1
|
Berasain L, Beati P, Trigila AP, Rubinstein M, Franchini LF. Accelerated evolution in the human lineage led to gain and loss of transcriptional enhancers in the RBFOX1 locus. SCIENCE ADVANCES 2024; 10:eadl1049. [PMID: 38924416 PMCID: PMC11204294 DOI: 10.1126/sciadv.adl1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
A long-standing goal of evolutionary biology is to decode how changes in gene regulatory networks contribute to human-specific traits. Human accelerated regions (HARs) are prime candidates for driving gene regulatory modifications in human development. The RBFOX1 locus is densely populated with HARs, providing a set of potential regulatory elements that could have changed its expression in the human lineage. Here, we examined the role of RBFOX1-HARs using transgenic zebrafish reporter assays and identified 15 transcriptional enhancers that are active in the developing nervous system, 9 of which displayed differential activity between the human and chimpanzee sequences. The engineered loss of two selected RBFOX1-HARs in knockout mouse models modified Rbfox1 expression at specific developmental stages and tissues in the brain, influencing the expression and splicing of a high number of Rbfox1 target genes. Our results provided insight into the spatial and temporal changes in gene expression driven by RBFOX1-HARs.
Collapse
Affiliation(s)
- Lara Berasain
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) “Dr. Hector N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Paula Beati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) “Dr. Hector N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Anabella P. Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) “Dr. Hector N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) “Dr. Hector N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) “Dr. Hector N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| |
Collapse
|
2
|
Antón-Galindo E, Adel MR, García-González J, Leggieri A, López-Blanch L, Irimia M, Norton WHJ, Brennan CH, Fernàndez-Castillo N, Cormand B. Pleiotropic contribution of rbfox1 to psychiatric and neurodevelopmental phenotypes in two zebrafish models. Transl Psychiatry 2024; 14:99. [PMID: 38374212 PMCID: PMC10876957 DOI: 10.1038/s41398-024-02801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
RBFOX1 is a highly pleiotropic gene that contributes to several psychiatric and neurodevelopmental disorders. Both rare and common variants in RBFOX1 have been associated with several psychiatric conditions, but the mechanisms underlying the pleiotropic effects of RBFOX1 are not yet understood. Here we found that, in zebrafish, rbfox1 is expressed in spinal cord, mid- and hindbrain during developmental stages. In adults, expression is restricted to specific areas of the brain, including telencephalic and diencephalic regions with an important role in receiving and processing sensory information and in directing behaviour. To investigate the contribution of rbfox1 to behaviour, we used rbfox1sa15940, a zebrafish mutant line with TL background. We found that rbfox1sa15940 mutants present hyperactivity, thigmotaxis, decreased freezing behaviour and altered social behaviour. We repeated these behavioural tests in a second rbfox1 mutant line with a different genetic background (TU), rbfox1del19, and found that rbfox1 deficiency affects behaviour similarly in this line, although there were some differences. rbfox1del19 mutants present similar thigmotaxis, but stronger alterations in social behaviour and lower levels of hyperactivity than rbfox1sa15940 fish. Taken together, these results suggest that mutations in rbfox1 lead to multiple behavioural changes in zebrafish that might be modulated by environmental, epigenetic and genetic background effects, and that resemble phenotypic alterations present in Rbfox1-deficient mice and in patients with different psychiatric conditions. Our study, thus, highlights the evolutionary conservation of rbfox1 function in behaviour and paves the way to further investigate the mechanisms underlying rbfox1 pleiotropy on the onset of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalunya, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalunya, Spain
| | - Maja R Adel
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Judit García-González
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, NYC 10029, USA
| | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Laura López-Blanch
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalunya, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalunya, Spain
- Universitat Pompeu Fabra, Barcelona, Catalunya, Spain
- ICREA, Barcelona, Catalunya, Spain
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalunya, Spain.
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalunya, Spain.
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalunya, Spain.
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalunya, Spain.
| |
Collapse
|
3
|
Antón-Galindo E, Adel M, García-Gonzalez J, Leggieri A, López-Blanch L, Irimia M, Norton WHJ, Brennan CH, Fernàndez-Castillo N, Cormand B. Pleiotropic contribution of rbfox1 to psychiatric and neurodevelopmental phenotypes in a zebrafish model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529711. [PMID: 36865197 PMCID: PMC9980121 DOI: 10.1101/2023.02.23.529711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
RBFOX1 is a highly pleiotropic gene that contributes to several psychiatric and neurodevelopmental disorders. Both rare and common variants in RBFOX1 have been associated with several psychiatric conditions, but the mechanisms underlying the pleiotropic effects of RBFOX1 are not yet understood. Here we found that, in zebrafish, rbfox1 is expressed in spinal cord, mid- and hindbrain during developmental stages. In adults, expression is restricted to specific areas of the brain, including telencephalic and diencephalic regions with an important role in receiving and processing sensory information and in directing behaviour. To investigate the effect of rbfox1 deficiency on behaviour, we used rbfox1sa15940, a rbfox1 loss-of-function line. We found that rbfox1sa15940 mutants present hyperactivity, thigmotaxis, decreased freezing behaviour and altered social behaviour. We repeated these behavioural tests in a second rbfox1 loss-of-function line with a different genetic background, rbfox1del19, and found that rbfox1 deficiency affects behaviour similarly in this line, although there were some differences. rbfox1del19 mutants present similar thigmotaxis, but stronger alterations in social behaviour and lower levels of hyperactivity than rbfox1sa15940 fish. Taken together, these results suggest that rbfox1 deficiency leads to multiple behavioural changes in zebrafish that might be modulated by environmental, epigenetic and genetic background effects, and that resemble phenotypic alterations present in Rbfox1-deficient mice and in patients with different psychiatric conditions. Our study thus highlights the evolutionary conservation of rbfox1 function in behaviour and paves the way to further investigate the mechanisms underlying rbfox1 pleiotropy on the onset of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades raras (CIBERER), Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Institut de recerca Sant Joan de Déu, Espluges de Llobregat, Catalunya, 08950, Spain
| | - Maja Adel
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Judit García-Gonzalez
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Icahn School of Medicine, Mount Sinai, NYC 10029, USA
| | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Laura López-Blanch
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - William HJ Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades raras (CIBERER), Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Institut de recerca Sant Joan de Déu, Espluges de Llobregat, Catalunya, 08950, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades raras (CIBERER), Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Institut de recerca Sant Joan de Déu, Espluges de Llobregat, Catalunya, 08950, Spain
| |
Collapse
|
4
|
Mukherjee A, Nongthomba U. To RNA-binding and beyond: Emerging facets of the role of Rbfox proteins in development and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1813. [PMID: 37661850 DOI: 10.1002/wrna.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
The RNA-binding Fox-1 homologue (Rbfox) proteins represent an ancient family of splicing factors, conserved through evolution. All members share an RNA recognition motif (RRM), and a particular affinity for the GCAUG signature in target RNA molecules. The role of Rbfox, as a splice factor, deciding the tissue-specific inclusion/exclusion of an exon, depending on its binding position on the flanking introns, is well known. Rbfox often acts in concert with other splicing factors, and forms splicing regulatory networks. Apart from this canonical role, recent studies show that Rbfox can also function as a transcription co-factor, and affects mRNA stability and translation. The repertoire of Rbfox targets is vast, including genes involved in the development of tissue lineages, such as neurogenesis, myogenesis, and erythropoeiesis, and molecular processes, including cytoskeletal dynamics, and calcium handling. A second layer of complexity is added by the fact that Rbfox expression itself is regulated by multiple mechanisms, and, in vertebrates, exhibits tissue-specific expression. The optimum dosage of Rbfox is critical, and its misexpression is etiological to various disease conditions. In this review, we discuss the contextual roles played by Rbfox as a tissue-specific regulator for the expression of many important genes with diverse functions, through the lens of the emerging data which highlights its involvement in many human diseases. Furthermore, we explore the mechanistic details provided by studies in model organisms, with emphasis on the work with Drosophila. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Amartya Mukherjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Veneruso I, Ranieri A, Falcone N, Tripodi L, Scarano C, La Monica I, Pastore L, Lombardo B, D’Argenio V. The Potential Usefulness of the Expanded Carrier Screening to Identify Hereditary Genetic Diseases: A Case Report from Real-World Data. Genes (Basel) 2023; 14:1651. [PMID: 37628702 PMCID: PMC10454493 DOI: 10.3390/genes14081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Expanded carrier screening (ECS) means a comprehensive genetic analysis to evaluate an individual's carrier status. ECS is becoming more frequently used, thanks to the availability of techniques such as next generation sequencing (NGS) and array comparative genomic hybridization (aCGH), allowing for extensive genome-scale analyses. Here, we report the case of a couple who underwent ECS for a case of autism spectrum disorder in the male partner family. aCGH and whole-exome sequencing (WES) were performed in the couple. aCGH analysis identified in the female partner two deletions involving genes associated to behavioral and neurodevelopment disorders. No clinically relevant alterations were identified in the husband. Interestingly, WES analysis identified in the male partner a pathogenic variant in the LPL gene that is emerging as a novel candidate gene for autism. This case shows that ECS may be useful in clinical contexts, especially when both the partners are analyzed before conception, thus allowing the estimation of their risk to transmit an inherited condition. On the other side, there are several concerns related to possible incidental findings and difficult-to-interpret results. Once these limits are defined by the establishment of specific guidelines, ECS may have a greater diffusion.
