1
|
Huang Z, Song X, Song J, Su L, Meng S, Yu X, Liang K, Huang H, Zhang F, Li H, Tang Y, Sun B. Physiological and transcriptomic analysis of purple flowering stalks (Brassica campestris var. purpurea) under cadmium stress and exogenous glutathione application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109424. [PMID: 39721184 DOI: 10.1016/j.plaphy.2024.109424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Glutathione (GSH) has a beneficial effect on the response of plants to cadmium (Cd) stress. The physiological and molecular processes by which glutathione influences Cd tolerance in purple flowering stalks (a Brassica vegetable) remain unclear. The aim of this study was to investigate the role of exogenous GSH in alleviating Cd toxicity in purple flowering stalks. On day 10 of the Cd stress treatment, spraying of GSH resulted in an increase in the net photosynthetic rate by 18.48%; enhanced antioxidant enzyme activities and the endogenous GSH and ascorbic acid contents; reduced the malondialdehyde and proline content 32.45% and 24.65%, respectively; and reduced the Cd content in the roots by 2.93%. On day 5, the transcriptome analysis showed that the application of GSH up-regulated the expression of 27 genes in the photosynthetic pathway. In contrast, GSH application led to the down-regulation of most genes involved in GSH metabolism, sulfur metabolism, and arginine and proline metabolism. These findings will aid future studies of the response of purple flowering stalks to Cd stress.
Collapse
Affiliation(s)
- Zhi Huang
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xiaoli Song
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China; Dongpo District Agriculture and Rural Bureau, 620000, Meishan, China
| | - Junyan Song
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Liping Su
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Shiling Meng
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xuena Yu
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Kehao Liang
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, Taastrup, 2630, Denmark
| | - Huanhuan Huang
- College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China.
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
2
|
Liu W, Zhang Z, Li W, Zhang Y, Ren Z, Li X, Wu Y, Li J, Zhu W, Ma Z, Zhou Y, Li W. Chloride accumulation in inland rivers of China and its toxic impact on cotton. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123122. [PMID: 39488955 DOI: 10.1016/j.jenvman.2024.123122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The escalation of major ion concentrations in freshwater and soil poses diverse effects on ecosystems and the environment. Excessive ions can exhibit toxicity to aquatic organisms and terrestrial plants. Currently, research on ion toxicity primarily focuses on cation toxicity. Notably, there is a noticeable research gap in understanding the impact of chloride ion (Cl-) on plant growth and development, as well as on the defense mechanisms against Cl- toxicity. In the present study, sampling was conducted on major rivers in China to measure Cl- concentrations. The results revealed that certain rivers exhibited excessive levels of Cl-, emphasizing the critical need to address Cl- toxicity issues. Subsequently, when salt-tolerant cotton seedlings were subjected to various chloride treatments, it was observed that excessive Cl- severely hindered plant growth and development. A combined analysis of transcriptomic and metabolomic data shed light on significantly enriched pathways related to galactose metabolism, arginine and proline metabolism, carotenoid metabolism, and alpha-linolenic acid metabolism under chloride stress. In summary, this research provides a scientific foundation and references for environmental management and water resource protection and offers novel insights for mitigating the adverse impacts of Cl-, thereby contributing to the preservation of ecosystem health.
Collapse
Affiliation(s)
- Wei Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiqiang Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenhao Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuzhi Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaona Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuchen Wu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianing Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zongbin Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yang Zhou
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, China.
| | - Wei Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
3
|
Parvin K, Hasanuzzaman M, Mohsin SM, Nahar K, Fujita M. Vanillic Acid Modulates Antioxidant Defense and Methylglyoxal Detoxification Systems to Combat Drought Stress in Tomato Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:3114. [PMID: 39599323 PMCID: PMC11597367 DOI: 10.3390/plants13223114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024]
Abstract
Vanillic acid (VA) regulates various plant physiological and biochemical processes upon different environmental stresses to enhance their tolerance. This study aimed to evaluate the protective effect of VA on growth and physiology, including osmoprotection, and antioxidant defense systems for enhancing higher tolerance by lowering oxidative damage against water deficit stress in tomatoes (Solanum lycopersicum L. cv. BARI Tomato-16). Hydroponically grown tomato seedlings (8 d old) were pretreated with 50 µM VA for 2 days followed by water deficit stress (imposed by water withdrawal and 12% polyethylene glycol; PEG-6000) for 4 d. Drought stress inhibited the seedlings' growth by reducing water content and photosynthetic pigments contents, alleviating oxidative stress induced by a reactive oxygen species and methylglyoxal. A significant enhancement in growth, biomass accumulation, and photosynthetic pigment content was observed in VA-pretreated stress conditions. In addition, there was an improvement in the water status and proline content, along with modulated activities of the antioxidant responses, including both non-enzymatic and enzymatic components in leaves of VA-pretreated seedlings upon the water deficit. Vanillic acid significantly reduced the reactive oxygen species generation and decreased cellular membrane damage in drought-affected tomato seedlings. Methylglyoxal detoxification was ensured to a great extent in VA-pretreated stressed tomato seedlings by strengthening the glyoxalase enzymes' activities. Therefore, VA can be effective for protecting tomato seedlings by inducing a plant antioxidant defense and the methylglyoxal detoxification system and osmoregulation under drought stress.
Collapse
Affiliation(s)
- Khursheda Parvin
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Sayed Mohammad Mohsin
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
4
|
Yu T, Dong W, Hou X, Sun A, Li X, Yu S, Zhang J. The Maize Gene ZmGLYI-8 Confers Salt and Drought Tolerance in Transgenic Arabidopsis Plants. Int J Mol Sci 2024; 25:10937. [PMID: 39456719 PMCID: PMC11507017 DOI: 10.3390/ijms252010937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Methylglyoxal (MG), a highly reactive and cytotoxic α-oxoaldehyde compound, can over-accumulate under abiotic stress, consequently injuring plants or even causing death. Glyoxalase I (GLYI), the first enzyme of the glyoxalase pathway, plays multiple roles in the detoxification of MG and in abiotic stress responses. However, the GLY1 gene in maize has been little studied in response to abiotic stress. In this study, we screened a glyoxalase I gene (ZmGLYI-8) and overexpressed in Arabidopsis. This gene was localized in the cytoplasm and can be induced in maize seedlings under multiple stress treatments, including salt, drought, MG, ABA, H2O2 and high temperature stress. Phenotypic analysis revealed that after MG, salt and drought stress treatments, overexpression of ZmGLYI-8 increased the tolerance of transgenic Arabidopsis to MG, salt and drought stress. Furthermore, we demonstrated that the overexpression of ZmGLYI-8 scavenges accumulated reactive oxygen species, detoxifies MG and enhances the activity of antioxidant enzymes to improve the resistance of transgenic Arabidopsis plants to salt and drought stress. In summary, this study preliminarily elucidates the molecular mechanism of the maize ZmGLYI-8 gene in transgenic Arabidopsis and provides new insight into the breeding of salt- and drought-tolerant maize varieties.
Collapse
Affiliation(s)
- Ting Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| | - Wei Dong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| | - Xinwei Hou
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Aiqing Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China;
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| | - Shaowei Yu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Jiedao Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| |
Collapse
|
5
|
Basit F, Abbas S, Sheteiwy MS, Bhat JA, Alsahli AA, Ahmad P. Deciphering the alleviation potential of nitric oxide, for low temperature and chromium stress via maintaining photosynthetic capacity, antioxidant defence, and redox homeostasis in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108957. [PMID: 39059272 DOI: 10.1016/j.plaphy.2024.108957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Sodium nitroprusside (SNP) is a potent nitric oxide (NO) donor that enhances plant tolerance to various abiotic stresses. This research aims to assess the effect of SNP application on rice seedlings subjected to individual and combined exposure to two abiotic stresses viz., low-temperature (LT) and chromium (Cr). Exposure to LT, Cr, and LT+Cr caused severe oxidative damage by stimulating greater production and accumulation of reactive oxygen species (ROS) leading to lipid peroxidation and cell membrane instability. The combined LT+CR stress more intensly increased the cellular oxidative stress and excessive Cr uptake that in turn deteriorated the chlorophyll pigments and photosynthesis, as well as effected the level of tetrapyrrole biosynthesis in rice plants. The reduction in rice seedling growth was more obvious under LT+Cr treatment than their individual effects. The exogenous application of SNP diminished the toxic impact of LT and Cr stress. This was attributed to the positive role of SNP in regulating the endogenous NO levels, free amino acids (FAAs) contents, tetrapyrrole biosynthesis and antioxidants. Consequently, SNP-induced NO decreased photorespiration, ROS generation, lipid peroxidation, and electrolyte leakage. Moreover, exogenous SNP diminished the Cr uptake and accumulation by modulating the ionic homeostasis and strengthening the heavy metals detoxification mechanism, thus improving plant height, biomass and photosynthetic indexes. Essentially, SNP boosts plant tolerance to LT and Cr stress by regulating antioxidants, detoxification mechanism, and the plant's physio-biochemical. Hence, applying SNP is an effective method for boosting rice plant resilience and productivity in the face of escalating environmental stresses and pollutants.
Collapse
Affiliation(s)
- Farwa Basit
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Javaid Akhter Bhat
- Research center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 310012, China.
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama-192301, Jammu and Kashmir, India.
| |
Collapse
|
6
|
Su C, Wang J, Feng J, Jiang S, Man F, Jiang L, Zhao M. OsAlR3 regulates aluminum tolerance through promoting the secretion of organic acids and the expression of antioxidant genes in rice. BMC PLANT BIOLOGY 2024; 24:618. [PMID: 38937693 PMCID: PMC11212236 DOI: 10.1186/s12870-024-05298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
In acidic soils, aluminum (Al) toxicity inhibits the growth and development of plant roots and affects nutrient and water absorption, leading to reduced yield and quality. Therefore, it is crucial to investigate and identify candidate genes for Al tolerance and elucidate their physiological and molecular mechanisms under Al stress. In this study, we identified a new gene OsAlR3 regulating Al tolerance, and analyzed its mechanism from physiological, transcriptional and metabolic levels. Compared with the WT, malondialdehyde (MDA) and hydrogen peroxide (H2O2) content were significantly increased, superoxide dismutase (SOD) activity and citric acid (CA) content were significantly decreased in the osalr3 mutant lines when exposed to Al stress. Under Al stress, the osalr3 exhibited decreased expression of antioxidant-related genes and lower organic acid content compared with WT. Integrated transcriptome and metabolome analysis showed the phenylpropanoid biosynthetic pathway plays an important role in OsAlR3-mediated Al tolerance. Exogenous CA and oxalic acid (OA) could increase total root length and enhance the antioxidant capacity in the mutant lines under Al stress. Conclusively, we found a new gene OsAlR3 that positively regulates Al tolerance by promoting the chelation of Al ions through the secretion of organic acids, and increasing the expression of antioxidant genes.
