1
|
Hamzah SS, Ahmad Zamri L, Abu Seman N, Zainal Abidin NA. Genetic Variants of Obesity in Malaysia: A Scoping Review. Genes (Basel) 2024; 15:1334. [PMID: 39457458 PMCID: PMC11507395 DOI: 10.3390/genes15101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Obesity is a pressing public health issue in Malaysia, involving not only excess weight but also complex metabolic and physiological changes. Addressing these complexities requires comprehensive strategies, including understanding the population-level differences in obesity susceptibility. This review aims to compile the genetic variants studied among Malaysians and emphasize their implications for obesity risk. METHODS Relevant articles published up to March 2024 were extracted from the Scopus, PubMed, and ScienceDirect databases. The review process was conducted in accordance with the PRISMA-ScR guidelines. From an initial pool of 579 articles, 35 of these were selected for the final review. RESULTS The identified gene variants, including LEPR (K656N), LEP (G2548A-Indian only), ADIPOQ (rs17366568), UCP2 (45bp-I/D), ADRB3 (rs4994), MC3R (rs3827103), PPARγ (pro12Ala-Malay only), IL1RA (intron 2 VNTR), NFKB1 (rs28362491), and FADS1 (rs174547-Indian only), showed significant associations with obesity as measured by the respective studies. CONCLUSIONS Overall, more intensive genetic research is needed, starting with population-based profiling of genetic data on obesity, including among children. Sociocultural contexts and environmental factors influence variations in genetic elements, highlighting the need for targeted interventions to mitigate the impacts of obesity in the population.
Collapse
Affiliation(s)
- Siti Sarah Hamzah
- Endocrine and Metabolic Unit, Nutrition, Metabolic & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia; (L.A.Z.); (N.A.S.); (N.A.Z.A.)
| | | | | | | |
Collapse
|
2
|
Savage JE, de Leeuw CA, Werme J, Dick DM, Posthuma D, van der Sluis S. Refining the scope of genetic influences on alcohol misuse through environmental stratification and gene-environment interaction. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1853-1865. [PMID: 39198719 DOI: 10.1111/acer.15425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Gene-environment interaction (G × E) is likely an important influence shaping individual differences in alcohol misuse (AM), yet it has not been extensively studied in molecular genetic research. In this study, we use a series of genome-wide gene-environment interaction (GWEIS) and in silico annotation methods with the aim of improving gene identification and biological understanding of AM. METHODS We carried out GWEIS for four AM phenotypes in the large UK Biobank sample (N = 360,314), with trauma exposure and socioeconomic status (SES) as moderators of the genetic effects. Exploratory analyses compared stratified genome-wide association (GWAS) and GWEIS modeling approaches. We applied functional annotation, gene- and gene-set enrichment, and polygenic score analyses to interpret the GWEIS results. RESULTS GWEIS models showed few genetic variants with significant interaction effects across gene-environment pairs. Enrichment analyses identified moderation by SES of the genes NOXA1, DLGAP1, and UBE2L3 on drinking quantity and the gene IFIT1B on drinking frequency. Except for DLGAP1, these genes have not previously been linked to AM. The most robust results (GWEIS interaction p = 4.59e-09) were seen for SES moderating the effects of variants linked to immune-related genes on a pattern of drinking with versus without meals. CONCLUSIONS Our results highlight several genes and a potential mechanism of immune system functioning behind the moderating effect of SES on the genetic influences on AM. Although GWEIS seems to be a preferred approach over stratified GWAS, modeling G × E effects at the molecular level remains a challenge even in large samples. Understanding these effects will require substantial effort and more in-depth phenotypic measurement.
Collapse
Affiliation(s)
- Jeanne E Savage
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Josefin Werme
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Danielle M Dick
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers Addiction Research Center, Rutgers University, Piscataway, New Jersey, USA
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychology and Psychiatry, Section Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Sophie van der Sluis
- Department of Child and Adolescent Psychology and Psychiatry, Section Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Mas-Bermejo P, Azcona-Granada N, Peña E, Lecube A, Ciudin A, Simó R, Luna A, Rigla M, Arenas C, Caixàs A, Rosa A. Genetic risk score based on obesity-related genes and progression in weight loss after bariatric surgery: a 60-month follow-up study. Surg Obes Relat Dis 2024; 20:814-821. [PMID: 38744640 DOI: 10.1016/j.soard.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Obesity is a polygenic multifactorial disease. Recent genome-wide association studies have identified several common loci associated with obesity-related phenotypes. Bariatric surgery (BS) is the most effective long-term treatment for patients with severe obesity. The huge variability in BS outcomes between patients suggests a moderating effect of several factors, including the genetic architecture of the patients. OBJECTIVE To examine the role of a genetic risk score (GRS) based on 7 polymorphisms in 5 obesity-candidate genes (FTO, MC4R, SIRT1, LEP, and LEPR) on weight loss after BS. SETTING University hospital in Spain. METHODS We evaluated a cohort of 104 patients with severe obesity submitted to BS (Roux-en-Y gastric bypass or sleeve gastrectomy) followed up for >60 months (lost to follow-up, 19.23%). A GRS was calculated for each patient, considering the number of carried risk alleles for the analyzed genes. During the postoperative period, the percentage of excess weight loss total weight loss and changes in body mass index were evaluated. Generalized estimating equation models were used for the prospective analysis of the variation of these variables in relation to the GRS. RESULTS The longitudinal model showed a significant effect of the GRS on the percentage of excess weight loss (P = 1.5 × 10-5), percentage of total weight loss (P = 3.1 × 10-8), and change in body mass index (P = 7.8 × 10-16) over time. Individuals with a low GRS seemed to experience better outcomes at 24 and 60 months after surgery than those with a higher GRS. CONCLUSION The use of the GRS in considering the polygenic nature of obesity seems to be a useful tool to better understand the outcome of patients with obesity after BS.
Collapse
Affiliation(s)
- Patricia Mas-Bermejo
- Secció de Zoologia i Antropologia Biòlogica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - Natalia Azcona-Granada
- Secció de Zoologia i Antropologia Biòlogica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Department of Biological Psychology, Vrije Universiteit, Amsterdam, Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Elionora Peña
- Secció de Zoologia i Antropologia Biòlogica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Albert Lecube
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Hospital Universitari Arnau de Vilanova, IRBLleida, Universitat de Lleida, Lleida, Spain
| | - Andreea Ciudin
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Simó
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alexis Luna
- Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA-ISCIII), Sabadell, Spain; Department of Surgery, Esofago-gastric Surgery Section, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Mercedes Rigla
- Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA-ISCIII), Sabadell, Spain; Department of Endocrinology and Nutrition, Hospital Universitari Parc Taulí, and Department of Medicine, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Concepción Arenas
- Secció d'Estadística, Department de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Assumpta Caixàs
- Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA-ISCIII), Sabadell, Spain; Department of Endocrinology and Nutrition, Hospital Universitari Parc Taulí, and Department of Medicine, Universitat Autònoma de Barcelona, Sabadell, Spain.
| | - Araceli Rosa
- Secció de Zoologia i Antropologia Biòlogica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain; CIBER de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Dayal Aggarwal D, Mishra P, Yadav G, Mitra S, Patel Y, Singh M, Sahu RK, Sharma V. Decoding the connection between lncRNA and obesity: Perspective from humans and Drosophila. Heliyon 2024; 10:e35327. [PMID: 39166041 PMCID: PMC11334870 DOI: 10.1016/j.heliyon.2024.e35327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Background Obesity is a burgeoning global health problem with an escalating prevalence and severe implications for public health. New evidence indicates that long non-coding RNAs (lncRNAs) may play a pivotal role in regulating adipose tissue function and energy homeostasis across various species. However, the molecular mechanisms underlying obesity remain elusive. Scope of review This review discusses obesity and fat metabolism in general, highlighting the emerging importance of lncRNAs in modulating adipogenesis. It describes the regulatory networks, latest tools, techniques, and approaches to enhance our understanding of obesity and its lncRNA-mediated epigenetic regulation in humans and Drosophila. Major conclusions This review analyses large datasets of human and Drosophila lncRNAs from published databases and literature with experimental evidence supporting lncRNAs role in fat metabolism. It concludes that lncRNAs play a crucial role in obesity-related metabolism. Cross-species comparisons highlight the relevance of Drosophila findings to human obesity, emphasizing their potential role in adipose tissue biology. Furthermore, it discusses how recent technological advancements and multi-omics data integration enhance our capacity to characterize lncRNAs and their function. Additionally, this review briefly touches upon innovative methodologies like experimental evolution and advanced sequencing technologies for identifying novel genes and lncRNA regulators in Drosophila, which can potentially contribute to obesity research.