Collapse
Affiliation(s)
- Iolanda Veneruso
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, via Sergio Pansini 5, 80131 Naples, Italy
| | - Annaluisa Ranieri
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
| | - Noemi Falcone
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, via Sergio Pansini 5, 80131 Naples, Italy
| | - Lorella Tripodi
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, via Sergio Pansini 5, 80131 Naples, Italy
| | - Carmela Scarano
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, via Sergio Pansini 5, 80131 Naples, Italy
| | - Ilaria La Monica
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, via Sergio Pansini 5, 80131 Naples, Italy
| | - Barbara Lombardo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, via di Val Cannuta 247, 00166 Rome, Italy
| |
Collapse
|
6
|
Bhat VD, Jayaraj J, Babu K. RNA and neuronal function: the importance of post-transcriptional regulation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac011. [PMID: 38596700 PMCID: PMC10913846 DOI: 10.1093/oons/kvac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/28/2022] [Indexed: 04/11/2024]
Abstract
The brain represents an organ with a particularly high diversity of genes that undergo post-transcriptional gene regulation through multiple mechanisms that affect RNA metabolism and, consequently, brain function. This vast regulatory process in the brain allows for a tight spatiotemporal control over protein expression, a necessary factor due to the unique morphologies of neurons. The numerous mechanisms of post-transcriptional regulation or translational control of gene expression in the brain include alternative splicing, RNA editing, mRNA stability and transport. A large number of trans-elements such as RNA-binding proteins and micro RNAs bind to specific cis-elements on transcripts to dictate the fate of mRNAs including its stability, localization, activation and degradation. Several trans-elements are exemplary regulators of translation, employing multiple cofactors and regulatory machinery so as to influence mRNA fate. Networks of regulatory trans-elements exert control over key neuronal processes such as neurogenesis, synaptic transmission and plasticity. Perturbations in these networks may directly or indirectly cause neuropsychiatric and neurodegenerative disorders. We will be reviewing multiple mechanisms of gene regulation by trans-elements occurring specifically in neurons.
Collapse
Affiliation(s)
- Vandita D Bhat
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Jagannath Jayaraj
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| |
Collapse
|
7
|
Rbfox1 expression in amacrine cells is restricted to GABAergic and VGlut3 glycinergic cells. Biosci Rep 2022; 42:231460. [PMID: 35730583 PMCID: PMC9272594 DOI: 10.1042/bsr20220497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Rbfox1 is a multifunctional RNA binding protein that regulates alternative splicing, transcription, mRNA stability and translation. Rbfox1 is an important regulator of gene networks involved in neurogenesis and neuronal function. Disruption of Rbfox function has been associated with several neurodevelopmental and neuropsychiatric disorders. We have shown earlier that Rbfox1 is expressed in retinal ganglion and amacrine cells (ACs) and that its downregulation in adult mouse retinas leads to deficiency of depth perception. In this study, we used several markers of ACs, including GABA, choline acetyltransferase (ChAT), neuropeptide Y (NPY), glycine transporter (GlyT1) and vesicular glutamate transporter 3 (VGlut3) to identify types of ACs that express Rbfox1. Expression of Rbfox1 was observed predominantly in GABAergic ACs located in the INL and GCL. All GABAergic/cholinergic starburst ACs and virtually all NPY-positive GABAergic ACs were also Rbfox1-positive. Among glycinergic ACs, a sparse population of Rbfox1/VGlut3-positive cells was identified, indicating that Rbfox1 is expressed in a very small population of glycinergic ACs. These data contributes to our understanding about molecular differences between various types of amacrine cells and the cell-specific gene networks regulated by Rbfox1.
Collapse
|
8
|
Chen X, Wu J, Li Z, Han J, Xia P, Shen Y, Ma J, Liu X, Zhang J, Yu P. Advances in The Study of RNA-binding Proteins in Diabetic Complications. Mol Metab 2022; 62:101515. [PMID: 35597446 PMCID: PMC9168169 DOI: 10.1016/j.molmet.2022.101515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Background It has been reported that diabetes mellitus affects 435 million people globally as a primary health care problem. Despite many therapies available, many diabetes remains uncontrolled, giving rise to irreversible diabetic complications that pose significant risks to patients’ wellbeing and survival. Scope of Review In recent years, as much effort is put into elucidating the posttranscriptional gene regulation network of diabetes and diabetic complications; RNA binding proteins (RBPs) are found to be vital. RBPs regulate gene expression through various post-transcriptional mechanisms, including alternative splicing, RNA export, messenger RNA translation, RNA degradation, and RNA stabilization. Major Conclusions Here, we summarized recent studies on the roles and mechanisms of RBPs in mediating abnormal gene expression in diabetes and its complications. Moreover, we discussed the potential and theoretical basis of RBPs to treat diabetes and its complications. • Mechanisms of action of RBPs involved in diabetic complications are summarized and elucidated. • We discuss the theoretical basis and potential of RBPs for the treatment of diabetes and its complications. • We summarize the possible effective drugs for diabetes based on RBPs promoting the development of future therapeutic drugs.
Collapse
Affiliation(s)
- Xinyue Chen
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiashu Han
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, USA
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
9
|
Navakkode S, Zhai J, Wong YP, Li G, Soong TW. Enhanced long-term potentiation and impaired learning in mice lacking alternative exon 33 of Ca V1.2 calcium channel. Transl Psychiatry 2022; 12:1. [PMID: 35013113 PMCID: PMC8748671 DOI: 10.1038/s41398-021-01683-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
The CACNA1C (calcium voltage-gated channel subunit alpha 1 C) gene that encodes the CaV1.2 channel is a prominent risk gene for neuropsychiatric and neurodegenerative disorders with cognitive and social impairments like schizophrenia, bipolar disorders, depression and autistic spectrum disorders (ASD). We have shown previously that mice with exon 33 deleted from CaV1.2 channel (CaV1.2-exon 33-/-) displayed increased CaV1.2 current density and single channel open probability in cardiomyocytes, and were prone to develop arrhythmia. As Ca2+ entry through CaV1.2 channels activates gene transcription in response to synaptic activity, we were intrigued to explore the possible role of Cav1.2Δ33 channels in synaptic plasticity and behaviour. Homozygous deletion of alternative exon 33 resulted in enhanced long-term potentiation (LTP), and lack of long- term depression (LTD), which did not correlate with enhanced learning. Exon 33 deletion also led to a decrease in social dominance, sociability and social novelty. Our findings shed light on the effect of gain-of-function of CaV1.2Δ33 signalling on synaptic plasticity and behaviour and provides evidence for a link between CaV1.2 and distinct cognitive and social behaviours associated with phenotypic features of psychiatric disorders like schizophrenia, bipolar disorder and ASD.