Collapse
Affiliation(s)
- Chang Su
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jingbo Wang
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Feng
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Sixu Jiang
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Fuyuan Man
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China
| | - Linlin Jiang
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Minghui Zhao
- Rice Research Institute, Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
7
|
Hasanuzzaman M, Raihan MRH, Siddika A, Bardhan K, Hosen MS, Prasad PVV. Selenium and its nanoparticles modulate the metabolism of reactive oxygen species and morpho-physiology of wheat (Triticum aestivum L.) to combat oxidative stress under water deficit conditions. BMC PLANT BIOLOGY 2024; 24:578. [PMID: 38890566 PMCID: PMC11186265 DOI: 10.1186/s12870-024-05282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) is one of the most important cereal crop species worldwide, but its growth and development are adversely influenced by drought stress. However, the application of trace elements is known to improve plant physiology under water-limited conditions. In this study, the effects of drought stress on wheat plants were investigated, with a focus on potential mitigation by foliar application of selenium nanoparticles (Se(np)) and sodium selenate (Na2SeO4). The experiment was conducted in a net house using a completely randomized design with four replications. The treatments involved three levels of drought stress (mild, moderate, and severe) started at 30 days after sowing (DAS), with foliar sprays of Se(np) and Se (both 25 µM) initiated at 27 DAS and repeated 4 times at 7-day intervals until 55 DAS. RESULTS Drought stress significantly reduced plant growth, whereas Se(np) and Se sprays enhanced it. Drought stress induced chlorophyll degradation, increased malondialdehyde and hydrogen peroxide levels, impaired membrane stability, and caused electrolyte leakage. Severe drought stress reduced the levels of antioxidants (e.g., proline, ascorbate, and glutathione by 4.18-fold, 80%, and 45%) and the activities of antioxidant enzymes (ascorbate peroxidase, dehydroascorbate reductase, and others). Conversely, treatment with Se(np) and Se restored these parameters, for example, 1.23-fold higher total chlorophyll content with Se(np) treatment, 26% higher APX activity with Se treatment, 15% lower electrolyte leakage with Se treatment in wheat plants under severe drought stress. This Se-associated enhancement facilitated rapid scavenging of reactive oxygen species and reduced methylglyoxal toxicity, thereby diminishing oxidative stress and positively affecting the morphophysiological and biochemical responses of the plants under drought. CONCLUSIONS Drought-stressed wheat plants exhibited reductions in physiological processes, including water uptake and photosynthetic activity. However, Se(np) and Se applied at 25 µM mitigated the detrimental effects of drought. The application of Se(np) was notably more effective than the application of Se in mitigating drought stress, indicating the potential of the application of Se(np) as a sustainable agricultural practice under water-limited conditions.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
| | - Md Rakib Hossain Raihan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Ayesha Siddika
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Kirti Bardhan
- Department of Basic Sciences and Humanities, Navsari Agricultural University, Gujarat, India
| | - Md Sarwar Hosen
- Institute of Seed Technology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
8
|
Siddika A, Rashid AA, Khan SN, Khatun A, Karim MM, Prasad PV, Hasanuzzaman M. Harnessing plant growth-promoting rhizobacteria, Bacillus subtilis and B. aryabhattai to combat salt stress in rice: a study on the regulation of antioxidant defense, ion homeostasis, and photosynthetic parameters. FRONTIERS IN PLANT SCIENCE 2024; 15:1419764. [PMID: 38938633 PMCID: PMC11208634 DOI: 10.3389/fpls.2024.1419764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Introduction The ongoing global expansion of salt-affected land is a significant factor, limiting the growth and yield of crops, particularly rice (Oryza sativa L). This experiment explores the mitigation of salt-induced damage in rice (cv BRRI dhan100) following the application of plant growth-promoting rhizobacteria (PGPR). Methods Rice seedlings, at five- and six-weeks post-transplanting, were subjected to salt stress treatments using 50 and 100 mM NaCl at seven-day intervals. Bacterial cultures consisting of endophytic PGPR (Bacillus subtilis and B. aryabhattai) and an epiphytic PGPR (B. aryabhattai) were administered at three critical stages: transplantation of 42-day-old seedlings, vegetative stage at five weeks post-transplantation, and panicle initiation stage at seven weeks post-transplantation. Results Salt stress induced osmotic stress, ionic imbalances, and oxidative damage in rice plants, with consequent negative effects on growth, decrease in photosynthetic efficiency, and changes in hormonal regulation, along with increased methylglyoxal (MG) toxicity. PGPR treatment alleviated salinity effects by improving plant antioxidant defenses, restoring ionic equilibrium, enhancing water balance, increasing nutrient uptake, improving photosynthetic attributes, bolstering hormone synthesis, and enhancing MG detoxification. Discussion These findings highlight the potential of PGPR to bolster physiological and biochemical functionality in rice by serving as an effective buffer against salt stress-induced damage. B. subtilis showed the greatest benefits, while both the endophytic and epiphytic B. aryabhattai had commendable effects in mitigating salt stress-induced damage in rice plants.
Collapse
Affiliation(s)
- Ayesha Siddika
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | | | | | - Amena Khatun
- Department of Agriculture, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
9
|
Yu B, Xue X, Nie P, Lu N, Wang L. Fulvic acid alleviates cadmium-induced root growth inhibition by regulating antioxidant enzyme activity and carbon-nitrogen metabolism in apple seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1370637. [PMID: 38711608 PMCID: PMC11072189 DOI: 10.3389/fpls.2024.1370637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 05/08/2024]
Abstract
Introduction Substantial previous studies have reported that fulvic acid (FA) application plays an important role in Chinese agricultural production. However, little is known about the mechanisms for using FA to increase apple trees resistance to Cd toxicity. In order to clarify the mechanism underlying FA alleviation in Cd-induced growth inhibition in apple seedlings. Methods Herein, we treated M9T337 seedlings to either 0 or 30 µM/L Cd together with 0 or 0.2 g/L FA and analyzed the root growth, antioxidant enzyme activities, carbon (C) assimilation, nitrogen (N) metabolism, and C and N transport. Results The results presented that, compared with CK (without Cd addition or FA spraying application), Cd poisoning significantly inhibited the root growth of apple seedlings. However, this Cd-induced root growth inhibition was significantly alleviated by FA spraying relative to the Cd treatment (Cd addition alone). On the one hand, the mitigation of inhibition effects was due to the reduced oxidative damage by enhancing antioxdiant enzyme (SOD, POD, and CAT) activities in leaves and roots. On the other hand, this growth advantage demonstrated compared to the Cd treatment was found to be associated with the strengthen of photosynthetic performance and the elevation of C and N metabolism enzymes activities. Meanwhile, we also found that under Cd stress condition, the distribution of C and N nutrients in apple seedlings was optimised by FA spraying application relative to the Cd treatment, according to the results of 13C and 15N tracing. Conclusion Conclusively, our results suggested that the inhibitory effect of Cd on apple seedlings root growth was alleviated by FA through regulating antioxdiant capacities and C and N metabolism.
Collapse
Affiliation(s)
- Bo Yu
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaomin Xue
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Peixian Nie
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Ninglin Lu
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Laiping Wang
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| |
Collapse
|
10
|
Fu ZW, Li JH, Gao X, Wang SJ, Yuan TT, Lu YT. Pathogen-induced methylglyoxal negatively regulates rice bacterial blight resistance by inhibiting OsCDR1 protease activity. MOLECULAR PLANT 2024; 17:325-341. [PMID: 38178576 DOI: 10.1016/j.molp.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB), a globally devastating disease of rice (Oryza sativa) that is responsible for significant crop loss. Sugars and sugar metabolites are important for pathogen infection, providing energy and regulating events associated with defense responses; however, the mechanisms by which they regulate such events in BB are unclear. As an inevitable sugar metabolite, methylglyoxal (MG) is involved in plant growth and responses to various abiotic stresses, but the underlying mechanisms remain enigmatic. Whether and how MG functions in plant biotic stress responses is almost completely unknown. Here, we report that the Xoo strain PXO99 induces OsWRKY62.1 to repress transcription of OsGLY II genes by directly binding to their promoters, resulting in overaccumulation of MG. MG negatively regulates rice resistance against PXO99: osglyII2 mutants with higher MG levels are more susceptible to the pathogen, whereas OsGLYII2-overexpressing plants with lower MG content show greater resistance than the wild type. Overexpression of OsGLYII2 to prevent excessive MG accumulation confers broad-spectrum resistance against the biotrophic bacterial pathogens Xoo and Xanthomonas oryzae pv. oryzicola and the necrotrophic fungal pathogen Rhizoctonia solani, which causes rice sheath blight. Further evidence shows that MG reduces rice resistance against PXO99 through CONSTITUTIVE DISEASE RESISTANCE 1 (OsCDR1). MG modifies the Arg97 residue of OsCDR1 to inhibit its aspartic protease activity, which is essential for OsCDR1-enhanced immunity. Taken together, these findings illustrate how Xoo promotes infection by hijacking a sugar metabolite in the host plant.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jian-Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Shi-Jia Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
11
|
Fu ZW, Fan SH, Liu HF, Hua W. Proteome-wide identification of methylglyoxalated proteins in rapeseed (Brassica napus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108319. [PMID: 38183900 DOI: 10.1016/j.plaphy.2023.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Methylglyoxal (MG), a highly reactive cellular metabolite, is crucial for plant growth and environmental responses. MG may function by modifying its target proteins, but little is known about MG-modified proteins in plants. Here, MG-modified proteins were pulled down by an antibody against methylglyoxalated proteins and detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. We identified 543 candidate proteins which are involved in multiple enzymatic activities and metabolic processes. A great number of candidate proteins were predicted to localize to cytoplasm, chloroplast, and nucleus, consistent with the known subcellular compartmentalization of MG. By further analyzing the raw LC-MS/MS data, we obtained 42 methylglyoxalated peptides in 35 proteins and identified 10 methylglyoxalated lysine residues in a myrosinase-binding protein (BnaC06G0061400ZS). In addition, we demonstrated that MG modifies the glycolate oxidase and β-glucosidase to enhance and inhibit the enzymatic activity, respectively. Together, our study contributes to the investigation of the MG-modified proteins and their potential roles in rapeseed.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shi-Hang Fan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hong-Fang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
12
|
Basit F, Abbas S, Zhu M, Tanwir K, El-Keblawy A, Sheteiwy MS, Raza A, Hu J, Hu W, Guan Y. Ascorbic acid and selenium nanoparticles synergistically interplay in chromium stress mitigation in rice seedlings by regulating oxidative stress indicators and antioxidant defense mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120044-120062. [PMID: 37936030 DOI: 10.1007/s11356-023-30625-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
Ascorbic acid (AsA) and selenium nanoparticles (SeNPs) were versatile plant growth regulators, playing multiple roles in promoting plant growth under heavy metal stresses. This study aimed to evaluate the beneficial role of individual and combined effects of AsA and SeNPs on morpho-physio-biochemical traits of rice with or without chromium (Cr) amendment. The results indicated that Cr negatively affected plant biomass, gas exchange parameters, total soluble sugar, proline, relative water contents, and antioxidant-related gene expression via increasing reactive oxygen species (MDA, H2O2, O2•-) formation, resulting in plant growth reduction. The application of AsA and SeNPs, individually or in combination, decreased the uptake and translocation of Cr in rice seedlings, increased seedlings with tolerance to Cr toxicity, and significantly improved the rice seedling growth. Most notably, AsA + SeNP treatment strengthened the antioxidative defense system through ROS quenching and Cr detoxification. The results collectively suggested that the application of AsA and SeNPs alone or in combination had the potential to alleviate Cr toxicity in rice and possibly other crop species.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Mengjin Zhu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mohamed Salah Sheteiwy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weimin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China.
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Fang X, Mo J, Zhou H, Shen X, Xie Y, Xu J, Yang S. Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress. Sci Rep 2023; 13:19065. [PMID: 37925528 PMCID: PMC10625528 DOI: 10.1038/s41598-023-46389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
Salt stress is one unfavorable factor of global climate change that adversely affects rice plant growth and yield. To identify novel salt-tolerant genes and new varieties of salt-tolerant rice, a better understanding of the molecular regulation mechanism of salt tolerance in rice is needed. In this study we used transcriptome analyses to examine changes in gene expression of salt-tolerant and salt-sensitive rice plants. The salt-tolerant cultivar HH11 and salt-sensitive cultivar IR29 were treated with 200 mM NaCl solution for 0 h, 6 h, 24 h and 48 h at the three leaf stage. Physiological parameters and transcriptome were measured and analyzed after each treatment. Activity of SOD and POD, as well as the MDA and protein content of the two rice cultivars generally increased with increasing time of exposure to NaCl. Meanwhile, the APX activity first increased, then decreased in both cultivars, with maximum values seen at 6 h for IR29 and at 24 h for HH11. The GR and GPX activity of HH11 were stronger than that of IR29 in response to salt stress. The H2O2 content first increased at 0-6 h, then decreased at 6-24 h, and then increased again at 24-48 h under salt stress. Compared with IR29, SOD, POD and APX activity of HH11 was more sluggish in response to salt stress, reaching the maximum at 24 h or 48 h. The MDA, H2O2 and proline content of HH11 was lower than that of IR29 under salt stress. Relative to untreated HH11 plants (0 h) and those exposed to salt for 6 h, 24 h, and 48 h (H0-H6, H0-H24 and H0-H48), 7462, 6363 and 6636, differentially expressed genes (DEGs), respectively, were identified. For IR29, the respective total DEGs were 7566, 6075 and 6136. GO and KEGG enrichment analysis showed that metabolic pathways related to antioxidative responses and osmotic balance played vital roles in salt stress tolerance. Sucrose and starch metabolism, in addition to flavonoid biosynthesis and glutathione metabolism, showed positive responses to salt stress. Expression of two SPS genes (LOC_Os01g69030 and LOC_Os08g20660) and two GST genes (LOC_Os06g12290 and LOC_Os10g38740) was up-regulated in both HH11 and IR29, whereas expression of LOC_Os09g12660, a glucose-1-phosphate adenylyltransferase gene, and two SS genes (LOC_Os04g17650 and LOC_Os04g24430) was up-regulated differential expression in HH11. The results showed that HH11 had more favorable adjustment in antioxidant and osmotic activity than IR29 upon exposure to salt stress, and highlighted candidate genes that could play roles in the function and regulation mechanism of salt tolerance in rice.
