1
|
Bjørklund G, Oliinyk P, Khavrona O, Lozynska I, Lysiuk R, Darmohray R, Antonyak H, Dub N, Zayachuk V, Antoniv O, Rybak O, Peana M. The Effects of Fisetin and Curcumin on Oxidative Damage Caused by Transition Metals in Neurodegenerative Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04321-2. [PMID: 38970766 DOI: 10.1007/s12035-024-04321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases pose a significant health challenge for the elderly. The escalating presence of toxic metals and chemicals in the environment is a potential contributor to central nervous system dysfunction and the onset of neurodegenerative conditions. Transition metals play a crucial role in various pathophysiological mechanisms associated with prevalent neurodegenerative diseases such as Alzheimer's and Parkinson's. Given the ubiquitous exposure to metals from diverse sources in everyday life, the workplace, and the environment, most of the population faces regular contact with different forms of these metals. Disturbances in the levels and homeostasis of certain transition metals are closely linked to the manifestation of neurodegenerative disorders. Oxidative damage further exacerbates the progression of neurological consequences. Presently, there exists no curative therapy for individuals afflicted by neurodegenerative diseases, with treatment approaches primarily focusing on alleviating pathological symptoms. Within the realm of biologically active compounds derived from plants, flavonoids and curcuminoids stand out for their extensively documented antioxidant, antiplatelet, and neuroprotective properties. The utilization of these compounds holds the potential to formulate highly effective therapeutic strategies for managing neurodegenerative diseases. This review provides a comprehensive overview of the impact of abnormal metal levels, particularly copper, iron, and zinc, on the initiation and progression of neurodegenerative diseases. Additionally, it aims to elucidate the potential of fisetin and curcumin to inhibit or decelerate the neurodegenerative process.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo I Rana, Norway.
| | - Petro Oliinyk
- Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Khavrona
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Iryna Lozynska
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Darmohray
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, 79000, Ukraine
| | - Vasyl Zayachuk
- Department of Botany, Ukrainian National Forestry University, Wood Science and Non-Wood Forest Products, Lviv, 79057, Ukraine
| | - Olha Antoniv
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacology, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Rybak
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
2
|
Roos PM, Wärmländer SKTS. Hereditary Transthyretin Amyloidosis (hATTR) with Polyneuropathy Clusters Are Located in Ancient Mining Districts: A Possible Geochemical Origin of the Disease. Biomolecules 2024; 14:652. [PMID: 38927056 PMCID: PMC11202025 DOI: 10.3390/biom14060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Hereditary transthyretin amyloidosis (hATTR) with polyneuropathy (formerly known as Familial Amyloid Polyneuropathy (FAP)) is an endemic amyloidosis involving the harmful aggregation of proteins, most commonly transthyretin (TTR) but sometimes also apolipoprotein A-1 or gelsolin. hATTR appears to be transmitted as an autosomal dominant trait. Over 100 point mutations have been identified, with the Val30Met substitution being the most common. Yet, the mechanism of pathogenesis and the overall origin of hATTR remain unclear. Here, we argue that hATTR could be related to harmful metal exposure. hATTR incidence is unevenly distributed globally, and the three largest defined clusters exist in Japan, Portugal, and Sweden. All three disease regions are also ancient mining districts with associated metal contamination of the local environment. There are two main mechanisms for how harmful metals, after uptake into tissues and body fluids, could induce hATTR. First, the metals could directly influence the expression, function, and/or aggregation of the proteins involved in hATTR pathology. Such metal-protein interactions might constitute molecular targets for anti-hATTR drug design. Second, metal exposure could induce hATTR -associated genetic mutations, which may have happened several generations ago. These two mechanisms can occur in parallel. In conclusion, the possibility that hATTR could be related to metal exposure in geochemically defined regions deserves further attention.
Collapse
Affiliation(s)
- Per M. Roos
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Physiology, St. Göran Hospital University Unit, 11281 Stockholm, Sweden
| | - Sebastian K. T. S. Wärmländer
- Chemistry Section, Stockholm University, 10691 Stockholm, Sweden
- CellPept Sweden AB, Kvarngatan 10B, 11847 Stockholm, Sweden
| |
Collapse
|
3
|
Mohd Nor Ihsan NS, Abdul Sani SF, Looi LM, Pathmanathan D, Cheah PL, Chiew SF, Bradley DA. EDXRF and the relative presence of K, Ca, Fe and as in amyloidogenic tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123743. [PMID: 38113556 DOI: 10.1016/j.saa.2023.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/09/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Trace and minor elements play crucial roles in a variety of biological processes, including amyloid fibrils formation. Mechanisms include activation or inhibition of enzymatic reactions, competition between elements and metal proteins for binding positions, also changes to the permeability of cellular membranes. These may influence carcinogenic processes, with trace and minor element concentrations in normal and amyloid tissues potentially aiding in cancer diagnosis and etiology. With the analytical capability of the spectroscopic technique X-ray fluorescence (XRF), this can be used to detect and quantify the presence of elements in amyloid characterization, two of the trace elements known to be associated with amyloid fibrils. In present work, involving samples from a total of 22 subjects, samples of normal and amyloid-containing tissues of heart, kidney, thyroid, and other tissue organs were obtained, analyzed via energy-dispersive X-ray fluorescence (EDXRF). The elemental distribution of potassium (K), calcium (Ca), arsenic (As), and iron (Fe) was examined in both normal and amyloidogenic tissues using perpetual thin slices. In amyloidogenic tissues the levels of K, Ca, and Fe were found to be less than in corresponding normal tissues. Moreover, the presence of As was only observed in amyloidogenic samples; in a few cases in which there was an absence of As, amyloid samples were found to contain Fe. Analysis of arsenic in amyloid plaques has previously been difficult, often producing contradictory results. Using the present EDXRF facility we could distinguish between amyloidogenic and normal samples, with potential correlations in respect of the presence or concentration of specific elements.