Collapse
Affiliation(s)
- Dau Dayal Aggarwal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Prachi Mishra
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Gaurav Yadav
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Shrishti Mitra
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Yashvant Patel
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Manvender Singh
- Department of Biotechnology, UIET, MD University, Rohtak, India
| | - Ranjan Kumar Sahu
- Department of Neurology, Houston Methodist Research Insititute, Houston, Tx, USA
| | - Vijendra Sharma
- Department of Biomedical Sciences, University of Windsor, Ontario, Canada
| |
Collapse
|
5
|
Šimon M, Mikec Š, Atanur SS, Konc J, Morton NM, Horvat S, Kunej T. Whole genome sequencing of mouse lines divergently selected for fatness (FLI) and leanness (FHI) revealed several genetic variants as candidates for novel obesity genes. Genes Genomics 2024; 46:557-575. [PMID: 38483771 PMCID: PMC11024027 DOI: 10.1007/s13258-024-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/25/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Analysing genomes of animal model organisms is widely used for understanding the genetic basis of complex traits and diseases, such as obesity, for which only a few mouse models exist, however, without their lean counterparts. OBJECTIVE To analyse genetic differences in the unique mouse models of polygenic obesity (Fat line) and leanness (Lean line) originating from the same base population and established by divergent selection over more than 60 generations. METHODS Genetic variability was analysed using WGS. Variants were identified with GATK and annotated with Ensembl VEP. g.Profiler, WebGestalt, and KEGG were used for GO and pathway enrichment analysis. miRNA seed regions were obtained with miRPathDB 2.0, LncRRIsearch was used to predict targets of identified lncRNAs, and genes influencing adipose tissue amount were searched using the IMPC database. RESULTS WGS analysis revealed 6.3 million SNPs, 1.3 million were new. Thousands of potentially impactful SNPs were identified, including within 24 genes related to adipose tissue amount. SNP density was highest in pseudogenes and regulatory RNAs. The Lean line carries SNP rs248726381 in the seed region of mmu-miR-3086-3p, which may affect fatty acid metabolism. KEGG analysis showed deleterious missense variants in immune response and diabetes genes, with food perception pathways being most enriched. Gene prioritisation considering SNP GERP scores, variant consequences, and allele comparison with other mouse lines identified seven novel obesity candidate genes: 4930441H08Rik, Aff3, Fam237b, Gm36633, Pced1a, Tecrl, and Zfp536. CONCLUSION WGS revealed many genetic differences between the lines that accumulated over the selection period, including variants with potential negative impacts on gene function. Given the increasing availability of mouse strains and genetic polymorphism catalogues, the study is a valuable resource for researchers to study obesity.
Collapse
Affiliation(s)
- Martin Šimon
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia.
| | - Špela Mikec
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia
| | - Santosh S Atanur
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Janez Konc
- Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, 1000, Slovenia
| | - Nicholas M Morton
- The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Simon Horvat
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia
| | - Tanja Kunej
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, 1230, Slovenia.
| |
Collapse
|
6
|
Fansa S, Acosta A. The melanocortin-4 receptor pathway and the emergence of precision medicine in obesity management. Diabetes Obes Metab 2024; 26 Suppl 2:46-63. [PMID: 38504134 DOI: 10.1111/dom.15555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Over the past few decades, there has been a global surge in the prevalence of obesity, rendering it a globally recognized epidemic. Contrary to simply being a medical condition, obesity is an intricate disease with a multifactorial aetiology. Understanding the precise cause of obesity remains a challenge; nevertheless, there seems to be a complex interplay among biological, psychosocial and behavioural factors. Studies on the genetic factors of obesity have revealed several pathways in the brain that play a crucial role in food intake regulation. The best characterized pathway, thus far, is the leptin-melanocortin pathway, from which disruptions are responsible for the majority of monogenic obesity disorders. The effectiveness of conservative lifestyle interventions in addressing monogenic obesity has been limited. Therefore, it is crucial to complement the management strategy with pharmacological and surgical options. Emphasis has been placed on developing drugs aimed at replacing the absent signals, with the goal of restoring the pathway. In both monogenic and polygenic forms of obesity, outcomes differ across various interventions, likely due to the multifaceted nature of the disease. This underscores the need to explore alternative therapeutic strategies that can mitigate this heterogeneity. Precision medicine can be regarded as a powerful tool that can address this concern, as it values the understanding of the underlying abnormality triggering the disease and provides a tailored treatment accordingly. This would assist in optimizing outcomes of the current therapeutic approaches and even aid in the development of novel treatments capable of more effectively managing the global obesity epidemic.
Collapse
Affiliation(s)
- Sima Fansa
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Pérez-Gutiérrez AM, Rovira P, Gutiérrez B, Cervilla JA, Zarza-Rebollo JA, Molina E, Rivera M. Influence of BDNF Val66Met genetic polymorphism in Major Depressive Disorder and Body Mass Index: Evidence from a meta-analysis of 6481 individuals. J Affect Disord 2024; 344:458-465. [PMID: 37820958 DOI: 10.1016/j.jad.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/07/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) and obesity are global health problems that frequently co-occur. Among shared etiological factors, genetic variation at the brain-derived neurotrophic factor (BDNF) gene is interesting since its implication in energy balance regulation, food intake and synaptic function. Thus, the aim of this study was to investigate the influence of the BDNF Val66Met polymorphism in relation to MDD and body mass index (BMI) in two large independent cohorts. METHODS The sample consisted of 2646 individuals with MDD and 3835 controls from the PISMA-ep and Radiant studies. Linear regressions were performed to test the association between the polymorphism and BMI and the interaction between the polymorphism and MDD on BMI. A meta-analysis across cohorts was conducted. RESULTS No association was found between the polymorphism and BMI. However, we found an association with MDD, showing these individuals higher BMI than controls in both cohorts. No differences were found in BMI depending on Val66Met genotype and no interaction between this polymorphism and MDD in relation to BMI was found. Although a tendency towards an interaction was found in the Radiant sample, the results of the meta-analysis did not support this finding. LIMITATIONS The use of self-reported height and weight measures to calculate BMI values. CONCLUSIONS We provide evidence for an association between BMI and MDD confirming previous results. Our meta-analysis including two large cohorts showed no interaction between BDNF, BMI and MDD. Future studies will be needed to confirm the role of this polymorphism in the relationship between BMI and MDD.
Collapse
Affiliation(s)
- A M Pérez-Gutiérrez
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - P Rovira
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Psiquiatría, Facultad de Medicina, Universidad de Granada, Granada, Spain; Vicerectorat de Recerca, Investigadora postdoctoral Margarita Salas, Universitat de Barcelona, Barcelona, Spain
| | - B Gutiérrez
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Psiquiatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - J A Cervilla
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Psiquiatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - J A Zarza-Rebollo
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - E Molina
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Enfermería, Facultad de Ciencias de la Salud, Universidad de Granada, Granada, Spain.
| | - M Rivera
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Granada, Spain.
| |
Collapse
|
8
|
Anwar MY, Graff M, Highland HM, Smit R, Wang Z, Buchanan VL, Young KL, Kenny EE, Fernandez-Rhodes L, Liu S, Assimes T, Garcia DO, Daeeun K, Gignoux CR, Justice AE, Haiman CA, Buyske S, Peters U, Loos RJF, Kooperberg C, North KE. Assessing efficiency of fine-mapping obesity-associated variants through leveraging ancestry architecture and functional annotation using PAGE and UKBB cohorts. Hum Genet 2023; 142:1477-1489. [PMID: 37658231 PMCID: PMC11512743 DOI: 10.1007/s00439-023-02593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/10/2023] [Indexed: 09/03/2023]
Abstract
Inadequate representation of non-European ancestry populations in genome-wide association studies (GWAS) has limited opportunities to isolate functional variants. Fine-mapping in multi-ancestry populations should improve the efficiency of prioritizing variants for functional interrogation. To evaluate this hypothesis, we leveraged ancestry architecture to perform comparative GWAS and fine-mapping of obesity-related phenotypes in European ancestry populations from the UK Biobank (UKBB) and multi-ancestry samples from the Population Architecture for Genetic Epidemiology (PAGE) consortium with comparable sample sizes. In the investigated regions with genome-wide significant associations for obesity-related traits, fine-mapping in our ancestrally diverse sample led to 95% and 99% credible sets (CS) with fewer variants than in the European ancestry sample. Lead fine-mapped variants in PAGE regions had higher average coding scores, and higher average posterior probabilities for causality compared to UKBB. Importantly, 99% CS in PAGE loci contained strong expression quantitative trait loci (eQTLs) in adipose tissues or harbored more variants in tighter linkage disequilibrium (LD) with eQTLs. Leveraging ancestrally diverse populations with heterogeneous ancestry architectures, coupled with functional annotation, increased fine-mapping efficiency and performance, and reduced the set of candidate variants for consideration for future functional studies. Significant overlap in genetic causal variants across populations suggests generalizability of genetic mechanisms underpinning obesity-related traits across populations.
Collapse
Affiliation(s)
- Mohammad Yaser Anwar
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Roelof Smit
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Victoria L Buchanan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Eimear E Kenny
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lindsay Fernandez-Rhodes
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA, 16802, USA
| | - Simin Liu
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Brown University, Providence, RI, 02903, USA
| | - Themistocles Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - David O Garcia
- Department of Health Promotion Sciences, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, 85724, USA
| | - Kim Daeeun
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christopher R Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Anne E Justice
- Department of Population Health Sciences, Geisinger Health, Danville, PA, 17822, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Steve Buyske
- Department of Statistics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
9
|
Hong BV, Agus JK, Tang X, Zheng JJ, Romo EZ, Lei S, Zivkovic AM. Precision Nutrition and Cardiovascular Disease Risk Reduction: the Promise of High-Density Lipoproteins. Curr Atheroscler Rep 2023; 25:663-677. [PMID: 37702886 PMCID: PMC10564829 DOI: 10.1007/s11883-023-01148-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE OF REVIEW Emerging evidence supports the promise of precision nutritional approaches for cardiovascular disease (CVD) prevention. Here, we discuss current findings from precision nutrition trials and studies reporting substantial inter-individual variability in responses to diets and dietary components relevant to CVD outcomes. We highlight examples where early precision nutrition research already points to actionable intervention targets tailored to an individual's biology and lifestyle. Finally, we make the case for high-density lipoproteins (HDL) as a compelling next generation target for precision nutrition aimed at CVD prevention. HDL possesses complex structural features including diverse protein components, lipids, size distribution, extensive glycosylation, and interacts with the gut microbiome, all of which influence HDL's anti-inflammatory, antioxidant, and cholesterol efflux properties. Elucidating the nuances of HDL structure and function at an individual level may unlock personalized dietary and lifestyle strategies to optimize HDL-mediated atheroprotection and reduce CVD risk. RECENT FINDINGS Recent human studies have demonstrated that HDL particles are key players in the reduction of CVD risk. Our review highlights the role of HDL and the importance of personalized therapeutic approaches to improve their potential for reducing CVD risk. Factors such as diet, genetics, glycosylation, and gut microbiome interactions can modulate HDL structure and function at the individual level. We emphasize that fractionating HDL into size-based subclasses and measuring particle concentration are necessary to understand HDL biology and for developing the next generation of diagnostics and biomarkers. These discoveries underscore the need to move beyond a one-size-fits-all approach to HDL management. Precision nutrition strategies that account for personalized metabolic, genetic, and lifestyle data hold promise for optimizing HDL therapies and function to mitigate CVD risk more potently. While human studies show HDL play a key role in reducing CVD risk, recent findings indicate that factors such as diet, genetics, glycosylation, and gut microbes modulate HDL function at the individual level, underscoring the need for precision nutrition strategies that account for personalized variability to optimize HDL's potential for mitigating CVD risk.