Collapse
Affiliation(s)
- Xin Fang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Junjie Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Hongkai Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Xuefeng Shen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Yuling Xie
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jianghuan Xu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shan Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
| |
Collapse
|
14
|
Sheteiwy MS, Basit F, El-Keblawy A, Jośko I, Abbas S, Yang H, Korany SM, Alsherif EA, Dawood MFA, AbdElgawad H. Elevated CO 2 differentially attenuates beryllium-induced oxidative stress in oat and alfalfa. PHYSIOLOGIA PLANTARUM 2023; 175:e14036. [PMID: 37882304 DOI: 10.1111/ppl.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/20/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
Elevated CO2 (eCO2 ) is one of the climate changes that may benefit plant growth under emerging soil contaminants such as heavy metals. In this regard, the morpho-physiological mechanisms underlying the mitigating impact of eCO2 on beryllium (Be) phytotoxicity are poorly known. Hence, we investigated eCO2 and Be interactive effects on the growth and metabolism of two species from different groups: cereal (oat) and legume (alfalfa). Be stress significantly reduced the growth and photosynthetic attributes in both species, but alfalfa was more susceptible to Be toxicity. Be stress induced reactive oxygen species (ROS) accumulation by increasing photorespiration, subsequently resulting in increased lipid and protein oxidation. However, the growth inhibition and oxidative stress induced by Be stress were mitigated by eCO2 . This could be explained, at least partially, by the increase in organic acids (e.g., citric acid) released into the soil, which subsequently reduced Be uptake. Additionally, eCO2 reduced cellular oxidative damage by reducing photorespiration, which was more significant in alfalfa plants. Furthermore, eCO2 improved the redox status and detoxification processes, including phytochelatins, total glutathione and metallothioneins levels, and glutathione-S-transferase activity in both species, but to a greater extend in alfalfa. In this context, eCO2 also stimulated anthocyanin biosynthesis by accumulating its precursors (phenylalanine, coumaric acid, cinnamic acid, and naringenin) and key biosynthetic enzymes (phenylalanine ammonia-lyase, cinnamate hydroxylase, and coumarate:CoA ligase) mainly in alfalfa plants. Overall, this study explored the mechanistic approach by which eCO2 alleviates the harmful effects of Be. Alfalfa was more sensitive to Be stress than oats; however, the alleviating impact of eCO2 on Be stress was more pronounced in alfalfa.
Collapse
Affiliation(s)
- Mohamed S Sheteiwy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Farwa Basit
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ali El-Keblawy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Emad A Alsherif
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
15
|
Zhou B, Zhang T, Wang F. Unravelling the molecular and biochemical responses in cotton plants to biochar and biofertilizer amendments for Pb toxicity mitigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100799-100813. [PMID: 37644262 DOI: 10.1007/s11356-023-29382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Over the past few years, there has been a rising interest in employing biochar (BC) and biofertilizers (BF) as a means of restoring soils that have been polluted by heavy metals. The primary objective of this study was to examine how the application of BC and BF affects the ability of cotton plants to withstand Pb toxicity at varying concentrations (0, 500, and 1000 mg/kg soil). The findings revealed that exposure to Pb stress, particularly at the 1000 mg/kg level, led to a decline in the growth and biomass of cotton plants. Pb toxicity triggered oxidative damage, impaired the photosynthetic apparatus, and diminished the levels of photosynthetic pigments. By increasing the expression of Rubisco-S, Rubisco-L, P5CR, and PRP5 genes and regulating proline metabolism, BC and BF increased the levels of proline and photosynthetic pigments and protected the photosynthetic apparatus. The application of BC and BF resulted in an upregulation of genes such as CuZnSOD, FeSOD, and APX1, as well as an increase in the activity of the glyoxalase system and antioxidant enzymes. These changes enhanced the antioxidant capacity of the plants and provided protection to membrane lipids from oxidative stress caused by Pb. The inclusion of BC and BF offered protection to photosynthesis and other essential intracellular processes in leaves by minimizing the transfer of Pb to leaves and promoting the accumulation of thiol compounds. This protective effect helped mitigate the negative impact of the toxic metal Pb on leaf function. By improving plant tolerance, reducing metal transfer, strengthening the antioxidant defense system, and enhancing the level of protective substances, these amendments show promise as valuable tools in tackling heavy metal pollution.
Collapse
Affiliation(s)
- Biao Zhou
- Urban and Rural Construction Institute, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Tiejian Zhang
- Urban and Rural Construction Institute, Hebei Agricultural University, Baoding, 071000, Hebei, China.
| | - Fei Wang
- College of Modern Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China
| |
Collapse
|
16
|
Zhou Y, Liu J, Zhuo Q, Zhang K, Yan J, Tang B, Wei X, Lin L, Liu K. Exogenous glutathione maintains the postharvest quality of mango fruit by modulating the ascorbate-glutathione cycle. PeerJ 2023; 11:e15902. [PMID: 37637166 PMCID: PMC10452625 DOI: 10.7717/peerj.15902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Background Mango fruit is prone to decay after harvest and premature senescence, which significantly lowers its quality and commercial value. Methods The mango fruit (Mangifera indica L.cv. Guixiang) was treated with 0 (control), 2, 5, and 8 mM of reduced glutathione (GSH) after harvest. The fruit was stored at 25 ± 1 °C for 12 days to observe the changes in the antioxidant capacity and postharvest quality. Results Compared with the control, the 5 mM GSH treatment significantly decreased the weight loss by 44.0% and 24.4%, total soluble solids content by 25.1% and 4.5%, and soluble sugar content by 19.0% and 27.0%. Conversely, the 5 mM GSH treatment increased the firmness by 25.9% and 30.7% on days 4 and 8, respectively, and the titratable acidity content by 115.1% on day 8. Additionally, the 5 mM GSH treatment decreased the malondialdehyde and hydrogen peroxide contents and improved the antioxidant capacity of mango fruit by increasing the superoxide dismutase and peroxidase activities and upregulating the expression of the encoding genes. Meanwhile, the higher levels of monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase enzyme activities and gene expressions accelerated the AsA-GSH cycle, thereby increasing the accumulation of AsA and GSH and maintaining the redox balance. Conclusions Overall, the experimental results suggest that 5 mM GSH maintains high antioxidant capacity and postharvest quality of mangoes and can use as an effective preservation technique for postharvest mangoes.
Collapse
Affiliation(s)
- Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Jiameng Liu
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Qiongyi Zhuo
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Keying Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Jielin Yan
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Bingmei Tang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Xiaoyun Wei
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Lijing Lin
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| |
Collapse
|
17
|
Ahmed AM, Khalid KA. Glutathione to ameliorate growth criterions and chemical constituents of geranium irrigated with salt water. Heliyon 2023; 9:e18262. [PMID: 37501988 PMCID: PMC10368903 DOI: 10.1016/j.heliyon.2023.e18262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Essential oil of geranium (Pelargonium graveolensL) has biological activities that make it used in food and pharmaceutical manufactures. High salinity is one of the factors that lead to lack of expansion in the production of medicinal and aromatic plants, especially in the new reclaimed soil located at arid and semi arid regions. Glutathione is a natural antioxidant that can help plants to withstand unfavorable environmental conditions such as the salinity of irrigation water. This trial aimed to diminish the undesirable effect of exposure to irrigation with salt water on geranium herbs through subjected them to exogenous application of glutathione. Geranium plants were irrigated with various concentrations of salt water with sodium chloride (0.0, 34.2, 51.3, and 68.4 mM) without (0 mg/L) or with glutathione (375 mg/L). Plants exposed to various rates of saline irrigation water with glutathione resulted in higher values of growth criterions (fresh and dry aerial parts), photosynthetic pigments, carbohydrates, protein, proline, essential oil (% or yield), antioxidant enzymes (peroxidase and superoxide dismutase), nitrogen, phosphorous, potassium, calcium, iron, zinc, manganese and copper than those subjected to saline irrigation water without glutathione. Higher amounts were found in sodium and chloride of plant treated with saline irrigation water than those treated saline irrigation water with glutathione. It may be summarized that productivity of geranium plants can be improved with adapting them under saline irrigation conditions by adding glutathione. This trial benefits the producers of geranium to alleviate the hurtful effects of salinity in reclaimed regions with adding glutathione.
Collapse
Affiliation(s)
- Aisha M.A. Ahmed
- Botany Department, National Research Centre, El Buhouth St., 12622, Dokki, Cairo, Egypt
| | - Khalid A. Khalid
- Medicinal and Aromatic Plants Department, National Research Centre, El Buhouth St., 12622, Dokki, Cairo, Egypt
| |
Collapse
|
18
|
Abbas S, Basit F, Tanwir K, Zhu X, Hu J, Guan Y, Hu W, Sheteiwy MS, Yang H, El-Keblawy A, El-Tarabily KA, AbuQamar SF, Lou J. Exogenously applied sodium nitroprusside alleviates nickel toxicity in maize by regulating antioxidant activities and defense-related gene expression. PHYSIOLOGIA PLANTARUM 2023; 175:e13985. [PMID: 37616000 DOI: 10.1111/ppl.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/17/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Nickel (Ni) stress adversely affects plant growth and biomass accumulation, posturing severe menace to crop production and food security. The current study aimed to determine the putative role of sodium nitroprusside (SNP) in mitigating Ni-induced phytotoxicity and identify the underlying defense mechanisms in maize, which are poorly understood. Our findings showed that SNP significantly augmented plant growth, biomass, and photosynthesis-related attributes (Fv/Fm, Fm, qP ETR, and ΦPSII) through diminishing Ni uptake and translocation in root and shoot tissues of maize under Ni stress conditions. In parallel, exogenous SNP substantially relieved maize seedlings from Ni-induced stress by enhancing enzymatic (SOD, CAT, and GPX) and non-enzymatic (phenol and flavonoids) antioxidant defenses and reducing oxidative stress indicators (MDA and H2 O2 ). The results revealed that SNP treatment increased the content of organic osmolyte glycine betaine and the activity of GST, concomitantly with ATP and ionic exchange capacity (including Ca2+ -ATPase and Mg2+ -ATPase), advocating its sufficiency to promote plant growth and avert Ni-induced stress in maize plants. The only exception was the production of organic acids (citric, oxalic, malic, and formic acids), which was reduced as SNP treatment relieved maize seedlings from Ni-induced oxidative damage. The application of SNP also displayed higher expression of defense- and detoxifying-related genes than in control treatments. Together, our data highlighted the mechanism involved in the amelioration of Ni toxicity by SNP; thus, suggesting a potential role of SNP in mitigating the adverse effects of Ni-contaminated soils to boost growth and yield of crop plants, that is, maize.
Collapse
Affiliation(s)
- Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Xiaobo Zhu
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Weimin Hu
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mohamed S Sheteiwy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates
| | - Khaled A El-Tarabily
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jianfeng Lou
- Shanghai Agro-Technology Extension Service Center, Shanghai, China
| |
Collapse
|
19
|
Basit F, Bhat JA, Alyemeni MN, Shah T, Ahmad P. Nitric oxide mitigates vanadium toxicity in soybean (Glycine max L.) by modulating reactive oxygen species (ROS) and antioxidant system. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131085. [PMID: 36870130 DOI: 10.1016/j.jhazmat.2023.131085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Vanadium (V) induced hazardous effects posturing a serious concern on crop production as well as food security. However, the nitric oxide (NO)-mediated alleviation of V-induced oxidative stress in soybean seedlings is still unknown. Therefore, this research was designed to explore the effects of exogenous NO to mitigate the V-induced phytotoxicity in soybean plants. Our upshots disclosed that NO supplementation considerably improved the plant biomass, growth, and photosynthetic attributes by regulating the carbohydrates, and plants biochemical composition, which further improved the guard cells, and stomatal aperture of soybean leaves. Additionally, NO regulated the plant hormones, and phenolic profile which restricted the V contents absorption (65.6%), and translocation (57.9%) by maintaining the nutrient acquisition. Furthermore, it detoxified the excessive V contents, and upsurged the antioxidants defense mechanism to lower the MDA, and scavenge ROS production. The molecular analysis further verified the NO-based regulation of lipid, sugar production, and degradation as well as detoxification mechanism in the soybean seedlings. Exclusively, we elaborated very first time the behind mechanism of V-induced oxidative stress alleviation by exogenous NO, hence illustrating the NO supplementation role as a stress alleviating agent for soybean grown in V contaminated areas to elevate the crop development and production.