Collapse
Affiliation(s)
- N S Mohd Nor Ihsan
- Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - S F Abdul Sani
- Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - L M Looi
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Dharini Pathmanathan
- Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - P L Cheah
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - S F Chiew
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - D A Bradley
- Sunway University, Centre for Applied Physics and Radiation Technologies, Jalan Universiti, 46150 PJ, Malaysia; School of Mathematics and Physics, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
4
|
Liu G, Yang C, Wang X, Chen X, Wang Y, Le W. Oxygen metabolism abnormality and Alzheimer's disease: An update. Redox Biol 2023; 68:102955. [PMID: 37956598 PMCID: PMC10665957 DOI: 10.1016/j.redox.2023.102955] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Oxygen metabolism abnormality plays a crucial role in the pathogenesis of Alzheimer's disease (AD) via several mechanisms, including hypoxia, oxidative stress, and mitochondrial dysfunction. Hypoxia condition usually results from living in a high-altitude habitat, cardiovascular and cerebrovascular diseases, and chronic obstructive sleep apnea. Chronic hypoxia has been identified as a significant risk factor for AD, showing an aggravation of various pathological components of AD, such as amyloid β-protein (Aβ) metabolism, tau phosphorylation, mitochondrial dysfunction, and neuroinflammation. It is known that hypoxia and excessive hyperoxia can both result in oxidative stress and mitochondrial dysfunction. Oxidative stress and mitochondrial dysfunction can increase Aβ and tau phosphorylation, and Aβ and tau proteins can lead to redox imbalance, thus forming a vicious cycle and exacerbating AD pathology. Hyperbaric oxygen therapy (HBOT) is a non-invasive intervention known for its capacity to significantly enhance cerebral oxygenation levels, which can significantly attenuate Aβ aggregation, tau phosphorylation, and neuroinflammation. However, further investigation is imperative to determine the optimal oxygen pressure, duration of exposure, and frequency of HBOT sessions. In this review, we explore the prospects of oxygen metabolism in AD, with the aim of enhancing our understanding of the underlying molecular mechanisms in AD. Current research aimed at attenuating abnormalities in oxygen metabolism holds promise for providing novel therapeutic approaches for AD.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yanjiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| |
Collapse
|
5
|
Han J. Copper trafficking systems in cells: insights into coordination chemistry and toxicity. Dalton Trans 2023; 52:15277-15296. [PMID: 37702384 DOI: 10.1039/d3dt02166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Transition metal ions, such as copper, are indispensable components in the biological system. Copper ions which primarily exist in two major oxidation states Cu(I) and Cu(II) play crucial roles in various cellular processes including antioxidant defense, biosynthesis of neurotransmitters, and energy metabolism, owing to their inherent redox activity. The disturbance in copper homeostasis can contribute to the development of copper metabolism disorders, cancer, and neurodegenerative diseases, highlighting the significance of understanding the copper trafficking system in cellular environments. This review aims to offer a comprehensive overview of copper homeostatic machinery, with an emphasis on the coordination chemistry of copper transporters and trafficking proteins. While copper chaperones and the corresponding metalloenzymes are thoroughly discussed, we also explore the potential existence of low-molecular-mass metal complexes within cellular systems. Furthermore, we summarize the toxicity mechanisms originating from copper deficiency or accumulation, which include the dysregulation of oxidative stress, signaling pathways, signal transduction, and amyloidosis. This perspective review delves into the current knowledge regarding the intricate aspects of the copper trafficking system, providing valuable insights into potential treatment strategies from the standpoint of bioinorganic chemistry.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
6
|
Berntsson E, Vosough F, Noormägi A, Padari K, Asplund F, Gielnik M, Paul S, Jarvet J, Tõugu V, Roos PM, Kozak M, Gräslund A, Barth A, Pooga M, Palumaa P, Wärmländer SKTS. Characterization of Uranyl (UO 22+) Ion Binding to Amyloid Beta (Aβ) Peptides: Effects on Aβ Structure and Aggregation. ACS Chem Neurosci 2023; 14:2618-2633. [PMID: 37487115 PMCID: PMC10401651 DOI: 10.1021/acschemneuro.3c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer's disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aβ aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aβ production, and these metals bind to Aβ peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aβ peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aβ peptides with affinities in the micromolar range, induce structural changes in Aβ monomers and oligomers, and inhibit Aβ fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation.
Collapse
Affiliation(s)
- Elina Berntsson
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Faraz Vosough
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Andra Noormägi
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Kärt Padari
- Institute
of Molecular and Cell Biology, University
of Tartu, 50090 Tartu, Estonia
| | - Fanny Asplund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Maciej Gielnik
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus, Denmark
| | - Suman Paul
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Vello Tõugu
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Per M. Roos
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- University
Healthcare Unit of Capio St. Göran Hospital, 112 81 Stockholm, Sweden
| | - Maciej Kozak
- Department
of Biomedical Physics, Institute of Physics, Faculty of Physics, Adam Mickiewicz University, 61-712 Poznań, Poland
- SOLARIS
National Synchrotron Radiation Centre, Jagiellonian
University, 31-007 Kraków, Poland
| | - Astrid Gräslund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Andreas Barth
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Margus Pooga
- Institute
of Technology, University of Tartu, 50090 Tartu, Estonia
| | - Peep Palumaa
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Sebastian K. T. S. Wärmländer
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| |
Collapse
|
7
|
Kola A, Nencioni F, Valensin D. Bioinorganic Chemistry of Micronutrients Related to Alzheimer's and Parkinson's Diseases. Molecules 2023; 28:5467. [PMID: 37513339 PMCID: PMC10385134 DOI: 10.3390/molecules28145467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are fundamental to guarantee the regular physiological activity of the human organism. Similarly, vitamins play a key role in many biological functions of the metabolism, among which are coenzymes, redox mediators, and antioxidants. Due to their importance in the human organism, both metals and vitamins have been extensively studied for their involvement in neurodegenerative diseases (NDs). However, the full potential of the interaction between vitamins and metal ions has not been fully explored by researchers yet, and further investigation on this topic is needed. The aim of this review is to provide an overview of the scientific literature on the implications of vitamins and selected metal ions in two of the most common neurodegenerative diseases, Alzheimer's and Parkinson's disease. Furthermore, vitamin-metal ion interactions are discussed in detail focusing on their bioinorganic chemistry, with the perspective of arousing more interest in this fascinating bioinorganic field.
Collapse
Affiliation(s)
| | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (F.N.)
| |
Collapse
|
8
|
Dohoney RA, Joseph JA, Baysah C, Thomas AG, Siwakoti A, Ball TD, Kumar S. "Common-Precursor" Protein Mimetic Approach to Rescue Aβ Aggregation-Mediated Alzheimer's Phenotypes. ACS Chem Biol 2023. [PMID: 37367833 DOI: 10.1021/acschembio.3c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Abberent protein-protein interactions (aPPIs) are associated with an array of pathological conditions, which make them important therapeutic targets. The aPPIs are mediated via specific chemical interactions that spread over a large and hydrophobic surface. Therefore, ligands that can complement the surface topography and chemical fingerprints could manipulate aPPIs. Oligopyridylamides (OPs) are synthetic protein mimetics that have been shown to manipulate aPPIs. However, the previous OP library used to disrupt these aPPIs was moderate in number (∼30 OPs) with very limited chemical diversity. The onus is on the laborious and time-consuming synthetic pathways with multiple chromatography steps. We have developed a novel chromatography-free technique to synthesize a highly diverse chemical library of OPs using a "common-precursor" approach. We significantly expanded the chemical diversity of OPs using a chromatography-free high-yielding method. To validate our novel approach, we have synthesized an OP with identical chemical diversity to a pre-existing OP-based potent inhibitor of Aβ aggregation, a process central to Alzheimer's disease (AD). The newly synthesized OP ligand (RD242) was very potent in inhibiting Aβ aggregation and rescuing AD phenotypes in an in vivo model. Moreover, RD242 was very effective in rescuing AD phenotypes in a post-disease onset AD model. We envision that our "common-precursor" synthetic approach will have tremendous potential as it is expandable for other oligoamide scaffolds to enhance affinity for disease-relevant targets.