Collapse
Affiliation(s)
- Sheeja Navakkode
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, Singapore ,grid.59025.3b0000 0001 2224 0361Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jing Zhai
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Yuk Peng Wong
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Guang Li
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, Singapore ,grid.410578.f0000 0001 1114 4286Present Address: Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan China
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore, Singapore. .,Healthy Longevity Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Jiang Y, Fu X, Zhang Y, Wang SF, Zhu H, Wang WK, Zhang L, Wu P, Wong CCL, Li J, Ma J, Guan JS, Huang Y, Hui J. Rett syndrome linked to defects in forming the MeCP2/Rbfox/LASR complex in mouse models. Nat Commun 2021; 12:5767. [PMID: 34599184 PMCID: PMC8486766 DOI: 10.1038/s41467-021-26084-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurological disorder and a leading cause of intellectual disability in young females. RTT is mainly caused by mutations found in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). Despite extensive studies, the molecular mechanism underlying RTT pathogenesis is still poorly understood. Here, we report MeCP2 as a key subunit of a higher-order multiunit protein complex Rbfox/LASR. Defective MeCP2 in RTT mouse models disrupts the assembly of the MeCP2/Rbfox/LASR complex, leading to reduced binding of Rbfox proteins to target pre-mRNAs and aberrant splicing of Nrxns and Nlgn1 critical for synaptic plasticity. We further show that MeCP2 disease mutants display defective condensate properties and fail to promote phase-separated condensates with Rbfox proteins in vitro and in cultured cells. These data link an impaired function of MeCP2 with disease mutation in splicing control to its defective properties in mediating the higher-order assembly of the MeCP2/Rbfox/LASR complex. MeCP2 mutations can cause Rett syndrome, a severe childhood neurological disorder. Here the authors show that MeCP2 mediates the higher-order assembly of a large splicing complex Rbfox/LASR, which is disrupted in the mouse models of Rett syndrome.
Collapse
Affiliation(s)
- Yan Jiang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xing Fu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, 201602, Shanghai, China
| | - Yuhan Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China.,Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Shen-Fei Wang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Hong Zhu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Wei-Kang Wang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Lin Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Catherine C L Wong
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China.,Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Ji-Song Guan
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, 200092, Shanghai, China.
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
11
|
Kos MZ, Carless MA, Blondell L, Leland MM, Knape KD, Göring HHH, Szabó CÁ. Whole Genome Sequence Data From Captive Baboons Implicate RBFOX1 in Epileptic Seizure Risk. Front Genet 2021; 12:714282. [PMID: 34490042 PMCID: PMC8417722 DOI: 10.3389/fgene.2021.714282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
In this study, we investigate the genetic determinants that underlie epilepsy in a captive baboon pedigree and evaluate the potential suitability of this non-human primate model for understanding the genetic etiology of human epilepsy. Archived whole-genome sequence data were analyzed using both a candidate gene approach that targeted variants in baboon homologs of 19 genes (n = 20,881 SNPs) previously implicated in genetic generalized epilepsy (GGE) and a more agnostic approach that examined protein-altering mutations genome-wide as assessed by snpEff (n = 36,169). Measured genotype association tests for baboon cases of epileptic seizure were performed using SOLAR, as well as gene set enrichment analyses (GSEA) and protein-protein interaction (PPI) network construction of top association hits genome-wide (p < 0.01; n = 441 genes). The maximum likelihood estimate of heritability for epileptic seizure in the pedigreed baboon sample is 0.76 (SE = 0.77; p = 0.07). Among candidate genes for GGE, a significant association was detected for an intronic SNP in RBFOX1 (p = 5.92 × 10-6; adjusted p = 0.016). For protein-altering variants, no genome-wide significant results were observed for epilepsy status. However, GSEA revealed significant positive enrichment for genes involved in the extracellular matrix structure (ECM; FDR = 0.0072) and collagen formation (FDR = 0.017), which was reflected in a major PPI network cluster. This preliminary study highlights the potential role of RBFOX1 in the epileptic baboon, a protein involved in transcriptomic regulation of multiple epilepsy candidate genes in humans and itself previously implicated in human epilepsy, both focal and generalized. Moreover, protein-damaging variants from across the genome exhibit a pattern of association that links collagen-containing ECM to epilepsy risk. These findings suggest a shared genetic etiology between baboon and human forms of GGE and lay the foundation for follow-up research.
Collapse
Affiliation(s)
- Mark Z. Kos
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, United States
| | - Melanie A. Carless
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Lucy Blondell
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, United States
| | - M. Michelle Leland
- Laboratory Animal Research, UT Health San Antonio, San Antonio, TX, United States
| | - Koyle D. Knape
- Department of Neurology, UT Health San Antonio, San Antonio, TX, United States
| | - Harald H. H. Göring
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, United States
| | - Charles Ákos Szabó
- Department of Neurology, UT Health San Antonio, San Antonio, TX, United States
- South Texas Comprehensive Epilepsy Center, San Antonio, TX, United States
| |
Collapse
|
12
|
Abstract
Autism is a common and complex neurologic disorder whose scientific underpinnings have begun to be established in the past decade. The essence of this breakthrough has been a focus on families, where genetic analyses are strongest, versus large-scale, case-control studies. Autism genetics has progressed in parallel with technology, from analyses of copy number variation to whole-exome sequencing (WES) and whole-genome sequencing (WGS). Gene mutations causing complete loss of function account for perhaps one-third of cases, largely detected through WES. This limitation has increased interest in understanding the regulatory variants of genes that contribute in more subtle ways to the disorder. Strategies combining biochemical analysis of gene regulation, WGS analysis of the noncoding genome, and machine learning have begun to succeed. The emerging picture is that careful control of the amounts of transcription, mRNA, and proteins made by key brain genes-stoichiometry-plays a critical role in defining the clinical features of autism.
Collapse
Affiliation(s)
- Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA;
| |
Collapse
|
13
|
Gu L, Kwong JM, Caprioli J, Piri N. Loss of Rbfox1 Does Not Affect Survival of Retinal Ganglion Cells Injured by Optic Nerve Crush. Front Neurosci 2021; 15:687690. [PMID: 34108862 PMCID: PMC8180555 DOI: 10.3389/fnins.2021.687690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Rbfox1 is a multifunctional RNA binding protein that regulates alternative splicing, transcription, mRNA stability and translation. Its roles in neurogenesis and neuronal functions are well established. Recent studies also implicate Rbfox1 in the regulation of gene networks that support cell survival during stress. We have earlier characterized the expression of Rbfox1 in amacrine and retinal ganglion cells (RGCs) and showed that deletion of Rbfox1 in adult animals results in depth perception deficiency. The current study investigates the effect of Rbfox1 downregulation on survival of RGCs injured by optic nerve crush (ONC). Seven days after ONC, animals sustained severe degeneration of RGC axons in the optic nerve and significant loss of RGC somas. Semi-quantitative grading of optic nerve damage in control + ONC, control + tamoxifen + ONC, and Rbfox1 -/- + ONC groups ranged from 4.6 to 4.8 on a scale of 1 (normal; no degenerated axons were noted) to 5 (total degeneration; all axons showed degenerated organelles, axonal content, and myelin sheath), indicating a severe degeneration. Among these three ONC groups, no statistical significance was observed when any two groups were compared. The number of RGC somas were quantitatively analyzed in superior, inferior, nasal and temporal retinal quadrants at 0.5, 1, and 1.5 mm from the center of the optic disc. The average RGC densities (cells/mm2) were: control 6,438 ± 1,203; control + ONC 2,779 ± 573; control + tamoxifen 6,163 ± 861; control + tamoxifen + ONC 2,573 ± 555; Rbfox1 -/- 6,437 ± 893; and Rbfox1 -/- + ONC 2,537 ± 526. The RGC loss in control + ONC, control + tamoxifen + ONC and Rbfox1 -/- + ONC was 57% (P = 1.44954E-42), 58% (P = 1.37543E-57) and 61% (P = 5.552E-59) compared to RGC numbers in the relevant uninjured groups, respectively. No statistically significant difference was observed between any two groups of uninjured animals or between any two ONC groups. Our data indicate that Rbfox1-mediated pathways have no effect on survival of RGCs injured by ONC.
