the expansin activity and cell wall susceptibility to expansins. Expansin activity was associated with the relative elongation rate of leaves during leaf development, suggesting their involvement in leaf elongation. Moreover, cell wall extension characteristics and expansin gene transcription were closely involved in the leaf cell elongation region. Water stress restrains leaf growth, but the growth rate of leaves was changed after rehydration, which is consistent with the response of expansin activity to water stress. Meanwhile, increased cell wall susceptibility to expansin by water deficit played an important role in maintaining cell wall extension. Furthermore, the expansin activity in drought-resistant cultivar HF9703 was always higher than that in drought-sensitive cultivar 921842 under water stress condition, which may be correlated with the higher expansin gene expression in HF9703 versus 921842. These data provide evidence for a role of expansins in the growth and response of wheat leaves to water stress.
Collapse
Affiliation(s)
- Shan Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Yang-yang Han
- Plastic Surgery Institute, Weifang Medical University, Weifang 261053, Shandong, PR China
| | - Yanhui Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Xiangzhu Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, PR China.
| |
Collapse
|
18
|
Han Y, Chen Y, Yin S, Zhang M, Wang W. Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:62-71. [PMID: 25462079 DOI: 10.1016/j.jplph.2014.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 08/14/2014] [Accepted: 09/03/2014] [Indexed: 05/24/2023]
Abstract
Expansins are cell wall proteins inducing cell wall loosening and participate in all plant growth and development processes which are associated with cell wall modifications. Here, TaEXPB23, a wheat expansin gene, was investigated and the tolerance to oxidative stress was strongly enhanced in over-expression tobacco plants. Our results revealed that over-expressing TaEXPB23 influenced the activity of antioxidant enzymes: in particular, the activity of the cell wall-bound peroxidase. The enhanced tolerance to oxidative stress and increased cell wall-bound peroxidase activity were partly inhibited by an anti-expansin antibody. The Arabidopsis expansin mutant atexpb2 showed reduced cell wall-bound peroxidase activity and decreased oxidative stress tolerance. In addition, atexpb2 exhibited lower chlorophyll contents and the germination rate compared to wild type (WT). Taken together, these results provided a new insight on the role of expansin proteins in plant stress tolerance by cell wall bound peroxidase.
Collapse
Affiliation(s)
- Yangyang Han
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong 261041, PR China.
| | - Yanhui Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Suhong Yin
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Meng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
19
|
Boron AK, Van Loock B, Suslov D, Markakis MN, Verbelen JP, Vissenberg K. Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth. ANNALS OF BOTANY 2015; 115:67-80. [PMID: 25492062 PMCID: PMC4284114 DOI: 10.1093/aob/mcu221] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Plant stature and shape are largely determined by cell elongation, a process that is strongly controlled at the level of the cell wall. This is associated with the presence of many cell wall proteins implicated in the elongation process. Several proteins and enzyme families have been suggested to be involved in the controlled weakening of the cell wall, and these include xyloglucan endotransglucosylases/hydrolases (XTHs), yieldins, lipid transfer proteins and expansins. Although expansins have been the subject of much research, the role and involvement of expansin-like genes/proteins remain mostly unclear. This study investigates the expression and function of AtEXLA2 (At4g38400), a member of the expansin-like A (EXLA) family in arabidposis, and considers its possible role in cell wall metabolism and growth. METHODS Transgenic plants of Arabidopsis thaliana were grown, and lines over-expressing AtEXLA2 were identified. Plants were grown in the dark, on media containing growth hormones or precursors, or were gravistimulated. Hypocotyls were studied using transmission electron microscopy and extensiometry. Histochemical GUS (β-glucuronidase) stainings were performed. KEY RESULTS AtEXLA2 is one of the three EXLA members in arabidopsis. The protein lacks the typical domain responsible for expansin activity, but contains a presumed cellulose-interacting domain. Using promoter::GUS lines, the expression of AtEXLA2 was seen in germinating seedlings, hypocotyls, lateral root cap cells, columella cells and the central cylinder basally to the elongation zone of the root, and during different stages of lateral root development. Furthermore, promoter activity was detected in petioles, veins of leaves and filaments, and also in the peduncle of the flowers and in a zone just beneath the papillae. Over-expression of AtEXLA2 resulted in an increase of >10 % in the length of dark-grown hypocotyls and in slightly thicker walls in non-rapidly elongating etiolated hypocotyl cells. Biomechanical analysis by creep tests showed that AtEXLA2 over-expression may decrease the wall strength in arabidopsis hypocotyls. CONCLUSIONS It is concluded that AtEXLA2 may function as a positive regulator of cell elongation in the dark-grown hypocotyl of arabidopsis by possible interference with cellulose metabolism, deposition or its organization.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis/ultrastructure