Collapse
Affiliation(s)
- Ryan A Dohoney
- The Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
| | - Johnson A Joseph
- The Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
| | - Charles Baysah
- The Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
| | - Alexandra G Thomas
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
- The Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| | - Apshara Siwakoti
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
- The Department of Biological Sciences, University of Denver, Denver, Colorado 80210, United States
| | - Tyler D Ball
- The Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
| | - Sunil Kumar
- The Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado 80210, United States
| |
Collapse
|
9
|
Li Z, Feng R, Liu Q, Feng J, Lao G, Zhang M, Li J, Zhang Y, Wei H. APART-QSM: an improved sub-voxel quantitative susceptibility mapping for susceptibility source separation using an iterative data fitting method. Neuroimage 2023; 274:120148. [PMID: 37127191 DOI: 10.1016/j.neuroimage.2023.120148] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
The brain tissue phase contrast in MRI sequences reflects the spatial distributions of multiple substances, such as iron, myelin, calcium, and proteins. These substances with paramagnetic and diamagnetic susceptibilities often colocalize in one voxel in brain regions. Both opposing susceptibilities play vital roles in brain development and neurodegenerative diseases. Conventional QSM methods only provide voxel-averaged susceptibility value and cannot disentangle intravoxel susceptibilities with opposite signs. Advanced susceptibility imaging methods have been recently developed to distinguish the contributions of opposing susceptibility sources for QSM. The basic concept of separating paramagnetic and diamagnetic susceptibility proportions is to include the relaxation rate R2* with R2' in QSM. The magnitude decay kernel, describing the proportionality coefficient between R2' and susceptibility, is an essential reconstruction coefficient for QSM separation methods. In this study, we proposed a more comprehensive complex signal model that describes the relationship between 3D GRE signal and the contributions of paramagnetic and diamagnetic susceptibility to the frequency shift and R2* relaxation. The algorithm is implemented as a constrained minimization problem in which the voxel-wise magnitude decay kernel and sub-voxel susceptibilities are determined alternately in each iteration until convergence. The calculated voxel-wise magnitude decay kernel could realistically model the relationship between the R2' relaxation and the volume susceptibility. Thus, the proposed method effectively prevents the errors of the magnitude decay kernel from propagating to the final susceptibility separation reconstruction. Phantom studies, ex vivo macaque brain experiments, and in vivo human brain imaging studies were conducted to evaluate the ability of the proposed method to distinguish paramagnetic and diamagnetic susceptibility sources. The results demonstrate that the proposed method provides state-of-the-art performances for quantifying brain iron and myelin compared to previous QSM separation methods. Our results show that the proposed method has the potential to simultaneously quantify whole brain iron and myelin during brain development and aging. The proposed model was also deployed with multiple-orientation complex GRE data input measurements, resulting in high-quality QSM separation maps with more faithful tissue delineation between brain structures compared to those reconstructed by single-orientation QSM separation methods.
Collapse
Affiliation(s)
- Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruimin Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangqiang Liu
- Department of Neurosurgery, Clinical Neuroscience Center Comprehensive Epilepsy Unit, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyan Lao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Koski L, Berntsson E, Vikström M, Wärmländer SKTS, Roos PM. Metal ratios as possible biomarkers for amyotrophic lateral sclerosis. J Trace Elem Med Biol 2023; 78:127163. [PMID: 37004478 DOI: 10.1016/j.jtemb.2023.127163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND AND OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with unknown aetiology. Metals have been suspected to contribute to ALS pathogenesis since mid-19th century, yet studies on measured metal concentrations in ALS patients have often yielded conflicting results, with large individual variation in measured values. Calculating metal concentration ratios can unveil possible synergistic effects of neurotoxic metals in ALS pathogenesis. The aim of this study was to investigate if ratios of different metal concentrations in cerebrospinal fluid (CSF) and blood plasma, respectively, differ between ALS patients and healthy controls. METHODS Cerebrospinal fluid and blood plasma were collected from 17 ALS patients and 10 controls. Samples were analysed for 22 metals by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), and all possible 231 metal ratios calculated in each body fluid. RESULTS Fifty-three metal ratios were significantly elevated in ALS cases as compared to controls (p < 0.05); five in blood plasma, and 48 in CSF. The finding of fewer elevated ratios in blood plasma may indicate specific transport of metals into the central nervous system. The elevated metal ratios in CSF include Cd/Se (p = 0.031), and 16 ratios with magnesium, such as Mn/Mg (p = 0.005) and Al/Mg (p = 0.014). CONCLUSION Metal ratios may be used as biomarkers in ALS diagnosis and as guidelines for preventive measures.
Collapse
Affiliation(s)
- Lassi Koski
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Elina Berntsson
- Chemistry Section, Arrhenius Laboratories, Stockholm University, 106 91 Stockholm, Sweden; Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Max Vikström
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Clinical Physiology, St. Göran Hospital University Unit, 112 81 Stockholm, Sweden
| |
Collapse
|
11
|
Berntsson E, Vosough F, Svantesson T, Pansieri J, Iashchishyn IA, Ostojić L, Dong X, Paul S, Jarvet J, Roos PM, Barth A, Morozova-Roche LA, Gräslund A, Wärmländer SKTS. Residue-specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (Aβ) peptides. Sci Rep 2023; 13:3341. [PMID: 36849796 PMCID: PMC9971182 DOI: 10.1038/s41598-023-29901-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-β (Aβ) peptides, and Aβ oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with Aβ peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods-mainly spectroscopy and imaging techniques-to characterize Aβ/Ni(II) interactions in vitro, for different Aβ variants: Aβ(1-40), Aβ(1-40)(H6A, H13A, H14A), Aβ(4-40), and Aβ(1-42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length Aβ monomers. Equimolar amounts of Ni(II) ions retard Aβ aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)·Aβ binding affinity is in the low µM range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent Aβ dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in Aβ monomers, while in a membrane-mimicking environment (SDS micelles) coil-coil helix interactions appear to be induced. For SDS-stabilized Aβ oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the Aβ aggregation processes that are involved in AD brain pathology.
Collapse
Affiliation(s)
- Elina Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Igor A Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Lucija Ostojić
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Xiaolin Dong
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Suman Paul
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, 171 77, Stockholm, Sweden
- Department of Clinical Physiology, Capio St. Göran Hospital, St. Göransplan 1, 112 19, Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | |
Collapse
|
12
|
Oxidative Damages on the Alzheimer's Related-Aβ Peptide Alters Its Ability to Assemble. Antioxidants (Basel) 2023; 12:antiox12020472. [PMID: 36830030 PMCID: PMC9951946 DOI: 10.3390/antiox12020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Oxidative stress that can lead to oxidation of the amyloid-β (Aβ) peptide is considered a key feature in Alzheimer's disease (AD), influencing the ability of Aβ to assemble into β-sheet rich fibrils that are commonly found in senile plaques of AD patients. The present study aims at investigating the fallouts of Aβ oxidation on the assembly properties of the Aβ peptide. To accomplish this, we performed kinetics and analysis on an oxidized Aβ (oxAβ) peptide, resulting from the attack of reactive oxygen species (ROS) that are formed by the biologically relevant Cu/Aβ/dioxygen/ascorbate system. oxAβ was still able to assemble but displayed ill-defined and small oligomeric assemblies compared to the long and thick β-sheet rich fibrils from the non-oxidized counterpart. In addition, oxAβ does affect the assembly of the parent Aβ peptide. In a mixture of the two peptides, oxAβ has a mainly kinetic effect on the assembly of the Aβ peptide and was able to slow down the formation of Aβ fibril in a wide pH range [6.0-7.4]. However, oxAβ does not change the quantity and morphology of the Aβ fibrils formed to a significant extent. In the presence of copper or zinc di-cations, oxAβ assembled into weakly-structured aggregates rather than short, untangled Cu-Aβ fibrils and long untangled Zn-Aβ fibrils. The delaying effect of oxAβ on metal altered Aβ assembly was also observed. Hence, our results obtained here bring new insights regarding the tight interconnection between (i) ROS production leading to Aβ oxidation and (ii) Aβ assembly, in particular via the modulation of the Aβ assembly by oxAβ. It is the first time that co-assembly of oxAβ and Aβ under various environmental conditions (pH, metal ions …) are reported.