Collapse
Affiliation(s)
- Lei Gu
- Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jacky M Kwong
- Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph Caprioli
- Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Natik Piri
- Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Pozzi E, Giorgio E, Mancini C, Lo Buono N, Augeri S, Ferrero M, Di Gregorio E, Riberi E, Vinciguerra M, Nanetti L, Bianchi FT, Sassi MP, Costanzo V, Mariotti C, Funaro A, Cavalieri S, Brusco A. In vitro dexamethasone treatment does not induce alternative ATM transcripts in cells from Ataxia-Telangiectasia patients. Sci Rep 2020; 10:20182. [PMID: 33214630 PMCID: PMC7677391 DOI: 10.1038/s41598-020-77352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
Short term treatment with low doses of glucocorticoid analogues has been shown to ameliorate neurological symptoms in Ataxia-Telangiectasia (A-T), a rare autosomal recessive multisystem disease that mainly affects the cerebellum, immune system, and lungs. Molecular mechanisms underlying this clinical observation are unclear. We aimed at evaluating the effect of dexamethasone on the induction of alternative ATM transcripts (ATMdexa1). We showed that dexamethasone cannot induce an alternative ATM transcript in control and A-T lymphoblasts and primary fibroblasts, or in an ATM-knockout HeLa cell line. We also demonstrated that some of the reported readouts associated with ATMdexa1 are due to cellular artifacts and the direct induction of γH2AX by dexamethasone via DNA-PK. Finally, we suggest caution in interpreting dexamethasone effects in vitro for the results to be translated into a rational use of the drug in A-T patients.
Collapse
Affiliation(s)
- Elisa Pozzi
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Nicola Lo Buono
- Laboratory of Immune-Mediated Diseases, San Raffaele Diabetes Research Institute (DRI), 20132, Milan, Italy
| | - Stefania Augeri
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Marta Ferrero
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Eleonora Di Gregorio
- Unit of Medical Genetics, "Città Della Salute E Della Scienza" University Hospital, 10126, Turin, Italy
| | - Evelise Riberi
- Department of Public Health and Pediatrics, University of Torino, 10126, Turin, Italy
| | - Maria Vinciguerra
- DNA Metabolism Laboratory, FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy
| | - Lorenzo Nanetti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133, Milan, Italy
| | - Federico Tommaso Bianchi
- Department of Molecular Biotechnologies and Health Sciences, Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, TO, Italy
| | - Maria Paola Sassi
- Istituto Nazionale di RIcerca Metrologica INRIM, 10135, Turin, Italy
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy
| | - Caterina Mariotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133, Milan, Italy
| | - Ada Funaro
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Simona Cavalieri
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, via Santena 19, 10126, Turin, Italy.
- Unit of Medical Genetics, "Città Della Salute E Della Scienza" University Hospital, 10126, Turin, Italy.
| |
Collapse
|
15
|
The effect of Rbfox2 modulation on retinal transcriptome and visual function. Sci Rep 2020; 10:19683. [PMID: 33184471 PMCID: PMC7665016 DOI: 10.1038/s41598-020-76879-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 01/07/2023] Open
Abstract
Rbfox proteins regulate alternative splicing, mRNA stability and translation. These proteins are involved in neurogenesis and have been associated with various neurological conditions. Here, we analyzed Rbfox2 expression in adult and developing mouse retinas and the effect of its downregulation on visual function and retinal transcriptome. In adult rodents, Rbfox2 is expressed in all retinal ganglion cell (RGC) subtypes, horizontal cells, as well as GABAergic amacrine cells (ACs). Among GABAergic AC subtypes, Rbfox2 was colocalized with cholinergic starburst ACs, NPY (neuropeptide Y)- and EBF1 (early B-cell factor 1)-positive ACs. In differentiating retinal cells, Rbfox2 expression was observed as early as E12 and, unlike Rbfox1, which changes its subcellular localization from cytoplasmic to predominantly nuclear at around P0, Rbfox2 remains nuclear throughout retinal development. Rbfox2 knockout in adult animals had no detectable effect on retinal gross morphology. However, the visual cliff test revealed a significant abnormality in the depth perception of Rbfox2-deficient animals. Gene set enrichment analysis identified genes regulating the RNA metabolic process as a top enriched class of genes in Rbfox2-deficient retinas. Pathway analysis of the top 100 differentially expressed genes has identified Rbfox2-regulated genes associated with circadian rhythm and entrainment, glutamatergic/cholinergic/dopaminergic synaptic function, calcium and PI3K-AKT signaling.
Collapse
|
16
|
Abstract
RNA-binding proteins are a critical group of multifunctional proteins that precisely regulate all aspects of gene expression, from alternative splicing to mRNA trafficking, stability, and translation. Converging evidence highlights aberrant RNA metabolism as a common pathogenic mechanism in several neurodevelopmental and neurodegenerative diseases. However, dysregulation of disease-linked RNA-binding proteins results in widespread, often tissue-specific and/or pleiotropic effects on the transcriptome, making it challenging to determine the underlying cellular and molecular mechanisms that contribute to disease pathogenesis. Understanding how splicing misregulation as well as alterations of mRNA stability and localization impact the activity and function of neuronal proteins is fundamental to addressing neurodevelopmental defects and synaptic dysfunction in disease. Here we highlight recent exciting studies that use high-throughput transcriptomic analysis and advanced genetic, cell biological, and imaging approaches to dissect the role of disease-linked RNA-binding proteins on different RNA processing steps. We focus specifically on efforts to elucidate the functional consequences of aberrant RNA processing on neuronal morphology, synaptic activity and plasticity in development and disease. We also consider new areas of investigation that will elucidate the molecular mechanisms RNA-binding proteins use to achieve spatiotemporal control of gene expression for neuronal homeostasis and plasticity.
Collapse
Affiliation(s)
- Shavanie Prashad
- Department of Pathology, Yale University School of Medicine, Yale University, New Haven, CT, USA.,Experimental Pathology Graduate Group, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Pallavi P Gopal
- Department of Pathology, Yale University School of Medicine, Yale University, New Haven, CT, USA.,Experimental Pathology Graduate Group, Yale University School of Medicine, Yale University, New Haven, CT, USA.,Yale Center for RNA Science and Medicine, Yale University School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
17
|
Begg BE, Jens M, Wang PY, Minor CM, Burge CB. Concentration-dependent splicing is enabled by Rbfox motifs of intermediate affinity. Nat Struct Mol Biol 2020; 27:901-912. [PMID: 32807990 PMCID: PMC7554199 DOI: 10.1038/s41594-020-0475-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
The Rbfox family of splicing factors regulate alternative splicing during animal development and in disease, impacting thousands of exons in the maturing brain, heart, and muscle. Rbfox proteins have long been known to bind to the RNA sequence GCAUG with high affinity, but just half of Rbfox binding sites contain a GCAUG motif in vivo. We incubated recombinant RBFOX2 with over 60,000 mouse and human transcriptomic sequences to reveal substantial binding to several moderate-affinity, non-GCAYG sites at a physiologically relevant range of RBFOX concentrations. We find that many of these “secondary motifs” bind Rbfox robustly in cells and that several together can exert regulation comparable to GCAUG in a trichromatic splicing reporter assay. Furthermore, secondary motifs regulate RNA splicing in neuronal development and in neuronal subtypes where cellular Rbfox concentrations are highest, enabling a second wave of splicing changes as Rbfox levels increase.
Collapse
Affiliation(s)
- Bridget E Begg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marvin Jens
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Y Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christine M Minor
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
18
|
Modeling Neurodevelopmental Deficits in Tuberous Sclerosis Complex with Stem Cell Derived Neural Precursors and Neurons. ADVANCES IN NEUROBIOLOGY 2020. [PMID: 32578142 DOI: 10.1007/978-3-030-45493-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder that is caused by mutations in TSC1 or TSC2. TSC is a multi-organ disorder characterized by development of non-malignant cellular overgrowths, called hamartomas, in different organs of the body. TSC is also characterized as a neurodevelopmental disorder presenting with epilepsy and autism, and formation of cortical malformations ("tubers"), subependymal giant cell astrocytomas (SEGAs), and subependymal nodules (SENs) in the patient's brain. In this chapter, we are going to give an overview of neural stem cell and neuronal development in TSC. In addition, we will also describe previously developed animal models of TSC that display seizures, autistic-like behaviors, and neuronal cell abnormalities in vivo, and we will compare them to disease phenotypes detected with human stem cell derived neuronal cells in vitro. We will describe the effects of TSC-mutations in different neural cell subtypes, and discuss the mitochondrial function, autophagy, and synaptic development and functional deficits in the neurons. Finally, we will review utilization of these human TSC-patient derived neuronal models for drug screening to develop new treatment options for the neurological phenotypes seen in TSC patients.