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Sequence
- Cell Wall/metabolism
- Cell Wall/ultrastructure
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Gene Expression Regulation, Plant
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Phylogeny
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/ultrastructure
Collapse
Affiliation(s)
- Agnieszka Karolina Boron
- Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia
| | - Bram Van Loock
- Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia
| | - Dmitry Suslov
- Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia
| | - Marios Nektarios Markakis
- Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia
| | - Jean-Pierre Verbelen
- Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia
| | - Kris Vissenberg
- Biology Department, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and Saint-Petersburg State University, Faculty of Biology, Department of Plant Physiology and Biochemistry, Universitetskaya emb. 7/9, 199034 Saint-Petersburg, Russia
| |
Collapse
|
20
|
Li X, Zhao J, Walk TC, Liao H. Characterization of soybean β-expansin genes and their expression responses to symbiosis, nutrient deficiency, and hormone treatment. Appl Microbiol Biotechnol 2014; 98:2805-17. [PMID: 24113821 DOI: 10.1007/s00253-013-5240-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/15/2013] [Accepted: 08/18/2013] [Indexed: 01/21/2023]
Abstract
Expansins are plant cell wall-loosening proteins encoded by a superfamily of genes including α-expansin, β-expansin, expansin-like A, and expansin-like B proteins. They play a variety of biological roles during plant growth and development. Expansin genes have been reported in many plant species, and results primarily from graminaceous members indicate that β-expansins are more abundant in monocots than in dicots. Soybean [Glycine max (L.) Merr] is an important legume crop. This work identified nine β-expansin gene family members in soybean (GmEXPBs) that were divided into two distinct classes based on phylogeny and gene structure, with divergence between the two groups occurring more in introns than in exons. A total of 887 hormone-responsive and environmental stress-related putative cis-elements from 188 families were found in the 2-kb upstream region of GmEXPBs. Variations in number and type of cis-elements associated with each gene indicate that the function of these genes is differentially regulated by these signals. Expression analysis confirmed that the family members were ubiquitously, yet differentially expressed in soybean. Responsiveness to nutrient deficiency stresses and regulation by auxin (indole-3-acetic acid) and cytokinin (6-benzylaminopurine) varied among GmEXPBs. In addition, most β-expansin genes were associated with symbiosis of soybean inoculated with Rhizobium or abuscular mycorrhizal fungi (AMF). Taken together, these results systematically investigate the characteristics of the entire GmEXPB family in soybean and comprise the first report analyzing the relationship of GmEXPBs with rhizobial or AMF symbiosis. This information is a valuable step in the process of understanding the expansin protein functions in soybean and opens avenues for continued researches.
Collapse
Affiliation(s)
- Xinxin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, People's Republic of China
| | | | | | | |
Collapse
|
21
|
AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS One 2014; 9:e85208. [PMID: 24404203 PMCID: PMC3880340 DOI: 10.1371/journal.pone.0085208] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 11/29/2013] [Indexed: 11/30/2022] Open
Abstract
Expansins are cell wall proteins that promote cell wall loosening by inducing pH-dependent cell wall extension and stress relaxation. Expansins are required in a series of physiological developmental processes in higher plants such as seed germination. Here we identified an Arabidopsis expansin gene AtEXPA2 that is exclusively expressed in germinating seeds and the mutant shows delayed germination, suggesting that AtEXP2 is involved in controlling seed germination. Exogenous GA application increased the expression level of AtEXP2 during seed germination, while ABA application had no effect on AtEXP2 expression. Furthermore, the analysis of DELLA mutants show that RGL1, RGL2, RGA, GAI are all involved in repressing AtEXP2 expression, and RGL1 plays the most dominant role in controlling AtEXP2 expression. In stress response, exp2 mutant shows higher sensitivity than wild type in seed germination, while overexpression lines of AtEXP2 are less sensitive to salt stress and osmotic stress, exhibiting enhanced tolerance to stress treatment. Collectively, our results suggest that AtEXP2 is involved in the GA-mediated seed germination and confers salt stress and osmotic stress tolerance in Arabidopsis.