Collapse
|
13
|
Yi Y, Lim MH. Current understanding of metal-dependent amyloid-β aggregation and toxicity. RSC Chem Biol 2023; 4:121-131. [PMID: 36794021 PMCID: PMC9906324 DOI: 10.1039/d2cb00208f] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of effective therapeutics targeting amyloid-β (Aβ) aggregates for Alzheimer's disease (AD) has been very challenging, which suggests its complicated etiology associated with multiple pathogenic elements. In AD-affected brains, highly concentrated metals, such as copper and zinc, are found in senile plaques mainly composed of Aβ aggregates. These metal ions are coordinated to Aβ and affect its aggregation and toxicity profiles. In this review, we illustrate the current view on molecular insights into the assembly of Aβ peptides in the absence and presence of metal ions as well as the effect of metal ions on their toxicity.
Collapse
Affiliation(s)
- Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
14
|
Chen LL, Fan YG, Zhao LX, Zhang Q, Wang ZY. The metal ion hypothesis of Alzheimer's disease and the anti-neuroinflammatory effect of metal chelators. Bioorg Chem 2023; 131:106301. [PMID: 36455485 DOI: 10.1016/j.bioorg.2022.106301] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD), characterized by the β-amyloid protein (Aβ) deposition and tau hyperphosphorylation, is the most common dementia with uncertain etiology. The clinical trials of Aβ monoclonal antibody drugs have almost failed, giving rise to great attention on the other etiologic hypothesis regarding AD such as metal ions dysmetabolism and chronic neuroinflammation. Mounting evidence revealed that the metal ions (iron, copper, and zinc) were dysregulated in the susceptible brain regions of AD patients, which was highly associated with Aβ deposition, tau hyperphosphorylation, neuronal loss, as well as neuroinflammation. Further studies uncovered that iron, copper and zinc could not only enhance the production of Aβ but also directly bind to Aβ and tau to promote their aggregations. In addition, the accumulation of iron and copper could respectively promote ferroptosis and cuproptosis. Therefore, the metal ion chelators were recognized as promising agents for treating AD. This review comprehensively summarized the effects of metal ions on the Aβ dynamics and tau phosphorylation in the progression of AD. Furthermore, taking chronic neuroinflammation contributes to the progression of AD, we also provided a summary of the mechanisms concerning metal ions on neuroinflammation and highlighted the metal ion chelators may be potential agents to alleviate neuroinflammation under the condition of AD. Nevertheless, more investigations regarding metal ions on neuroinflammation should be taken into practice, and the effects of metal ion chelators on neuroinflammation should gain more attention. Running title: Metal chelators against neuroinflammation.
Collapse
Affiliation(s)
- Li-Lin Chen
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Qi Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
15
|
Thakur R, Karwasra R, Umar T. Understanding Alzheimer's Disease and its Metal Chelation Therapeutics: A Narrative Review. Curr Pharm Des 2023; 29:2377-2386. [PMID: 37859328 DOI: 10.2174/0113816128263992231012113847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
The neurodegenerative disorders are age-related illnesses that cause the morphology or activity of neurons to deteriorate over time. Alzheimer's disease is the most frequent neurodegenerative illness in the long run. The rate of advancement might vary, even though it is a progressive neurological illness. Various explanations have been proposed, however the true etiology of Alzheimer's disease remains unclear. Most pharmacological interventions are based on the cholinergic theory, that is earliest idea. In accordance with the amyloid hypothesis, the buildup of beta-amyloid in brain regions is the primitive cause of illness. There is no proof that any one strategy is useful in avoiding Alzheimer's disease, though some epidemiological studies have suggested links within various modifiable variables, such as cardiovascular risk, diet and so on. Different metals like zinc, iron, and copper are naturally present in our bodies. In metal chelation therapy drugs are used to jam the metal ions from combining with other molecules in the body. Clioquinol is one of the metal chelation drugs used by researchers. Research on metal chelation is still ongoing. In the present review, we go over the latest developments in prevalence, incidence, etiology, or pathophysiology of our understanding of Alzheimer's disease. Additionally, a brief discussion on the development of therapeutic chelating agents and their viability as Alzheimer's disease medication candidates is presented. We also assess the effect of clioquinol as a potential metal chelator.
Collapse
Affiliation(s)
- Ritik Thakur
- Department of Chemistry, Chandigarh University, Mohali, Punjab, India
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine (CCRUM), Ministry of Ayush, Government of India, Janakpuri, New Delhi 110058, India
| | - Tarana Umar
- Central Council for Research in Unani Medicine (CCRUM), Ministry of Ayush, Government of India, Janakpuri, New Delhi 110058, India
| |
Collapse
|
16
|
Krasnobaev VD, Batishchev OV. The Role of Lipid Domains and Physical Properties of Membranes in the Development of Age-Related Neurodegenerative Diseases. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s199074782209001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Arrigoni F, Di Carlo C, Rovetta A, De Gioia L, Zampella G, Bertini L. Superoxide reduction by Cu‐Amyloid Beta peptide complexes. A Density Functional Theory study. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Federica Arrigoni
- Università degli Studi di Milano-Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Chiara Di Carlo
- Università degli Studi di Milano-Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Alberto Rovetta
- University of Milano–Bicocca University Library: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Luca De Gioia
- University of Milan–Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Giuseppe Zampella
- University of Milan–Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Luca Bertini
- Universita' degli studi di MIlano-Bicocca Biotecnologie e Bioscienze Piazza della Scienza 2 20127 Milano ITALY
| |
Collapse
|
18
|
van der Kant R, Louros N, Schymkowitz J, Rousseau F. Thermodynamic analysis of amyloid fibril structures reveals a common framework for stability in amyloid polymorphs. Structure 2022; 30:1178-1189.e3. [DOI: 10.1016/j.str.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
|
19
|
Mrdenovic D, Pieta IS, Nowakowski R, Kutner W, Lipkowski J, Pieta P. Amyloid β interaction with model cell membranes - What are the toxicity-defining properties of amyloid β? Int J Biol Macromol 2022; 200:520-531. [PMID: 35074328 DOI: 10.1016/j.ijbiomac.2022.01.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 01/26/2023]
Abstract
Disruption of the neuronal membrane by toxic amyloid β oligomers is hypothesized to be the major event associated with Alzheimer's disease's neurotoxicity. Misfolding of amyloid β is followed by aggregation via different pathways in which structurally different amyloid β oligomers can be formed. The respective toxic actions of these structurally diverse oligomers can vary significantly. Linking a particular toxic action to a structurally unique kind of amyloid β oligomers and resolving their toxicity-determining feature remains challenging because of their transient stability and heterogeneity. Moreover, the lipids that make up the membrane affect amyloid β oligomers' behavior, thus adding to the problem's complexity. The present review compares and analyzes the latest results to improve understanding of amyloid β oligomers' interaction with lipid bilayers.
Collapse
Affiliation(s)
- Dusan Mrdenovic
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Izabela S Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Nowakowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Piotr Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
20
|
Sciacca MF, Naletova I, Giuffrida ML, Attanasio F. Semax, a Synthetic Regulatory Peptide, Affects Copper-Induced Abeta Aggregation and Amyloid Formation in Artificial Membrane Models. ACS Chem Neurosci 2022; 13:486-496. [PMID: 35080861 PMCID: PMC8855339 DOI: 10.1021/acschemneuro.1c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
![]()
Alzheimer’s
disease, the most common form of dementia, is
characterized by the aggregation of amyloid beta protein (Aβ).
The aggregation and toxicity of Aβ are strongly modulated by
metal ions and phospholipidic membranes. In particular, Cu2+ ions play a pivotal role in modulating Aβ aggregation. Although
in the last decades several natural or synthetic compounds were evaluated
as candidate drugs, to date, no treatments are available for the pathology.