Collapse
|
19
|
Casanovas S, Schlichtholz L, Mühlbauer S, Dewi S, Schüle M, Strand D, Strand S, Zografidou L, Winter J. Rbfox1 Is Expressed in the Mouse Brain in the Form of Multiple Transcript Variants and Contains Functional E Boxes in Its Alternative Promoters. Front Mol Neurosci 2020; 13:66. [PMID: 32431595 PMCID: PMC7214753 DOI: 10.3389/fnmol.2020.00066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/06/2020] [Indexed: 01/25/2023] Open
Abstract
The RNA-binding protein RBFOX1 is an important regulator of neuron development and neuronal excitability. Rbfox1 is a dosage-sensitive gene and in both mice and humans, decreased expression of Rbfox1 has been linked to neurodevelopmental disorders. Alternative promoters drive expression of Rbfox1 transcript isoforms that encode an identical protein. The tissue- and developmental stage-specific expression of these isoforms, as well as the underlying regulatory mechanisms, are, however, unclear. Here, we set out to capture all of the Rbfox1 transcript isoforms and identify transcriptional mechanisms that regulate brain-specific Rbfox1 expression. Isoform sequencing identified multiple alternative Rbfox1 transcript variants in the mouse cerebral cortex, including transcripts with novel first exons, alternatively spliced exons and 3′-truncations. Quantitative RT-PCR determined the expression of the alternative first exons in the developing cerebral cortex and different subregions of the juvenile brain. Alternative first exons were found to be highly stage- and subregion specific in their expression patterns suggesting that they fulfill specific functions during cortex development and in different brain regions. Using reporter assays we found that the promoter regions of the two first exons E1B and E1C/E1C.1 contain several functional E-boxes. Together, we provide an extensive picture of Rbfox1 isoform expression. We further identified important regulatory mechanisms that drive neuron-specific Rbfox1 expression. Thus, our study forms the basis for further research into the mechanisms that ensure physiological Rbfox1 expression in the brain. It also helps to understand why, in patients with neurodevelopmental disorders deletion of individual RBFOX1 transcript isoforms could affect brain function.
Collapse
Affiliation(s)
- Sonia Casanovas
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany.,Focus Program of Translational Neurosciences, University Medical Center Mainz, Mainz, Germany
| | - Laura Schlichtholz
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany.,Focus Program of Translational Neurosciences, University Medical Center Mainz, Mainz, Germany
| | - Sophia Mühlbauer
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Sri Dewi
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Martin Schüle
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Dennis Strand
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - Susanne Strand
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - Lea Zografidou
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany.,Focus Program of Translational Neurosciences, University Medical Center Mainz, Mainz, Germany.,German Resilience Centre, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
20
|
Mattioli F, Hayot G, Drouot N, Isidor B, Courraud J, Hinckelmann MV, Mau-Them FT, Sellier C, Goldman A, Telegrafi A, Boughton A, Gamble C, Moutton S, Quartier A, Jean N, Van Ness P, Grotto S, Nambot S, Douglas G, Si YC, Chelly J, Shad Z, Kaplan E, Dineen R, Golzio C, Charlet-Berguerand N, Mandel JL, Piton A. De Novo Frameshift Variants in the Neuronal Splicing Factor NOVA2 Result in a Common C-Terminal Extension and Cause a Severe Form of Neurodevelopmental Disorder. Am J Hum Genet 2020; 106:438-452. [PMID: 32197073 DOI: 10.1016/j.ajhg.2020.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
The neuro-oncological ventral antigen 2 (NOVA2) protein is a major factor regulating neuron-specific alternative splicing (AS), previously associated with an acquired neurologic condition, the paraneoplastic opsoclonus-myoclonus ataxia (POMA). We report here six individuals with de novo frameshift variants in NOVA2 affected with a severe neurodevelopmental disorder characterized by intellectual disability (ID), motor and speech delay, autistic features, hypotonia, feeding difficulties, spasticity or ataxic gait, and abnormal brain MRI. The six variants lead to the same reading frame, adding a common proline rich C-terminal part instead of the last KH RNA binding domain. We detected 41 genes differentially spliced after NOVA2 downregulation in human neural cells. The NOVA2 variant protein shows decreased ability to bind target RNA sequences and to regulate target AS events. It also fails to complement the effect on neurite outgrowth induced by NOVA2 downregulation in vitro and to rescue alterations of retinotectal axonal pathfinding induced by loss of NOVA2 ortholog in zebrafish. Our results suggest a partial loss-of-function mechanism rather than a full heterozygous loss-of-function, although a specific contribution of the novel C-terminal extension cannot be excluded.
Collapse
Affiliation(s)
- Francesca Mattioli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France
| | - Gaelle Hayot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes 44093, France
| | - Jérémie Courraud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France
| | - Maria-Victoria Hinckelmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France
| | - Frederic Tran Mau-Them
- Laboratoire de Génétique Moléculaire, UF Innovation en diagnostic génomique des maladies rares, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon 21070, France; INSERM U1231, LNC UMR1231 GAD, Burgundy University, Dijon 21070, France
| | - Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France
| | - Alica Goldman
- Department of Neurology, Neurophysiology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | - Sebastien Moutton
- INSERM U1231, LNC UMR1231 GAD, Burgundy University, Dijon 21070, France; Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs," Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon 21070, France
| | - Angélique Quartier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France
| | - Nolwenn Jean
- INSERM U1231, LNC UMR1231 GAD, Burgundy University, Dijon 21070, France; Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs," Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon 21070, France
| | - Paul Van Ness
- Department of Neurology, Neurophysiology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah Grotto
- Service de Génétique Médicale, AP-HP Robert-Debré, Paris 75019, France
| | - Sophie Nambot
- INSERM U1231, LNC UMR1231 GAD, Burgundy University, Dijon 21070, France; Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs," Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon 21070, France
| | | | | | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France; Laboratory of Genetic Diagnostic, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
| | - Zohra Shad
- Department of Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | - Elisabeth Kaplan
- Department of Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | - Richard Dineen
- Department of Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | - Christelle Golzio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France; University of Strasbourg Institute of Advanced Studies, Strasbourg 67000, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France; Laboratory of Genetic Diagnostic, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France.
| |
Collapse
|
21
|
Vaht M, Laas K, Fernàndez-Castillo N, Kurrikoff T, Kanarik M, Faraone SV, Tooding LM, Veidebaum T, Franke B, Reif A, Cormand B, Harro J. Variants of the Aggression-Related RBFOX1 Gene in a Population Representative Birth Cohort Study: Aggressiveness, Personality, and Alcohol Use Disorder. Front Psychiatry 2020; 11:501847. [PMID: 33329073 PMCID: PMC7732512 DOI: 10.3389/fpsyt.2020.501847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Recently, RBFOX1, a gene encoding an RNA binding protein, has consistently been associated with aggressive and antisocial behavior. Several loci in the gene have been nominally associated with aggression in genome-wide association studies, the risk alleles being more frequent in the general population. We have hence examined the association of four RBFOX1 single nucleotide polymorphisms, previously found related to aggressive traits, with aggressiveness, personality, and alcohol use disorder in birth cohort representative samples. Methods: We used both birth cohorts of the Estonian Children Personality Behavior and Health Study (ECPBHS; original n = 1,238). Aggressiveness was assessed using the Buss-Perry Aggression Questionnaire and the Lifetime History of Aggressiveness structured interview at age 25 (younger cohort) or 33 (older cohort). Big Five personality at age 25 was measured with self-reports and the lifetime occurrence of alcohol use disorder assessed with the MINI interview. RBFOX1 polymorphisms rs809682, rs8062784, rs12921846, and rs6500744 were genotyped in all participants. Given the restricted size of the sample, correction for multiple comparisons was not applied. Results: Aggressiveness was not significantly associated with the RBFOX1 genotype. RBFOX1 rs8062784 was associated with neuroticism and rs809682 with extraversion. Two out of four analyzed RBFOX1 variants, rs8062784 and rs12921846, were associated with the occurrence of alcohol use disorder. Conclusions: In the birth cohort representative sample of the ECPBHS, no association of RBFOX1 with aggressiveness was found, but RBFOX1 variants affected basic personality traits and the prevalence of alcohol use disorder. Future studies on RBFOX1 should consider the moderating role of personality and alcohol use patterns in aggressiveness.