Collapse
Affiliation(s)
- Brian V Hong
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Eduardo Z Romo
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Susan Lei
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Novelli G, Cassadonte C, Sbraccia P, Biancolella M. Genetics: A Starting Point for the Prevention and the Treatment of Obesity. Nutrients 2023; 15:2782. [PMID: 37375686 DOI: 10.3390/nu15122782] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a common, serious, and costly disease. More than 1 billion people worldwide are obese-650 million adults, 340 million adolescents, and 39 million children. The WHO estimates that, by 2025, approximately 167 million people-adults and children-will become less healthy because they are overweight or obese. Obesity-related conditions include heart disease, stroke, type 2 diabetes, and certain types of cancer. These are among the leading causes of preventable, premature death. The estimated annual medical cost of obesity in the United States was nearly $173 billion in 2019 dollars. Obesity is considered the result of a complex interaction between genes and the environment. Both genes and the environment change in different populations. In fact, the prevalence changes as the result of eating habits, lifestyle, and expression of genes coding for factors involved in the regulation of body weight, food intake, and satiety. Expression of these genes involves different epigenetic processes, such as DNA methylation, histone modification, or non-coding micro-RNA synthesis, as well as variations in the gene sequence, which results in functional alterations. Evolutionary and non-evolutionary (i.e., genetic drift, migration, and founder's effect) factors have shaped the genetic predisposition or protection from obesity in modern human populations. Understanding and knowing the pathogenesis of obesity will lead to prevention and treatment strategies not only for obesity, but also for other related diseases.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Italian Barometer Diabetes Observatory Foundation, IBDO, 00186 Rome, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Carmen Cassadonte
- Department of Biomedicine and Prevention, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paolo Sbraccia
- Italian Barometer Diabetes Observatory Foundation, IBDO, 00186 Rome, Italy
- Department of Systems Medicine, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Michela Biancolella
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
11
|
Bojarczuk A, Boulygina EA, Dzitkowska-Zabielska M, Łubkowska B, Leońska-Duniec A, Egorova ES, Semenova EA, Andryushchenko LB, Larin AK, Generozov EV, Cięszczyk P, Ahmetov II. Genome-Wide Association Study of Exercise-Induced Fat Loss Efficiency. Genes (Basel) 2022; 13:1975. [PMID: 36360211 PMCID: PMC9690053 DOI: 10.3390/genes13111975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 04/21/2024] Open
Abstract
There is a wide range of individual variability in the change of body weight in response to exercise, and this variability partly depends on genetic factors. The study aimed to determine DNA polymorphisms associated with fat loss efficiency in untrained women with normal weight in response to a 12-week aerobic training program using the GWAS approach, followed by a cross-sectional study in athletes. The study involved 126 untrained young Polish women (age 21.4 ± 1.7 years; body mass index (BMI): 21.7 (2.4) kg/m2) and 550 Russian athletes (229 women, age 23.0 ± 4.1; 321 men, age 23.9 ± 4.7). We identified one genome-wide significant polymorphism (rs116143768) located in the ACSL1 gene (acyl-CoA synthetase long-chain family member 1, implicated in fatty acid oxidation), with a rare T allele associated with higher fat loss efficiency in Polish women (fat mass decrease: CC genotype (n = 122) -3.8%; CT genotype (n = 4) -31.4%; p = 1.18 × 10-9). Furthermore, male athletes with the T allele (n = 7) had significantly lower BMI (22.1 (3.1) vs. 25.3 (4.2) kg/m2, p = 0.046) than subjects with the CC genotype (n = 314). In conclusion, we have shown that the rs116143768 T allele of the ACSL1 gene is associated with higher fat loss efficiency in response to aerobic training in untrained women and lower BMI in physically active men.
Collapse
Affiliation(s)
- Aleksandra Bojarczuk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | | | | | - Beata Łubkowska
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Agata Leońska-Duniec
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Emiliya S. Egorova
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Liliya B. Andryushchenko
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Pawel Cięszczyk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
12
|
Risk variants of obesity associated genes demonstrate BMI raising effect in a large cohort. PLoS One 2022; 17:e0274904. [PMID: 36126070 PMCID: PMC9488755 DOI: 10.1371/journal.pone.0274904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is highly polygenic disease where several genetic variants have been reportedly associated with obesity in different ethnicities of the world. In the current study, we identified the obesity risk or protective association and BMI raising effect of the minor allele of adiponectin, C1Q and collagen domain containing (ADIPOQ), cholesteryl ester transfer protein (CEPT), FTO alpha-ketoglutarate dependent dioxygenase (FTO), leptin (LEP), and leptin receptor (LEPR) genes in a large cohort stratified into four BMI-based body weight categories i.e., normal weight, lean, over-weight, and obese. Based on selected candidate genetic markers, the genotyping of all study subjects was performed by PCR assays, and genotypes and allele frequencies were calculated. The minor allele frequencies (MAFs) of all genetic markers were computed for total and BMI-based body weight categories and compared with MAFs of global and South Asian (SAS) populations. Genetic associations of variants with obesity risk were calculated and BMI raising effect per copy of the minor allele were estimated. The genetic variants with higher MAFs in obese BMI group were; rs2241766 (G = 0.43), rs17817449 (G = 0.54), rs9939609 (A = 0.51), rs1421085 (C = 0.53), rs1558902 (A = 0.63), and rs1137101 (G = 0.64) respectively. All these variants were significantly associated with obesity (OR = 1.03–4.42) and showed a high BMI raising effect (β = 0.239–0.31 Kg/m2) per copy of the risk allele. In contrast, the MAFs of three variants were higher in lean-normal BMI groups; rs3764261 A = 0.38, rs9941349 T = 0.43, and rs7799039 G = 0.40–0.43). These variants showed obesity protective associations (OR = 0.68–0.76), and a BMI lowering effect per copy of the protective allele (β = -0.103–0.155 Kg/m2). The rs3764261 variant also showed significant and positive association with lean body mass (OR = 2.38, CI = 1.30–4.34). Overall, we report six genetic variants of ADIPOQ, FTO and LEPR genes as obesity-risk markers and a CETP gene variant as lean mass/obesity protective marker in studied Pakistani cohort.
Collapse
|
13
|
Molecular profiling of melanocortin 4 receptor variants and agouti-related peptide interactions in morbid obese phenotype: a novel paradigm from molecular docking and dynamics simulations. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Faghfouri AH, Khajebishak Y, Payahoo L, Faghfuri E, Alivand M. PPAR-gamma agonists: Potential modulators of autophagy in obesity. Eur J Pharmacol 2021; 912:174562. [PMID: 34655597 DOI: 10.1016/j.ejphar.2021.174562] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Autophagy pathways are involved in the pathogenesis of some obesity related health problems. As obesity is a nutrient sufficiency condition, autophagy process can be altered in obesity through AMP activated protein kinase (AMPK) inhibition. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) as the main modulator of adipogenesis process can be effective in the regulation of obesity related phenotypes. As well, it has been revealed that PPAR-gamma and its agonists can regulate autophagy in different normal or cancer cells. However, their effects on autophagy modulation in obesity have been investigated in the limited number of studies. In the current comprehensive mechanistic review, we aimed to investigate the possible mechanisms of action of PPAR-gamma on the process of autophagy in obesity through narrating the effects of PPAR-gamma on autophagy in the non-obesity conditions. Moreover, mode of action of PPAR-gamma agonists on autophagy related implications comprehensively reviewed in the various studies. Understanding the different effects of PPAR-gamma agonists on autophagy in obesity can help to develop a new approach to management of obesity.
Collapse
Affiliation(s)
- Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaser Khajebishak
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, I.R., Iran
| | - Laleh Payahoo
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, I.R., Iran
| | - Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohammadreza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Fırat SN, Onay H. Early-onset severe obesity due to homozygous p.R105W (c313C> T) mutation in leptin gene in Turkish siblings: Two cases reports. Obes Res Clin Pract 2021; 15:600-603. [PMID: 34802983 DOI: 10.1016/j.orcp.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/23/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022]
Abstract
Congenital leptin deficiency (CLD) is a rare cause of monogenic form obesity due to homozygous or compound heterozygous mutations in the LEP gene. To date, nine pathogenic mutations have been reported. In this study, we present are; an 18-year-old morbidly obese girl and a 14-year-old obese brother, both with homozygous mutation in the LEP gene [p.R105W (c313C> T)] and their data after three years of recombinant leptin treatment. To date, few cases of CLD have been reported in the literature. The cases reported here were siblings who were not diagnosed despite presentation at the clinic due to obesity in childhood, and diagnosis was delayed until adolescence. Clinicians need to consider CLD, a monogenic form of obesity in children with early severe obesity onset, especially if they are the child of a consanguineous marriage.