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tariq Shah
- Plant Science Research Unit, United States Department for Agriculture (USDA), ARS, Raleigh, NC, USA
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, Jammu and Kashmir 192301, India.
| |
Collapse
|
20
|
Bhat JA, Basit F, Alyemeni MN, Mansoor S, Kaya C, Ahmad P. Gibberellic acid mitigates nickel stress in soybean by cell wall fixation and regulating oxidative stress metabolism and glyoxalase system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107678. [PMID: 37054613 DOI: 10.1016/j.plaphy.2023.107678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 05/07/2023]
Abstract
It is broadly known that excessive concentration of nickel (Ni) causes venomous effects on plant health as well as food security. The underlying gibberellic acid (GA) mechanism to overcome Ni-induced stress is still unclear. Our outcomes represented the potential role of gibberellic acid (GA) to boost the soybean stress tolerance mechanism against Ni toxicity. GA elevated the seed germination, plant growth, biomass indices, and photosynthetic machinery as well as relative water contents under Ni-induced stress in soybean. We found that the GA lowered the Ni uptake, and distribution in the soybean plants, as well as GA, can decrease the Ni fixation in the root cell wall by lowering the hemicelluloses content. However, it reduces the MDA level, over-generation of ROS, electrolyte leakage, and methylglyoxal contents by up-surging the level of antioxidant enzyme, and glyoxalase I and glyoxalase II activities. Furthermore, GA regulates the antioxidant-related (CAT, SOD, APX, and GSH) and phytochelatins (PCs) genes expression to sequester the excessive Ni to the vacuoles and efflux the Ni outer the cell. Hence, less Ni was translocated toward shoots. Overall, GA augmented cell wall Ni elimination, and the antioxidant defense mechanism possibly upgraded the soybean tolerance against Ni stress.
Collapse
Affiliation(s)
| | - Farwa Basit
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, Republic of Korea
| | - Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
21
|
Iqbal N, Tanzeem-ul-Haq HS, Gull-e-Faran, Turan V, Iqbal M. Soil Amendments and Foliar Melatonin Reduced Pb Uptake, and Oxidative Stress, and Improved Spinach Quality in Pb-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:1829. [PMID: 37176896 PMCID: PMC10180591 DOI: 10.3390/plants12091829] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Amending Pb-affected soil with biochar (BH) and magnesium potassium phosphate cement (MKC) reduces Pb uptake in plants. Moreover, foliar applications of melatonin and proline are also known to reduce plant oxidative stress and Pb uptake. However, little is known about combining both techniques, i.e., adding a combo immobilizing dose (CIA = mixture of BH and MKC at 50:50 ratio) in Pb-polluted soil and foliar application of proline and melatonin for reducing Pb uptake and oxidative stress in spinach. Control, proline, melatonin, CIA, CIA+proline, and CIA+melatonin were the treatments utilized in this pot study to see their effects on reducing plant oxidative stress, Pb uptake, and improving spinach quality in Pb-polluted soil. Moreover, Pb bioavailability, enzymatic activities, and numbers of bacteria, fungi, and actinomycetes in the soil were also evaluated. The effect of CIA on reducing Pb in the soil-plant system and improving soil enzymes and microbial numbers was more pronounced than melatonin alone. The most effective treatment was CIA+melatonin reducing Pb availability in soil (77%), shoots (95%), and roots (84%), alleviating oxidative stress, and improving plant biomass (98%) and nutrients. Soil enzymatic activities and the number of microorganisms in the rhizosphere were also highest with CIA+melatonin. Results highlight the significance of CIA+melatonin, as an inexpensive approach, in remediating Pb-polluted soil and improving spinach quality. However, further research is needed to understand the significance of CIA+melatonin on different crops and various soil Pb concentrations before employing this technique commercially in agriculture and environment sectors.
Collapse
Affiliation(s)
- Naeem Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Hafiz Syed Tanzeem-ul-Haq
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Gull-e-Faran
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Veysel Turan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Bingöl University, 12000 Bingöl, Turkey;
| | - Muhammad Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
22
|
Basit F, Tao J, An J, Song X, Sheteiwy MS, Holford P, Hu J, Jośko I, Guan Y. Nitric oxide and brassinosteroids enhance chromium stress tolerance in Glycine max L. (Merr.) by modulating antioxidative defense and glyoxalase systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51638-51653. [PMID: 36811783 DOI: 10.1007/s11356-023-25901-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Chromium (Cr) contamination of agricultural soils is a major threat to human and plant health worldwide and causes reductions in plant growth and crop yields. 24-epibrassinolide (EBL) and nitric oxide (NO) have been shown to ameliorate the reductions in growth caused by the stresses induced by heavy metals; however, the interactions between EBL and NO on the alleviation of Cr-induced phytotoxicity have been poorly studied. Hence, this study was undertaken to examine any beneficial effects of EBL (0.01 µM) and NO (100 µM), applied alone or in combination, on the mitigation of stress induced by Cr (100 µM) in soybean seedlings. Although EBL and NO applied alone reduced the toxic effects of Cr, the combined treatment had the greatest effect. Mitigation of Cr intoxication occurred via reduced Cr uptake and translocation and by ameliorating reductions in water contents, light-harvesting pigments, and other photosynthetic parameters. In addition, the two hormones increased the activity of enzymatic and non-enzymatic defense mechanisms increasing the scavenging of reactive oxygen species, thereby reducing membrane damage and electrolyte leakage. Furthermore, the hormones reduced the accumulation of the toxic compound, methylglyoxal, by amplifying activities of glyoxalase I and glyoxalase II. Thus, applications of NO and EBL can significantly mitigate Cr-phytotoxicity when cultivating soybean plants in Cr-contaminated soils. However, further more-in depth studies including field investigations parallel with calculations of cost to profit ratios and yield losses are requested to validate the effectiveness of NO and/or EBL for remediation agents in Cr-contaminated soils with using key biomarkers (i.e., oxidative stress, antioxidant defense, and osmoprotectants) involved in the uptake, accumulation, and attenuation of Cr toxicity tested in our study.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ji Tao
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianyu An
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyu Song
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed Salah Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Paul Holford
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China.
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Chen X, Han H, Cong Y, Li X, Zhang W, Wan W, Cui J, Xu W, Diao M, Liu H. The Protective Effect of Exogenous Ascorbic Acid on Photosystem Inhibition of Tomato Seedlings Induced by Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1379. [PMID: 36987066 PMCID: PMC10052531 DOI: 10.3390/plants12061379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
This study investigated the protective effects of exogenous ascorbic acid (AsA, 0.5 mmol·L-1) treatment on salt-induced photosystem inhibition in tomato seedlings under salt stress (NaCl, 100 mmol·L-1) conditions with and without the AsA inhibitor lycorine. Salt stress reduced the activities of photosystem II (PSII) and PSI. AsA treatment mitigated inhibition of the maximal photochemical efficiency of PSII (Fv/Fm), maximal P700 changes (Pm), the effective quantum yields of PSII and I [Y(II) and Y(I)], and non-photochemical quenching coefficient (NPQ) values under salt stress conditions both with and without lycorine. Moreover, AsA restored the balance of excitation energy between two photosystems (β/α-1) after disruption by salt stress, with or without lycorine. Treatment of the leaves of salt-stressed plants with AsA with or without lycorine increased the proportion of electron flux for photosynthetic carbon reduction [Je(PCR)] while decreasing the O2-dependent alternative electron flux [Ja(O2-dependent)]. AsA with or without lycorine further resulted in increases in the quantum yield of cyclic electron flow (CEF) around PSI [Y(CEF)] while increasing the expression of antioxidant and AsA-GSH cycle-related genes and elevating the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG). Similarly, AsA treatment significantly decreased the levels of reactive oxygen species [superoxide anion (O2-) and hydrogen peroxide (H2O2)] in these plants. Together, these data indicate that AsA can alleviate salt-stress-induced inhibition of PSII and PSI in tomato seedlings by restoring the excitation energy balance between the photosystems, regulating the dissipation of excess light energy by CEF and NPQ, increasing photosynthetic electron flux, and enhancing the scavenging of reactive oxygen species, thereby enabling plants to better tolerate salt stress.
Collapse
Affiliation(s)
- Xianjun Chen
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Hongwei Han
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Yundan Cong
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Xuezhen Li
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Wenbo Zhang
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Wenliang Wan
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Jinxia Cui
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Wei Xu
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Ming Diao
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Huiying Liu
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| |
Collapse
|
24
|
Rai GK, Kumar P, Choudhary SM, Singh H, Adab K, Kosser R, Magotra I, Kumar RR, Singh M, Sharma R, Corrado G, Rouphael Y. Antioxidant Potential of Glutathione and Crosstalk with Phytohormones in Enhancing Abiotic Stress Tolerance in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1133. [PMID: 36903992 PMCID: PMC10005112 DOI: 10.3390/plants12051133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Glutathione (GSH) is an abundant tripeptide that can enhance plant tolerance to biotic and abiotic stress. Its main role is to counter free radicals and detoxify reactive oxygen species (ROS) generated in cells under unfavorable conditions. Moreover, along with other second messengers (such as ROS, calcium, nitric oxide, cyclic nucleotides, etc.), GSH also acts as a cellular signal involved in stress signal pathways in plants, directly or along with the glutaredoxin and thioredoxin systems. While associated biochemical activities and roles in cellular stress response have been widely presented, the relationship between phytohormones and GSH has received comparatively less attention. This review, after presenting glutathione as part of plants' feedback to main abiotic stress factors, focuses on the interaction between GSH and phytohormones, and their roles in the modulation of the acclimatation and tolerance to abiotic stress in crops plants.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Pradeep Kumar
- Division of Integrated Farming System, ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Sadiya M. Choudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Hira Singh
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Komal Adab
- Department of Biotechnology, BGSB University, Rajouri 185131, India
| | - Rafia Kosser
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Isha Magotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110001, India
| | - Monika Singh
- GLBajaj Institute of Technology and Management, Greater Noida 201306, India
| | - Rajni Sharma
- Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, India
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
25
|
Hanková K, Maršík P, Zunová T, Podlipná R. The Impact of Pesticide Use on Tree Health in Riparian Buffer Zone. TOXICS 2023; 11:235. [PMID: 36977000 PMCID: PMC10053419 DOI: 10.3390/toxics11030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The result of the enormous usage of pesticides in agriculture is the contamination of soil and water bodies surrounding the fields. Therefore, creating buffer zones to prevent water contamination is very useful. Chlorpyrifos (CPS) is the active substance of a number of insecticides widely used all over the world. In our study, we focused on the effect of CPS on plants forming riparian buffer zones: poplar (Populus nigra L., TPE18), hybrid aspen (P.tremula L. × P. tremuloides Michx.), and alder (Alnus glutinosa L.). Foliage spray and root irrigation experiments were conducted under laboratory conditions on in vitro cultivated plants. Spray applications of pure CPS were compared with its commercially available form-Oleoekol®. Although CPS is considered a nonsystemic insecticide, our results indicate that CPS is transferred not only upwards from roots to shoots but also downwards from leaves to roots. The amount of CPS in the roots was higher (4.9 times and 5.7 times, respectively) in aspen or poplar sprayed with Oleoekol than in those sprayed with pure CPS. Although the treated plants were not affected in growth parameters, they showed increased activity of antioxidant enzymes (approximately two times in the case of superoxide dismutase and ascorbate peroxidase) and augmented levels of phenolic substances (control plants -114.67 mg GAE/g dry tissue, plants treated with CPS-194.27 mg GAE/g dry tissue). In summary, chlorpyrifos, especially as a foliar spray pesticide, can create persistent residues and affects not only target plants but also plants surrounding the field.
Collapse
Affiliation(s)
- K. Hanková
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha 6, Czech Republic
| | - P. Maršík
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha 6, Czech Republic
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Lysolaje, 165 02 Praha 6, Czech Republic
| | - T. Zunová
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha 6, Czech Republic
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Lysolaje, 165 02 Praha 6, Czech Republic
| | - R. Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Lysolaje, 165 02 Praha 6, Czech Republic
| |
Collapse
|
26
|
Islam MM, Jahan K, Sen A, Urmi TA, Haque MM, Ali HM, Siddiqui MH, Murata Y. Exogenous Application of Calcium Ameliorates Salinity Stress Tolerance of Tomato (Solanum lycopersicum L.) and Enhances Fruit Quality. Antioxidants (Basel) 2023; 12:antiox12030558. [PMID: 36978806 PMCID: PMC10044850 DOI: 10.3390/antiox12030558] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Tomato is affected by various biotic and abiotic stresses, especially salinity, which drastically hinders the growth and yield of tomato. Calcium (Ca) is a vital macronutrient which plays physiological and biochemical roles in plants. Hence, we studied the protective roles of Ca against salinity stress in tomato. There were eight treatments comprising control (nutrient solution), 5 mM Ca, 10 mM Ca, 15 mM Ca, 12 dS m−1 NaCl, 12 dS m−1 NaCl + 5 mM Ca, 12 dS m−1 NaCl + 10 mM Ca and 12 dS m−1 NaCl + 15 mM Ca, and two tomato varieties: BARI tomato-2 and Binatomato-5. Salinity significantly decreased the plant-growth and yield attributes, relative water content (RWC), photosynthetic pigments (SPAD value) and the uptake of K, Ca and Mg in leaves and roots. Salinity-induced oxidative stress was present in the form of increased Na+ ion concentration, hydrogen peroxide (H2O2) content and lipid peroxidation (MDA). Ca application reduced oxidative stress through the boosting of antioxidant enzymatic activity. Exogenous Ca application enhanced proline and glycine betaine content and reduced Na+ uptake, which resulted in the inhibition of ionic toxicity and osmotic stress, respectively. Hence, Ca application significantly increased the growth and yield attributes, RWC, SPAD value, and uptake of K, Ca and Mg. Calcium application also had a significant effect on the fruit quality of tomato and the highest total soluble solid, total sugar, reducing sugar, β-carotene, vitamin C and juice pH were found for the combined application of NaCl and Ca. Therefore, application of Ca reversed the salt-induced changes through increasing osmoprotectants, activation of antioxidants enzymes, and by optimizing mineral nutrient status.