Collapse
Affiliation(s)
- Mariliis Vaht
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Center of Behavioral and Health Sciences, University of Tartu, Tartu, Estonia
| | - Kariina Laas
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Center of Behavioral and Health Sciences, University of Tartu, Tartu, Estonia
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Spain
| | - Triin Kurrikoff
- Institute of Social Studies, University of Tartu, Tartu, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Center of Behavioral and Health Sciences, University of Tartu, Tartu, Estonia
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, The State University of New York Upstate Medical University, Syracuse, NY, United States
| | | | - Toomas Veidebaum
- National Institute for Health Development, Estonian Center of Behavioral and Health Sciences, Tallinn, Estonia
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt Goethe University, Frankfurt am Main, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Spain
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Center of Behavioral and Health Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
22
|
Chaves TF, Baretto N, Oliveira LFD, Ocampos M, Barbato IT, Anselmi M, De Luca GR, Barbato Filho JH, Pinto LLDC, Bernardi P, Maris AF. Copy Number Variations in a Cohort of 420 Individuals with Neurodevelopmental Disorders From the South of Brazil. Sci Rep 2019; 9:17776. [PMID: 31780800 PMCID: PMC6882836 DOI: 10.1038/s41598-019-54347-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/13/2019] [Indexed: 01/04/2023] Open
Abstract
Chromosomal microarray (CMA) is now recommended as first tier for the evaluation in individuals with unexplained neurodevelopmental disorders (ND). However, in developing countries such as Brazil, classical cytogenetic tests are still the most used in clinical practice, as reflected by the scarcity of publications of microarray investigation in larger cohorts. This is a retrospective study which analyses the reading files of CMA and available clinical data from 420 patients from the south of Brazil, mostly children, with neurodevelopmental disorders requested by medical geneticists and neurologists for diagnostic purpose. Previous karyotyping was reported for 138 and includes 17 with abnormal results. The platforms used for CMA were CYTOSCAN 750K (75%) and CYTOSCAN HD (25%). The sex ratio of the patients was 1.625 males :1 female and the mean age was 9.5 years. A total of 96 pathogenic copy number variations (CNVs), 58 deletions and 38 duplications, were found in 18% of the patients and in all chromosomes, except chromosome 11. For 12% of the patients only variants of uncertain clinical significance were found. No clinically relevant CNV was found in 70%. The main referrals for chromosomal microarrays (CMA) were developmental delay (DD), intellectual disability (ID), facial dysmorphism and autism spectrum disorder (ASD). DD/ID were present in 80%, facial dysmorphism in 52% and ASD in 32%. Some phenotypes in this population could be predictive of a higher probability to carry a pathogenic CNV, as follows: dysmorphic facial features (p-value = < 0.0001, OR = 0.32), obesity (p-value = 0.006, OR = 0.20), short stature (p-value = 0.032, OR = 0.44), genitourinary anomalies (p-value = 0.032, OR = 0.63) and ASD (p-value = 0.039, OR = 1.94). The diagnostic rate for CMA in this study was 18%. We present the largest report of CMA data in a cohort with ND in Brazil. We characterize the rare CNVs found together with the main phenotypes presented by each patient, list phenotypes which could predict a higher diagnostic probability by CMA in patients with a neurodevelopmental disorder and show how CMA and classical karyotyping results are complementary.
Collapse
Affiliation(s)
| | - Nathacha Baretto
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | - Mayara Anselmi
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | - Pricila Bernardi
- University Hospital Professor Polydoro Ernani de São Thiago, Florianópolis, SC, Brazil
| | | |
Collapse
|
23
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
24
|
Rbfox1 Regulates Synaptic Transmission through the Inhibitory Neuron-Specific vSNARE Vamp1. Neuron 2019; 98:127-141.e7. [PMID: 29621484 DOI: 10.1016/j.neuron.2018.03.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 01/08/2018] [Accepted: 03/05/2018] [Indexed: 12/19/2022]
Abstract
Dysfunction of the neuronal RNA binding protein RBFOX1 has been linked to epilepsy and autism spectrum disorders. Rbfox1 loss in mice leads to neuronal hyper-excitability and seizures, but the physiological basis for this is unknown. We identify the vSNARE protein Vamp1 as a major Rbfox1 target. Vamp1 is strongly downregulated in Rbfox1 Nes-cKO mice due to loss of 3' UTR binding by RBFOX1. Cytoplasmic Rbfox1 stimulates Vamp1 expression in part by blocking microRNA-9. We find that Vamp1 is specifically expressed in inhibitory neurons, and that both Vamp1 knockdown and Rbfox1 loss lead to decreased inhibitory synaptic transmission and E/I imbalance. Re-expression of Vamp1 selectively within interneurons rescues the electrophysiological changes in the Rbfox1 cKO, indicating that Vamp1 loss is a major contributor to the Rbfox1 Nes-cKO phenotype. The regulation of interneuron-specific Vamp1 by Rbfox1 provides a paradigm for broadly expressed RNA-binding proteins performing specialized functions in defined neuronal subtypes.
Collapse
|
25
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
26
|
Wamsley B, Jaglin XH, Favuzzi E, Quattrocolo G, Nigro MJ, Yusuf N, Khodadadi-Jamayran A, Rudy B, Fishell G. Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons. Neuron 2018; 100:846-859.e7. [PMID: 30318414 PMCID: PMC6541232 DOI: 10.1016/j.neuron.2018.09.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/03/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
Cortical interneurons display a remarkable diversity in their morphology, physiological properties, and connectivity. Elucidating the molecular determinants underlying this heterogeneity is essential for understanding interneuron development and function. We discovered that alternative splicing differentially regulates the integration of somatostatin- and parvalbumin-expressing interneurons into nascent cortical circuits through the cell-type-specific tailoring of mRNAs. Specifically, we identified a role for the activity-dependent splicing regulator Rbfox1 in the development of cortical interneuron-subtype-specific efferent connectivity. Our work demonstrates that Rbfox1 mediates largely non-overlapping alternative splicing programs within two distinct but related classes of interneurons.
Collapse
Affiliation(s)
- Brie Wamsley
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Xavier Hubert Jaglin
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Emilia Favuzzi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Stanley Center at the Broad, 75 Ames Street, Cambridge, MA 02142, USA
| | - Giulia Quattrocolo
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Maximiliano José Nigro
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Nusrath Yusuf
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Stanley Center at the Broad, 75 Ames Street, Cambridge, MA 02142, USA
| | - Alireza Khodadadi-Jamayran
- Genome Technology Center, Applied Bioinformatics Laboratories, NYU Langone Medical Center, 550 First Avenue, MSB 304, New York, NY 10016, USA
| | - Bernardo Rudy
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Gord Fishell
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Stanley Center at the Broad, 75 Ames Street, Cambridge, MA 02142, USA.
| |
Collapse
|
27
|
Kong LL, Miao D, Tan L, Liu SL, Li JQ, Cao XP, Tan L. Genome-wide association study identifies RBFOX1 locus influencing brain glucose metabolism. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:436. [PMID: 30596066 PMCID: PMC6281526 DOI: 10.21037/atm.2018.07.05] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/21/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fluorodeoxyglucose f18 positron emission tomography (18F-FDG PET) is regarded as the only functional neuroimaging biomarker for degeneration which can be used to increase the certainty of Alzheimer's disease (AD) pathophysiological process in research settings or as an optional clinical tool where available. Although a decline in FDG metabolism was confirmed in some regions known to be associated with AD, there was little known about the genetic association of FDG metabolism in AD cohorts. In this study, we present the first genome-wide association study (GWAS) analysis of brain FDG metabolism. METHODS A total of 222 individuals were included from the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) cohort. All subjects were restricted to non-Hispanic Caucasians and met all quality control (QC) criteria. Associations of 18F-FDG with the genetic variants were assessed using PLINK 1.07 under the additive genetic model. Genome-wide associations were visualized using a software program R 3.2.3. RESULTS One significant SNP rs12444565 in RNA-binding Fox1 (RBFOX1) was found to have a strong association with 18F-FDG (P=6.06×10-8). Rs235141, rs79037, rs12526331 and rs12529764 were identified as four suggestive loci associated with 18F-FDG. CONCLUSIONS Our study results suggest that a genome-wide significant SNP (rs12444565) in the RBFOX1, and four suggestive loci (rs235141, rs79037, rs12526331 and rs12529764) are associated with 18F-FDG.