Collapse
Affiliation(s)
- Sevde Nur Fırat
- Department of Endocrinology and Metabolism, University of Health Sciences Ankara Training and Research Hospital, Ankara, Turkey.
| | - Hüseyin Onay
- Department of Medical Genetics, MULTIGEN Genetic Diseases Evaluation Center, İzmir, Turkey.
| |
Collapse
|
16
|
Frayre J, Frayre P, Wong I, Mithani A, Bishop S, Mani C, Ponce-Rubio K, Virk R, Morris MJ, Na ES. Perinatal exposure to high fat diet alters expression of MeCP2 in the hypothalamus. Behav Brain Res 2021; 415:113518. [PMID: 34391798 DOI: 10.1016/j.bbr.2021.113518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/27/2022]
Abstract
Obesity is a complex disease that is the result of a number of different factors including genetic, environmental, and endocrine abnormalities. Given that monogenic forms of obesity are rare, it is important to identify other mechanisms that contribute to its etiology. Methyl-Cp-G binding protein 2 (MeCP2) is a neuroepigenetic factor that binds to methylated regions of DNA to influence transcription. Past studies demonstrate that disruption in MeCP2 function produces obesity in mice. Using a diet-induced obesity mouse model, we show that perinatal exposure to high fat diet significantly decreases MeCP2 protein expression in the hypothalamus of female mice, effects not seen when high fat diet is given to mice during adulthood. Moreover, these effects are seen specifically in a subregion of the hypothalamus known as the arcuate nucleus with females having decreased MeCP2 expression in rostral areas and males having decreased MeCP2 expression in intermediate regions of the arcuate nucleus. Interestingly, mice gain more weight when exposed to high fat diet during adulthood relative to mice exposed to high fat diet perinatally, suggesting that perhaps high fat diet exposure during adulthood may be affecting mechanisms independent of MeCP2 function. Collectively, our data demonstrate that there are developmentally sensitive periods in which MeCP2 expression is influenced by high fat diet exposure and this occurs in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Jessica Frayre
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Priscila Frayre
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Ida Wong
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Anusha Mithani
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Stephanie Bishop
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Chelsy Mani
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Karen Ponce-Rubio
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Ruvaid Virk
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Michael J Morris
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Elisa S Na
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| |
Collapse
|
17
|
SAINI SIMMI, WALIA GAGANDEEPKAUR, SACHDEVA MOHINDERPAL, GUPTA VIPIN. Genomics of body fat distribution. J Genet 2021. [DOI: 10.1007/s12041-021-01281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Rana S, Bhatti AA. Predicting anthropometric and metabolic traits with a genetic risk score for obesity in a sample of Pakistanis. Sci Rep 2021; 11:8320. [PMID: 33859285 PMCID: PMC8050295 DOI: 10.1038/s41598-021-87702-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is an outcome of multiple factors including environmental and genetic influences. Common obesity is a polygenic trait indicating that multiple genetic variants act synergistically to influence its expression. We constructed a genetic risk score (GRS) based on five genetic variants (MC4R rs17782313, BDNF rs6265, FTO rs1421085, TMEM18 rs7561317, and NEGR1 rs2815752) and examined its association with obesity-related traits in a sample of Pakistanis. The study involved 306 overweight/obese (OW/OB) and 300 normal-weight (NW) individuals. The age range of the study participants was 12-63 years. All anthropometric and metabolic parameters were measured for each participant via standard procedures and biochemical assays, respectively. The genetic variants were genotyped by allelic discrimination assays. The age- and gender-adjusted associations between the GRS and obesity-related anthropometric and metabolic measures were determined using linear regression analyses. The results showed that OW/OB individuals had significantly higher mean ranks of GRS than NW individuals. Moreover, a significant association of the GRS with obesity-related anthropometric traits was seen. However, the GRS did not appear to affect any obesity-related metabolic parameter. In conclusion, our findings indicate the combined effect of multiple genetic variants on the obesity-related anthropometric phenotypes in Pakistanis.
Collapse
Affiliation(s)
- Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - Adil Anwar Bhatti
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
19
|
Shourick J, Wack M, Jannot AS. Assessing rare diseases prevalence using literature quantification. Orphanet J Rare Dis 2021; 16:139. [PMID: 33743790 PMCID: PMC7980535 DOI: 10.1186/s13023-020-01639-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Estimating the prevalence of diseases is crucial for the organization of healthcare. The amount of literature on a rare pathology could help differentiate between rare and very rare diseases. The objective of this work was to evaluate to what extent the number of publications can be used to predict the prevalence of a given pathology. Methods We queried Orphanet for the global prevalence class for all conditions for which it was available. For these pathologies, we cross-referenced the Orphanet, MeSH, and OMIM vocabularies to assess the number of publication available on Pubmed using three different query strategies (one proposed in the literature, and two built specifically for this study). We first studied the association of the number of publications obtained by each of these query strategies with the prevalence class, then their predictive ability. Results Class prevalence was available for 3128 conditions, 2970 had a prevalence class < 1/1,000,000, 41 of 1–9/1,000,000, 84 of 1–9/100,000, and 33 of 1–9/10,000. We show a significant association and excellent predictive performance of the number of publication, with an AUC over 94% for the best query strategy. Conclusion Our study highlights the link and the excellent predictive performance of the number of publications on the prevalence of rare diseases provided by Orphanet.
Collapse
Affiliation(s)
- Jason Shourick
- Department of Medical Informatics, Hôpital Européen Georges Pompidou, AP-HP, 20 Rue Leblanc, 75015, Paris, France.
| | - Maxime Wack
- Department of Medical Informatics, Hôpital Européen Georges Pompidou, AP-HP, 20 Rue Leblanc, 75015, Paris, France
| | - Anne-Sophie Jannot
- Department of Medical Informatics, Hôpital Européen Georges Pompidou, AP-HP, 20 Rue Leblanc, 75015, Paris, France.,INSERM, Centre de Recherche des Cordeliers, UMRS 1138, Université de Paris, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
20
|
Bessell E, Markovic TP, Fuller NR. How to provide a structured clinical assessment of a patient with overweight or obesity. Diabetes Obes Metab 2021; 23 Suppl 1:36-49. [PMID: 33621413 DOI: 10.1111/dom.14230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022]
Abstract
With the increasing prevalence of overweight and obesity worldwide, there is a reciprocal increase in the global economic burden and ill-health from obesity-related chronic diseases. Primary healthcare services have a role to play in ensuring early detection of weight issues and in directing patients towards evidence-based care to slow this progression. Research shows that many people with obesity are motivated to lose weight and want their clinician to initiate a conversation about weight management and treatment options. However, this conversation rarely occurs and there is a significant delay in treatment, resulting in an increased burden on the individual, healthcare system and society. In this paper, the components and rationale for the clinical assessment of adult patients with overweight or obesity, including anthropometric measurements and pathology tests, are described. Recommendations to ascertain the potential factors influencing the development of obesity in the patient, such as lifestyle factors (diet and physical activity) and mental health, are also provided. The potential sequelae of obesity that may be present and the necessary assessments for diagnosis are also addressed. These assessments are vital to ensure the patient is referred to the appropriate allied health services and/or specialists.
Collapse
Affiliation(s)
- Erica Bessell
- Boden Collaboration, Charles Perkins Centre, Faculty of Medicine and Health University of Sydney, Sydney, New South Wales, Australia
| | - Tania P Markovic
- Boden Collaboration, Charles Perkins Centre, Faculty of Medicine and Health University of Sydney, Sydney, New South Wales, Australia
- Metabolism and Obesity Services, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Nicholas R Fuller
- Boden Collaboration, Charles Perkins Centre, Faculty of Medicine and Health University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Alhabeeb H, AlFaiz A, Kutbi E, AlShahrani D, Alsuhail A, AlRajhi S, Alotaibi N, Alotaibi K, AlAmri S, Alghamdi S, AlJohani N. Gut Hormones in Health and Obesity: The Upcoming Role of Short Chain Fatty Acids. Nutrients 2021; 13:nu13020481. [PMID: 33572661 PMCID: PMC7911102 DOI: 10.3390/nu13020481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
We are currently facing an obesity pandemic, with worldwide obesity rates having tripled since 1975. Obesity is one of the main risk factors for the development of non-communicable diseases, which are now the leading cause of death worldwide. This calls for urgent action towards understanding the underlying mechanisms behind the development of obesity as well as developing more effective treatments and interventions. Appetite is carefully regulated in humans via the interaction between the central nervous system and peripheral hormones. This involves a delicate balance in external stimuli, circulating satiating and appetite stimulating hormones, and correct functioning of neuronal signals. Any changes in this equilibrium can lead to an imbalance in energy intake versus expenditure, which often leads to overeating, and potentially weight gain resulting in overweight or obesity. Several lines of research have shown imbalances in gut hormones are found in those who are overweight or obese, which may be contributing to their condition. Therefore, this review examines the evidence for targeting gut hormones in the treatment of obesity by discussing how their dysregulation influences food intake, the potential possibility of altering the circulating levels of these hormones for treating obesity, as well as the role of short chain fatty acids and protein as novel treatments.
Collapse
Affiliation(s)
- Habeeb Alhabeeb
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
- Correspondence:
| | - Ali AlFaiz
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
| | - Emad Kutbi
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
| | - Dayel AlShahrani
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
| | - Abdullah Alsuhail
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
| | - Saleh AlRajhi
- Family Medicine, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia;
| | - Nemer Alotaibi
- College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia; (N.A.); (K.A.)
| | - Khalid Alotaibi
- College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia; (N.A.); (K.A.)
| | - Saad AlAmri
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
| | - Saleh Alghamdi
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
| | - Naji AlJohani
- Obesity, Endocrine, and Metabolism Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia;
| |
Collapse
|
22
|
Milani GP, Silano M, Mazzocchi A, Bettocchi S, De Cosmi V, Agostoni C. Personalized nutrition approach in pediatrics: a narrative review. Pediatr Res 2021; 89:384-388. [PMID: 33230198 DOI: 10.1038/s41390-020-01291-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 01/30/2023]
Abstract
Dietary habits represent the main determinant of health. Although extensive research has been conducted to modify unhealthy dietary behaviors across the lifespan, obesity and obesity-associated comorbidities are increasingly observed worldwide. Individually tailored interventions are nowadays considered a promising frontier for nutritional research. In this narrative review, the technologies of importance in a pediatric clinical setting are discussed. The first determinant of the dietary balance is represented by energy intakes matching individual needs. Most emerging studies highlight the opportunity to reconsider the widely used prediction equations of resting energy expenditure. Artificial Neural Network approaches may help to disentangle the role of single contributors to energy expenditure. Artificial intelligence is also useful in the prediction of the glycemic response, based on the individual microbiome. Other factors further concurring to define individually tailored nutritional needs are metabolomics and nutrigenomic. Since most available data come from studies in adult groups, new efforts should now be addressed to integrate all these aspects to develop comprehensive and-above all-effective interventions for children. IMPACT: Personalized dietary advice, specific to individuals, should be more effective in the prevention of chronic diseases than general recommendations about diet. Artificial Neural Networks algorithms are technologies of importance in a pediatric setting that may help practitioners to provide personalized nutrition. Other approaches to personalized nutrition, while promising in adults and for basic research, are still far from practical application in pediatrics.