Collapse
|
22
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013; 4:186. [PMID: 23785372 PMCID: PMC3685011 DOI: 10.3389/fpls.2013.00186] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/22/2013] [Indexed: 05/17/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
| | - Susan McCouch
- Department of Plant Breeding and Genetics, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
23
|
Hu Z, Song N, Xing J, Chen Y, Han Z, Yao Y, Peng H, Ni Z, Sun Q. Overexpression of three TaEXPA1 homoeologous genes with distinct expression divergence in hexaploid wheat exhibit functional retention in Arabidopsis. PLoS One 2013; 8:e63667. [PMID: 23696842 PMCID: PMC3656044 DOI: 10.1371/journal.pone.0063667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/05/2013] [Indexed: 12/21/2022] Open
Abstract
Common wheat is a hexaploid species with most of the genes present as triplicate homoeologs. Expression divergences of homoeologs are frequently observed in wheat as well as in other polyploid plants. However, little is known about functional variances among homologous genes arising from polyploidy. Expansins play diverse roles in plant developmental processes related to the action of cell wall loosening. Expression of the three TaEXPA1 homoeologs varied dynamically at different stages and organs, and epigenetic modifications contribute to the expression divergence of three TaEXPA1 homoeologs during wheat development. Nevertheless, their functions remain to be clarified. We found that over expression of TaEXPA1-A, -B and -D produced similar morphological changes in transgenic Arabidopsis plants, including increased germination and growth rate during seedling and adult stages, indicating that the proteins encoded by these three wheat TaEXPA1 homoeologs have similar (or conserved) functions in Arabidopsis. Collectively, our present study provided an example of a set of homoeologous genes expression divergence in different developmental stages and organs in hexaploid wheat but functional retention in transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Na Song
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Yanhong Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Zongfu Han
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- National Plant Gene Research Centre, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
24
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23785372 DOI: 10.3389/fpls.2013.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
- Janelle K H Jung
- Department of Plant Breeding and Genetics, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
25
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23785372 DOI: 10.3389/fpls.2013.00186/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
- Janelle K H Jung
- Department of Plant Breeding and Genetics, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
26
|
Zhao MR, Han YY, Feng YN, Li F, Wang W. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. PLANT CELL REPORTS 2012; 31:671-85. [PMID: 22076248 DOI: 10.1007/s00299-011-1185-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 10/21/2011] [Accepted: 10/28/2011] [Indexed: 05/21/2023]
Abstract
Expansin protein is a component of the cell wall generally accepted to be the key regulator of cell wall extension during plant growth. Plant hormones regulate expansin gene expression as well as plant growth during drought stress. However, the relationship between expansin and plant hormone is far from clear. Here, we studied the involvement of expansin in plant cell growth mediated by the hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) under osmotic stress which was induced by polyethylene glycol (PEG)-6000. Wheat coleoptiles from a drought-resistant cultivar HF9703 and a drought-sensitive cultivar 921842 were used to evaluate cell growth and expansin activity. Osmotic stress induced the accumulation of ABA. ABA induced expansin activity mainly by enhancing expansin expression, since ABA induced cell wall basification via decreasing plasma membrane H(+)-ATPase activity, which was unfavorable for expansin activity. Although ABA induced expansin activity and cell wall extension, treatment with exogenous ABA and/or fluridone (FLU, an ABA inhibitor) suggested that ABA was involved in the coleoptile growth inhibition during osmotic stress. IAA application to detached coleoptiles also enhanced coleoptile growth and increased expansin activity, but unlike ABA, IAA-induced expansin activity was mainly due to the decrease of cell wall pH by increasing plasma membrane H(+)-ATPase activity. Compared with drought-sensitive cultivar, the drought-resistant cultivar could maintain greater expansin activity and cell wall extension, which was contributive to its resultant faster growth under water stress.