Collapse
Affiliation(s)
- Ling-Li Kong
- Department of Geriatric Psychiatry, Qingdao Mental Health Center, Qingdao University, Qingdao 266071, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Dan Miao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Shu-Lei Liu
- Department of Neurology, Qingdao Center Hospital, Qingdao 266000, China
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Alzheimer’s Disease Neuroimaging Initiative*
- Department of Geriatric Psychiatry, Qingdao Mental Health Center, Qingdao University, Qingdao 266071, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
- Department of Neurology, Qingdao Center Hospital, Qingdao 266000, China
| |
Collapse
|
28
|
Benign epilepsy with centrotemporal spikes - Current concepts of diagnosis and treatment. Neurol Neurochir Pol 2018; 52:677-689. [PMID: 30219586 DOI: 10.1016/j.pjnns.2018.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 11/21/2022]
Abstract
Benign epilepsy with centrotemporal spikes (BECTS) is the most common focal epilepsy of the childhood and also one of the best known. It has a proclivity to start at a particular age and remit spontaneously before adolescence. Majority of patients may avoid long-term treatment, because of the mild course and very good outcome. Only few patients may present cognitive deficits if the proper treatment is not implied. BECTS is a part of heterogeneous group of syndromes that consists of Landau-Kleffner Syndrome (LKS), Continuous Spike-and-Wave during Sleep (CSWS) and Atypical benign partial epilepsy (ABPE). These syndromes may be also a result of various trajectories that BECTS may evolve to. Disease is suggested to have genetic origins, as some patients have relatives with different types of epilepsy. The discovery of the pathogenic mechanism of the disease and implementation of targeted therapy belong to the main challenges in the treatment of these patients.
Collapse
|
29
|
Nazario-Toole AE, Robalino J, Okrah K, Corrada-Bravo H, Mount SM, Wu LP. The Splicing Factor RNA-Binding Fox Protein 1 Mediates the Cellular Immune Response in Drosophila melanogaster. THE JOURNAL OF IMMUNOLOGY 2018; 201:1154-1164. [PMID: 29997126 DOI: 10.4049/jimmunol.1800496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022]
Abstract
The uptake and destruction of bacteria by phagocytic cells is an essential defense mechanism in metazoans. To identify novel genes involved in the phagocytosis of Staphylococcus aureus, a major human pathogen, we assessed the phagocytic capacity of adult blood cells (hemocytes) of the fruit fly, Drosophila melanogaster, by testing several lines of the Drosophila Genetic Reference Panel. Natural genetic variation in the gene RNA-binding Fox protein 1 (Rbfox1) correlated with low phagocytic capacity in hemocytes, pointing to Rbfox1 as a candidate regulator of phagocytosis. Loss of Rbfox1 resulted in increased expression of the Ig superfamily member Down syndrome adhesion molecule 4 (Dscam4). Silencing of Dscam4 in Rbfox1-depleted blood cells rescued the fly's cellular immune response to S. aureus, indicating that downregulation of Dscam4 by Rbfox1 is critical for S. aureus phagocytosis in Drosophila To our knowledge, this study is the first to demonstrate a link between Rbfox1, Dscam4, and host defense against S. aureus.
Collapse
Affiliation(s)
- Ashley E Nazario-Toole
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742; and
| | - Javier Robalino
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Kwame Okrah
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Hector Corrada-Bravo
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Louisa P Wu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; .,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742; and
| |
Collapse
|
30
|
Gu L, Bok D, Yu F, Caprioli J, Piri N. Downregulation of splicing regulator RBFOX1 compromises visual depth perception. PLoS One 2018; 13:e0200417. [PMID: 30001398 PMCID: PMC6042722 DOI: 10.1371/journal.pone.0200417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/26/2018] [Indexed: 02/05/2023] Open
Abstract
Rbfox1 is a splicing regulator that has been associated with various neurological conditions such as autism spectrum disorder, mental retardation, epilepsy, attention-deficit/hyperactivity disorder and schizophrenia. We show that in adult rodent retinas, Rbfox1 is expressed in all types of retinal ganglion cells (RGCs) and in certain subsets of amacrine cells (ACs), within the inner nuclear (INL) and ganglion cell (GCL) layers. In the INL, all Rbfox1-positive cells were colocalized with GABAergic ACs, however not all GABAergic ACs were immunostained for Rbfox1. In the GCL, a vast majority of GABAergic dACs were Rbfox1-immunopositive. Furthermore, all cholinergic starburst ACs (SACs) in the INL (type a) and in the GCL (type b) were Rbfox1 positive. The expression of Rbfox1 in the retina significantly overlapped with expression of Rbfox2, another member of Rbfox family of proteins. Rbfox2, in addition to RGCs and ACs, was also expressed in horizontal cells. In developing retinas at E12 and E15, Rbfox1 is localized to the cytoplasm of differentiating RGCs and ACs. Between P0 and P5, Rbfox1 subcellular localization switched from cytoplasmic to predominantly nuclear. Downregulation of Rbfox1 in adult Rbfox1loxP/loxP mice had no detectable effect on retinal gross morphology. However, the visual cliff test revealed marked abnormalities of depth perception of these animals. RNA sequencing of retinal transcriptomes of control and Rbfox1 knockout animals identified a number of Rbfox1-regulated genes that are involved in establishing neuronal circuits and synaptic transmission, including Vamp1, Vamp2, Snap25, Trak2, and Slc1A7, suggesting the role of Rbfox1 in facilitating synaptic communications between ACs and RGCs.
Collapse
Affiliation(s)
- Lei Gu
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Dean Bok
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, United States of America
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Fei Yu
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Joseph Caprioli
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Natik Piri
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
31
|
Sellier C, Cerro-Herreros E, Blatter M, Freyermuth F, Gaucherot A, Ruffenach F, Sarkar P, Puymirat J, Udd B, Day JW, Meola G, Bassez G, Fujimura H, Takahashi MP, Schoser B, Furling D, Artero R, Allain FHT, Llamusi B, Charlet-Berguerand N. rbFOX1/MBNL1 competition for CCUG RNA repeats binding contributes to myotonic dystrophy type 1/type 2 differences. Nat Commun 2018; 9:2009. [PMID: 29789616 PMCID: PMC5964235 DOI: 10.1038/s41467-018-04370-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/26/2018] [Indexed: 12/30/2022] Open
Abstract
Myotonic dystrophy type 1 and type 2 (DM1, DM2) are caused by expansions of CTG and CCTG repeats, respectively. RNAs containing expanded CUG or CCUG repeats interfere with the metabolism of other RNAs through titration of the Muscleblind-like (MBNL) RNA binding proteins. DM2 follows a more favorable clinical course than DM1, suggesting that specific modifiers may modulate DM severity. Here, we report that the rbFOX1 RNA binding protein binds to expanded CCUG RNA repeats, but not to expanded CUG RNA repeats. Interestingly, rbFOX1 competes with MBNL1 for binding to CCUG expanded repeats and overexpression of rbFOX1 partly releases MBNL1 from sequestration within CCUG RNA foci in DM2 muscle cells. Furthermore, expression of rbFOX1 corrects alternative splicing alterations and rescues muscle atrophy, climbing and flying defects caused by expression of expanded CCUG repeats in a Drosophila model of DM2.