Collapse
Affiliation(s)
- Md. Moshiul Islam
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Correspondence: ; Tel.: +880-171-213-2019
| | - Khurshida Jahan
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Arpita Sen
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh 2202, Bangladesh
| | - Tahmina Akter Urmi
- Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - M. Moynul Haque
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| |
Collapse
|
27
|
Basit F, Ulhassan Z, Mou Q, Nazir MM, Hu J, Hu W, Song W, Sheteiwy MS, Zhou W, Bhat JA, Jeddi K, Hessini K, Guan Y. Seed priming with nitric oxide and/or spermine mitigate the chromium toxicity in rice ( Oryza sativa) seedlings by improving the carbon-assimilation and minimising the oxidative damages. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:121-135. [PMID: 35057906 DOI: 10.1071/fp21268] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/03/2021] [Indexed: 05/13/2023]
Abstract
Chromium (Cr) is a serious environmental contaminant that drastically limited the crop yields. Nitric oxide (NO) and spermine (Spm) portrayal significance in improving the plant tolerance against abiotic stresses. Therefore, we investigate the protective efficacy of seed priming with NO (100μM) and/or Spm (0.01mM) in minimising the Cr-induced toxic effects in rice (Oryza sativa L.) plants. Our outcomes revealed that Cr alone treatments (100μM) notably reduced the seed germination rate, plant growth, photosynthetic apparatus, nutrients uptake and antioxidant defence system, but extra generation of reactive oxygen species (ROS). Interestingly, the combine applications of NO and Spm significantly reversed the Cr-induced toxic effects by reducing the Cr-accumulation, maintaining the nutrient balance, improving the germination indices, levels of photosynthetic pigments (chl a by 24.6%, chl b by 36.3%, chl (a+b ) by 57.2% and carotenoids by 79.4%), PSII, photosynthesis gas exchange parameters and total soluble sugar (74.9%) by improving antioxidative enzyme activities. As a result, NO+Spm lowered the accumulation of oxidative markers (H2 O2 by 93.9/70.4%, O2 ˙- by 86.3/69.9% and MDA by 97.2/73.7% in leaves/roots), electrolyte leakage (71.4% in leaves) and improved the plant growth traits. Based on these findings, it can be concluded that NO triggers Spm to minimise the Cr-accumulation and its adverse effects on rice plants. Additionally, combined treatments (NO+Spm) were more effective in minimising the Cr-induced toxic effects in comparison to NO and Spm alone treatments. Thus, co-exposure of NO and Spm may be utilised to boost rice tolerance under Cr stress conditions.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zaid Ulhassan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qingshan Mou
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Mudassar Nazir
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weimin Hu
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wenjian Song
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mohamed Salah Sheteiwy
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weijun Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; and State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaouthar Jeddi
- Laboratory of Plant Biodiversity and Dynamic of Ecosystems in Arid Area, Faculty of Sciences of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
28
|
Emamverdian A, Ding Y, Barker J, Liu G, Li Y, Mokhberdoran F. Sodium Nitroprusside Improves Bamboo Resistance under Mn and Cr Toxicity with Stimulation of Antioxidants Activity, Relative Water Content, and Metal Translocation and Accumulation. Int J Mol Sci 2023; 24:1942. [PMID: 36768266 PMCID: PMC9916771 DOI: 10.3390/ijms24031942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Sodium nitroprusside (SNP), as a single minuscule signaling molecule, has been employed to alleviate plant stress in recent years. This approach has a beneficial effect on the biological and physiological processes of plants. As a result, an in vitro tissue culture experiment was carried out to investigate the effect of high and low levels of SNP on the amelioration of manganese (Mn) and chromium (Cr) toxicity in a one-year-old bamboo plant, namely Pleioblastus pygmaea L. Five different concentrations of SNP were utilized as a nitric oxide (NO) donor (0, 50, 80, 150, 250, and 400 µM) in four replications of 150 µM Mn and 150 µM Cr. The results revealed that while 150 µM Mn and 150 µM Cr induced an over-generation of reactive oxygen species (ROS) compounds, enhancing plant membrane injury, electrolyte leakage (EL), and oxidation in bamboo species, the varying levels of SNP significantly increased antioxidant and non-antioxidant activities, proline (Pro), glutathione (GSH), and glycine betaine (GB) content, photosynthesis, and plant growth parameters, while also reducing heavy metal accumulation and translocation in the shoot and stem. This resulted in an increase in the plant's tolerance to Mn and Cr toxicity. Hence, it is inferred that NO-induced mechanisms boosted plant resistance to toxicity by increasing antioxidant capacity, inhibiting heavy metal accumulation in the aerial part of the plant, restricting heavy metal translocation from root to leaves, and enhancing the relative water content of leaves.
Collapse
Affiliation(s)
- Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames KT1 2EE, UK
| | - Guohua Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Li
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Farzad Mokhberdoran
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
29
|
Lyu M, Liu J, Xu X, Liu C, Qin H, Zhang X, Tian G, Jiang H, Jiang Y, Zhu Z, Ge S. Magnesium alleviates aluminum-induced growth inhibition by enhancing antioxidant enzyme activity and carbon-nitrogen metabolism in apple seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114421. [PMID: 36529044 DOI: 10.1016/j.ecoenv.2022.114421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Previous studies have determined that magnesium (Mg) in appropriate concentrations prevents plants from suffering from abiotic stress. To better understand the mechanism of Mg alleviation of aluminum (Al) stress in apple, we investigated the effect of Mg on plant growth, photosynthetic fluorescence, antioxidant system, and carbon (C) and nitrogen (N) metabolism of apple seedlings under Al toxicity (1.5 mmol/L) via a hydroponic experiment. Al stress induced the production of reactive oxygen in the leaves and roots and reduced the total dry weight (DW) by 52.37 % after 20 days of treatment relative to plants grown without Al, due to hindered photosynthesis and alterations in C and N metabolism. By contrast, total DW decreased by only 11.07 % in the Mg-treated plants under Al stress. Supplementation with 3.0 mmol/L Mg in the Al treatment decreased Al accumulation in the apple plants and reduced Al-induced oxidative damage by enhancing the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) and reducing the production of H2O2 and malondialdehyde (MDA). Under Al stress, the Mg-treated plants showed a 46.17 % higher photosynthetic rate than the non-treated plants. Supplementation with Mg significantly increased the sucrose content by increasing sucrose synthase (SS) and sucrose-phosphate synthase (SPS) activities. Moreover, Mg facilitated the transport of 13C-carbohydrates from the leaves to roots. Regarding N metabolism, the nitrate reductase (NR), glutamine synthase (GS), and glutamate synthase (GOGAT) activities in the roots and leaves of the Mg-treated plants were significantly higher than those of the non-treated plants under Al stress. Compared with the non-treated plants under Al stress, the Mg-treated plants exhibited a significantly high level of NO3- and soluble protein content in the leaves, roots, and stems, but a low level of free amino acids. Furthermore, Mg significantly improved nitrogen accumulation and enhanced the transport of 15N from the roots to leaves. Overall, our results revealed that Mg alleviates Al-induced growth inhibition by enhancing antioxidant capacity and C-N metabolism in apple seedlings.
Collapse
Affiliation(s)
- Mengxue Lyu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jingquan Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xinxiang Xu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chunling Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hanhan Qin
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuelin Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ge Tian
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuanmao Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Zhanling Zhu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Shunfeng Ge
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
30
|
Ijaz M, Ansari MUR, Alafari HA, Iqbal M, Alshaya DS, Fiaz S, Ahmad HM, Zubair M, Ramzani PMA, Iqbal J, Abushady AM, Attia K. Citric acid assisted phytoextraction of nickle from soil helps to tolerate oxidative stress and expression profile of NRAMP genes in sunflower at different growth stages. FRONTIERS IN PLANT SCIENCE 2022; 13:1072671. [PMID: 36531389 PMCID: PMC9751920 DOI: 10.3389/fpls.2022.1072671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Introduction Soil polluted with Nickel (Ni) adversely affects sunflower growth resulting in reduced yield. Counterbalancing Ni toxicity requires complex molecular, biochemical, and physiological mechanisms at the cellular, tissue, and whole plant levels, which might improve crop productivity. One of the primary adaptations to tolerate Ni toxicity is the enhanced production of antioxidant enzymes and the elevated expression of Ni responsive genes. Methods In this study, biochemical parameters, production of ROS, antioxidants regulation, and expression of NRAMP metal transporter genes were studied under Ni stress in sunflower. There were four soil Ni treatments (0, 50, 100, and 200 mg kg-1 soil), while citric acid (CA, 5 mM kg-1 soil) was applied on the 28th and 58th days of plant growth. The samples for all analyses were obtained on the 30th and 60th day of plant growth, respectively. Results and discussion The results indicated that the concentrations of Ni in roots and shoots were increased with increasing concentrations of Ni at both time intervals. Proline contents, ascorbic acid, protein, and total phenolics were reduced under Ni-stress, but with the application of CA, improvement was witnessed in their contents. The levels of malondialdehyde and hydrogen peroxide were enhanced with the increasing concentration of Ni, and after applying CA, they were reduced. The contents of antioxidants, i.e., catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase, were increased at 50 ppm Ni concentration and decreased at higher concentrations of Ni. The application of CA significantly improved antioxidants at all concentrations of Ni. The enhanced expression of NRAMP1 (4, 51 and 81 folds) and NRAMP3 (1.05, 4 and 6 folds) was found at 50, 100 and 200ppm Ni-stress, respectively in 30 days old plants and the same pattern of expression was recorded in 60 days old plants. CA further enhanced the expression at both developmental stages. Conclusion In conclusion, CA enhances Ni phytoextraction efficiency as well as protect plant against oxidative stress caused by Ni in sunflower.
Collapse
Affiliation(s)
- Munazza Ijaz
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Mahmood-ur-Rahman Ansari
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Hayat Ali Alafari
- Department of Biology, College of science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammad Iqbal
- Department of Environmental Science and Engineering, Government College University, Faisalabad, Pakistan
| | - Dalal S. Alshaya
- Department of Biology, College of science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Javed Iqbal
- Department of Agricultural Engineering, Khwaja Fareed university of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Asmaa M. Abushady
- Biotechnology School, Nile University, Sheikh Zayed, Giza, Egypt
- Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
- Rice Biotechnology Lab, Rice Department, Field Crops Research Institute, ARC, Sakha, Egypt
| |
Collapse
|
31
|
Tauqeer HM, Basharat Z, Adnan Ramzani PM, Farhad M, Lewińska K, Turan V, Karczewska A, Khan SA, Faran GE, Iqbal M. Aspergillus niger-mediated release of phosphates from fish bone char reduces Pb phytoavailability in Pb-acid batteries polluted soil, and accumulation in fenugreek. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120064. [PMID: 36055452 DOI: 10.1016/j.envpol.2022.120064] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Soil receiving discharges from Pb-acid batteries dismantling and restoring units (PBS) can have a high concentration of phytoavailable Pb. Reducing Pb phytoavailability in PBS can decline Pb uptake in food crops and minimize the risks to humans and the environment. This pot study aimed to reduce the concentration of phytoavailable Pb in PBS through Aspergillus niger (A. niger)-mediated release of PO43- from fish bone [Apatite II (APII)] products. The PBS (Pb = 639 mg kg-1 soil) was amended with APII powder (APII-P), APII char (APII-C), and A. niger inoculum as separate doses, and combining A. niger with APII-P (APII-P + A. niger) and APII-C (APII-C + A. niger). The effects of these treatments on reducing the phytoavailability of Pb in PBS and its uptake in fenugreek were examined. Additionally, enzymatic activities and microbial biomass carbon (MBC) in the PBS and the indices of plant physiology, nutrition, and antioxidant defense machinery were scoped. Results revealed that the APII-C + A. niger treatment was the most efficient one. Compared to the control, it significantly reduced the Pb phytoavailability (DTPA-extractable Pb fraction) in soil and its uptake in plant shoots, roots, and grain, up to 61%, 83%, 74%, and 92%. The grain produced under APII-C + A. niger were safe for human consumption as Pb concentration in grain was 4.01 mg kg-1 DW, remaining within the permissible limit set by WHO/FAO (2007). The APII-C + A. niger treatment also improved soil pH, EC, CEC, MBC, available P content and enzymatic activities, and the fenugreek quality parameters. A. niger played a significant role in solubilizing PO43- from APII-C, which reacted with Pb and formed insoluble Pb-phosphates, thereby reducing Pb phytoavailability in PBS and its uptake in plants. This study suggests APII-C + A. niger can remediate Pb-polluted soils via reducing Pb phytoavailability in them.