Multifunctional compounds able to both inhibit fibrillogenesis, and
in particular the formation of oligomeric species, and prevent the
formation of the Aβ:Cu2+ complex are of particular
interest. Here we tested the anti-aggregating properties of a heptapeptide,
Semax, an ACTH-like peptide, which is known to form a stable complex
with Cu2+ ions and has been proven to have neuroprotective
and nootropic effects. We demonstrated through a combination of spectrofluorometric,
calorimetric, and MTT assays that Semax not only is able to prevent
the formation of Aβ:Cu2+ complexes but also has anti-aggregating
and protective properties especially in the presence of Cu2+. The results suggest that Semax inhibits fiber formation by interfering
with the fibrillogenesis of Aβ:Cu2+ complexes.
Collapse
Affiliation(s)
- Michele F.M. Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Via Paolo Gaifami, 18, Catania 95126, Italy
| | - Irina Naletova
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Via Paolo Gaifami, 18, Catania 95126, Italy
| | - Maria Laura Giuffrida
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Via Paolo Gaifami, 18, Catania 95126, Italy
| | - Francesco Attanasio
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Via Paolo Gaifami, 18, Catania 95126, Italy
| |
Collapse
|
21
|
Prachayasittikul V, Pingaew R, Prachayasittikul S, Prachayasittikul V. 8-Hydroxyquinolines: A Promising Pharmacophore Potentially Developed as Disease-Modifying Agents for Neurodegenerative Diseases: A Review. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Meiss CJ, Bothwell PJ, Webb MI. Ruthenium(II)–arene complexes with chelating quinoline ligands as anti-amyloid agents. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent recognition of the soluble form of the amyloid-beta (Aβ) peptide as a neurotoxic agent in Alzheimer’s disease (AD) has spurred the development of agents to target this species. Because Aβ is known to chelate metal ions in solution, metal-based therapeutics are uniquely suited to exploit this affinity, where coordination to Aβ has been shown to impact the neurotoxicity of the peptide. Ruthenium(II)–arene complexes are unique candidates for evaluation, as one face of the molecule is blocked by the hydrophobic arene ring, while coordination to the Aβ peptide can occur on the other side of the molecule. We have prepared and evaluated two Ru(II)–arene complexes with chelating quinoline-based ligands, Ru1 and Ru2, for their respective anti-amyloid abilities. Although both complexes decreased the aggregation of soluble Aβ, Ru1 displayed promise in disrupting formed aggregates of the peptide. These findings represent an exciting new avenue for therapeutic development in AD, where both sides of the aggregation equilibrium are affected.
Collapse
Affiliation(s)
- Cade J. Meiss
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| | - Paige J. Bothwell
- Core Microscope Facility, Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Michael I. Webb
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| |
Collapse
|
23
|
Fatima T, Jacobsson LT, Kern S, Zettergren A, Blennow K, Zetterberg H, Johansson L, Dehlin M, Skoog I. Association between serum urate and CSF markers of Alzheimer's disease pathology in a population-based sample of 70-year-olds. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12241. [PMID: 34934798 PMCID: PMC8652407 DOI: 10.1002/dad2.12241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The relationship between urate and biomarkers for Alzheimer's disease (AD) pathophysiology has not been investigated. METHODS We examined whether serum concentration of urate was associated with cerebrospinal fluid biomarkers, amyloid beta (Aβ)42, Aβ40, phosphorylated tau (p-tau), total tau (t-tau), neurofilament light (NfL), and Aβ42/Aβ40 ratio, in cognitively unimpaired 70-year-old individuals from Gothenburg, Sweden. We also evaluated whether possible associations were modulated by the apolipoprotein E (APOE) ε4 allele. RESULTS Serum urate was positively associated with Aβ42 in males (β = 0.55 pg/mL, P = .04). There was a positive urate-APOE ε4 interaction (1.24 pg/mL, P interaction = .02) in relation to Aβ42 association. The positive urate and Aβ42 association strengthened in male APOE ε4 carriers (β = 1.28 pg/mL, P = .01). DISCUSSION The positive association between urate and Aβ42 in cognitively healthy men may suggest a protective effect of urate against deposition of amyloid protein in the brain parenchyma, and in the longer term, maybe against AD dementia.
Collapse
Affiliation(s)
- Tahzeeb Fatima
- Department of Rheumatology and Inflammation ResearchSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical SciencesLundSection of RheumatologyLund UniversityLundSweden
| | - Lennart T.H. Jacobsson
- Department of Rheumatology and Inflammation ResearchSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Silke Kern
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Anna Zettergren
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Lena Johansson
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Mats Dehlin
- Department of Rheumatology and Inflammation ResearchSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
24
|
Koski L, Ronnevi C, Berntsson E, Wärmländer SKTS, Roos PM. Metals in ALS TDP-43 Pathology. Int J Mol Sci 2021; 22:12193. [PMID: 34830074 PMCID: PMC8622279 DOI: 10.3390/ijms222212193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease and similar neurodegenerative disorders take their toll on patients, caregivers and society. A common denominator for these disorders is the accumulation of aggregated proteins in nerve cells, yet the triggers for these aggregation processes are currently unknown. In ALS, protein aggregation has been described for the SOD1, C9orf72, FUS and TDP-43 proteins. The latter is a nuclear protein normally binding to both DNA and RNA, contributing to gene expression and mRNA life cycle regulation. TDP-43 seems to have a specific role in ALS pathogenesis, and ubiquitinated and hyperphosphorylated cytoplasmic inclusions of aggregated TDP-43 are present in nerve cells in almost all sporadic ALS cases. ALS pathology appears to include metal imbalances, and environmental metal exposure is a known risk factor in ALS. However, studies on metal-to-TDP-43 interactions are scarce, even though this protein seems to have the capacity to bind to metals. This review discusses the possible role of metals in TDP-43 aggregation, with respect to ALS pathology.
Collapse
Affiliation(s)
- Lassi Koski
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | | | - Elina Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12616 Tallinn, Estonia
| | | | - Per M. Roos
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Capio St. Göran Hospital, 112 19 Stockholm, Sweden;
| |
Collapse
|
25
|
Gielnik M, Taube M, Zhukova L, Zhukov I, Wärmländer SKTS, Svedružić Ž, Kwiatek WM, Gräslund A, Kozak M. Zn(II) binding causes interdomain changes in the structure and flexibility of the human prion protein. Sci Rep 2021; 11:21703. [PMID: 34737343 PMCID: PMC8568922 DOI: 10.1038/s41598-021-00495-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
The cellular prion protein (PrPC) is a mainly α-helical 208-residue protein located in the pre- and postsynaptic membranes. For unknown reasons, PrPC can undergo a structural transition into a toxic, β-sheet rich scrapie isoform (PrPSc) that is responsible for transmissible spongiform encephalopathies (TSEs). Metal ions seem to play an important role in the structural conversion. PrPC binds Zn(II) ions and may be involved in metal ion transport and zinc homeostasis. Here, we use multiple biophysical techniques including optical and NMR spectroscopy, molecular dynamics simulations, and small angle X-ray scattering to characterize interactions between human PrPC and Zn(II) ions. Binding of a single Zn(II) ion to the PrPC N-terminal domain via four His residues from the octarepeat region induces a structural transition in the C-terminal α-helices 2 and 3, promotes interaction between the N-terminal and C-terminal domains, reduces the folded protein size, and modifies the internal structural dynamics. As our results suggest that PrPC can bind Zn(II) under physiological conditions, these effects could be important for the physiological function of PrPC.
