1
|
Vargas MH, Chávez J, Del-Razo-Rodríguez R, Muñoz-Perea C, Romo-Domínguez KJ, Báez-Saldaña R, Rumbo-Nava U, Guerrero-Zúñiga S. Glycine by enteral route does not improve major clinical outcomes in severe COVID-19: a randomized clinical pilot trial. Sci Rep 2024; 14:11566. [PMID: 38773199 PMCID: PMC11109244 DOI: 10.1038/s41598-024-62321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
There is a worrying scarcity of drug options for patients with severe COVID-19. Glycine possesses anti-inflammatory, cytoprotective, endothelium-protective, and platelet-antiaggregant properties, so its use in these patients seems promising. In this open label, controlled clinical trial, inpatients with severe COVID-19 requiring mechanical ventilation randomly received usual care (control group) or usual care plus 0.5 g/kg/day glycine by the enteral route (experimental group). Major outcomes included mortality, time to weaning from mechanical ventilation, total time on mechanical ventilation, and time from study recruitment to death. Secondary outcomes included laboratory tests and serum cytokines. Patients from experimental (n = 33) and control groups (n = 23) did not differ in basal characteristics. There were no differences in mortality (glycine group, 63.6% vs control group, 52.2%, p = 0.60) nor in any other major outcome. Glycine intake was associated with lower fibrinogen levels, either evaluated per week of follow-up (p < 0.05 at weeks 1, 2, and 4) or as weighted mean during the whole hospitalization (608.7 ± 17.7 mg/dl vs control 712.2 ± 25.0 mg/dl, p = 0.001), but did not modify any other laboratory test or cytokine concentration. In summary, in severe COVID-19 glycine was unable to modify major clinical outcomes, serum cytokines or most laboratory tests, but was associated with lower serum fibrinogen concentration.Registration: ClinicalTrials.gov NCT04443673, 23/06/2020.
Collapse
Affiliation(s)
- Mario H Vargas
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Ciudad de México, México.
| | - Jaime Chávez
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Ciudad de México, México
| | - Rosangela Del-Razo-Rodríguez
- Servicio Clínico de Neumología Pediátrica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Carolina Muñoz-Perea
- Servicio de Urgencias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Karina Julieta Romo-Domínguez
- Servicio de Urgencias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
- Servicio de Neumología, Hospital Infantil del Estado de Sonora, Hermosillo, Sonora, México
| | - Renata Báez-Saldaña
- Servicio Clínico 3, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Uriel Rumbo-Nava
- Servicio Clínico 3, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Selene Guerrero-Zúñiga
- Unidad de Medicina del Sueño, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| |
Collapse
|
2
|
Ghatge M, Flora GD, Nayak MK, Chauhan AK. Platelet Metabolic Profiling Reveals Glycolytic and 1-Carbon Metabolites Are Essential for GP VI-Stimulated Human Platelets-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:409-416. [PMID: 37942614 PMCID: PMC10880120 DOI: 10.1161/atvbaha.123.319821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Evolving evidence suggests that besides signaling pathways, platelet activation involves a complex interplay between metabolic pathways to support thrombus growth. Selective targeting of metabolic checkpoints may inhibit platelet activation and provide a novel antiplatelet strategy. We, therefore, examined global metabolic changes that occur during the transition of human platelets from resting to an activated state to identify metabolites and associated pathways that contribute to platelet activation. METHODS We performed metabolic profiling of resting and convulxin-stimulated human platelet samples. The differential levels, pathway analysis, and PCA (principal component analysis) were performed using Metaboanalyst. Metascape was used for metabolite network construction. RESULTS Of the 401 metabolites identified, 202 metabolites were significantly upregulated, and 2 metabolites were downregulated in activated platelets. Of all the metabolites, lipids scored highly and constituted ≈50% of the identification. During activation, aerobic glycolysis supports energy demand and provides glycolytic intermediates required by metabolic pathways. Consistent with this, an important category of metabolites was carbohydrates, particularly the glycolysis intermediates that were significantly upregulated compared with resting platelets. We found that lysophospholipids such as 1-palmitoyl-GPA (glycero-3-phosphatidic acid), 1-stearoyl-GPS (glycero-3-phosphoserine), 1-palmitoyl-GPI (glycerophosphoinositol), 1-stearoyl-GPI, and 1-oleoyl-GPI were upregulated in activated platelets. We speculated that platelet activation could be linked to 1-carbon metabolism, a set of biochemical pathways that involve the transfer and use of 1-carbon units from amino acids, for cellular processes, including nucleotide and lysophospholipid synthesis. In alignment, based on pathway enrichment and network-based prioritization, the metabolites from amino acid metabolism, including serine, glutamate, and branched-chain amino acid pathway were upregulated in activated platelets, which might be supplemented by the high levels of glycolytic intermediates. CONCLUSIONS Metabolic analysis of resting and activated platelets revealed that glycolysis and 1-carbon metabolism are necessary to support platelet activation.
Collapse
Affiliation(s)
| | - Gagan D. Flora
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | | | | |
Collapse
|
3
|
Biswas S, Hilser JR, Woodward NC, Wang Z, Gukasyan J, Nemet I, Schwartzman WS, Huang P, Han Y, Fouladian Z, Charugundla S, Spencer NJ, Pan C, Tang WW, Lusis AJ, Hazen SL, Hartiala JA, Allayee H. Effect of Genetic and Dietary Perturbation of Glycine Metabolism on Atherosclerosis in Humans and Mice. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.08.23299748. [PMID: 38168321 PMCID: PMC10760269 DOI: 10.1101/2023.12.08.23299748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Objective Epidemiological and genetic studies have reported inverse associations between circulating glycine levels and risk of coronary artery disease (CAD). However, these findings have not been consistently observed in all studies. We sought to evaluate the causal relationship between circulating glycine levels and atherosclerosis using large-scale genetic analyses in humans and dietary supplementation experiments in mice. Methods Serum glycine levels were evaluated for association with prevalent and incident CAD in the UK Biobank. A multi-ancestry genome-wide association study (GWAS) meta-analysis was carried out to identify genetic determinants for circulating glycine levels, which were then used to evaluate the causal relationship between glycine and risk of CAD by Mendelian randomization (MR). A glycine feeding study was carried out with atherosclerosis-prone apolipoprotein E deficient (ApoE-/-) mice to determine the effects of increased circulating glycine levels on amino acid metabolism, metabolic traits, and aortic lesion formation. Results Among 105,718 subjects from the UK Biobank, elevated serum glycine levels were associated with significantly reduced risk of prevalent CAD (Quintile 5 vs. Quintile 1 OR=0.76, 95% CI 0.67-0.87; P<0.0001) and incident CAD (Quintile 5 vs. Quintile 1 HR=0.70, 95% CI 0.65-0.77; P<0.0001) in models adjusted for age, sex, ethnicity, anti-hypertensive and lipid-lowering medications, blood pressure, kidney function, and diabetes. A meta-analysis of 13 GWAS datasets (total n=230,947) identified 61 loci for circulating glycine levels, of which 26 were novel. MR analyses provided modest evidence that genetically elevated glycine levels were causally associated with reduced systolic blood pressure and risk of type 2 diabetes, but did provide evidence for an association with risk of CAD. Furthermore, glycine-supplementation in ApoE-/- mice did not alter cardiometabolic traits, inflammatory biomarkers, or development of atherosclerotic lesions. Conclusions Circulating glycine levels were inversely associated with risk of prevalent and incident CAD in a large population-based cohort. While substantially expanding the genetic architecture of circulating glycine levels, MR analyses and in vivo feeding studies in humans and mice, respectively, did not provide evidence that the clinical association of this amino acid with CAD represents a causal relationship, despite being associated with two correlated risk factors.