Collapse
Affiliation(s)
- Gregorio P Milani
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy.,Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Marco Silano
- Unit of Human Nutrition and Health, Department of Food Safety Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Silvia Bettocchi
- Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Valentina De Cosmi
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy. .,Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy.
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy.,Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| |
Collapse
|
23
|
Role of Adiponectin and Brain Derived Neurotrophic Factor in Metabolic Regulation Involved in Adiposity and Body Fat Browning. J Clin Med 2020; 10:jcm10010056. [PMID: 33375318 PMCID: PMC7794779 DOI: 10.3390/jcm10010056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity, characterized by excessive fat mass, has been emerging as a major global epidemic and contributes to the increased risk of morbidity around the world. Thus, the necessity to find effective therapy and specific regulatory mechanisms is increasing for controlling obesity. Lately, many researchers have been interested in the linkage between obesity and adipokines/myokines, particularly adiponectin and brain-derived neurotrophic factor (BDNF). However, the role of adiponectin and BDNF in adiposity has not been clearly defined yet. We examined the association of adiposity with adiponectin and BDNF through human study (observational study) with Korean women and in vitro experiments. In the human study, we found a negative relationship between adiposity and circulating adiponectins but irregular patterns in the relationship between adiposity and circulating BDNFs. In the in vitro study using 3T3-L1 adipocytes, adiponectin treatment strongly promoted adipocyte differentiation and the fat browning process, whereas BDNF treatment attenuated adipocyte differentiation and the fat browning process in differentiated adipocytes. Our results demonstrate that adiponectin and BDNF play an important role in regulating fat mass and the expression of fat-browning markers in different ways, and also suggest that circulating adiponectin may be used as an important monitoring index for obesity status.
Collapse
|
24
|
Impact of Genetic Variations and Epigenetic Mechanisms on the Risk of Obesity. Int J Mol Sci 2020; 21:ijms21239035. [PMID: 33261141 PMCID: PMC7729759 DOI: 10.3390/ijms21239035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Rare genetic obesity disorders are characterized by mutations of genes strongly involved in the central or peripheral regulation of energy balance. These mutations are effective in causing the early onset of severe obesity and insatiable hunger (hyperphagia), suggesting that the genetic component can contribute to 40–70% of obesity. However, genes’ roles in the processes leading to obesity are still unclear. This review is aimed to summarize the current knowledge of the genetic causes of obesity, especially monogenic obesity, describing the role of epigenetic mechanisms in obesity and metabolic diseases. A comprehensive understanding of the underlying genetic and epigenetic mechanisms, with the metabolic processes they control, will permit adequate management and prevention of obesity.
Collapse
|
25
|
Costa PB, Aranalde LC, Correia PE, Cardozo GRF, da Silva ES, da Costa MS, Valle SC, Bertacco RTA, Pieniz S, Araujo RC, Schneider A, Schadock I, Barros CC. Combination of ACTN3 R577X and ACE I/D polymorphisms as a tool for prediction of obesity risk in children. Int J Obes (Lond) 2020; 45:337-341. [PMID: 32873907 DOI: 10.1038/s41366-020-00668-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022]
Abstract
The genetic influence in obesity prevalence is well described, but the role of genetic markers related to athletic strength/ endurance performance remains controversial. We investigated associations between obesity and the genetic polymorphisms alpha-actinin-3 (ACTN3) R577X and angiotensin-converting enzyme (ACE) I/D in schoolchildren aged 4-13 years from Southern Brazil. We collected sociodemographic data from parents through a questionnaire and conducted an anthropometric assessment. DNA was extracted from buccal cells and genotyping was performed by PCR. We found that 1.9% of the individuals were classified as low weight-for-age, 57.6% as normal weight and 40.5% as overweight/ obesity. Regarding allelic distribution, we found that 52.5% of individuals were DD, 30.8% ID, and 16.7% II for ACE; and 38.8% of individuals were RR, 40.2% RX and 21.0% XX for ACTN3. When both polymorphisms were combined, we observed a clear association between the composed genetic profile of these alleles and severe obesity in schoolchildren. Our data suggest that the combined analysis of ACTN3 R577X and ACE I/D polymorphisms may serve as a predictor for the risk of severe obesity in children. These data can contribute to a better understanding of the relationship between these polymorphisms and the body weight development of school-age children.
Collapse
Affiliation(s)
| | - Laura C Aranalde
- Medical Faculty, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Poliana E Correia
- Federal University of Rio Grande do Sul- UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | - Sandra Costa Valle
- Nutrition Faculty, Federal University of Pelotas -UFPel, Pelotas, RS, Brazil
| | | | - Simone Pieniz
- Nutrition Faculty, Federal University of Pelotas -UFPel, Pelotas, RS, Brazil
| | | | - Augusto Schneider
- Nutrition Faculty, Federal University of Pelotas -UFPel, Pelotas, RS, Brazil
| | - Ines Schadock
- Medical Faculty, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Carlos Castilho Barros
- Nutrition Faculty, Federal University of Pelotas -UFPel, Pelotas, RS, Brazil. .,Technological Development Center, Federal University of Pelotas -UFPel, Pelotas, RS, Brazil.
| |
Collapse
|
26
|
Lin WY, Huang CC, Liu YL, Tsai SJ, Kuo PH. Polygenic approaches to detect gene-environment interactions when external information is unavailable. Brief Bioinform 2020; 20:2236-2252. [PMID: 30219835 PMCID: PMC6954453 DOI: 10.1093/bib/bby086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
The exploration of 'gene-environment interactions' (G × E) is important for disease prediction and prevention. The scientific community usually uses external information to construct a genetic risk score (GRS), and then tests the interaction between this GRS and an environmental factor (E). However, external genome-wide association studies (GWAS) are not always available, especially for non-Caucasian ethnicity. Although GRS is an analysis tool to detect G × E in GWAS, its performance remains unclear when there is no external information. Our 'adaptive combination of Bayes factors method' (ADABF) can aggregate G × E signals and test the significance of G × E by a polygenic test. We here explore a powerful polygenic approach for G × E when external information is unavailable, by comparing our ADABF with the GRS based on marginal effects of SNPs (GRS-M) and GRS based on SNP × E interactions (GRS-I). ADABF is the most powerful method in the absence of SNP main effects, whereas GRS-M is generally the best test when single-nucleotide polymorphisms main effects exist. GRS-I is the least powerful test due to its data-splitting strategy. Furthermore, we apply these methods to Taiwan Biobank data. ADABF and GRS-M identified gene × alcohol and gene × smoking interactions on blood pressure (BP). BP-increasing alleles elevate more BP in drinkers (smokers) than in nondrinkers (nonsmokers). This work provides guidance to choose a polygenic approach to detect G × E when external information is unavailable.
Collapse
Affiliation(s)
- Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ching-Chieh Huang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, TaipeiVeterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Precision Nutrition and Childhood Obesity: A Scoping Review. Metabolites 2020; 10:metabo10060235. [PMID: 32521722 PMCID: PMC7345802 DOI: 10.3390/metabo10060235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
Environmental exposures such as nutrition during life stages with high developmental plasticity—in particular, the in utero period, infancy, childhood, and puberty—may have long-lasting influences on risk of chronic diseases, including obesity-related conditions that manifest as early as childhood. Yet, specific mechanisms underlying these relationships remain unclear. Here, we consider the study of ‘omics mechanisms, including nutrigenomics, epigenetics/epigenomics, and metabolomics, within a life course epidemiological framework to accomplish three objectives. First, we carried out a scoping review of population-based literature with a focus on studies that include ‘omics analyses during three sensitive periods during early life: in utero, infancy, and childhood. We elected to conduct a scoping review because the application of multi-‘omics and/or precision nutrition in childhood obesity prevention and treatment is relatively recent, and identifying knowledge gaps can expedite future research. Second, concomitant with the literature review, we discuss the relevance and plausibility of biological mechanisms that may underlie early origins of childhood obesity identified by studies to date. Finally, we identify current research limitations and future opportunities for application of multi-‘omics in precision nutrition/health practice.
Collapse
|
28
|
Mintziori G, Nigdelis MP, Mathew H, Mousiolis A, Goulis DG, Mantzoros CS. The effect of excess body fat on female and male reproduction. Metabolism 2020; 107:154193. [PMID: 32119876 DOI: 10.1016/j.metabol.2020.154193] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
The dramatic increase in the prevalence of obesity coincides with a decline in reproductive health indices in both sexes. Energy excess mediates changes to the regulatory mechanisms of the reproductive system. Obese individuals exhibit increased estrogen concentrations, due to the overexpression of aromatase in the adipose tissue; via a negative feedback loop, men present with symptoms of hypogonadotropic hypogonadism. These hormonal changes, along with increased oxidative stress, lipotoxicity and disturbances in the concentrations of adipokines, directly affect the gonads, peripheral reproductive organs and the embryo. Clinical evidence is somewhat contradicting, with only some studies advocating worse semen parameters, increased incidence of erectile dysfunction, increased doses of ovulation induction medications, and worse live birth rates in assisted reproductive technology (ART) cycles in obese individuals compared with those of normal weight. Similar conclusions are drawn about patients with insulin resistance syndromes, namely polycystic ovary syndrome (PCOS). As far as treatment options are concerned, lifestyle changes, medical therapy and bariatric surgery may improve the reproductive outcome, although the evidence remains inconclusive. In this review, we summarize the evidence on the association of obesity and reproductive health on both the molecular and the clinical level, and the effect of weight-loss interventions on reproductive potential.