Collapse
Affiliation(s)
- Maciej Gielnik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Lilia Zhukova
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warszawa, Poland
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warszawa, Poland
| | | | - Željko Svedružić
- Department of Biotechnology, University of Rijeka, 51000, Rijeka, Croatia
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland.
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, 30-392, Kraków, Poland.
| |
Collapse
|
26
|
Shamsi A, Shahwan M, Alhumaydhi FA, Alwashmi ASS, Aljasir MA, Alsagaby SA, Al Abdulmonem W, Hassan MI, Islam A. Spectroscopic, calorimetric and in silico insight into the molecular interactions of Memantine with human transferrin: Implications of Alzheimer's drugs. Int J Biol Macromol 2021; 190:660-666. [PMID: 34508722 DOI: 10.1016/j.ijbiomac.2021.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Human transferrin (Tf) is an iron-binding blood plasma glycoprotein that controls free iron in biological fluids. Tf is a liver-produced protein that binds iron very tightly but reversibly and is the most significant iron pool. Memantine is an orally administrative N-methyl-d-aspartate glutamate receptor antagonist used to slow the progression of moderate-to-severe Alzheimer's disease (AD) and dementia. Here, we have investigated the molecular interactions of Memantine with Tf using molecular docking, dynamics simulation and in vitro binding studies. Molecular docking study revealed many close interactions of Memantine towards Tf with an appreciable binding affinity. The docking results were further validated by molecular dynamics (MD) simulation studies, followed by essential dynamics and free energy landscapes analyses. Memantine shows a good binding affinity to the Tf with a binding constant (K) of 105 M-1. Isothermal titration calorimetry (ITC) also advocated the spontaneous binding of memantine to Tf. The study proposed that the Memantine in complex with Tf is stable in the simulated trajectory with minimal structural changes. The study suggested that the Tf-Memantine interactions can be further explored in AD therapy after critical exploration.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Moyad Shahwan
- College of Pharmacy & Health Sciences, Ajman University, Ajman, United Arab Emirates; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11932, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
27
|
Fan Q, Gao Y, Mazur F, Chandrawati R. Nanoparticle-based colorimetric sensors to detect neurodegenerative disease biomarkers. Biomater Sci 2021; 9:6983-7007. [PMID: 34528639 DOI: 10.1039/d1bm01226f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurodegenerative disorders (NDDs) are progressive, incurable health conditions that primarily affect brain cells, and result in loss of brain mass and impaired function. Current sensing technologies for NDD detection are limited by high cost, long sample preparation, and/or require skilled personnel. To overcome these limitations, optical sensors, specifically colorimetric sensors, have garnered increasing attention towards the development of a cost-effective, simple, and rapid alternative approach. In this review, we evaluate colorimetric sensing strategies of NDD biomarkers (e.g. proteins, neurotransmitters, bio-thiols, and sulfide), address the limitations and challenges of optical sensor technologies, and provide our outlook on the future of this field.
Collapse
Affiliation(s)
- Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
28
|
Roos E, Wärmländer SKTS, Meyer J, Sholts SB, Jarvet J, Gräslund A, Roos PM. Amyotrophic Lateral Sclerosis After Exposure to Manganese from Traditional Medicine Procedures in Kenya. Biol Trace Elem Res 2021; 199:3618-3624. [PMID: 33230634 PMCID: PMC8360856 DOI: 10.1007/s12011-020-02501-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron loss and widespread muscular atrophy. Despite intensive investigations on genetic and environmental factors, the cause of ALS remains unknown. Recent data suggest a role for metal exposures in ALS causation. In this study we present a patient who developed ALS after a traditional medical procedure in Kenya. The procedure involved insertion of a black metal powder into several subcutaneous cuts in the lower back. Four months later, general muscle weakness developed. Clinical and electrophysiological examinations detected widespread denervation consistent with ALS. The patient died from respiratory failure less than a year after the procedure. Scanning electron microscopy and X-ray diffraction analyses identified the black powder as potassium permanganate (KMnO4). A causative relationship between the systemic exposure to KMnO4 and ALS development can be suspected, especially as manganese is a well-known neurotoxicant previously found to be elevated in cerebrospinal fluid from ALS patients. Manganese neurotoxicity and exposure routes conveying this toxicity deserve further attention.
Collapse
Affiliation(s)
- Elin Roos
- Department of Global Public Health, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
- UCLA/Getty Conservation Programme, Cotsen Institute of Archaeology, UCLA, Los Angeles, CA, 90095, USA
| | - Jeremy Meyer
- Unit for Surgical Research, Medical School of Geneva, University of Geneva, 120511, 14, Genève, Switzerland
| | - Sabrina B Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, 370 12, Washington D.C, USA
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, 12618, Tallinn, Estonia
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Clinical Physiology, St. Goran Hospital, 112 81, Stockholm, Sweden
| |
Collapse
|
29
|
Wiatrak B, Piasny J, Kuźniarski A, Gąsiorowski K. Interactions of Amyloid-β with Membrane Proteins. Int J Mol Sci 2021; 22:6075. [PMID: 34199915 PMCID: PMC8200087 DOI: 10.3390/ijms22116075] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
In developing and developed countries, an increasing elderly population is observed. This affects the growing percentage of people struggling with neurodegenerative diseases, including Alzheimer's disease. Nevertheless, the pathomechanism of this disease is still unknown. This contributes to problems with early diagnosis of the disease as well as with treatment. One of the most popular hypotheses of Alzheimer's disease is related to the pathological deposition of amyloid-β (Aβ) in the brain of ill people. In this paper, we discuss issues related to Aβ and its relationship in the development of Alzheimer's disease. The structure of Aβ and its interaction with the cell membrane are discussed. Not only do the extracellular plaques affect nerve cells, but other forms of this peptide as well.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Janusz Piasny
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Amadeusz Kuźniarski
- Department of Prosthetic Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Kazimierz Gąsiorowski
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
30
|
Structural Studies Providing Insights into Production and Conformational Behavior of Amyloid-β Peptide Associated with Alzheimer's Disease Development. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102897. [PMID: 34068293 PMCID: PMC8153327 DOI: 10.3390/molecules26102897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease is the most common type of neurodegenerative disease in the world. Genetic evidence strongly suggests that aberrant generation, aggregation, and/or clearance of neurotoxic amyloid-β peptides (Aβ) triggers the disease. Aβ accumulates at the points of contact of neurons in ordered cords and fibrils, forming the so-called senile plaques. Aβ isoforms of different lengths are found in healthy human brains regardless of age and appear to play a role in signaling pathways in the brain and to have neuroprotective properties at low concentrations. In recent years, different substances have been developed targeting Aβ production, aggregation, interaction with other molecules, and clearance, including peptide-based drugs. Aβ is a product of sequential cleavage of the membrane glycoprotein APP (amyloid precursor protein) by β- and γ-secretases. A number of familial mutations causing an early onset of the disease have been identified in the APP, especially in its transmembrane domain. The mutations are reported to influence the production, oligomerization, and conformational behavior of Aβ peptides. This review highlights the results of structural studies of the main proteins involved in Alzheimer's disease pathogenesis and the molecular mechanisms by which perspective therapeutic substances can affect Aβ production and nucleation.