Collapse
Affiliation(s)
- Mei-rong Zhao
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Li F, Xing S, Guo Q, Zhao M, Zhang J, Gao Q, Wang G, Wang W. Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:960-6. [PMID: 21316798 DOI: 10.1016/j.jplph.2010.11.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 11/12/2010] [Accepted: 11/17/2010] [Indexed: 05/24/2023]
Abstract
Expansins are proteins that are the key regulators of wall extension during plant growth. To investigate the role of TaEXPB23, a wheat expansin gene, we analyzed TaEXPB23 mRNA expression levels in response to water stress in wheat and examined the drought resistance of transgenic tobaccos over-expressing TaEXPB23. We found that the expression of TaEXPB23 corresponded to wheat coleoptile growth and the response to water stress. The results also indicated that the transgenic tobacco lines lost water more slowly than the wild-type (WT) plants under drought stress; their cells could sustain a more integrated structure under water stress than that of WT. Other physiological and biochemical parameters under water stress, such as electrolyte leakage, malondialdehyde (MDA) level, photosynthetic rate, F(v)/F(m) and ΦPSII, also suggested that the transgenic tobaccos were more drought resistant than WT plants.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhao MR, Li F, Fang Y, Gao Q, Wang W. Expansin-regulated cell elongation is involved in the drought tolerance in wheat. PROTOPLASMA 2011; 248:313-23. [PMID: 20559851 DOI: 10.1007/s00709-010-0172-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 06/08/2010] [Indexed: 05/21/2023]
Abstract
Water stress restrains plant growth. Expansin is a cell wall protein that is generally accepted to be the key regulator of cell wall extension during plant growth. In this study, we used two different wheat cultivars to study the involvement of expansin in drought tolerance. Wheat coleoptile was used as the material in experiment. Our results indicated that water stress induced an increase in acidic pH-dependant cell wall extension, which is related to expansin activity; however, water stress inhibited coleoptile elongation growth. The increased expansin activity was mainly due to increased expression of expansin protein that was upregulated by water stress, but water stress also resulted in a decrease in cell wall acidity, a negative factor for cell wall extension. Decreased plasma membrane H(+)-ATPase activity was involved in the alkalinization of the cell wall under water stress. The activity of expansin in HF9703 (a drought-tolerant wheat cultivar) was always higher than that in 921842 (a drought-sensitive wheat cultivar) under both normal and water stress conditions, which may be correlated with the higher expansin protein expression and plasma membrane H(+)-ATPase activity observed in HF9703 versus 921842. However, water stress did not change the susceptibility of the wheat cell wall to expansin, and no difference in this susceptibility was observed between the drought-tolerant and drought-sensitive wheat cultivars. These results suggest the involvement of expansin in cell elongation and the drought resistance of wheat.
Collapse
Affiliation(s)
- Mei-rong Zhao
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Onkokesung N, Gális I, von Dahl CC, Matsuoka K, Saluz HP, Baldwin IT. Jasmonic acid and ethylene modulate local responses to wounding and simulated herbivory in Nicotiana attenuata leaves. PLANT PHYSIOLOGY 2010; 153:785-98. [PMID: 20382894 PMCID: PMC2879812 DOI: 10.1104/pp.110.156232] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 04/06/2010] [Indexed: 05/19/2023]
Abstract
Jasmonic acid (JA) and ethylene (ET) are known to play important roles in mediating plant defense against herbivores, but how they affect development in herbivore-attacked plants is unknown. We used JA-deficient (silenced in LIPOXYGENASE3 [asLOX3]) and ET-insensitive (expressing a mutated dominant negative form of ETHYLENE RESPONSE1 [mETR1]) Nicotiana attenuata plants, and their genetic cross (mETR1asLOX3), to examine growth and development of these plants under simulated herbivory conditions. At the whole plant level, both hormones suppressed leaf expansion after the plants had been wounded and the wounds had been immediately treated with Manduca sexta oral secretions (OS). In addition, ectopic cell expansion was observed around both water- and OS-treated wounds in mETR1asLOX3 leaves but not in mETR1, asLOX3, or wild-type leaves. Pretreating asLOX3 leaves with the ET receptor antagonist 1-methylcyclopropane resulted in local cell expansion that closely mimicked the mETR1asLOX3 phenotype. We found higher auxin (indole-3-acetic acid) levels in the elicited leaves of mETR1asLOX3 plants, a trait that is putatively associated with enhanced cell expansion and leaf growth in this genotype. Transcript profiling of OS-elicited mETR1asLOX3 leaves revealed a preferential accumulation of transcripts known to function in cell wall remodeling, suggesting that both JA and ET act as negative regulators of these genes. We propose that in N. attenuata, JA-ET cross talk restrains local cell expansion and growth after herbivore attack, allowing more resources to be allocated to induced defenses against herbivores.