Collapse
Affiliation(s)
- Subarna Biswas
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - James R. Hilser
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Nicholas C. Woodward
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Janet Gukasyan
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
| | - William S. Schwartzman
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Pin Huang
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Yi Han
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Zachary Fouladian
- Department of Medicine, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - Sarada Charugundla
- Department of Medicine, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - Neal J. Spencer
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Calvin Pan
- Department of Human Genetics, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - W.H. Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Aldons J. Lusis
- Department of Medicine, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
- Department of Human Genetics, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jaana A. Hartiala
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Hooman Allayee
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
4
|
Murdoch DM, Barfield R, Chan C, Towe SL, Bell RP, Volkheimer A, Choe J, Hall SA, Berger M, Xie J, Meade CS. Neuroimaging and immunological features of neurocognitive function related to substance use in people with HIV. J Neurovirol 2023; 29:78-93. [PMID: 36348233 PMCID: PMC10089970 DOI: 10.1007/s13365-022-01102-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
This study sought to identify neuroimaging and immunological factors associated with substance use and that contribute to neurocognitive impairment (NCI) in people with HIV (PWH). We performed cross-sectional immunological phenotyping, neuroimaging, and neurocognitive testing on virally suppressed PWH in four substance groups: cocaine only users (COC), marijuana only users (MJ), dual users (Dual), and Non-users. Participants completed substance use assessments, multimodal MRI brain scan, neuropsychological testing, and blood and CSF sampling. We employed a two-stage analysis of 305 possible biomarkers of cognitive function associated with substance use. Feature reduction (Kruskal Wallis p-value < 0.05) identified 53 biomarkers associated with substance use (22 MRI and 31 immunological) for model inclusion along with clinical and demographic variables. We employed eXtreme Gradient Boosting (XGBoost) with these markers to predict cognitive function (global T-score). SHapley Additive exPlanations (SHAP) values were calculated to rank features for impact on model output and NCI. Participants were 110 PWH with sustained HIV viral suppression (33 MJ, 12 COC, 22 Dual, and 43 Non-users). The ten highest ranking biomarkers for predicting global T-score were 4 neuroimaging biomarkers including functional connectivity, gray matter volume, and white matter integrity; 5 soluble biomarkers (plasma glycine, alanine, lyso-phosphatidylcholine (lysoPC) aC17.0, hydroxy-sphingomyelin (SM.OH) C14.1, and phosphatidylcholinediacyl (PC aa) C28.1); and 1 clinical variable (nadir CD4 count). The results of our machine learning model suggest that substance use may indirectly contribute to NCI in PWH through both metabolomic and neuropathological mechanisms.
Collapse
Affiliation(s)
- David M Murdoch
- Department of Medicine, Duke University Medical Center, DUMC Box 2629, Durham, NC, 27710, USA.
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, NC, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, NC, USA
| | - Sheri L Towe
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Ryan P Bell
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Alicia Volkheimer
- Department of Medicine, Duke University Medical Center, DUMC Box 2629, Durham, NC, 27710, USA
| | - Joyce Choe
- Department of Medicine, Duke University Medical Center, DUMC Box 2629, Durham, NC, 27710, USA
| | - Shana A Hall
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jichun Xie
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, NC, USA
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Christina S Meade
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
5
|
Karolczak K, Guligowska A, Kostanek J, Soltysik B, Kostka T, Watala C. The amino acid content in the daily diet of seniors negatively correlates with the degree of platelet aggregation in a sex- and agonist-specific manner. Aging (Albany NY) 2022; 14:7240-7262. [PMID: 35985680 PMCID: PMC9550244 DOI: 10.18632/aging.204229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
Abstract
Aging is a significant risk factor for the development of thrombotic diseases, dependent on blood platelet reactivity. However, the risk of thrombosis also appears to be significantly modulated by dietary nutrient content. The aim of the current study was to assess the relationship between the amount of amino acids present in the daily diet (not supplemented) and the reactivity of blood platelets to arachidonate, collagen and ADP in 246 women and men aged 60–65 years. Platelet reactivity was tested using whole blood impedance aggregometry. Amino acid intake was assessed with a 24-hour Recall Questionnaire and calculated with Dieta 5.0 software. Older subjects receiving higher amounts of all essential amino acids with their daily diet exhibit significantly lower platelet responsiveness to AA-, COL- and ADP in a sex-specific manner: dietary amino acid content was more closely associated with AA- and, to some extent, ADP-induced platelet reactivity in women, and with COL-induced platelet aggregability in men. Therefore, dietary amino acid content may be a novel factor responsible for attenuating platelet reactivity in a sex- and agonist-specific manner.
Collapse
Affiliation(s)
- Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Guligowska
- Department of Geriatrics, Healthy Aging Research Center (HARC), Medical University of Lodz, Lodz, Poland
| | - Joanna Kostanek
- Department of Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Bartlomiej Soltysik
- Department of Geriatrics, Healthy Aging Research Center (HARC), Medical University of Lodz, Lodz, Poland
| | - Tomasz Kostka
- Department of Geriatrics, Healthy Aging Research Center (HARC), Medical University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Zhang Z, Wu X, Zhou M, Qi J, Zhang R, Li X, Wang C, Ruan C, Han Y. Plasma Metabolomics Identifies the Dysregulated Metabolic Profile of Primary Immune Thrombocytopenia (ITP) Based on GC-MS. Front Pharmacol 2022; 13:845275. [PMID: 35685646 PMCID: PMC9170960 DOI: 10.3389/fphar.2022.845275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
ITP is a common autoimmune bleeding disorder with elusive pathogenesis. Our study was implemented to profile the plasma metabolic alterations of patients diagnosed with ITP, aiming at exploring the potential novel biomarkers and partial mechanism of ITP. The metabolomic analysis of plasma samples was conducted using GC-MS on 98 ITP patients and 30 healthy controls (HCs). Age and gender matched samples were selected to enter the training set or test set respectively. OPLS-DA, t-test with FDR correction and ROC analyses were employed to screen out and evaluate the differential metabolites. Possible pathways were enriched based on metabolomics pathway analysis (MetPA). A total of 85 metabolites were investigated in our study and 17 differential metabolites with diagnostic potential were identified between ITP patients and HCs. MetPA showed that the metabolic disorders of ITP patients were mainly related to phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism and glyoxylate and dicarboxylate metabolism. Additionally, we discriminated 6 differential metabolites and 5 enriched pathways in predicting the resistance to glucocorticoids in chronic ITP patients. The distinct metabolites discovered in our study could become novel biomarkers for the auxiliary diagnosis and prognosis prediction of ITP. Besides, the dysregulated pathways might contribute to the development of ITP.