Collapse
Affiliation(s)
| | - Zeeshan Basharat
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | | | - Muniba Farhad
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Karolina Lewińska
- Adam Mickiewicz University in Poznan, Faculty of Geographical and Geological Sciences, Department of Soil Science and Remote Sensing of Soilsul, Bogumiła Krygowskiego 10, 61-680, Poznań, Poland
| | - Veysel Turan
- Department of Soil Science and Plant Nutrition, Bingöl University, Bingöl, Turkey
| | - Anna Karczewska
- Wrocław University of Environmental and Life Sciences, Institute of Soil Science, Plant Nutrition and Environmental Protection, ul. Grunwaldzka 53, 50-357, Wrocław, Poland
| | - Shahbaz Ali Khan
- Department of Environmental Sciences, University of Okara, Okara, 56300, Pakistan
| | - Gull-E Faran
- Department of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
32
|
Zhou Y, Hu L, Chen Y, Liao L, Li R, Wang H, Mo Y, Lin L, Liu K. The combined effect of ascorbic acid and chitosan coating on postharvest quality and cell wall metabolism of papaya fruits. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Khalid M, Rehman HM, Ahmed N, Nawaz S, Saleem F, Ahmad S, Uzair M, Rana IA, Atif RM, Zaman QU, Lam HM. Using Exogenous Melatonin, Glutathione, Proline, and Glycine Betaine Treatments to Combat Abiotic Stresses in Crops. Int J Mol Sci 2022; 23:12913. [PMID: 36361700 PMCID: PMC9657122 DOI: 10.3390/ijms232112913] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 08/06/2023] Open
Abstract
Abiotic stresses, such as drought, salinity, heat, cold, and heavy metals, are associated with global climate change and hamper plant growth and development, affecting crop yields and quality. However, the negative effects of abiotic stresses can be mitigated through exogenous treatments using small biomolecules. For example, the foliar application of melatonin provides the following: it protects the photosynthetic apparatus; it increases the antioxidant defenses, osmoprotectant, and soluble sugar levels; it prevents tissue damage and reduces electrolyte leakage; it improves reactive oxygen species (ROS) scavenging; and it increases biomass, maintains the redox and ion homeostasis, and improves gaseous exchange. Glutathione spray upregulates the glyoxalase system, reduces methylglyoxal (MG) toxicity and oxidative stress, decreases hydrogen peroxide and malondialdehyde accumulation, improves the defense mechanisms, tissue repairs, and nitrogen fixation, and upregulates the phytochelatins. The exogenous application of proline enhances growth and other physiological characteristics, upregulates osmoprotection, protects the integrity of the plasma lemma, reduces lipid peroxidation, increases photosynthetic pigments, phenolic acids, flavonoids, and amino acids, and enhances stress tolerance, carbon fixation, and leaf nitrogen content. The foliar application of glycine betaine improves growth, upregulates osmoprotection and osmoregulation, increases relative water content, net photosynthetic rate, and catalase activity, decreases photorespiration, ion leakage, and lipid peroxidation, protects the oxygen-evolving complex, and prevents chlorosis. Chemical priming has various important advantages over transgenic technology as it is typically more affordable for farmers and safe for plants, people, and animals, while being considered environmentally acceptable. Chemical priming helps to improve the quality and quantity of the yield. This review summarizes and discusses how exogenous melatonin, glutathione, proline, and glycine betaine can help crops combat abiotic stresses.
Collapse
Affiliation(s)
- Memoona Khalid
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Hafiz Mamoon Rehman
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nisar Ahmed
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Sehar Nawaz
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Fozia Saleem
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shakeel Ahmad
- Seed Center, Ministry of Environment, Water & Agriculture, Riyadh 14712, Saudi Arabia
| | - Muhammad Uzair
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Iqrar Ahmad Rana
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad Pakistan, Punjab 38000, Pakistan
| | - Rana Muhammad Atif
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad Pakistan, Punjab 38000, Pakistan
| | - Qamar U. Zaman
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad Pakistan, Punjab 38000, Pakistan
| | - Hon-Ming Lam
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
34
|
Chauhan PK, Upadhyay SK, Tripathi M, Singh R, Krishna D, Singh SK, Dwivedi P. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnol Genet Eng Rev 2022:1-37. [PMID: 36254096 DOI: 10.1080/02648725.2022.2131958] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023]
Abstract
Soil salinity is a worldwide concern that decreases plant growth performance in agricultural fields and contributes to food scarcity. Salt stressors have adverse impacts on the plant's ionic, osmotic, and oxidative balance, as well as numerous physiological functions. Plants have a variety of coping strategies to deal with salt stress, including osmosensing, osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Not only does salt stress cause oxidative stress but also many types of stress do as well, thus plants have an effective antioxidant system to battle the negative effects of excessive reactive oxygen species produced as a result of stress. Rising salinity in the agricultural field affects crop productivity and plant development considerably; nevertheless, plants have a well-known copying mechanism that shields them from salt stress by facilitated production of secondary metabolites, antioxidants, ionhomeostasis, ABAbiosynthesis, and so on. To address this problem, various environment-friendly solutions such as salt-tolerant plant growth-promoting rhizobacteria, eco-friendly additives, and foliar applications of osmoprotectants/antioxidants are urgently needed. CRISPR/Cas9, a new genetic scissor, has recently been discovered to be an efficient approach for reducing salt stress in plants growing in saline soil. Understanding the processes underlying these physiological and biochemical responses to salt stress might lead to more effective crop yield control measures in the future. In order to address this information, the current review discusses recent advances in plant stress mechanisms against salinity stress-mediated antioxidant systems, as well as the development of appropriate long-term strategies for plant growth mediated by CRISPR/Cas9 techniques under salinity stress.
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. RamManohar Lohia Avadh University, Ayodhya, India
| | - Rajesh Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Deeksha Krishna
- College of agriculture, Fisheries and Forestry, Fiji National University, Fiji
| | - Sushil K Singh
- Department of Agri-Business, V.B.S. Purvanchal University, Jaunpur, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
35
|
Chen Y, Zhou Y, Cai Y, Feng Y, Zhong C, Fang Z, Zhang Y. De novo transcriptome analysis of high-salinity stress-induced antioxidant activity and plant phytohormone alterations in Sesuvium portulacastrum. FRONTIERS IN PLANT SCIENCE 2022; 13:995855. [PMID: 36212296 PMCID: PMC9540214 DOI: 10.3389/fpls.2022.995855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Sesuvium portulacastrum has a strong salt tolerance and can grow in saline and alkaline coastal and inland habitats. This study investigated the physiological and molecular responses of S. portulacastrum to high salinity by analyzing the changes in plant phytohormones and antioxidant activity, including their differentially expressed genes (DEGs) under similar high-salinity conditions. High salinity significantly affected proline (Pro) and hydrogen peroxide (H2O2) in S. portulacastrum seedlings, increasing Pro and H2O2 contents by 290.56 and 83.36%, respectively, compared to the control. Antioxidant activities, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), significantly increased by 83.05, 205.14, and 751.87%, respectively, under high salinity. Meanwhile, abscisic acid (ABA) and gibberellic acid (GA3) contents showed the reverse trend of high salt treatment. De novo transcriptome analysis showed that 36,676 unigenes were matched, and 3,622 salt stress-induced DEGs were identified as being associated with the metabolic and biological regulation processes of antioxidant activity and plant phytohormones. POD and SOD were upregulated under high-salinity conditions. In addition, the transcription levels of genes involved in auxin (SAURs and GH3), ethylene (ERF1, ERF3, ERF114, and ABR1), ABA (PP2C), and GA3 (PIF3) transport or signaling were altered. This study identified key metabolic and biological processes and putative genes involved in the high salt tolerance of S. portulacastrum and it is of great significance for identifying new salt-tolerant genes to promote ecological restoration of the coastal strand.
Collapse
Affiliation(s)
- YiQing Chen
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| | - Yan Zhou
- Mangrove Institute, Lingnan Normal University, Zhanjiang, China
| | - Yuyi Cai
- Mangrove Institute, Lingnan Normal University, Zhanjiang, China
| | - Yongpei Feng
- Mangrove Institute, Lingnan Normal University, Zhanjiang, China
| | - Cairong Zhong
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| | - ZanShan Fang
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| | - Ying Zhang
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
- Mangrove Institute, Lingnan Normal University, Zhanjiang, China
| |
Collapse
|
36
|
Jumpa T, Beckles DM, Songsri P, Pattanagul K, Pattanagul W. Physiological and Metabolic Responses of Gac Leaf ( Momordica cochinchinensis (Lour.) Spreng.) to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2447. [PMID: 36235312 PMCID: PMC9572180 DOI: 10.3390/plants11192447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Gac is a carotenoid-rich, healthful tropical fruit; however, its productivity is limited by soil salinity, a growing environmental stress. This study aimed to evaluate the effects of salinity stress on key physiological traits and metabolites in 30-day-old gac seedling leaves, treated with 0, 25-, 50-, 100-, and 150-mM sodium chloride (NaCl) for four weeks to identify potential alarm, acclimatory, and exhaustion responses. Electrolyte leakage increased with increasing NaCl concentrations (p < 0.05) indicating loss of membrane permeability and conditions that lead to reactive oxygen species production. At 25 and 50 mM NaCl, superoxide dismutase (SOD) activity, starch content, and total soluble sugar increased. Chlorophyll a, and total chlorophyll increased at 25 mM NaCl but decreased at higher NaCl concentrations indicating salinity-induced thylakoid membrane degradation and chlorophyllase activity. Catalase (CAT) activity decreased (p < 0.05) at all NaCl treatments, while ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) activities were highest at 150 mM NaCl. GC-MS-metabolite profiling showed that 150 mM NaCl induced the largest changes in metabolites and was thus distinct. Thirteen pathways and 7.73% of metabolites differed between the control and all the salt-treated seedlings. Salinity decreased TCA cycle intermediates, and there were less sugars for growth but more for osmoprotection, with the latter augmented by increased amino acids. Although 150 mM NaCl level decreased SOD activity, the APX and GPX enzymes were still active, and some carbohydrates and metabolites also accumulated to promote salinity resistance via multiple mechanisms.