Collapse
Affiliation(s)
- Gesthimani Mintziori
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Greece.
| | - Meletios P Nigdelis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Greece
| | - Hannah Mathew
- Department of Medicine Boston VA Healthcare System and Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Athanasios Mousiolis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Greece
| | - Christos S Mantzoros
- Department of Medicine Boston VA Healthcare System and Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
29
|
De Lorenzo A, Romano L, Di Renzo L, Di Lorenzo N, Cenname G, Gualtieri P. Obesity: A preventable, treatable, but relapsing disease. Nutrition 2020; 71:110615. [DOI: 10.1016/j.nut.2019.110615] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/19/2019] [Accepted: 10/05/2019] [Indexed: 12/26/2022]
|
30
|
Bomberg EM, Ryder JR, Brundage RC, Straka RJ, Fox CK, Gross AC, Oberle MM, Bramante CT, Sibley SD, Kelly AS. Precision medicine in adult and pediatric obesity: a clinical perspective. Ther Adv Endocrinol Metab 2019; 10:2042018819863022. [PMID: 31384417 PMCID: PMC6661805 DOI: 10.1177/2042018819863022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
It remains largely unknown as to why some individuals experience substantial weight loss with obesity interventions, while others receiving these same interventions do not. Person-specific characteristics likely play a significant role in this heterogeneity in treatment response. The practice of precision medicine accounts for an individual's genes, environment, and lifestyle when deciding upon treatment type and intensity in order to optimize benefit and minimize risk. In this review, we first discuss biopsychosocial determinants of obesity, as understanding the complexity of this disease is necessary for appreciating how difficult it is to develop individualized treatment plans. Next, we present literature on person-specific characteristics associated with, and predictive of, weight loss response to various obesity treatments including lifestyle modification, pharmacotherapy, metabolic and bariatric surgery, and medical devices. Finally, we discuss important gaps in our understanding of the causes of obesity in relation to the suboptimal treatment outcomes in certain patients, and offer solutions that may lead to the development of more effective and targeted obesity therapies.
Collapse
Affiliation(s)
- Eric M. Bomberg
- Department of Pediatrics and Center for
Pediatric Obesity Medicine, University of Minnesota, Minneapolis, 717
Delaware Street SE, Room 371, Minneapolis, MN 55414, USA
| | - Justin R. Ryder
- Department of Pediatrics, University of
Minnesota, Minneapolis, MN, USA
- Center for Pediatric Obesity Medicine,
University of Minnesota, Minneapolis, MN, USA
| | - Richard C. Brundage
- Department of Experimental and Clinical
Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Robert J. Straka
- Department of Experimental and Clinical
Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Claudia K. Fox
- Department of Pediatrics, University of
Minnesota, Minneapolis, MN, USA
- Center for Pediatric Obesity Medicine,
University of Minnesota, Minneapolis, MN, USA
| | - Amy C. Gross
- Department of Pediatrics, University of
Minnesota, Minneapolis, MN, USA
- Center for Pediatric Obesity Medicine,
University of Minnesota, Minneapolis, MN, USA
| | - Megan M. Oberle
- Department of Pediatrics, University of
Minnesota, Minneapolis, MN, USA
- Center for Pediatric Obesity Medicine,
University of Minnesota, Minneapolis, MN, USA
| | - Carolyn T. Bramante
- Department of Pediatrics, University of
Minnesota, Minneapolis, MN, USA
- Center for Pediatric Obesity Medicine,
University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of
Minnesota, Minneapolis, MN, USA
| | | | - Aaron S. Kelly
- Department of Pediatrics, University of
Minnesota, Minneapolis, MN, USA
- Center for Pediatric Obesity Medicine,
University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of
Minnesota, Minneapolis, MN, USA
| |
Collapse
|
31
|
Yupanqui-Lozno H, Bastarrachea RA, Yupanqui-Velazco ME, Alvarez-Jaramillo M, Medina-Méndez E, Giraldo-Peña AP, Arias-Serrano A, Torres-Forero C, Garcia-Ordoñez AM, Mastronardi CA, Restrepo CM, Rodriguez-Ayala E, Nava-Gonzalez EJ, Arcos-Burgos M, Kent JW, Cole SA, Licinio J, Celis-Regalado LG. Congenital Leptin Deficiency and Leptin Gene Missense Mutation Found in Two Colombian Sisters with Severe Obesity. Genes (Basel) 2019; 10:genes10050342. [PMID: 31067764 PMCID: PMC6562380 DOI: 10.3390/genes10050342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Congenital leptin deficiency is a recessive genetic disorder associated with severe early-onset obesity. It is caused by mutations in the leptin (LEP) gene, which encodes the protein product leptin. These mutations may cause nonsense-mediated mRNA decay, defective secretion or the phenomenon of biologically inactive leptin, but typically lead to an absence of circulating leptin, resulting in a rare type of monogenic extreme obesity with intense hyperphagia, and serious metabolic abnormalities. Methods: We present two severely obese sisters from Colombia, members of the same lineal consanguinity. Their serum leptin was measured by MicroELISA. DNA sequencing was performed on MiSeq equipment (Illumina) of a next-generation sequencing (NGS) panel involving genes related to severe obesity, including LEP. Results: Direct sequencing of the coding region of LEP gene in the sisters revealed a novel homozygous missense mutation in exon 3 [NM_002303.3], C350G>T [p.C117F]. Detailed information and clinical measurements of these sisters were also collected. Their serum leptin levels were undetectable despite their markedly elevated fat mass. Conclusions: The mutation of LEP, absence of detectable leptin, and the severe obesity found in these sisters provide the first evidence of monogenic leptin deficiency reported in the continents of North and South America.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Claudio A Mastronardi
- NeuRos, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia.
| | - Carlos M Restrepo
- GeniURos, CIGGUR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia.
| | | | | | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Instituto de Investigaciones Médicas. Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Jack W Kent
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Julio Licinio
- SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
32
|
Russell CG, Russell A. A biopsychosocial approach to processes and pathways in the development of overweight and obesity in childhood: Insights from developmental theory and research. Obes Rev 2019; 20:725-749. [PMID: 30768750 DOI: 10.1111/obr.12838] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/16/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Childhood obesity has reached alarming proportions in many countries. There is consensus that both biological (especially genetic) and environmental (including psychosocial) factors contribute to weight gain and obesity in childhood. Research has identified extensive risk or predictive factors for childhood obesity from both of these domains. There is less consensus about the developmental processes or pathways showing how these risk factors lead to overweigh/obesity (OW/OB) in childhood. We outline a biopsychosocial process model of the development of OW/OB in childhood. The model and associated scholarship from developmental theory and research guide an analysis of research on OW/OB in childhood. The model incorporates biological factors such as genetic predispositions or susceptibility genes, temperament, and homeostatic and allostatic processes with the psychosocial and behavioral factors of parenting, parental feeding practices, child appetitive traits, food liking, food intakes, and energy expenditure. There is an emphasis on bidirectional and transactional processes linking child biology and behavior with psychosocial processes and environment. Insights from developmental theory and research include implications for conceptualization, measurement, research design, and possible multiple pathways to OW/OB. Understanding the developmental processes and pathways involved in childhood OW/OB should contribute to more targeted prevention and intervention strategies in childhood.
Collapse
Affiliation(s)
- Catherine G Russell
- Faculty of Health, School of Exercise and Nutrition Sciences, Centre for Advanced Sensory Science, Deakin University, Burwood, Australia
| | - Alan Russell
- College of Education, Psychology and Social Work, Flinders University, Bedford Park, South Australia
| |
Collapse
|
33
|
Kim MJ, Kim JH, Kim MS, Yang HJ, Lee M, Kwon DY. Metabolomics Associated with Genome-Wide Association Study Related to the Basal Metabolic Rate in Overweight/Obese Korean Women. J Med Food 2019; 22:499-507. [DOI: 10.1089/jmf.2018.4310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Min Jung Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Korea
| | - Jin Hee Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Korea
| | - Myung-Sunny Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Korea
| | - Hye Jeong Yang
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Korea
| | - Myoungsook Lee
- Department of Food and Nutrition, Sungshin Women's University, Seoul, Korea
| | - Dae Young Kwon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Korea
| |
Collapse
|
34
|
Oussaada SM, van Galen KA, Cooiman MI, Kleinendorst L, Hazebroek EJ, van Haelst MM, Ter Horst KW, Serlie MJ. The pathogenesis of obesity. Metabolism 2019; 92:26-36. [PMID: 30639246 DOI: 10.1016/j.metabol.2018.12.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/28/2018] [Accepted: 12/30/2018] [Indexed: 12/14/2022]
Abstract
Body fat mass increases when energy intake exceeds energy expenditure. In the long term, a positive energy balance will result in obesity. The worldwide prevalence of obesity has increased dramatically, posing a serious threat to human health. Therefore, insight in the pathogenesis of obesity is important to identify novel prevention and treatment strategies. This review describes the physiology of energy expenditure and energy intake in the context of body weight gain in humans. We focus on the components of energy expenditure and the regulation of energy intake. Finally, we describe rare monogenetic causes leading to an impairment in central regulation of food intake and obesity.