Collapse
Affiliation(s)
| | - Ivan Gális
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (N.O., I.G., C.C.v.D., I.T.B.); Faculty of Agriculture, Kyushu University, 812–8581 Fukuoka, Japan (K.M.); Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, 07745 Jena, Germany (H.-P.S.)
| | | | | | | | | |
Collapse
|
30
|
Christianson JA, Llewellyn DJ, Dennis ES, Wilson IW. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.). PLANT & CELL PHYSIOLOGY 2010; 51:21-37. [PMID: 19923201 DOI: 10.1093/pcp/pcp163] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Waterlogging stress causes yield reduction in cotton (Gossypium hirsutum L.). A major component of waterlogging stress is the lack of oxygen available to submerged tissues. While changes in expressed protein, gene transcription and metabolite levels have been studied in response to low oxygen stress, little research has been done on molecular responses to waterlogging in cotton. We assessed cotton growth responses to waterlogging and assayed global gene transcription responses in root and leaf cotton tissues of partially submerged plants. Waterlogging caused significant reductions in stem elongation, shoot mass, root mass and leaf number, and altered the expression of 1,012 genes (4% of genes assayed) in root tissue as early as 4 h after flooding. Many of these genes were associated with cell wall modification and growth pathways, glycolysis, fermentation, mitochondrial electron transport and nitrogen metabolism. Waterlogging of plant roots also altered global gene expression in leaf tissues, significantly changing the expression of 1,305 genes (5% of genes assayed) after 24 h of flooding. Genes affected were associated with cell wall growth and modification, tetrapyrrole synthesis, hormone response, starch metabolism and nitrogen metabolism The implications of these results for the development of waterlogging-tolerant cotton are discussed.
Collapse
|
31
|
Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. THE PLANT CELL 2009; 21:3339-49. [PMID: 19880795 PMCID: PMC2782276 DOI: 10.1105/tpc.109.070771] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/21/2009] [Accepted: 10/05/2009] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) toxicity is the major limiting factor of crop production on acid soils, but some plant species have evolved ways of detoxifying Al. Here, we report a C2H2-type zinc finger transcription factor ART1 (for Al resistance transcription factor 1), which specifically regulates the expression of genes related to Al tolerance in rice (Oryza sativa). ART1 is constitutively expressed in the root, and the expression level is not affected by Al treatment. ART1 is localized in the nucleus of all root cells. A yeast one-hybrid assay showed that ART1 has a transcriptional activation potential and interacts with the promoter region of STAR1, an important factor in rice Al tolerance. Microarray analysis revealed 31 downstream transcripts regulated by ART1, including STAR1 and 2 and a couple of homologs of Al tolerance genes in other plants. Some of these genes were implicated in both internal and external detoxification of Al at different cellular levels. Our findings shed light on comprehensively understanding how plants detoxify aluminum to survive in an acidic environment.
Collapse
Affiliation(s)
- Naoki Yamaji
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Chao Feng Huang
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Sakiko Nagao
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Masahiro Yano
- QTL Genomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Yutaka Sato
- Genome Resource Center, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Yoshiaki Nagamura
- Genome Resource Center, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Jian Feng Ma
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
- Address correspondence to
| |
Collapse
|