Collapse
Affiliation(s)
- Thitiwan Jumpa
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Diane M. Beckles
- Department of Plant Sciences, University of California, Davis, CA 95615, USA
| | - Patcharin Songsri
- Department of Plant Sciences and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kunlaya Pattanagul
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wattana Pattanagul
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
37
|
Hasanuzzaman M, Raihan MRH, Nowroz F, Fujita M. Insight into the Mechanism of Salt-Induced Oxidative Stress Tolerance in Soybean by the Application of Bacillus subtilis: Coordinated Actions of Osmoregulation, Ion Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification. Antioxidants (Basel) 2022; 11:antiox11101856. [PMID: 36290578 PMCID: PMC9598349 DOI: 10.3390/antiox11101856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the growth-promoting potential and other regulatory roles of bacteria, we investigated the possible mechanism of the role of Bacillus subtilis in conferring salt tolerance in soybean. Soybean (Glycine max cv. BARI Soybean-5) seeds were inoculated with B. subtilis, either through a presoaking with seeds or a direct application with pot soil. After 20 days of sowing, both the seed- and soil-inoculated plants were exposed to 50, 100, and 150 mM of NaCl for 30 days. A clear sign of oxidative stress was evident through a remarkable increase in lipid peroxidation, hydrogen peroxide, methylglyoxal, and electrolyte leakage in the salt treated plants. Moreover, the efficiency of the ascorbate (AsA)–glutathione (GSH) pathways was declined. Consequently, the plant growth, biomass accumulation, water relations, and content of the photosynthetic pigments were decreased. Salt stress also caused an increased Na+/K+ ratio and decreased Ca2+. On the contrary, the B. subtilis inoculated plants showed increased levels of AsA and GSH, their redox balance, and the activities of the AsA–GSH pathway enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, and peroxidase. The B. subtilis inoculated plants also enhanced the activities of glyoxalase enzymes, which mitigated methylglyoxal toxicity in coordination with ROS homeostasis. Besides this, the accumulation of K+ and Ca2+ was increased to maintain the ion homeostasis in the B. subtilis inoculated plants under salinity. Furthermore, the plant water status was uplifted in the salt treated soybean plants with B. subtilis inoculation. This investigation reveals the potential of B. subtilis in mitigating salt-induced oxidative stress in soybean plants through modulating the antioxidant defense and glyoxalase systems along with maintaining ion homeostasis and osmotic adjustments. In addition, it was evident that the soil inoculation performed better than the seed inoculation in mitigating salt-induced oxidative damages in soybean.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Correspondence:
| | - Md. Rakib Hossain Raihan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Farzana Nowroz
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Takamatsu 761-0795, Japan
| |
Collapse
|
38
|
Comparative Study of Trehalose and Trehalose 6-Phosphate to Improve Antioxidant Defense Mechanisms in Wheat and Mustard Seedlings under Salt and Water Deficit Stresses. STRESSES 2022. [DOI: 10.3390/stresses2030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Trehalose 6-phosphate (T6P) regulates sugar levels and starch metabolism in a plant cell and thus interacts with various signaling pathways, and after converting T6P into trehalose (Tre), it acts as a vital osmoprotectant under stress conditions. This study was conducted using wheat (Triticum aestivum L. cv. Norin 61) and mustard (Brassica juncea L. cv. BARI sharisha 13) seedlings to investigate the role of Tre and T6P in improving salt and water deficit stress tolerance. The seedlings were grown hydroponically using Hyponex solution and exposed to salt (300 and 200 mM NaCl for wheat and mustard, respectively) and water deficit (20 and 12% PEG 6000 for wheat and mustard, respectively) stresses with or without Tre and T6P. The study demonstrated that salt and water deficit stress negatively influenced plant growth by destroying photosynthetic pigments and increasing oxidative damage. In response to salt and water deficit stresses, the generation of H2O2 increased by 114 and 67%, respectively, in wheat seedlings, while in mustard, it increased by 86 and 50%, respectively. Antioxidant defense systems were also altered by salt and water deficit stresses due to higher oxidative damage. The AsA content was reduced by 65 and 38% in wheat and 61 and 45% in mustard under salt and water deficit stresses, respectively. The subsequent negative results of salinity and water deficit can be overcome by exogenous application of Tre and T6P; these agents reduced the oxidative stress by decreasing H2O2 and TBARS levels and increasing enzymatic and non-enzymatic antioxidants. Moreover, the application of Tre and T6P decreased the accumulation of Na in the shoots and roots of wheat and mustard seedlings. Therefore, the results suggest that the use of Tre and T6P is apromising strategy to alleviate osmotic and ionic toxicity in plants under salt and water deficit stresses.
Collapse
|
39
|
Basit F, Bhat JA, Dong Z, Mou Q, Zhu X, Wang Y, Hu J, Jan BL, Shakoor A, Guan Y, Ahmad P. Chromium toxicity induced oxidative damage in two rice cultivars and its mitigation through external supplementation of brassinosteroids and spermine. CHEMOSPHERE 2022; 302:134423. [PMID: 35430206 DOI: 10.1016/j.chemosphere.2022.134423] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 05/27/2023]
Abstract
The chromium (Cr) induced phytotoxicity avowed the scientific community to develop stress mitigation strategies to restrain the Cr accumulation inside the food chain. Whereas, brassinosteroids (BRs), and spermine (SPM) are well-known growth-promoting phytohormones, which enhance the plants health, and resilient the toxic effects under stress conditions. Until now, their interactive role against Cr-mitigation is poorly known. Hence, we conducted the hydroponic experiment to perceive the behavior of seed primed with BRs, or/and SPM treatment against Cr disclosure in two different rice cultivars (CY927; sensitive, YLY689; tolerant). Our findings delineated that BRs (0.01 μM), or/and SPM (0.01 mM) remarkably alleviated Cr-induced phytotoxicity by improving the seed germination ratio, chlorophyll pigments, PSII system, total soluble sugar, and minimizing the MDA contents level, ROS extra generation, and electrolyte leakage through restricting the Cr accretion in roots, and shoots of both rice cultivars under Cr stress. Additionally, the BRs, or/and SPM modulated the antioxidant enzyme, and non-enzyme activities to reduce the Cr-induced cellular oxidative damage as well as maintained the ionic hemostasis in both rice cultivars, especially in YLY689. Concisely, enhanced the plants biomass and growth. Overall, our outcomes revealed that BRs and SPM interact positively to alleviate the Cr-induced damages in rice seedlings on the above-mentioned indices, and combine treatment is much more efficient than solely. Moreover, the effect of BRs, or/and SPM was more obvious in YLY689 than CY927 to hamper the oxidative stress, and boost the antioxidant capacity.
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Zhang Dong
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
| | - Qingshan Mou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaobo Zhu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
| | - Yang Wang
- College of Advanced Agricultural Science, The Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin' an, Hangzhou, 311300, China
| | - Jin Hu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Hainan Research Institute, Zhejiang University, Sanya, 572025, China
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, 25198, Lleida, Spain
| | - Yajing Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Hainan Research Institute, Zhejiang University, Sanya, 572025, China.
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, 8, Riyadh, Saudi Arabia.
| |
Collapse
|
40
|
Basit F, Bhat JA, Guan Y, Jan BL, Tyagi A, Ahmad P. Nitric oxide and spermine revealed positive defense interplay for the regulation of the chromium toxicity in soybean (Glycine max L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119602. [PMID: 35716895 DOI: 10.1016/j.envpol.2022.119602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Current investigation demonstrated that chromium (Cr) toxicity affects adversely on the normal growth of soybean plants. However, the seed priming with nitric oxide (NO; 100 μM), and spermine (Spm; 0.01 Mm) can significantly alleviate the Cr toxicity in soybean plant. Herein, the hydroponic experiment was conducted to observe the individual as well as the interactive behavior of NO, and Spm on the various morpho-physiological and, biochemical parameters in soybean such as plant growth, plant height, seed germination indices, photosynthesis-related indices such as chlorophyll biosynthesis, PS system II, nutrient uptake of soybean seedlings against Cr (VI) toxicity. Our outcomes deliberated that the alone treatment of NO, and Spm cause a significant improvement in seed germination ratio, photosynthetic pigments, and biomass of plants by restricting Cr uptake; while NO + Spm treatment being more effective in the improvement of soybean growth relative to their individual treatment under Cr stress. Relative to alone treatment of NO, and Spm, the combined treatment significantly modulated the antioxidant activities, and lowered the ROS accumulation, and electrolyte leakage. In addition, seed priming with NO, and Spm mitigate the Cr-induced toxicity by reducing Cr uptake and stimulating the antioxidative defense mechanisms. Hence, these findings confirmed the positive defense interplay of the NO and Spm in the modulation of the Cr tolerance in soybean. However, the underlying defense mechanism of these synergetic effects needs to be further explored.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China; Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China; Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anshika Tyagi
- Department of Biotechnology Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, Jammu and Kashmir, India.
| |
Collapse
|
41
|
Basit F, Bhat JA, Hu J, Kaushik P, Ahmad A, Guan Y, Ahmad P. Brassinosteroid Supplementation Alleviates Chromium Toxicity in Soybean (Glycine max L.) via Reducing Its Translocation. PLANTS 2022; 11:plants11172292. [PMID: 36079674 PMCID: PMC9460071 DOI: 10.3390/plants11172292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
Chromium (Cr) phytotoxicity severely inhibits plant growth and development which makes it a prerequisite to developing techniques that prevent Cr accumulation in food chains. However, little is explored related to the protective role of brassinosteroids (BRs) against Cr-induced stress in soybean plants. Herein, the morpho-physiological, biochemical, and molecular responses of soybean cultivars with/without foliar application of BRs under Cr toxicity were intensely investigated. Our outcomes deliberated that BRs application noticeably reduced Cr-induced phytotoxicity by lowering Cr uptake (37.7/43.63%), accumulation (63.92/81.73%), and translocation (26.23/38.14%) in XD-18/HD-19, plant tissues, respectively; besides, improved seed germination ratio, photosynthetic attributes, plant growth, and biomass, as well as prevented nutrient uptake inhibition under Cr stress, especially in HD-19 cultivar. Furthermore, BRs stimulated antioxidative defense systems, both enzymatic and non-enzymatic, the compartmentalization of ion chelation, diminished extra production of reactive oxygen species (ROS), and electrolyte leakage in response to Cr-induced toxicity, specifically in HD-19. In addition, BRs improved Cr stress tolerance in soybean seedlings by regulating the expression of stress-related genes involved in Cr accumulation, and translocation. Inclusively, by considering the above-mentioned biomarkers, foliar spray of BRs might be considered an effective inhibitor of Cr-induced damages in soybean cultivars, even in Cr polluted soil.
Collapse
Affiliation(s)
- Farwa Basit
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Jin Hu
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yajing Guan
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.G.); (P.A.)
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Srinagar 192301, Jammu and Kashmir, India
- Correspondence: (Y.G.); (P.A.)
| |
Collapse
|
42
|
Chavan SN, De Kesel J, Desmedt W, Degroote E, Singh RR, Nguyen GT, Demeestere K, De Meyer T, Kyndt T. Dehydroascorbate induces plant resistance in rice against root-knot nematode Meloidogyne graminicola. MOLECULAR PLANT PATHOLOGY 2022; 23:1303-1319. [PMID: 35587614 PMCID: PMC9366072 DOI: 10.1111/mpp.13230] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/01/2023]
Abstract
Ascorbic acid (AsA) is an important antioxidant in plants and regulates various physiological processes. In this study, we show that exogenous treatments with the oxidized form of AsA, that is, dehydroascorbate (DHA), activates induced systemic resistance in rice against the root-knot nematode Meloidogyne graminicola, and investigate the molecular and biochemical mechanisms underlying this phenotype. Detailed transcriptome analysis on roots of rice plants showed an early and robust transcriptional response on foliar DHA treatment, with induction of several genes related to plant stress responses, immunity, antioxidant activity, and secondary metabolism already at 1 day after treatment. Quantitative and qualitative evaluation of H2 O2 levels confirmed the appearance of a reactive oxygen species (ROS) burst on DHA treatment, both at the site of treatment and systemically. Experiments using chemical ROS inhibitors or scavengers confirmed that H2 O2 accumulation contributes to DHA-based induced resistance. Furthermore, hormone measurements in DHA-treated plants showed a significant systemic accumulation of the defence hormone salicylic acid (SA). The role of the SA pathway in DHA-based induced resistance was confirmed by nematode infection experiments using an SA-signalling deficient WRKY45-RNAi line and reverse transcription-quantitative PCR on SA marker genes. Our results collectively reveal that DHA activates induced systemic resistance in rice against the root-knot nematode M. graminicola, mediated through the production of ROS and activation of the SA pathway.
Collapse
Affiliation(s)
- Satish Namdeo Chavan
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- ICAR – Indian Institute of Rice ResearchHyderabadIndia
| | - Jonas De Kesel
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Willem Desmedt
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Eva Degroote
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Richard Raj Singh
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Department Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Giang Thu Nguyen
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical ModellingGhent UniversityGhentBelgium
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
43
|
Liang Y, Bai T, Liu B, Yu W, Teng W. Different antioxidant regulation mechanisms in response to aluminum-induced oxidative stress in Eucalyptus species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113748. [PMID: 35696965 DOI: 10.1016/j.ecoenv.2022.113748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Forest ecosystems play an important role in environmental protection and maintaining ecological balance. Understanding the physiological mechanisms of tree species response to aluminum (Al) toxic is crucial to reveal the main causes of plantation decline in acid rain area. As an important afforestation tree species in tropical and subtropical areas, Eucalyptus has high economic value and plays crucial ecological roles. However, continuous fertilization and acid precipitation can exacerbate soil acidification and increase soil active Al, which has a significant negative impact on Eucalyptus growth. Hence, species and genotypes with high Al resistance are required to solve the problem of Al toxicity of acidic soils for sustainable forest production. In this study, E. urophylla was better adapted to Al stress than E. grandis or E. tereticornis; its high Al resistance was attributed to greater antioxidant enzyme activity and non-enzymatic antioxidant content, and a lower degree of membrane lipid peroxidation than E. grandis or E. tereticornis. The differences in adaptability among the three pure species were attributed to their distinct habitats. Eucalyptus urophylla × E. grandis inherited the outstanding adaptability to Al stress from its maternal species (E. urophylla), indicating that Al tolerance is highly heritable and can be selected in Eucalyptus breeding. Our results indicated that the response of Eucalyptus to Al stress may fluctuate according to the time under stress, and might be related to dynamic changes in ROS elimination and accumulation.