Collapse
Affiliation(s)
- Ziyan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaojin Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Meng Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Rui Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Changgeng Ruan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- *Correspondence: Yue Han,
| |
Collapse
|
7
|
He W, Dam TV, Thøgersen R, Hansen M, Bertram HC. Fluctuations in Metabolites and Bone Markers Across the Menstrual Cycle in Eumenorrheic Women and Oral Contraceptive Users. J Clin Endocrinol Metab 2022; 107:1577-1588. [PMID: 35213728 DOI: 10.1210/clinem/dgac112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT Little is known about changes in circulating metabolites during the menstrual cycle and how use of oral contraceptives (OCs) affects these changes. OBJECTIVES To study fluctuations in circulating metabolite and bone marker levels during the menstrual/pill cycle in eumenorrheic women and OC users. METHODS Plasma samples were collected from 28 eumenorrheic women and 10 OC users at 7 to 9 time points across a menstrual/pill cycle. Longitudinal and cross-sectional analyses were performed to examine the cycle- and OC-induced variations in the plasma metabolite and bone turnover marker levels. RESULTS In eumenorrheic women, plasma levels of alanine, glutamine, threonine, and tyrosine varied significantly across the menstrual cycle, and all dropped to the lowest level around day 21 of the menstrual cycle. These amino acid concentrations were negatively correlated with fluctuations in progesterone and/or estrogen levels. A between-group analysis showed that plasma levels of alanine, glutamine, glycine, proline, and tyrosine were lower in OC users than in nonusers. Concomitantly, plasma C-terminal telopeptide of type I collagen (CTX) and N-terminal propeptide of type I procollagen (PINP) levels were lower in OC users. Intriguingly, when all data were pooled, variations in CTX and PINP levels were positively correlated with fluctuations in proline and glycine concentrations (r > 0.5 or 0.3 < r < 0.5, P < 0.05). CONCLUSIONS The menstrual cycle and the use of OCs alter plasma levels of metabolites and bone turnover markers in young women. While the impact of these findings remains to be established, the lower glycine level among OC users and the accompanying lower CTX level supports that the use of OCs lowers collagen turnover in young women and may thereby have long-term implications for bone health among OC users.
Collapse
Affiliation(s)
- Weiwei He
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | - Tine Vrist Dam
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus C, Denmark
| | | | - Mette Hansen
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
8
|
Rodríguez L, Mendez D, Montecino H, Carrasco B, Arevalo B, Palomo I, Fuentes E. Role of Phaseolus vulgaris L. in the Prevention of Cardiovascular Diseases-Cardioprotective Potential of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:186. [PMID: 35050073 PMCID: PMC8779353 DOI: 10.3390/plants11020186] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 05/07/2023]
Abstract
In terms of safe and healthy food, beans play a relevant role. This crop belongs to the species of Phaseolusvulgaris L., being the most consumed legume worldwide, both for poor and developed countries, the latter seek to direct their diet to healthy feeding, mainly low in fat. Phaseolus vulgaris L. stands out in this area-an important source of protein, vitamins, essential minerals, soluble fiber, starch, phytochemicals, and low in fat from foods. This species has been attributed many beneficial properties for health; it has effects on the circulatory system, immune system, digestive system, among others. It has been suggested that Phaseolus vulgaris L. has a relevant role in the prevention of cardiovascular events, the main cause of mortality and morbidity worldwide. Conversely, the decrease in the consumption of this legume has been related to an increase in the prevalence of cardiovascular diseases. This review will allow us to relate the nutritional level of this species with cardiovascular events, based on the correlation of the main bioactive compounds and their role as cardiovascular protectors, in addition to revealing the main mechanisms that explain the cardioprotective effects regulated by the bioactive components.
Collapse
Affiliation(s)
- Lyanne Rodríguez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Diego Mendez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Hector Montecino
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile; (B.C.); (B.A.)
| | - Barbara Arevalo
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile; (B.C.); (B.A.)
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| |
Collapse
|
9
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
10
|
Sanzana S, Rodríguez L, Barraza Barrionuevo H, Albornoz Poblete C, Maróstica Junior MR, Fuentes E, Palomo I. Antiplatelet Activity of Cucurbita maxima. J Med Food 2021; 24:1197-1205. [PMID: 34463138 DOI: 10.1089/jmf.2021.0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Natural extracts constitute an important source in the prevention of noncommunicable diseases, such as cardiovascular diseases. The pumpkin, Cucurbita maxima, is widely consumed in Chile. Pumpkin seeds, despite having crude protein, lipids, and carbohydrates, are regarded as agro-industrial waste. In this work, we correlated the antiplatelet activity of aqueous, ethanolic, and methanolic extracts from pumpkin seeds with their bioactive compounds. In vitro platelet aggregation and activation studies were performed by turbidimetry and flow cytometry, respectively. Results reveal that the extracts inhibited, in a dose-dependent manner, platelet aggregation induced by adenosine diphosphate, thrombin receptor activator peptide 6 (TRAP-6), and collagen. Pumpkin seed extracts inhibited P-selectin secretion and glycoprotein IIb/IIIa activation on TRAP-6-activated platelets. They were found to be rich in fatty acids and a powerful source of plant-based protein, which could be related to the high antiplatelet potential identified in extracts. This research demonstrated that pumpkin seed extracts could be a candidate in the prevention of thrombotic events.
Collapse
Affiliation(s)
- Sigrid Sanzana
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Lyanne Rodríguez
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Hayleen Barraza Barrionuevo
- Department of Food and Nutrition Sciences, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - César Albornoz Poblete
- Department of Food and Nutrition Sciences, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Mário Roberto Maróstica Junior
- Ibero-American Network for the Integrated Use of Underutilized Indigenous Foods (ALSUB-CYTED).,School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.,University of Campinas (UNICAMP), Faculty of School Engineering (FEA), Campinas, São Paulo, Brazil
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| |
Collapse
|
11
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
12
|
Zaric BL, Radovanovic JN, Gluvic Z, Stewart AJ, Essack M, Motwalli O, Gojobori T, Isenovic ER. Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Front Immunol 2020; 11:551758. [PMID: 33117340 PMCID: PMC7549398 DOI: 10.3389/fimmu.2020.551758] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the leading global health concern and responsible for more deaths worldwide than any other type of disorder. Atherosclerosis is a chronic inflammatory disease in the arterial wall, which underpins several types of cardiovascular disease. It has emerged that a strong relationship exists between alterations in amino acid (AA) metabolism and the development of atherosclerosis. Recent studies have reported positive correlations between levels of branched-chain amino acids (BCAAs) such as leucine, valine, and isoleucine in plasma and the occurrence of metabolic disturbances. Elevated serum levels of BCAAs indicate a high cardiometabolic risk. Thus, BCAAs may also impact atherosclerosis prevention and offer a novel therapeutic strategy for specific individuals at risk of coronary events. The metabolism of AAs, such as L-arginine, homoarginine, and L-tryptophan, is recognized as a critical regulator of vascular homeostasis. Dietary intake of homoarginine, taurine, and glycine can improve atherosclerosis by endothelium remodeling. Available data also suggest that the regulation of AA metabolism by indoleamine 2,3-dioxygenase (IDO) and arginases 1 and 2 are mediated through various immunological signals and that immunosuppressive AA metabolizing enzymes are promising therapeutic targets against atherosclerosis. Further clinical studies and basic studies that make use of animal models are required. Here we review recent data examining links between AA metabolism and the development of atherosclerosis.