Collapse
|
31
|
Iuchi K, Takai T, Hisatomi H. Cell Death via Lipid Peroxidation and Protein Aggregation Diseases. BIOLOGY 2021; 10:399. [PMID: 34064409 PMCID: PMC8147787 DOI: 10.3390/biology10050399] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Lipid peroxidation of cellular membranes is a complicated cellular event, and it is both the cause and result of various diseases, such as ischemia-reperfusion injury, neurodegenerative diseases, and atherosclerosis. Lipid peroxidation causes non-apoptotic cell death, which is associated with cell fate determination: survival or cell death. During the radical chain reaction of lipid peroxidation, various oxidized lipid products accumulate in cells, followed by organelle dysfunction and the induction of non-apoptotic cell death. Highly reactive oxidized products from unsaturated fatty acids are detected under pathological conditions. Pathological protein aggregation is the general cause of these diseases. The cellular response to misfolded proteins is well-known as the unfolded protein response (UPR) and it is partially concomitant with the response to lipid peroxidation. Moreover, the association between protein aggregation and non-apoptotic cell death by lipid peroxidation is attracting attention. The link between lipid peroxidation and protein aggregation is a matter of concern in biomedical fields. Here, we focus on lethal protein aggregation in non-apoptotic cell death via lipid peroxidation. We reviewed the roles of protein aggregation in the initiation and execution of non-apoptotic cell death. We also considered the relationship between protein aggregation and oxidized lipid production. We provide an overview of non-apoptotic cell death with a focus on lipid peroxidation for therapeutic targeting during protein aggregation diseases.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo 180-8633, Japan; (T.T.); (H.H.)
| | | | | |
Collapse
|
32
|
Banchelli M, Cascella R, D’Andrea C, La Penna G, Li MS, Machetti F, Matteini P, Pizzanelli S. Probing the Structure of Toxic Amyloid-β Oligomers with Electron Spin Resonance and Molecular Modeling. ACS Chem Neurosci 2021; 12:1150-1161. [PMID: 33724783 PMCID: PMC9284516 DOI: 10.1021/acschemneuro.0c00714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Structural models of the toxic species involved in the development of Alzheimer's disease are of utmost importance to understand the molecular mechanism and to describe early biomarkers of the disease. Among toxic species, soluble oligomers of amyloid-β (Aβ) peptides are particularly important, because they are responsible for spreading cell damages over brain regions, thus rapidly impairing brain functions. In this work we obtain structural information on a carefully prepared Aβ(1-42) sample, representing a toxic state for cell cultures, by combining electron spin resonance spectroscopy and computational models. We exploited the binding of Cu2+ to Aβ(1-42) and used copper as a probe for estimating Cu-Cu distances in the oligomers by applying double electron-electron resonance (DEER) pulse sequence. The DEER trace of this sample displays a unique feature that fits well with structural models of oligomers formed by Cu-cross-linked peptide dimers. Because Cu is bound to the Aβ(1-42) N-terminus, for the first time structural constraints that are missing in reported studies are provided at physiological conditions for the Aβ N-termini. These constraints suggest the Aβ(1-42) dimer as the building block of soluble oligomers, thus changing the scenario for any kinetic model of Aβ(1-42) aggregation.
Collapse
Affiliation(s)
- Martina Banchelli
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Roberta Cascella
- University of Florence, Department of Experimental and Clinical Biomedical Sciences, I-50134 Firenze, Italy
| | - Cristiano D’Andrea
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Giovanni La Penna
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), Sesto Fiorentino, I-50019 FI, Italy
- National Institute for Nuclear Physics (INFN),
Section of Roma-Tor Vergata, I-00133 Roma, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu
Duc District, 700000 Ho Chi Minh City, Vietnam
| | - Fabrizio Machetti
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), Sesto Fiorentino, I-50019 FI, Italy
- University of Florence, Department of Chemistry “Ugo Schiff”, Sesto Fiorentino, I-50019 FI, Italy
| | - Paolo Matteini
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Silvia Pizzanelli
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), I-56124 Pisa, Italy
| |
Collapse
|
33
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 412] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
34
|
Loeffler DA. Modifiable, Non-Modifiable, and Clinical Factors Associated with Progression of Alzheimer's Disease. J Alzheimers Dis 2021; 80:1-27. [PMID: 33459643 DOI: 10.3233/jad-201182] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is an extensive literature relating to factors associated with the development of Alzheimer's disease (AD), but less is known about factors which may contribute to its progression. This review examined the literature with regard to 15 factors which were suggested by PubMed search to be positively associated with the cognitive and/or neuropathological progression of AD. The factors were grouped as potentially modifiable (vascular risk factors, comorbidities, malnutrition, educational level, inflammation, and oxidative stress), non-modifiable (age at clinical onset, family history of dementia, gender, Apolipoprotein E ɛ4, genetic variants, and altered gene regulation), and clinical (baseline cognitive level, neuropsychiatric symptoms, and extrapyramidal signs). Although conflicting results were found for the majority of factors, a positive association was found in nearly all studies which investigated the relationship of six factors to AD progression: malnutrition, genetic variants, altered gene regulation, baseline cognitive level, neuropsychiatric symptoms, and extrapyramidal signs. Whether these or other factors which have been suggested to be associated with AD progression actually influence the rate of decline of AD patients is unclear. Therapeutic approaches which include addressing of modifiable factors associated with AD progression should be considered.
Collapse
Affiliation(s)
- David A Loeffler
- Beaumont Research Institute, Department of Neurology, Beaumont Health, Royal Oak, MI, USA
| |
Collapse
|
35
|
Callaghan R, Gelissen IC, George AM, Hartz AMS. Mamma Mia, P-glycoprotein binds again. FEBS Lett 2020; 594:4076-4084. [PMID: 33022784 PMCID: PMC8731231 DOI: 10.1002/1873-3468.13951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/09/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023]
Abstract
The levels of amyloid peptides in the brain are regulated by a clearance pathway from neurons to the blood-brain barrier. The first step is thought to involve diffusion from the plasma membrane to the interstitium. However, amyloid peptides are hydrophobic and avidly intercalate within membranes. The ABC transporter P-glycoprotein is implicated in the clearance of amyloid peptides across the blood-brain, but its role at neurons is undetermined. We here propose that P-glycoprotein mediates 'exit' of amyloid peptides from neurons. Indeed, amyloid peptides have physicochemical similarities to substrates of P-glycoprotein, but their larger size represents a conundrum. This review probes the plausibility of a mechanism for amyloid peptide transport by P-glycoprotein exploiting evolving biochemical and structural models.
Collapse
Affiliation(s)
- Richard Callaghan
- Research School of Biology, and the Medical School, Australian National University, Canberra, ACT, Australia
| | - Ingrid C Gelissen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Anthony M George
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
36
|
Evidence of cadmium and mercury involvement in the Aβ42 aggregation process. Biophys Chem 2020; 266:106453. [DOI: 10.1016/j.bpc.2020.106453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022]
|
37
|
Yang H, Mu W, Wei D, Zhang Y, Duan Y, Gao J, Gong X, Wang H, Wu X, Tao H, Chang J. A Novel Targeted and High-Efficiency Nanosystem for Combinational Therapy for Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902906. [PMID: 33042734 PMCID: PMC7539195 DOI: 10.1002/advs.201902906] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/23/2020] [Indexed: 05/06/2023]
Abstract
Alzheimer's disease (AD) remains the most prevalent neurodegenerative disease, and no effective treatment is available yet. Metal-ion-triggered aggregates of amyloid-beta (Aβ) peptide and acetylcholine imbalance are reported to be possible factors in AD pathogenesis. Thus, a combination therapy that can not only inhibit and reduce Aβ aggregation but also simultaneously regulate acetylcholine imbalance that can serve as a potential treatment for AD is needed. Here, clioquinol (metal-ion chelating agent) and donepezil (acetylcholinesterase (AChE) inhibitor) co-encapsulated human serum albumin (HSA) nanoparticles (dcHGT NPs) are designed, which are modified with transcriptional activator protein (TAT) and monosialotetrahexosylganglioside (GM1). The GM1 lipid and TAT peptide endow this drug delivery nanosystem with high brain entry efficiency and long-term retention capabilities through intranasal administration. It is found that dcHGT NPs can significantly inhibit and eliminate Aβ aggregation, relieve acetylcholine-related inflammation in microglial cells, and protect primary neurons from Aβ oligomer-induced neurotoxicity in vitro. The alleviation of Aβ-related inflammation and AChE-inhibited effect further synergistically adjust acetylcholine imbalance. It is further demonstrated that dcHGT NPs reduce Aβ deposition, ameliorate neuron morphological changes, rescue memory deficits, and greatly improve acetylcholine regulation ability in vivo. This multifunctional synergetic nanosystem can be a new candidate to achieve highly efficient combination therapy for AD.