Collapse
Affiliation(s)
- Sabrina M Oussaada
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
| | - Katy A van Galen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
| | - Mellody I Cooiman
- Department of Bariatric Surgery, Rijnstate Hospital, Arnhem, the Netherlands
| | - Lotte Kleinendorst
- Department of Clinical Genetics, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
| | - Eric J Hazebroek
- Department of Bariatric Surgery, Rijnstate Hospital, Arnhem, the Netherlands
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
| | - Kasper W Ter Horst
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
35
|
Shabana, Shahid SU, Hasnain S. Identification of genetic basis of obesity and mechanistic link of genes and lipids in Pakistani population. Biosci Rep 2018; 38:BSR20180281. [PMID: 29752338 PMCID: PMC6435513 DOI: 10.1042/bsr20180281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/24/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
We aimed to identify the genetic causes of common forms of obesity in the Pakistani people and find out the mechanistic link by observing the relationship of genes and serum lipid traits. Four hundred and seventy-five subjects were genotyped for two mutations in (leptin:N103K and proopiomelanocortin:R236G) and ten common variants in different genes. Serum lipids were also measured. The prevalence of mutations was very low (one heterozygous subject each for both mutations), but fairly high minor/risk allele frequency (M/RAF) was observed for all SNPs. MAF of G2548A was 42.8% in obese and 30.1% in controls (P=5.7 × 10-5), it showed association with weight, body mass index (BMI), waist circumference (WC), high density lipoprotein cholesterol (HDL-c) and leptin, Gln223Arg had MAF 32% in obese and 18.7% in controls (P=5.4 × 10-6), it showed association with fasting plasma glucose (FPG) and all lipid traits, Ala54Thr had MAF 42.4% in obese and 33.1% (P=0.002), it showed association with none of the tested parameters. rs9939609 MAF was 26.6%, and showed association with none of the tested parameters. rs1802295 (P=0.002); rs7178572 (P=0.007); rs2028299 (P=0.04); rs4812829 (P=0.02) showed significant while rs3923113 and rs16861329 did not show a significant association (P=0.20 and P=0.3, respectively) with obesity. Major genetic contribution to common forms of obesity in Pakistan is from low/modest effect size common variants that act additively to affect body weight quantitatively and mechanism may involve modulating serum lipids.
Collapse
Affiliation(s)
- Shabana
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| | - Saleem Ullah Shahid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| | - Shahida Hasnain
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
36
|
Ashraf NU, Altaf M. Epigenetics: An emerging field in the pathogenesis of nonalcoholic fatty liver disease. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:1-12. [PMID: 30454678 DOI: 10.1016/j.mrrev.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health concern associated with increased mortality due to cardiovascular disease, type II diabetes, insulin resistance, liver disease, and malignancy. The molecular mechanism underlying these processes is not fully understood but involves hepatic fat accumulation and alteration of energy metabolism and inflammatory signals derived from various cell types including immune cells. During the last two decades, epigenetic mechanisms have emerged as important regulators of chromatin alteration and the reprogramming of gene expression. Recently, epigenetic mechanisms have been implicated in the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH) genesis. Epigenetic mechanisms could be used as potential therapeutic targets and as noninvasive diagnostic biomarkers for NAFLD. These mechanisms can determine disease progression and prognosis in NAFLD. In this review, we discuss the role of epigenetic mechanisms in the progression of NAFLD and potential therapeutic targets for the treatment of NAFLD.
Collapse
Affiliation(s)
- Nissar U Ashraf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
37
|
Ramos-Molina B, Molina-Vega M, Fernández-García JC, Creemers JW. Hyperphagia and Obesity in Prader⁻Willi Syndrome: PCSK1 Deficiency and Beyond? Genes (Basel) 2018; 9:genes9060288. [PMID: 29880780 PMCID: PMC6027271 DOI: 10.3390/genes9060288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/31/2023] Open
Abstract
Prader–Willi syndrome (PWS) is a complex genetic disorder that, besides cognitive impairments, is characterized by hyperphagia, obesity, hypogonadism, and growth impairment. Proprotein convertase subtilisin/kexin type 1 (PCSK1) deficiency, a rare recessive congenital disorder, partially overlaps phenotypically with PWS, but both genetic disorders show clear dissimilarities as well. The recent observation that PCSK1 is downregulated in a model of human PWS suggests that overlapping pathways are affected. In this review we will not only discuss the mechanisms by which PWS and PCSK1 deficiency could lead to hyperphagia but also the therapeutic interventions to treat obesity in both genetic disorders.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Laboratory of Cellular and Molecular Endocrinology, Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
| | - María Molina-Vega
- Department of Endocrinology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
| | - José C Fernández-García
- Laboratory of Cellular and Molecular Endocrinology, Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
- Department of Endocrinology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn CB06/003), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - John W Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
38
|
ASGE EndoVators Summit: Defining the role and value of endoscopic therapies in obesity management. Metabolism 2018; 82:47-57. [PMID: 29191455 DOI: 10.1016/j.metabol.2017.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022]
|
39
|
Fenwick PH, Jeejeebhoy K, Dhaliwal R, Royall D, Brauer P, Tremblay A, Klein D, Mutch DM. Lifestyle genomics and the metabolic syndrome: A review of genetic variants that influence response to diet and exercise interventions. Crit Rev Food Sci Nutr 2018; 59:2028-2039. [PMID: 29400991 DOI: 10.1080/10408398.2018.1437022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolic syndrome (MetS) comprises a cluster of risk factors that includes central obesity, dyslipidemia, impaired glucose homeostasis and hypertension. Individuals with MetS have elevated risk of type 2 diabetes and cardiovascular disease; thus placing significant burdens on social and healthcare systems. Lifestyle interventions (comprised of diet, exercise or a combination of both) are routinely recommended as the first line of treatment for MetS. Only a proportion of people respond, and it has been assumed that psychological and social aspects primarily account for these differences. However, the etiology of MetS is multifactorial and stems, in part, on a person's genetic make-up. Numerous single nucleotide polymorphisms (SNPs) are associated with the various components of MetS, and several of these SNPs have been shown to modify a person's response to lifestyle interventions. Consequently, genetic variants can influence the extent to which a person responds to changes in diet and/or exercise. The goal of this review is to highlight SNPs reported to influence the magnitude of change in body weight, dyslipidemia, glucose homeostasis and blood pressure during lifestyle interventions aimed at improving MetS components. Knowledge regarding these genetic variants and their ability to modulate a person's response will provide additional context for improving the effectiveness of personalized lifestyle interventions that aim to reduce the risks associated with MetS.
Collapse
Affiliation(s)
- Peri H Fenwick
- a Department of Human Health and Nutritional Sciences , University of Guelph , Guelph , Ontario , Canada
| | - Khursheed Jeejeebhoy
- b Emeritus Professor of Medicine and Physician , St. Michael's Hospital , Toronto , Ontario , Canada
| | | | - Dawna Royall
- d Department of Family Relations and Applied Nutrition , University of Guelph , Guelph , Ontario , Canada
| | - Paula Brauer
- d Department of Family Relations and Applied Nutrition , University of Guelph , Guelph , Ontario , Canada
| | - Angelo Tremblay
- e Department of Kinesiology , Faculty of Medicine, Université Laval , Québec City , Québec , Canada
| | - Doug Klein
- f Department of Family Medicine , University of Alberta , Edmonton , Alberta , Canada
| | - David M Mutch
- a Department of Human Health and Nutritional Sciences , University of Guelph , Guelph , Ontario , Canada
| |
Collapse
|
40
|
Ryou M, McQuaid KR, Thompson CC, Edmundowic S, Mergener K. ASGE EndoVators Summit: Defining the Role and Value of Endoscopic Therapies in Obesity Management. J Gastrointest Surg 2018; 22:376-387. [PMID: 29139082 DOI: 10.1007/s11605-017-3609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Marvin Ryou
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth R McQuaid
- San Francisco VA Healthcare System, Universityof California, San Francisco, San Francisco, CA, USA.
| | - Christopher C Thompson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Klaus Mergener
- University of Washington, Digestive Health Specialists, Tacoma, WA, USA
| |
Collapse
|
41
|
Mǎrginean CO, Mǎrginean C, Meliţ LE. New Insights Regarding Genetic Aspects of Childhood Obesity: A Minireview. Front Pediatr 2018; 6:271. [PMID: 30338250 PMCID: PMC6180186 DOI: 10.3389/fped.2018.00271] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/10/2018] [Indexed: 01/26/2023] Open
Abstract
Introduction: Childhood obesity is occurring at alarming rates in both developed and developing countries. "Obesogenic" environmental factors must be associated with variants of different risk alleles to determine polygenic or common obesity, and their impact depends on different developmental stages.The interaction between obesogenic environment and genetic susceptibility results in the so-called polygenic forms of obesity. In contrast, monogenic and syndromic obesity are not influenced by environmental events. Therefore, this review aimed to underline the roles of some of the most studied genes in the development of monogenic and polygenic obesity in children. Results: Among the most common obesity related genes, we chose the fat mass and obesity-associated (FTO) gene, leptin gene and its receptor, tumor necrosis factor alpha (TNF-α), the melanocortin 4 receptor gene (MC4R), Ectoenzyme nucleotide pyrophosphate phosphodiesterase 1 (ENPP1), and others, such as peroxisome proliferator-activated receptor gamma (PPARG), angiotensin-converting enzyme (ACE), glutathione S-transferase (GST), and interleukin-6 (IL-6) genes. The roles of these genes are complex and interdependent, being linked to different cornerstones in obesity development, such as appetite behavior, control of food intake and energy balance, insulin signaling, lipid and glucose metabolism, metabolic disorders, adipocyte differentiation, and so on. Conclusions: Genetic predisposition is mandatory, but not enough to trigger obesity.Dietary interventions and proper lifestyle changes can prevent obesity development in genetically predisposed children. Further studies are needed to identify the precise role of both genetic and obesogenic factors in the development of childhood obesity in order to design effective preventive methods.