Collapse
Affiliation(s)
- Bozidarka L. Zaric
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena N. Radovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Faculty of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, University of Belgrade, Belgrade, Serbia
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olaa Motwalli
- College of Computing and Informatics, Saudi Electronic University (SEU), Medina, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Maneikyte J, Bausys A, Leber B, Feldbacher N, Hoefler G, Kolb-Lenz D, Strupas K, Stiegler P, Schemmer P. Dietary Glycine Prevents FOLFOX Chemotherapy-Induced Heart Injury: A Colorectal Cancer Liver Metastasis Treatment Model in Rats. Nutrients 2020; 12:nu12092634. [PMID: 32872376 PMCID: PMC7551625 DOI: 10.3390/nu12092634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 01/18/2023] Open
Abstract
Introduction: FOLFOX chemotherapy (CTx) is used for the treatment of colorectal liver metastasis (CRLM). Side effects include rare cardiotoxicity, which may limit the application of FOLFOX. Currently, there is no effective strategy to prevent FOLFOX-induced cardiotoxicity. Glycine has been shown to protect livers from CTx-induced injury and oxidative stress, and it reduces platelet aggregation and improves microperfusion. This study tested the hypothesis of glycine being cardioprotective in a rat model of FOLFOX in combination with CRLM. Materials and Methods: The effect of glycine was tested in vitro on human cardiac myocytes (HCMs). To test glycine in vivo Wag/Rij rats with induced CRLM were treated with FOLFOX ±5% dietary glycine. Left ventricle ejection fraction (LVEF), myocardial fibrosis, and apoptosis, also heart fatty acid binding protein (h-FABP) and brain natriuretic peptide levels were monitored. PCR analysis for Collagen type I, II, and brain natriuretic peptide (BNP) in the heart muscle was performed. Results: In vitro glycine had no effect on HCM cell viability. Treatment with FOLFOX resulted in a significant increase of h-FABP levels, increased myocardial fibrosis, and apoptosis as well as increased expression of type I Collagen. Furthermore, FOLFOX caused a decrease of LVEF by 10% (p = 0.028). Dietary glycine prevented FOLFOX-induced myocardial injury by preserving the LVEF and reducing the levels of fibrosis (p = 0.012) and apoptosis (p = 0.015) in vivo. Conclusions: Data presented here demonstrate for the first time that dietary glycine protects the heart against FOLFOX-induced injury during treatment for CRLM.
Collapse
Affiliation(s)
- Juste Maneikyte
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Augustinas Bausys
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
- National Cancer Institute, 08406 Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
| | - Nicole Feldbacher
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Dagmar Kolb-Lenz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, 8010 Graz, Austria;
- Center for Medical Research, Core Facility Ultrastructure Analysis, Medical University Graz, 8010 Graz, Austria
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
- Correspondence: ; Tel.: +43-316-385-84094
| |
Collapse
|
14
|
DiNicolantonio JJ, McCarty M. Thrombotic complications of COVID-19 may reflect an upregulation of endothelial tissue factor expression that is contingent on activation of endosomal NADPH oxidase. Open Heart 2020; 7:openhrt-2020-001337. [PMID: 32532805 PMCID: PMC7298678 DOI: 10.1136/openhrt-2020-001337] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2020] [Indexed: 12/30/2022] Open
Abstract
The high rate of thrombotic complications associated with COVID-19 seems likely to reflect viral infection of vascular endothelial cells, which express the ACE2 protein that enables SARS-CoV-2 to invade cells. Various proinflammatory stimuli can promote thrombosis by inducing luminal endothelial expression of tissue factor (TF), which interacts with circulating coagulation factor VII to trigger extrinsic coagulation. The signalling mechanism whereby these stimuli evoke TF expression entails activation of NADPH oxidase, upstream from activation of the NF-kappaB transcription factor that drives the induced transcription of the TF gene. When single-stranded RNA viruses are taken up into cellular endosomes, they stimulate endosomal formation and activation of NADPH oxidase complexes via RNA-responsive toll-like receptor 7. It is therefore proposed that SARS-CoV-2 infection of endothelial cells evokes the expression of TF which is contingent on endosomal NADPH oxidase activation. If this hypothesis is correct, hydroxychloroquine, spirulina (more specifically, its chromophore phycocyanobilin) and high-dose glycine may have practical potential for mitigating the elevated thrombotic risk associated with COVID-19.
Collapse
|
15
|
Swanepoel AC, Bester J, Emmerson O, Soma P, Beukes D, van Reenen M, Loots DT, du Preez I. Serum Metabolome Changes in Relation to Prothrombotic State Induced by Combined Oral Contraceptives with Drospirenone and Ethinylestradiol. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:404-414. [PMID: 32471328 DOI: 10.1089/omi.2020.0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The association between hypercoagulability and use of drospirenone (DRSP) and ethinylestradiol (EE) containing combined oral contraceptives (COCs) is an important clinical concern. We have previously reported that the two formulations of DRSP combined with EE (namely, DRSP/20EE and DRSP/30EE) bring about a prothrombotic state in hemostatic traits of female users. We report here the serum metabolomic changes in the same study cohort in relation to the attendant prothrombotic state induced by COC use, thus offering new insights on the underlying biochemical mechanisms contributing to the altered coagulatory profile with COC use. A total of 78 healthy women participated in this study and were grouped as follows: control group not using oral contraceptives (n = 25), DRSP/20EE group (n = 27), and DRSP/30EE group (n = 26). Untargeted metabolomics revealed changes in amino acid concentrations, particularly a decrease in glycine and an increase in both cysteine and lanthionine in the serum, accompanied by variations in oxidative stress markers in the COC users compared with the controls. Of importance, this study is the first to link specific amino acid variations, serum metabolites, and the oxidative metabolic profile with DRSP/EE use. These molecular changes could be linked to specific biophysical coagulatory alterations observed in the same individuals. These new findings lend evidence on the metabolomic substrates of the prothrombotic state associated with COC use in women and informs future personalized/precision medicine research. Moreover, we underscore the importance of an interdisciplinary approach to evaluate venous thrombotic risk associated with COC use.
Collapse
Affiliation(s)
- Albe Carina Swanepoel
- Department of Physiology and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Janette Bester
- Department of Physiology and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Odette Emmerson
- Department of Physiology and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Prashilla Soma
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Derylize Beukes
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ilse du Preez
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
16
|
Di Gioacchino M, Ricci MA, Imberti S, Holzmann N, Bruni F. Hydration and aggregation of a simple amino acid: The case of glycine. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Chiang JY, Lee SH, Chen YC, Wu CK, Chuang JY, Lo SC, Yeh HM, Yeh SFS, Hsu CA, Lin BB, Chang PC, Chang CH, Liang HJ, Chiang FT, Lin CY, Juang JMJ. Metabolomic Analysis of Platelets of Patients With Aspirin Non-Response. Front Pharmacol 2019; 10:1107. [PMID: 31680941 PMCID: PMC6797853 DOI: 10.3389/fphar.2019.01107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Aspirin is the most commonly used antiplatelet agent for the prevention of cardiovascular diseases. However, a certain proportion of patients do not respond to aspirin therapy. The mechanisms of aspirin non-response remain unknown. The unique metabolomes in platelets of patients with coronary artery disease (CAD) with aspirin non-response may be one of the causes of aspirin resistance. Materials and Methods: We enrolled 29 patients with CAD who were aspirin non-responders, defined as a study subject who were taking aspirin with a platelet aggregation time less than 193 s by PFA-100, and 31 age- and sex-matched patients with CAD who were responders. All subjects had been taking 100 mg of aspirin per day for more than 1 month. Hydrophilic metabolites from the platelet samples were extracted and analyzed by nuclear magnetic resonance (NMR). Both 1D 1H and 2D J-resolved NMR spectra were obtained followed by spectral processing and multivariate statistical analysis, such as partial least squares discriminant analysis (PLS-DA). Results: Eleven metabolites were identified. The PLS-DA model could not distinguish aspirin non-responders from responders. Those with low serum glycine level had significantly shorter platelet aggregation time (mean, 175.0 s) compared with those with high serum glycine level (259.5 s). However, this association became non-significant after correction for multiple tests. Conclusions: The hydrophilic metabolic profile of platelets was not different between aspirin non-responders and responders. An association between lower glycine levels and higher platelet activity in patients younger than 65 years suggests an important role of glycine in the pathophysiology of aspirin non-response.