Collapse
Affiliation(s)
- Yanhong Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, Guangxi, China
| | - Tiandao Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, Guangxi, China
| | - Bing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, Guangxi, China
| | - Wanwen Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weichao Teng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
44
|
Zhou Y, Wen L, Liao L, Lin S, Zheng E, Li Y, Zhang Y. Comparative transcriptome analysis unveiling reactive oxygen species scavenging system of Sonneratia caseolaris under salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:953450. [PMID: 35958196 PMCID: PMC9358527 DOI: 10.3389/fpls.2022.953450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Many mangrove forests have undergone major changes as a result of human activity and global climate change. Sonneratia caseolaris is a common tree located in inner mangroves, and its range extends inland along tidal creeks, as far as the influence of salinity extends. This study investigated the physiological and molecular response mechanisms of S. caseolaris by analyzing its antioxidant defense capacity, including its differentially expressed genes (DEGs) under similar salt stress conditions. Salt treatment significantly affected the osmoprotectants and lipid peroxidation in S. caseolaris seedlings, which increased proline (Pro) content by 31.01-54.90% during all sample periods and decreased malonaldehyde (MDA) content by 12.81 and 18.17% at 25 and 40 days under 3.0% NaCl treatment. Antioxidant enzyme activities increased significantly following 3.0% NaCl treatment. Transcriptome analysis following De novo assembly showed 26,498 matched unigenes. The results showed that 1,263 DEGs responded to transcription factors (TFs) and plant phytohormones and mediated oxidoreductase activity to scavenge reactive oxygen species (ROS) in the control vs. 3.0% NaCl comparison. In addition, the transcription levels of genes associated with auxin and ethylene signal transduction also changed. Under salt stress, ROS scavenging genes (POD, CAT, and APX) and part of AP2, MYB, NAC, C2C2, bHLH, and WRKY TFs were upregulated. This study identified important pathways and candidate genes involved in S. caseolaris salinity tolerance and provided suggestions for further research into the mechanisms of salt tolerance in S. caseolaris.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Zhang
- Mangrove Institute, Lingnan Normal University, Zhanjiang, China
| |
Collapse
|
45
|
Zhao Y, Vlasselaer L, Ribeiro B, Terzoudis K, Van den Ende W, Hertog M, Nicolaï B, De Coninck B. Constitutive Defense Mechanisms Have a Major Role in the Resistance of Woodland Strawberry Leaves Against Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2022; 13:912667. [PMID: 35874021 PMCID: PMC9298464 DOI: 10.3389/fpls.2022.912667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The necrotrophic fungus Botrytis cinerea is a major threat to strawberry cultivation worldwide. By screening different Fragaria vesca genotypes for susceptibility to B. cinerea, we identified two genotypes with different resistance levels, a susceptible genotype F. vesca ssp. vesca Tenno 3 (T3) and a moderately resistant genotype F. vesca ssp. vesca Kreuzkogel 1 (K1). These two genotypes were used to identify the molecular basis for the increased resistance of K1 compared to T3. Fungal DNA quantification and microscopic observation of fungal growth in woodland strawberry leaves confirmed that the growth of B. cinerea was restricted during early stages of infection in K1 compared to T3. Gene expression analysis in both genotypes upon B. cinerea inoculation suggested that the restricted growth of B. cinerea was rather due to the constitutive resistance mechanisms of K1 instead of the induction of defense responses. Furthermore, we observed that the amount of total phenolics, total flavonoids, glucose, galactose, citric acid and ascorbic acid correlated positively with higher resistance, while H2O2 and sucrose correlated negatively. Therefore, we propose that K1 leaves are more resistant against B. cinerea compared to T3 leaves, prior to B. cinerea inoculation, due to a lower amount of innate H2O2, which is attributed to a higher level of antioxidants and antioxidant enzymes in K1. To conclude, this study provides important insights into the resistance mechanisms against B. cinerea, which highly depend on the innate antioxidative profile and specialized metabolites of woodland strawberry leaves.
Collapse
Affiliation(s)
- Yijie Zhao
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Liese Vlasselaer
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Bianca Ribeiro
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Konstantinos Terzoudis
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Wim Van den Ende
- KU Leuven Plant Institute, Heverlee, Belgium
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Maarten Hertog
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Bart Nicolaï
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
| | - Barbara De Coninck
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| |
Collapse
|
46
|
Fu Y, Liu J, Xia Z, Wang Q, Zhang S, Zhang G, Lu H. Genome-Wide Association Studies of Maize Seedling Root Traits under Different Nitrogen Levels. PLANTS (BASEL, SWITZERLAND) 2022; 11:1417. [PMID: 35684192 PMCID: PMC9182862 DOI: 10.3390/plants11111417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
Abstract
Nitrogen (N) is one of the important factors affecting maize root morphological construction and growth development. An association panel of 124 maize inbred lines was evaluated for root and shoot growth at seedling stage under normal N (CK) and low N (LN) treatments, using the paper culture method. Twenty traits were measured, including three shoot traits and seventeen root traits, a genome-wide association study (GWAS) was performed using the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) methods. The results showed that LN condition promoted the growth of the maize roots, and normal N promoted the growth of the shoots. A total of 185 significant SNPs were identified, including 27 SNPs for shoot traits and 158 SNPs for root traits. Four important candidate genes were identified. Under LN conditions, the candidate gene Zm00001d004123 was significantly correlated with the number of crown roots, Zm00001d025554 was correlated with plant height. Under CK conditions, the candidate gene Zm00001d051083 was correlated with the length and area of seminal roots, Zm00001d050798 was correlated with the total root length. The four candidate genes all responded to the LN treatment. The research results provide genetic resources for the genetic improvement of maize root traits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haidong Lu
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.F.); (J.L.); (Z.X.); (Q.W.); (S.Z.); (G.Z.)
| |
Collapse
|
47
|
The interaction effects of NaCl stress and sodium nitroprusside on growth, physiological and biochemical responses of Calendula officinalis L. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
48
|
Comparative Physiology of Indica and Japonica Rice under Salinity and Drought Stress: An Intrinsic Study on Osmotic Adjustment, Oxidative Stress, Antioxidant Defense and Methylglyoxal Detoxification. STRESSES 2022. [DOI: 10.3390/stresses2020012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Salinity and drought stress are significant environmental threats, alone or in combination. The current study was conducted to investigate the morpho-physiology, osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification of three rice genotypes from the indica (cv. BRRI dhan29 and BRRI dhan48) and japonica (cv. Koshihikari) groups. Eighteen-day-old seedlings of these genotypes were exposed to either in alone salinity (150 mM NaCl) and drought (15% PEG 6000) or in the combination of salinity and drought (150 mM NaCl + 15% PEG 6000) stress in vitro for 72 h. Compared with the control, the water status, biomass and photosynthetic pigments were decreased, where a significant increase was seen in the mortality rate, hydrogen peroxide content, electrolyte leakage, lipoxygenase activity, level of malondialdehyde and methylglyoxal, indicating increased lipid peroxidation in rice genotypes in stress conditions. The non-enzymatic and enzymatic components of the ascorbate-glutathione (AsA-GSH) pool in rice genotypes were disrupted under all stress treatments, resulting imbalance in the redox equilibrium. In contrast, compared to other rice genotypes, BRRI dhan48 revealed a lower Na+/K+ ratio, greater proline (Pro) levels, higher activity of AsA, dehydroascorbate (DHA) and GSH, lower glutathione disulfide (GSSG) and a higher ratio of AsA/DHA and GSH/GSSG, whereas enzymatic components increased monodehydroascorbate reductase, dehydroascorbate reductase, glutathione peroxidase and glyoxalase enzymes. The results showed that a stronger tolerate ability for BRRI dhan48 against stress has been connected to a lower Na+/K+ ratio, an increase in Pro content and an improved performance of the glyoxalase system and antioxidant protection for scavenging of reactive oxygen species. These data can give insight into probable responses to single or combination salinity and drought stress in rice genotypes.
Collapse
|
49
|
Salicylic acid mitigates salt induced toxicity through the modifications of biochemical attributes and some key antioxidants in capsicum annuum. Saudi J Biol Sci 2022; 29:1337-1347. [PMID: 35280588 PMCID: PMC8913376 DOI: 10.1016/j.sjbs.2022.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/24/2023] Open
Abstract
Abiotic stress causes extensive loss to agricultural yield production worldwide. Salt stress is one of them crucial factor which leads to decreased the agricultural production through detrimental effect on growth and development of crops. In our study, we examined the effect of a defense growth substance, salicylic acid (SA 1 mM) on mature vegetative (60 Days after sowing) and flowering (80 DAS) stage of Pusa Sadabahar (PS) variety of Capsicum annuum L. plants gown under different concentrations of NaCl (25, 50, 75, 100 and 150 mM) and maintained in identical sets in pots during the whole experiment. Physiological studies indicated that increase in root & shoot length, fresh & dry weight, number of branches per plant, and yield (number of fruits per plant) under salt + SA treatment. Biochemical studies, enzymatic antioxidants like CAT, POX, and non-enzymatic antioxidant such as ascorbic acid (AsA content), carotenoids, phenolics, besides other defense compounds like proline, protein, chlorophyll contents were studied at 10 days after treatment at the mature vegetative and flowering stage. The addition of SA led to lowering of in general, all studied parameters in the mature vegetative stage but increased the same during the flowering stage, especially in the presence of NaCl; although the control I (without SA and NaCl) remained lower in value than control II (with SA, without NaCl). Interestingly, total phenolics were higher in control I (without SA or NaCl) whereas chlorophylls were higher in treatments with SA and NaCl. Thus, physiological concentration of SA (1 mM) appears to be significantly effective against salt stress during the flowering stage. In addition, during the mature vegetative stage, however, proline accumulates in SA treated sets, to help in developing NaCl-induced drought stress tolerance.
Collapse
|
50
|
Turan V. Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:166-176. [PMID: 34053385 DOI: 10.1080/15226514.2021.1929826] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The presence of Ni above the permissible limit in agriculture soils poses negative effects on soil health, crop quality, and crop productivity. Surprisingly, the usage of various organic and inorganic amendments can reduce Ni mobility in the soil and its distribution in the crops. A pot experiment was conducted to elucidate the effects of olive pulp biochar (BR), calcite (CAL), and wheat straw (WS), as sole amendments and their mixtures of 50:50 ratio, added to Ni polluted soil on Ni mobility in the soil, Ni immobilization index (Ni - IMi), soil enzymatic activities, Ni distribution in parts of chili plant, Ni translocation factor and bioaccumulation factor in fruit, plant growth parameters and oxidative stress encountered by the plants. Outcomes of this pot experiment revealed that amendments raised soil pH, improved soil enzymatic activities, values of Ni - IMi, while significantly reduced bioavailable Ni fraction in the post-harvest soil. However, the highest activities of acid phosphatase, urease, catalase, and dehydrogenase by 50, 70, 239, and 111%, respectively, improvement in Ni - IMi up to 60% while 60% reduction in the bioavailable Ni fraction was observed in BR + CAL treatment, compared to control was noted. Among all amendments, the top most reduction in Ni concentrations in shoots, roots, fruit, Translocation Factor (TF), and Bioaccumulation Factor (BAF) values of fruit by 72%, 36%, 86%, 72%, and 86%, in BR + CAL treatment, compared to control. Moreover, the plants growing on BR + CAL amended Ni contaminated soil showed the topmost improvement in plant phonological parameters while encountered the least oxidative stress. Such findings refer to the prospective usage of BR + CAL at 50:50 ratio than BR, CAL, WS alone, and BR + WS as well as WS + CAL for reducing Ni mobility in the soil, improving Ni - IMi, soil enzymatic activities, plant phonological and oxidative stress while reducing Ni distribution in plant parts. Novelty statementIn this experiment, it was hypothesized that amending Ni polluted soil with olive pulp biochar (BR), CAL, and WS as alone soil amendments and their combinations at 50:50 ratios can reduce Ni bioavailability in soil, Ni distribution in chili plant and oxidative stress encountered by the plants. Moreover, these amendments may improve, soil enzymatic activities, Ni immobilization index, plant phenological traits. Therefore, it was aimed to undertake useful scientific planning and research, to restore and rehabilitate the dwellings, biological resources and to minimize the sufferings of the peoples in nutrient-poor Ni contaminated soils, by improving soil health and chili productivity.
Collapse
Affiliation(s)
- Veysel Turan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Bingöl University, Bingöl, Turkey
| |
Collapse
|