Collapse
Affiliation(s)
- Cristina Oana Mǎrginean
- Department of Pediatrics, University of Medicine and Pharmacy Târgu Mureş, Târgu Mureş, Romania
| | - Claudiu Mǎrginean
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy Târgu Mureş, Târgu Mureş, Romania
| | - Lorena Elena Meliţ
- Department of Pediatrics, University of Medicine and Pharmacy Târgu Mureş, Târgu Mureş, Romania
| |
Collapse
|
42
|
Tallon JM, Narciso J, Barros A, Pereira A, Costa AM, Silva AJ. Obesity: Nutrition and Genetics—A Short Narrative Review. Health (London) 2018. [DOI: 10.4236/health.2018.1012134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
Stryjecki C, Alyass A, Meyre D. Ethnic and population differences in the genetic predisposition to human obesity. Obes Rev 2018; 19:62-80. [PMID: 29024387 DOI: 10.1111/obr.12604] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/17/2017] [Accepted: 08/02/2017] [Indexed: 12/22/2022]
Abstract
Obesity rates have escalated to the point of a global pandemic with varying prevalence across ethnic groups. These differences are partially explained by lifestyle factors in addition to genetic predisposition to obesity. This review provides a comprehensive examination of the ethnic differences in the genetic architecture of obesity. Using examples from evolution, heritability, admixture, monogenic and polygenic studies of obesity, we provide explanations for ethnic differences in the prevalence of obesity. The debate over definitions of race and ethnicity, the advantages and limitations of multi-ethnic studies and future directions of research are also discussed. Multi-ethnic studies have great potential to provide a better understanding of ethnic differences in the prevalence of obesity that may result in more targeted and personalized obesity treatments.
Collapse
Affiliation(s)
- C Stryjecki
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - A Alyass
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
44
|
Ryou M, McQuaid KR, Thompson CC, Edmundowicz S, Mergener K. ASGE EndoVators Summit: defining the role and value of endoscopic therapies in obesity management. Surg Endosc 2018; 32:1-13. [PMID: 29138927 DOI: 10.1007/s00464-017-5934-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022]
|
45
|
Ryou M, McQuaid KR, Thompson CC, Edmundowicz S, Mergener K. ASGE EndoVators Summit: Defining the Role and Value of Endoscopic Therapies in Obesity Management. Obes Surg 2018; 28:3-14. [PMID: 29139029 DOI: 10.1007/s11695-017-2948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Mühlhaus J, Dinter J, Jyrch S, Teumer A, Jacobi SF, Homuth G, Kühnen P, Wiegand S, Grüters A, Völzke H, Raile K, Kleinau G, Krude H, Biebermann H. Investigation of Naturally Occurring Single-Nucleotide Variants in Human TAAR1. Front Pharmacol 2017; 8:807. [PMID: 29225575 PMCID: PMC5705543 DOI: 10.3389/fphar.2017.00807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
Activation of trace amine-associated receptor 1 (TAAR1) in endocrine pancreas is involved in weight regulation and glucose homeostasis. The purpose of this study was the identification and characterization of potential TAAR1 variants in patients with overweight/obesity and disturbed glucose homeostasis. Screening for TAAR1 variants was performed in 314 obese or overweight patients with impaired insulin secretion. The detected variants were functionally characterized concerning TAAR1 cell surface expression and signaling properties and their allele frequencies were determined in the population-based Study of Health in Pomerania (SHIP). Three heterozygous carriers of the single nucleotide missense variants p.Arg23Cys (R23C, rs8192618), p.Ser49Leu (S49L, rs140960896), and p.Ille171Leu (I171L, rs200795344) were detected in the patient cohort. While p.Ser49Leu and p.Ille171Leu were found in obese/overweight patients with slightly impaired glucose homeostasis, p.Arg23Cys was identified in a patient with a complete loss of insulin production. Functional in vitro characterization revealed a like wild-type function for I171L, partial loss of function for S49L and a complete loss of function for R23C. The frequency of the R23C variant in 2018 non-diabetic control individuals aged 60 years and older in the general population-based SHIP cohort was lower than in the analyzed patient sample. Both variants are rare in the general population indicating a recent origin in the general gene pool and/or the consequence of pronounced purifying selection, in line with the obvious detrimental effect of the mutations. In conclusion, our study provides hints for the existence of naturally occurring TAAR1 variants with potential relevance for weight regulation and glucose homeostasis.
Collapse
Affiliation(s)
- Jessica Mühlhaus
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin, Germany
| | - Juliane Dinter
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin, Germany
| | - Sabine Jyrch
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Simon F Jacobi
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Peter Kühnen
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin, Germany
| | - Susanna Wiegand
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin, Germany
| | - Annette Grüters
- Department for Pediatric Endocrinology and Diabetology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.,German Center for Diabetes Research (DZD), Greifswald, Germany
| | - Klemens Raile
- Department for Pediatric Endocrinology and Diabetology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine (HZ), Berlin, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin, Germany.,Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin, Germany
| |
Collapse
|
47
|
Ryou M, McQuaid KR, Thompson CC, Edmundowicz S, Mergener K, Abu Dayyeh B, Apovian C, Burke C, Chand B, Chandraker A, Deas T, Dietz W, Dunkin B, Ernest O, Faigel D, Garber S, Hamdy O, Kaplan L, Kumar N, Kushner R, Larsen MC, Lerner H, Littenberg G, Mantzoros C, Mattar S, Moore R, Rinella M, Rothstein R, Schillinger D, Spring B, Sullivan S, Tice J, Vargo J, Wilson E, Woods K, Zundel N. ASGE EndoVators Summit: Defining the role and value of endoscopic therapies in obesity management. Gastrointest Endosc 2017; 86:757-767. [PMID: 29031371 DOI: 10.1016/j.gie.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 02/08/2023]
|
48
|
Ryou M, McQuaid KR, Thompson CC, Edmundowicz S, Mergener K, Dayyeh BA, Apovian C, Burke C, Chand B, Chandraker A, Deas T, Dietz W, Dunkin B, Ernest O, Faigel D, Garber S, Hamdy O, Kaplan L, Kumar N, Kushner R, Larsen MC, Lerner H, Littenberg G, Mantzoros C, Mattar S, Moore R, Rinella M, Rothstein R, Schillinger D, Spring B, Sullivan S, Tice J, Vargo J, Wilson E, Woods K, Zundel N. ASGE EndoVators Summit: Defining the role and value of endoscopic therapies in obesity management. Surg Obes Relat Dis 2017; 13:1805-1816. [PMID: 29030161 DOI: 10.1016/j.soard.2017.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/30/2017] [Indexed: 02/05/2023]
|
49
|
Gene-Dairy Food Interactions and Health Outcomes: A Review of Nutrigenetic Studies. Nutrients 2017; 9:nu9070710. [PMID: 28684688 PMCID: PMC5537825 DOI: 10.3390/nu9070710] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/10/2017] [Accepted: 07/03/2017] [Indexed: 12/23/2022] Open
Abstract
Each person differs from the next by an average of over 3 million genetic variations in their DNA. This genetic diversity is responsible for many of the interindividual differences in food preferences, nutritional needs, and dietary responses between humans. The field of nutrigenetics aims to utilize this type of genetic information in order to personalize diets for optimal health. One of the most well-studied genetic variants affecting human dietary patterns and health is the lactase persistence mutation, which enables an individual to digest milk sugar into adulthood. Lactase persistence is one of the most influential Mendelian factors affecting human dietary patterns to occur since the beginning of the Neolithic Revolution. However, the lactase persistence mutation is only one of many mutations that can influence the relationship between dairy intake and disease risk. The purpose of this review is to summarize the available nutrigenetic literature investigating the relationships between genetics, dairy intake, and health outcomes. Nonetheless, the understanding of an individual’s nutrigenetic responses is just one component of personalized nutrition. In addition to nutrigenetic responses, future studies should also take into account nutrigenomic responses (epigenomic, transcriptomic, proteomic, metabolomic), and phenotypic/characteristic traits (age, gender, activity level, disease status, etc.), as these factors all interact with diet to influence health.
Collapse
|
50
|
Sheikh AB, Nasrullah A, Haq S, Akhtar A, Ghazanfar H, Nasir A, Afzal RM, Bukhari MM, Chaudhary AY, Naqvi SW. The Interplay of Genetics and Environmental Factors in the Development of Obesity. Cureus 2017; 9:e1435. [PMID: 28924523 PMCID: PMC5587406 DOI: 10.7759/cureus.1435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Obesity is a major health issue in the developed nations, and it has been increasingly clear that both genetics and environment play an important role in determining if an individual will be obese or not. We reviewed the latest researches which were carried out to identify the obesity susceptible genes and to identify the metabolic pathways having a central role in energy balance. Obesity is a heritable disorder, and some of the many obesity susceptible genes are fat mass and obesity (FTO), leptin, and Melanocortin-4 receptor (MC4R). Glucose metabolism is the central pathway for fatty acid synthesis, de novo generating the major substrate acetyl-CoA. Further knowledge of these genes and their complex interaction with the environment will help devise individual, family and community-based preventive lifestyle interventions as well as nutritional and medical therapies.
Collapse
Affiliation(s)
| | - Adeel Nasrullah
- Department of Internal Medicine, Shifa International Hospital
| | - Shujaul Haq
- Department of Internal Medicine, Shifa International Hospital
| | - Aisha Akhtar
- Surgery, Texas Tech Health Sciences Center Lubbock
| | | | - Amara Nasir
- Shifa College of Medicine, Shifa International Hospital
| | - Rao M Afzal
- Internal Medicine, Shifa College Of Medicine
| | | | | | - Syed W Naqvi
- Shifa College of Medicine, Shifa International Hospital
| |
Collapse
|