Collapse
Affiliation(s)
- Jiun-Yang Chiang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sheng-Han Lee
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yen-Ching Chen
- College of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Cho-Kai Wu
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jing-Yuan Chuang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Shyh-Chyi Lo
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Ming Yeh
- Department of Anesthesiology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Fan Sherri Yeh
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-An Hsu
- Division of Haematology, Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bin-Bin Lin
- Division of Haematology, Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pi-Chu Chang
- Division of Haematology, Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Hsin Chang
- Division of Haematology, Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Fu-Tien Chiang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Cardiovascular Center, Fu-Jen Catholic University Hospital, New Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
18
|
Wang Y, Jiang F, Ma C, Rui Y, Tsang DCW, Xing B. Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:319-327. [PMID: 31015082 DOI: 10.1016/j.jenvman.2019.04.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/06/2019] [Accepted: 04/13/2019] [Indexed: 05/04/2023]
Abstract
Engineered nanoparticles (NPs) are now used as additives in pesticides and fungicides and as novel fertilizers in agriculture so there is an urgent need to explore their effects on crop yield and quality in a full life cycle study. In the present study, three widely used NPs (TiO2, Fe2O3 and CuO NPs applied at doses of 50 and 500 mg/kg) were selected to investigate their long-term impact on wheat growth. TiO2 NPs did not affect the growth and development of wheat, but Fe2O3 NPs promoted wheat precocity and CuO NPs inhibited the growth and development of the wheat grains. The Cu content in grains treated with CuO NP increased by 18.84%-30.45% compared with the control. However, the contents of Fe and Zn were both significantly lower in the CuO NP treatments. Univariate and multivariate analyses were used to analyze the effect of different NPs on the composition of amino acids in wheat grains. Exposure to TiO2 NPs at dose of 500 mg/kg increased the overall amino acid nutrition in the edible portion of wheat. Fe2O3 NPs at both doses increased the contents of cysteine (Cys) and tyrosine (Tyr). The addition of CuO NPs reduced the level of some essential amino acids in wheat grains, isoleucine (Ile), leucine (Leu), threonine (Thr) and histidine (His). Overall, evaluation of the potential impacts of metal-based NPs on the nutritional quality of wheat grains could provide important information for their safe use when incorporated into agrichemicals in sustainable agriculture.
Collapse
Affiliation(s)
- Yaoyao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Fuping Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, United States; Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, United States.
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, United States
| |
Collapse
|
19
|
Bullard R, Sharma SR, Das PK, Morgan SE, Karim S. Repurposing of Glycine-Rich Proteins in Abiotic and Biotic Stresses in the Lone-Star Tick ( Amblyomma americanum). Front Physiol 2019; 10:744. [PMID: 31275163 PMCID: PMC6591454 DOI: 10.3389/fphys.2019.00744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/31/2019] [Indexed: 11/15/2022] Open
Abstract
Tick feeding requires the secretion of a huge number of pharmacologically dynamic proteins and other molecules which are vital for the formation of the cement cone, the establishment of the blood pool and to counter against the host immune response. Glycine-rich proteins (GRP) are found in many organisms and can function in a variety of cellular processes and structures. The functional characterization of the GRPs in the tick salivary glands has not been elucidated. GRPs have been found to play a role in the formation of the cement cone; however, new evidence suggests repurposing of GRPs in the tick physiology. In this study, an RNA interference approach was utilized to silence two glycine-rich protein genes expressed in early phase of tick feeding to determine their functional role in tick hematophagy, cement cone structure, and microbial homeostasis within the tick host. Additionally, the transcriptional regulation of GRPs was determined after exposure to biotic and abiotic stresses including cold and hot temperature, injury, and oxidative stress. This caused a significant up-regulation of AamerSigP-34358, Aam-40766, AamerSigP-39259, and Aam-36909. Our results suggest ticks repurpose these proteins and further functional characterization of GRPs may help to design novel molecular strategies to disrupt the homeostasis and the pathogen transmission.
Collapse
Affiliation(s)
- Rebekah Bullard
- Department of Cell and Molecular Biology, School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States.,Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Surendra Raj Sharma
- Department of Cell and Molecular Biology, School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Pradipta Kumar Das
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shahid Karim
- Department of Cell and Molecular Biology, School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
20
|
Miller RA, Harrison DE, Astle CM, Bogue MA, Brind J, Fernandez E, Flurkey K, Javors M, Ladiges W, Leeuwenburgh C, Macchiarini F, Nelson J, Ryazanov AG, Snyder J, Stearns TM, Vaughan DE, Strong R. Glycine supplementation extends lifespan of male and female mice. Aging Cell 2019; 18:e12953. [PMID: 30916479 PMCID: PMC6516426 DOI: 10.1111/acel.12953] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/01/2019] [Accepted: 01/23/2019] [Indexed: 11/26/2022] Open
Abstract
Diets low in methionine extend lifespan of rodents, though through unknown mechanisms. Glycine can mitigate methionine toxicity, and a small prior study has suggested that supplemental glycine could extend lifespan of Fischer 344 rats. We therefore evaluated the effects of an 8% glycine diet on lifespan and pathology of genetically heterogeneous mice in the context of the Interventions Testing Program. Elevated glycine led to a small (4%-6%) but statistically significant lifespan increase, as well as an increase in maximum lifespan, in both males (p = 0.002) and females (p < 0.001). Pooling across sex, glycine increased lifespan at each of the three independent sites, with significance at p = 0.01, 0.053, and 0.03, respectively. Glycine-supplemented females were lighter than controls, but there was no effect on weight in males. End-of-life necropsies suggested that glycine-treated mice were less likely than controls to die of pulmonary adenocarcinoma (p = 0.03). Of the 40 varieties of incidental pathology evaluated in these mice, none were increased to a significant degree by the glycine-supplemented diet. In parallel analyses of the same cohort, we found no benefits from TM5441 (an inhibitor of PAI-1, the primary inhibitor of tissue and urokinase plasminogen activators), inulin (a source of soluble fiber), or aspirin at either of two doses. Our glycine results strengthen the idea that modulation of dietary amino acid levels can increase healthy lifespan in mice, and provide a foundation for further investigation of dietary effects on aging and late-life diseases.