Collapse
Affiliation(s)
- Han Yang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Weihang Mu
- Department of RehabilitationTianjin Children's Hospital238 Longyan Road, Beichen DistrictTianjin300072P. R. China
| | - Daohe Wei
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Yue Zhang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Yue Duan
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Jun‐xiao Gao
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Xiao‐qun Gong
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Han‐jie Wang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Xiao‐li Wu
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Huaying Tao
- Department of NeurologyTianjin Medical University General Hospital154 Anshan Road, Heping DistrictTianjin300072P. R. China
| | - Jin Chang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| |
Collapse
|
38
|
Affiliation(s)
- Liliana Quintanar
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico.
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
39
|
Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, Lu CB, Wang JZ. Current understanding of metal ions in the pathogenesis of Alzheimer's disease. Transl Neurodegener 2020; 9:10. [PMID: 32266063 PMCID: PMC7119290 DOI: 10.1186/s40035-020-00189-z] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background The homeostasis of metal ions, such as iron, copper, zinc and calcium, in the brain is crucial for maintaining normal physiological functions. Studies have shown that imbalance of these metal ions in the brain is closely related to the onset and progression of Alzheimer's disease (AD), the most common neurodegenerative disorder in the elderly. Main body Erroneous deposition/distribution of the metal ions in different brain regions induces oxidative stress. The metal ions imbalance and oxidative stress together or independently promote amyloid-β (Aβ) overproduction by activating β- or γ-secretases and inhibiting α-secretase, it also causes tau hyperphosphorylation by activating protein kinases, such as glycogen synthase kinase-3β (GSK-3β), cyclin-dependent protein kinase-5 (CDK5), mitogen-activated protein kinases (MAPKs), etc., and inhibiting protein phosphatase 2A (PP2A). The metal ions imbalances can also directly or indirectly disrupt organelles, causing endoplasmic reticulum (ER) stress; mitochondrial and autophagic dysfunctions, which can cause or aggravate Aβ and tau aggregation/accumulation, and impair synaptic functions. Even worse, the metal ions imbalance-induced alterations can reversely exacerbate metal ions misdistribution and deposition. The vicious cycles between metal ions imbalances and Aβ/tau abnormalities will eventually lead to a chronic neurodegeneration and cognitive deficits, such as seen in AD patients. Conclusion The metal ions imbalance induces Aβ and tau pathologies by directly or indirectly affecting multiple cellular/subcellular pathways, and the disrupted homeostasis can reversely aggravate the abnormalities of metal ions transportation/deposition. Therefore, adjusting metal balance by supplementing or chelating the metal ions may be potential in ameliorating AD pathologies, which provides new research directions for AD treatment.
Collapse
Affiliation(s)
- Lu Wang
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Ya-Ling Yin
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Xin-Zi Liu
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Peng Shen
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Yan-Ge Zheng
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Xin-Rui Lan
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Cheng-Biao Lu
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Jian-Zhi Wang
- 2Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
40
|
Solioz M. Low copper-2 intake in Switzerland does not result in lower incidence of Alzheimer's disease and contradicts the Copper-2 Hypothesis. Exp Biol Med (Maywood) 2020; 245:177-179. [PMID: 31948291 DOI: 10.1177/1535370219899898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In recent years, the “Copper-2 Hypothesis” has been put forth in an attempt to explain the epidemic of Alzheimer’s disease (AD) in the Western world. According to this hypothesis, “free” copper (copper-2) in drinking water, dietary supplements, and meat is the chief cause of the increased incidence of AD in recent decades. In contrast to the US, copper plumbing for drinking water is not used in Switzerland and tap water is very low in copper. Other “risk” factors including dietary supplements and meat consumption are also lower in Switzerland than in the US. Yet, the incidence of AD is closely similar in the two countries. This contradicts the Copper-2 Hypothesis. Impact statement The Western world is faced with an Alzheimer’s epidemic. Identifying the life style and anthropogenic factors involved has become a priority. This is a formidable challenge due to the complexity and the slow progression of the disease. A hypothesis put forth by George Brewer postulates divalent copper (copper-2), chiefly present in drinking water from copper pipes, to be a major risk factor for Alzheimer’s disease. In Switzerland, copper pipes are not used for drinking water, but the frequency of Alzheimer’s disease is similar to that of other Western countries. This contradicts Brewer’s hypothesis and suggests that other factors are responsible for today’s Alzheimer’s epidemic.
Collapse
Affiliation(s)
- Marc Solioz
- Department Clinical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
41
|
Wallin C, Friedemann M, Sholts SB, Noormägi A, Svantesson T, Jarvet J, Roos PM, Palumaa P, Gräslund A, Wärmländer SKTS. Mercury and Alzheimer's Disease: Hg(II) Ions Display Specific Binding to the Amyloid-β Peptide and Hinder Its Fibrillization. Biomolecules 2019; 10:E44. [PMID: 31892131 PMCID: PMC7022868 DOI: 10.3390/biom10010044] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Brains and blood of Alzheimer's disease (AD) patients have shown elevated mercury concentrations, but potential involvement of mercury exposure in AD pathogenesis has not been studied at the molecular level. The pathological hallmark of AD brains is deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils. Aβ peptide fibrillization is known to be modulated by metal ions such as Cu(II) and Zn(II). Here, we study in vitro the interactions between Aβ peptides and Hg(II) ions by multiple biophysical techniques. Fluorescence spectroscopy and atomic force microscopy (AFM) show that Hg(II) ions have a concentration-dependent inhibiting effect on Aβ fibrillization: at a 1:1 Aβ·Hg(II) ratio only non-fibrillar Aβ aggregates are formed. NMR spectroscopy shows that Hg(II) ions interact with the N-terminal region of Aβ(1-40) with a micromolar affinity, likely via a binding mode similar to that for Cu(II) and Zn(II) ions, i.e., mainly via the histidine residues His6, His13, and His14. Thus, together with Cu(II), Fe(II), Mn(II), Pb(IV), and Zn(II) ions, Hg(II) belongs to a family of metal ions that display residue-specific binding interactions with Aβ peptides and modulate their aggregation processes.
Collapse
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Merlin Friedemann
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Sabrina B. Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA;
| | - Andra Noormägi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
- The National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Per M. Roos
- Institute of Environmental Medicine, Karolinska Institutet, 16765 Stockholm, Sweden;
- Department of Clinical Physiology, Capio St. Göran Hospital, 11219 Stockholm, Sweden
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Sebastian K. T. S. Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| |
Collapse
|