Collapse
Affiliation(s)
- Richard A. Miller
- Department of Pathology, Paul F. Glenn Center for Biology of Aging ResearchUniversity of MichiganAnn ArborMichigan
| | | | | | | | - Joel Brind
- Department of Natural Sciences, Baruch CollegeCUNYNew YorkNew York
- Natural Food Science, LLCNew HamburgNew York
| | - Elizabeth Fernandez
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care SystemThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | | | - Martin Javors
- Department of PsychiatryUniversity of Texas Health Science CenterSan AntonioTexas
| | - Warren Ladiges
- Department of Comparative Medicine, School of MedicineUniversity of WashingtonSeattleWashington
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Division of Biology of Aging, Institute on Aging, College of MedicineUniversity of FloridaGainesvilleFlorida
| | | | - James Nelson
- Department of Cellular and Integrative Physiology, Barshop Center for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Alexey G. Ryazanov
- Department of PharmacologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew Jersey
- Princeton Institute of Life SciencesPrincetonNew Jersey
| | - Jessica Snyder
- Department of Comparative Medicine, School of MedicineUniversity of WashingtonSeattleWashington
| | | | - Douglas E. Vaughan
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinois
| | - Randy Strong
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care SystemThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| |
Collapse
|
21
|
Jia Q, Han Y, Huang P, Woodward NC, Gukasyan J, Kettunen J, Ala‐Korpela M, Anufrieva O, Wang Q, Perola M, Raitakari O, Lehtimäki T, Viikari J, Järvelin M, Boehnke M, Laakso M, Mohlke KL, Fiehn O, Wang Z, Tang WW, Hazen SL, Hartiala JA, Allayee H. Genetic Determinants of Circulating Glycine Levels and Risk of Coronary Artery Disease. J Am Heart Assoc 2019; 8:e011922. [PMID: 31070104 PMCID: PMC6585317 DOI: 10.1161/jaha.119.011922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Background Recent studies have revealed sexually dimorphic associations between the carbamoyl-phosphate synthase 1 locus, intermediates of the metabolic pathway leading from choline to urea, and risk of coronary artery disease ( CAD ) in women. Based on evidence from the literature, the atheroprotective association with carbamoyl-phosphate synthase 1 could be mediated by the strong genetic effect of this locus on increased circulating glycine levels. Methods and Results We sought to identify additional genetic determinants of circulating glycine levels by carrying out a meta-analysis of genome-wide association study data in up to 30 118 subjects of European ancestry. Mendelian randomization and other analytical approaches were used to determine whether glycine-associated variants were associated with CAD and traditional risk factors. Twelve loci were significantly associated with circulating glycine levels, 7 of which were not previously known to be involved in glycine metabolism ( ACADM , PHGDH , COX 18- ADAMTS 3, PSPH , TRIB 1, PTPRD , and ABO ). Glycine-raising alleles at several loci individually exhibited directionally consistent associations with decreased risk of CAD . However, these effects could not be attributed directly to glycine because of associations with other CAD -related traits. By comparison, genetic models that only included the 2 variants directly involved in glycine degradation and for which there were no other pleiotropic associations were not associated with risk of CAD or blood pressure, lipid levels, and obesity-related traits. Conclusions These results provide additional insight into the genetic architecture of glycine metabolism, but do not yield conclusive evidence for a causal relationship between circulating levels of this amino acid and risk of CAD in humans.
Collapse
Affiliation(s)
- Qiong Jia
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Yi Han
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Pin Huang
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Xiangya School of MedicineCentral South UniversityHunanChina
| | - Nicholas C. Woodward
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Janet Gukasyan
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Johannes Kettunen
- Computational MedicineFaculty of MedicineUniversity of Oulu and Biocenter OuluOuluFinland
- National Institute for Health and WelfareHelsinkiFinland
| | - Mika Ala‐Korpela
- Computational MedicineFaculty of MedicineUniversity of Oulu and Biocenter OuluOuluFinland
- Systems EpidemiologyBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- NMR Metabolomics LaboratorySchool of PharmacyUniversity of Eastern FinlandKuopioFinland
- Population Health ScienceBristol Medical SchoolUniversity of BristolUnited Kingdom
- Medical Research Council Integrative Epidemiology Unit at the University of BristolUnited Kingdom
- Department of Epidemiology and Preventive MedicineSchool of Public Health and Preventive MedicineFaculty of MedicineNursing and Health SciencesThe Alfred HospitalMonash UniversityMelbourneVictoriaAustralia
| | - Olga Anufrieva
- Computational MedicineFaculty of MedicineUniversity of Oulu and Biocenter OuluOuluFinland
| | - Qin Wang
- Computational MedicineFaculty of MedicineUniversity of Oulu and Biocenter OuluOuluFinland
- Systems EpidemiologyBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - Markus Perola
- National Institute for Health and WelfareHelsinkiFinland
- Estonian Genome CenterUniversity of TartuEstonia
- Institute for Molecular Medicine (FIMM)University of HelsinkiFinland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular MedicineUniversity of TurkuFinland
- Department of Clinical PhysiologyTurku University HospitalTurkuFinland
| | - Terho Lehtimäki
- Department of Clinical ChemistryFimlab Laboratories and Faculty of Medicine and Health TechnologyFinnish Cardiovascular Research Center–TampereTampere UniversityTampereFinland
| | - Jorma Viikari
- Department of MedicineUniversity of TurkuFinland
- Division of MedicineTurku University HospitalTurkuFinland
| | - Marjo‐Riitta Järvelin
- Computational MedicineFaculty of MedicineUniversity of Oulu and Biocenter OuluOuluFinland
- Department of Epidemiology and BiostatisticsSchool of Public HealthMRC‐PHE Centre for Environment and HealthImperial College LondonLondonUnited Kingdom
- Center for Life Course and Systems EpidemiologyUniversity of OuluFinland
- Unit of Primary CareOulu University HospitalOuluFinland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical GeneticsUniversity of MichiganAnn ArborMI
| | - Markku Laakso
- School of MedicineUniversity of Eastern FinlandKuopioFinland
| | - Karen L. Mohlke
- Department of GeneticsUniversity of North CarolinaChapel HillNC
| | | | - Zeneng Wang
- Department of Cardiovascular MedicineCleveland ClinicClevelandOH
| | - W.H. Wilson Tang
- Department of Cardiovascular MedicineCleveland ClinicClevelandOH
- Department of Cellular & Molecular MedicineCleveland ClinicClevelandOH
| | - Stanley L. Hazen
- Genome CenterUniversity of CaliforniaDavisCA
- Department of Cardiovascular MedicineCleveland ClinicClevelandOH
| | - Jaana A. Hartiala
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Hooman Allayee
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
- Department of Biochemistry & Molecular MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| |
Collapse
|
22
|
Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nat Commun 2019; 10:1060. [PMID: 30837465 PMCID: PMC6400990 DOI: 10.1038/s41467-019-08936-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/11/2019] [Indexed: 02/02/2023] Open
Abstract
Circulating levels of glycine have previously been associated with lower incidence of coronary heart disease (CHD) and type 2 diabetes (T2D) but it remains uncertain if glycine plays an aetiological role. We present a meta-analysis of genome-wide association studies for glycine in 80,003 participants and investigate the causality and potential mechanisms of the association between glycine and cardio-metabolic diseases using genetic approaches. We identify 27 genetic loci, of which 22 have not previously been reported for glycine. We show that glycine is genetically associated with lower CHD risk and find that this may be partly driven by blood pressure. Evidence for a genetic association of glycine with T2D is weaker, but we find a strong inverse genetic effect of hyperinsulinaemia on glycine. Our findings strengthen evidence for a protective effect of glycine on CHD and show that the glycine-T2D association may be driven by a glycine-lowering effect of insulin resistance.
Collapse
|
23
|
Activated glycine receptors may decrease endosomal NADPH oxidase activity by opposing ClC-3-mediated efflux of chloride from endosomes. Med Hypotheses 2019; 123:125-129. [DOI: 10.1016/j.mehy.2019.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
|
24
|
Gassner JMGV, Nösser M, Moosburner S, Horner R, Tang P, Wegener L, Wyrwal D, Claussen F, Arsenic R, Pratschke J, Sauer IM, Raschzok N. Improvement of Normothermic Ex Vivo Machine Perfusion of Rat Liver Grafts by Dialysis and Kupffer Cell Inhibition With Glycine. Liver Transpl 2019; 25:275-287. [PMID: 30341973 DOI: 10.1002/lt.25360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022]
Abstract
Normothermic ex vivo liver machine perfusion might be a superior preservation strategy for liver grafts from extended criteria donors. However, standardized small animal models are not available for basic research on machine perfusion of liver grafts. A laboratory-scaled perfusion system was developed consisting of a custom-made perfusion chamber, a pressure-controlled roller pump, and an oxygenator. Male Wistar rat livers were perfused via the portal vein for 6 hours using oxygenated culture medium supplemented with rat erythrocytes. A separate circuit was connected via a dialysis membrane to the main circuit for plasma volume expansion. Glycine was added to the flush solution, the perfusate, and the perfusion circuit. Portal pressure and transaminase release were stable over the perfusion period. Dialysis significantly decreased the potassium concentration of the perfusate and led to significantly higher bile and total urea production. Hematoxylin-eosin staining and immunostaining for single-stranded DNA and activated caspase 3 showed less sinusoidal dilatation and tissue damage in livers treated with dialysis and glycine. Although Kupffer cells were preserved, tumor necrosis factor α messenger RNA levels were significantly decreased by both treatments. For proof of concept, the optimized perfusion protocol was tested with donation after circulatory death (DCD) grafts, resulting in significantly lower transaminase release into the perfusate and preserved liver architecture compared with baseline perfusion. In conclusion, our laboratory-scaled normothermic portovenous ex vivo liver perfusion system enables rat liver preservation for 6 hours. Both dialysis and glycine treatment were shown to be synergistic for preservation of the integrity of normal and DCD liver grafts.
Collapse
Affiliation(s)
- Joseph M G V Gassner
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Maximilian Nösser
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Simon Moosburner
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Rosa Horner
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Peter Tang
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Lara Wegener
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - David Wyrwal
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Felix Claussen
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Ruza Arsenic
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johann Pratschke
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Igor M Sauer
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum
| | - Nathanael Raschzok
- Experimental Surgery, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum.,Charité Clinician Scientist Program, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
25
|
McCarty MF, O'Keefe JH, DiNicolantonio JJ. Dietary Glycine Is Rate-Limiting for Glutathione Synthesis and May Have Broad Potential for Health Protection. Ochsner J 2018; 18:81-87. [PMID: 29559876 PMCID: PMC5855430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Glutathione is a key scavenging antioxidant that opposes the proinflammatory signaling of hydrogen peroxide. Boosting cellular glutathione levels may have broad utility in the prevention and treatment of disorders driven by oxidative stress. Supplemental N-acetylcysteine has been employed for this purpose. Could supplemental glycine likewise promote glutathione synthesis? METHODS We conducted a review of the pertinent literature using PubMed. RESULTS Tissue glycine levels are lower than the glutathione synthase Michaelis constant (Km) for glycine. When glycine availability is too low to sustain a normal rate of glutathione synthesis, the consequent rise in tissue levels of gamma-glutamylcysteine leads to an increase in urinary excretion of its alternative metabolite 5-L-oxoproline. The fact that urinary excretion of this metabolite is elevated in vegetarians and others consuming relatively low-protein diets strongly suggests that dietary glycine can be rate-limiting for glutathione synthesis in normally fed humans. Moreover, supplemental glycine has been reported to increase tissue glutathione levels in several animal studies. Glycine is a biosynthetic precursor for porphyrins, purines, creatine, sarcosine, and bile salts; is an agonist for glycine-gated chloride channels and a coagonist for N-methyl-D-aspartate receptors; inhibits protein glycation; and increases hepatic production of pyruvate, an effective scavenger of hydrogen peroxide. Supplemental glycine may have the potential for improving endothelial function, preventing cardiac hypertrophy, aiding control of metabolic syndrome, preventing the complications of diabetes, dampening inflammation, protecting the liver, and promoting effective sleep. CONCLUSION Clinical research is warranted to evaluate the impact of supplemental glycine on glutathione levels and on various health disorders.
Collapse
Affiliation(s)
| | - James H. O'Keefe
- Department of Cardiology, Mid America Heart Institute, Saint Luke's Health System, Kansas City, MO
| | - James J. DiNicolantonio
- Department of Cardiology, Mid America Heart Institute, Saint Luke's Health System, Kansas City, MO
| |
Collapse
|
26
|
Zhang Q, Tan C, Cai L, Xia F, Gao D, Yang F, Chen H, Xia Z. Characterization of active antiplatelet chemical compositions of edible Citrus limon through ultra-performance liquid chromatography single quadrupole mass spectrometry-based chemometrics. Food Funct 2018; 9:2762-2773. [DOI: 10.1039/c8fo00403j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
UPLC-SQD-MS-based chemometrics was applied for antiplatelet active compounds screening for the first time, and seven potential biomarkers were found in lemon extract.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- PR China
| | - Chengning Tan
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- PR China
| | - Liang Cai
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- PR China
| | - Fangbo Xia
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- PR China
| | - Die Gao
- School of Pharmacy
- Southwest Medical University
- Luzhou 646000
- PR China
| | - Fengqing Yang
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- PR China
| | - Hua Chen
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- PR China
| | - Zhining Xia
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- PR China
| |
Collapse
|
27
|
DiNicolantonio JJ, O'Keefe JH, McCarty MF. Targeting aspirin resistance with nutraceuticals: a possible strategy for reducing cardiovascular morbidity and mortality. Open Heart 2017; 4:e000642. [PMID: 28912955 PMCID: PMC5589004 DOI: 10.1136/openhrt-2017-000642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
| | - James H O'Keefe
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas, USA
| | | |
Collapse
|
28
|
The Genetic Architecture of Coronary Artery Disease: Current Knowledge and Future Opportunities. Curr Atheroscler Rep 2017; 19:6. [PMID: 28130654 DOI: 10.1007/s11883-017-0641-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW We provide an overview of our current understanding of the genetic architecture of coronary artery disease (CAD) and discuss areas of research that provide excellent opportunities for further exploration. RECENT FINDINGS Large-scale studies in human populations, coupled with rapid advances in genetic technologies over the last decade, have clearly established the association of common genetic variation with risk of CAD. However, the effect sizes of the susceptibility alleles are for the most part modest and collectively explain only a small fraction of the overall heritability. By comparison, evidence that rare variants make a substantial contribution to risk of CAD has been somewhat disappointing thus far, suggesting that other biological mechanisms have yet to be discovered. Emerging data suggests that novel pathways involved in the development of CAD can be identified through complementary and integrative systems genetics strategies in mice or humans. There is also convincing evidence that gut bacteria play a previously unrecognized role in the development of CAD, particularly through metabolism of certain dietary nutrients that lead to proatherogenic metabolites in the circulation. A major effort is now underway to functionally understand the newly discovered genetic and biological associations for CAD, which could lead to the development of potentially novel therapeutic strategies. Other important areas of investigation for understanding the pathophysiology of CAD, including epistatic interactions between genes or with either sex and environmental factors, have not been studied on a broad scope and represent additional opportunities for future studies.
Collapse
|
29
|
Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1716701. [PMID: 28337245 PMCID: PMC5350494 DOI: 10.1155/2017/1716701] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 02/06/2023]
Abstract
Glycine is most important and simple, nonessential amino acid in humans, animals, and many mammals. Generally, glycine is synthesized from choline, serine, hydroxyproline, and threonine through interorgan metabolism in which kidneys and liver are the primarily involved. Generally in common feeding conditions, glycine is not sufficiently synthesized in humans, animals, and birds. Glycine acts as precursor for several key metabolites of low molecular weight such as creatine, glutathione, haem, purines, and porphyrins. Glycine is very effective in improving the health and supports the growth and well-being of humans and animals. There are overwhelming reports supporting the role of supplementary glycine in prevention of many diseases and disorders including cancer. Dietary supplementation of proper dose of glycine is effectual in treating metabolic disorders in patients with cardiovascular diseases, several inflammatory diseases, obesity, cancers, and diabetes. Glycine also has the property to enhance the quality of sleep and neurological functions. In this review we will focus on the metabolism of glycine in humans and animals and the recent findings and advances about the beneficial effects and protection of glycine in different disease states.
Collapse
|
30
|
Cen C, Fengqin W, Wen X, Zhining X, Guang H, Jianbo W, Fengqing Y. Effect on platelet aggregation activity: extracts from 31 Traditional Chinese Medicines with the property of activating blood and resolving stasis. J TRADIT CHIN MED 2017; 37:64-75. [DOI: 10.1016/s0254-6272(17)30028-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Wright JR, Amisten S, Goodall AH, Mahaut-Smith MP. Transcriptomic analysis of the ion channelome of human platelets and megakaryocytic cell lines. Thromb Haemost 2016; 116:272-84. [PMID: 27277069 PMCID: PMC5080539 DOI: 10.1160/th15-11-0891] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/30/2016] [Indexed: 11/05/2022]
Abstract
Ion channels have crucial roles in all cell types and represent important therapeutic targets. Approximately 20 ion channels have been reported in human platelets; however, no systematic study has been undertaken to define the platelet channelome. These membrane proteins need only be expressed at low copy number to influence function and may not be detected using proteomic or transcriptomic microarray approaches. In our recent work, quantitative real-time PCR (qPCR) provided key evidence that Kv1.3 is responsible for the voltage-dependent K+ conductance of platelets and megakaryocytes. The present study has expanded this approach to assess relative expression of 402 ion channels and channel regulatory genes in human platelets and three megakaryoblastic/erythroleukaemic cell lines. mRNA levels in platelets are low compared to other blood cells, therefore an improved method of isolating platelets was developed. This used a cocktail of inhibitors to prevent formation of leukocyte-platelet aggregates, and a combination of positive and negative immunomagnetic cell separation, followed by rapid extraction of mRNA. Expression of 34 channel-related transcripts was quantified in platelets, including 24 with unknown roles in platelet function, but that were detected at levels comparable to ion channels with established roles in haemostasis or thrombosis. Trace expression of a further 50 ion channel genes was also detected. More extensive channelomes were detected in MEG-01, CHRF-288-11 and HEL cells (195, 185 and 197 transcripts, respectively), but lacked several channels observed in the platelet. These "channelome" datasets provide an important resource for further studies of ion channel function in the platelet and megakaryocyte.
Collapse
Affiliation(s)
| | | | | | - Martyn P Mahaut-Smith
- Prof. Martyn Mahaut-Smith, PhD, Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LEI 7RH, UK, Tel.: +44 116 229 7135, E-mail:
| |
Collapse
|
32
|
McCarty MF. Practical prospects for boosting hepatic production of the "pro-longevity" hormone FGF21. Horm Mol Biol Clin Investig 2015; 30:/j/hmbci.ahead-of-print/hmbci-2015-0057/hmbci-2015-0057.xml. [PMID: 26741352 DOI: 10.1515/hmbci-2015-0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor-21 (FGF21), produced mainly in hepatocytes and adipocytes, promotes leanness, insulin sensitivity, and vascular health while down-regulating hepatic IGF-I production. Transgenic mice overexpressing FGF21 enjoy a marked increase in median and maximal longevity comparable to that evoked by calorie restriction - but without a reduction in food intake. Transcriptional factors which promote hepatic FGF21 expression include PPARα, ATF4, STAT5, and FXR; hence, fibrate drugs, elevated lipolysis, moderate-protein vegan diets, growth hormone, and bile acids may have potential to increase FGF21 synthesis. Sirt1 activity is required for optimal responsiveness of FGF21 to PPARα, and Sirt1 activators can boost FGF21 transcription. Conversely, histone deacetylase 3 (HDAC3) inhibits PPARα's transcriptional impact on FGF21, and type 1 deacetylase inhibitors such as butyrate therefore increase FGF21 expression. Glucagon-like peptide-1 (GLP-1) increases hepatic expression of both PPARα and Sirt1; acarbose, which increases intestinal GLP-1 secretion, also increases FGF21 and lifespan in mice. Glucagon stimulates hepatic production of FGF21 by increasing the expression of the Nur77 transcription factor; increased glucagon secretion can be evoked by supplemental glycine administered during post-absorptive metabolism. The aryl hydrocarbon receptor (AhR) has also been reported recently to promote FGF21 transcription. Bilirubin is known to be an agonist for this receptor, and this may rationalize a recent report that heme oxygenase-1 induction in the liver boosts FGF21 expression. There is reason to suspect that phycocyanorubin, a bilirubin homolog that is a metabolite of the major phycobilin in spirulina, may share bilirubin's agonist activity for AhR, and perhaps likewise promote FGF21 induction. In the future, regimens featuring a plant-based diet, nutraceuticals, and safe drugs may make it feasible to achieve physiologically significant increases in FGF21 that promote metabolic health, leanness, and longevity.
Collapse
|
33
|
McCarty MF, DiNicolantonio JJ. The cardiometabolic benefits of glycine: Is glycine an 'antidote' to dietary fructose? Open Heart 2014; 1:e000103. [PMID: 25332814 PMCID: PMC4195924 DOI: 10.1136/openhrt-2014-000103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2014] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - James J DiNicolantonio
- Department of Preventive Cardiology , Saint Luke's Mid America Heart Institute , Kansas City, Missouri , USA
| |
Collapse
|
34
|
Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 2014; 46:2037-45. [PMID: 24858859 DOI: 10.1007/s00726-014-1758-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 04/25/2014] [Indexed: 01/01/2023]
Abstract
Analysis of amino acids in milk protein reveals a relatively low content of glycine. This study was conducted with young pigs to test the hypothesis that milk-fed neonates require dietary glycine supplementation for maximal growth. Fourteen-day-old piglets were allotted randomly into one of four treatments (15 piglets/treatment), representing supplementation with 0, 0.5, 1 or 2% glycine (dry matter basis) to a liquid milk replacer. Food was provided to piglets every 8 h (3 times/day) for 2 weeks. Milk intake (32.0-32.5 g dry matter/kg body weight per day) did not differ between control and glycine-supplemented piglets. Compared with control piglets, dietary supplementation with 0.5, 1 and 2% glycine increased (P < 0.05) plasma concentrations of glycine and serine, daily weight gain, and body weight without affecting body composition, while reducing plasma concentrations of ammonia, urea, and glutamine, in a dose-dependent manner. Dietary supplementation with 0.5, 1 and 2% glycine enhanced (P < 0.05) small-intestinal villus height, glycine transport (measured using Ussing chambers), mRNA levels for GLYT1, and anti-oxidative capacity (indicated by increased concentrations of reduced glutathione and a decreased ratio of oxidized glutathione to reduced glutathione). These novel results indicate, for the first time, that glycine is a nutritionally essential amino acid for maximal protein accretion in milk-fed piglets. The findings not only enhance understanding of protein nutrition, but also have important implications for designing improved formulas to feed human infants, particularly low birth weight and preterm infants.
Collapse
|