Collapse
Affiliation(s)
- Chantal Sellier
- IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, 67404, Illkirch, France
| | - Estefanía Cerro-Herreros
- Translational Genomics Group, Interdisciplinary Research Structure for Biotechnology and Biomedicine BIOTECMED, University of Valencia, 46010, Valencia, Spain
- INCLIVA Health Research Institute, 46010, Valencia, Spain
| | - Markus Blatter
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Fernande Freyermuth
- IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, 67404, Illkirch, France
| | - Angeline Gaucherot
- IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, 67404, Illkirch, France
| | - Frank Ruffenach
- IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, 67404, Illkirch, France
| | - Partha Sarkar
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jack Puymirat
- Human Genetics Research Unit, Laval University, CHUQ, Ste-Foy, Quebec, QC G1V 4G2, Canada
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University Hospital, 33521, Tampere, Finland
- Department of Medical Genetics, Folkhälsan Institute of Genetics, Helsinki University, 00290, Helsinki, Finland
- Department of Neurology, Vasa Central Hospital, 65130, Vaasa, Finland
| | - John W Day
- Department of Neurology, Stanford University, San Francisco, CA, 94305, USA
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, 20097, Milan, Italy
- Neurology Unit, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy
| | - Guillaume Bassez
- Sorbonne Université, Inserm, Association Institut de Myologie, Center of Research in Myology, 75013, Paris, France
| | - Harutoshi Fujimura
- Department of Neurology, Toneyama National Hospital, Toyonaka, 560-0045, Japan
| | - Masanori P Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig Maximilian University, 80539, Munich, Germany
| | - Denis Furling
- Sorbonne Université, Inserm, Association Institut de Myologie, Center of Research in Myology, 75013, Paris, France
| | - Ruben Artero
- Translational Genomics Group, Interdisciplinary Research Structure for Biotechnology and Biomedicine BIOTECMED, University of Valencia, 46010, Valencia, Spain
- INCLIVA Health Research Institute, 46010, Valencia, Spain
| | - Frédéric H T Allain
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Beatriz Llamusi
- Translational Genomics Group, Interdisciplinary Research Structure for Biotechnology and Biomedicine BIOTECMED, University of Valencia, 46010, Valencia, Spain.
- INCLIVA Health Research Institute, 46010, Valencia, Spain.
| | - Nicolas Charlet-Berguerand
- IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, 67404, Illkirch, France.
- UMR7104, Centre National de la Recherche Scientifique, 67404, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U964, 67404, Illkirch, France.
- Université de Strasbourg, 67404, Illkirch, France.
| |
Collapse
|
32
|
Jacko M, Weyn-Vanhentenryck SM, Smerdon JW, Yan R, Feng H, Williams DJ, Pai J, Xu K, Wichterle H, Zhang C. Rbfox Splicing Factors Promote Neuronal Maturation and Axon Initial Segment Assembly. Neuron 2018; 97:853-868.e6. [PMID: 29398366 PMCID: PMC5823762 DOI: 10.1016/j.neuron.2018.01.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/28/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
Neuronal maturation requires dramatic morphological and functional changes, but the molecular mechanisms governing this process are not well understood. Here, we studied the role of Rbfox1, Rbfox2, and Rbfox3 proteins, a family of tissue-specific splicing regulators mutated in multiple neurodevelopmental disorders. We generated Rbfox triple knockout (tKO) ventral spinal neurons to define a comprehensive network of alternative exons under Rbfox regulation and to investigate their functional importance in the developing neurons. Rbfox tKO neurons exhibit defects in alternative splicing of many cytoskeletal, membrane, and synaptic proteins, and display immature electrophysiological activity. The axon initial segment (AIS), a subcellular structure important for action potential initiation, is diminished upon Rbfox depletion. We identified an Rbfox-regulated splicing switch in ankyrin G, the AIS "interaction hub" protein, that regulates ankyrin G-beta spectrin affinity and AIS assembly. Our data show that the Rbfox-regulated splicing program plays a crucial role in structural and functional maturation of postmitotic neurons.
Collapse
Affiliation(s)
- Martin Jacko
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Departments of Pathology and Cell Biology, Neurology, and Neuroscience, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Sebastien M Weyn-Vanhentenryck
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - John W Smerdon
- Departments of Pathology and Cell Biology, Neurology, and Neuroscience, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Rui Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Huijuan Feng
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Damian J Williams
- Columbia University Stem Cell Core Facility, Department of Rehabilitation and Regenerative Medicine, New York, NY 10032, USA
| | - Joy Pai
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neurology, and Neuroscience, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA.
| | - Chaolin Zhang
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
33
|
Kucherenko MM, Shcherbata HR. miRNA targeting and alternative splicing in the stress response - events hosted by membrane-less compartments. J Cell Sci 2018; 131:131/4/jcs202002. [PMID: 29444950 DOI: 10.1242/jcs.202002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stress can be temporary or chronic, and mild or acute. Depending on its extent and severity, cells either alter their metabolism, and adopt a new state, or die. Fluctuations in environmental conditions occur frequently, and such stress disturbs cellular homeostasis, but in general, stresses are reversible and last only a short time. There is increasing evidence that regulation of gene expression in response to temporal stress happens post-transcriptionally in specialized subcellular membrane-less compartments called ribonucleoprotein (RNP) granules. RNP granules assemble through a concentration-dependent liquid-liquid phase separation of RNA-binding proteins that contain low-complexity sequence domains (LCDs). Interestingly, many factors that regulate microRNA (miRNA) biogenesis and alternative splicing are RNA-binding proteins that contain LCDs and localize to stress-induced liquid-like compartments. Consequently, gene silencing through miRNAs and alternative splicing of pre-mRNAs are emerging as crucial post-transcriptional mechanisms that function on a genome-wide scale to regulate the cellular stress response. In this Review, we describe the interplay between these two post-transcriptional processes that occur in liquid-like compartments as an adaptive cellular response to stress.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
34
|
Reble E, Dineen A, Barr CL. The contribution of alternative splicing to genetic risk for psychiatric disorders. GENES BRAIN AND BEHAVIOR 2017; 17:e12430. [PMID: 29052934 DOI: 10.1111/gbb.12430] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/25/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
A genetic contribution to psychiatric disorders has clearly been established and genome-wide association studies now provide the location of risk genes and genetic variants associated with risk. However, the mechanism by which these genes and variants contribute to psychiatric disorders is mostly undetermined. This is in part because non-synonymous protein coding changes cannot explain the majority of variants associated with complex genetic traits. Based on this, it is predicted that these variants are causing gene expression changes, including changes to alternative splicing. Genetic changes influencing alternative splicing have been identified as risk factors in Mendelian disorders; however, currently there is a paucity of research on the role of alternative splicing in complex traits. This stems partly from the difficulty of predicting the role of genetic variation in splicing. Alterations to canonical splice site sequences, nucleotides adjacent to splice junctions, and exonic and intronic splicing regulatory sequences can influence splice site choice. Recent studies have identified global changes in alternatively spliced transcripts in brain tissues, some of which correlate with altered levels of splicing trans factors. Disease-associated variants have also been found to affect cis-acting splicing regulatory sequences and alter the ratio of alternatively spliced transcripts. These findings are reviewed here, as well as the current datasets and resources available to study alternative splicing in psychiatric disorders. Identifying and understanding risk variants that cause alternative splicing is critical to understanding the mechanisms of risk as well as to pave the way for new therapeutic options.
Collapse
Affiliation(s)
- E Reble
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - A Dineen
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C L Barr
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Murgai AA, Kumar N, Jog MS. Tourette-Like Syndrome in a Patient with RBFOX1 Deletion. Mov Disord Clin Pract 2017; 5:86-88. [PMID: 30746397 DOI: 10.1002/mdc3.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Aditya A Murgai
- Department of Clinical Neurological Sciences Western University London Ontario Canada
| | - Niraj Kumar
- Department of Clinical Neurological Sciences Western University London Ontario Canada
| | - Mandar S Jog
- Department of Clinical Neurological Sciences Western University London Ontario Canada
| |
Collapse
|
36
|
Alternative Splicing in Genetic Diseases: Improved Diagnosis and Novel Treatment Options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:85-141. [PMID: 29305015 DOI: 10.1016/bs.ircmb.2017.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alternative splicing is an important mechanism to regulate gene expression and to expand the repertoire of gene products in order to accommodate an increase in complexity of multicellular organisms. It needs to be precisely regulated, which is achieved via RNA structure, splicing factors, transcriptional regulation, and chromatin. Changes in any of these factors can lead to disease. These may include the core spliceosome, splicing enhancer/repressor sequences and their interacting proteins, the speed of transcription by RNA polymerase II, and histone modifications. While the basic principle of splicing is well understood, it is still very difficult to predict splicing outcome, due to the multiple levels of regulation. Current molecular diagnostics mainly uses Sanger sequencing of exons, or next-generation sequencing of gene panels or the whole exome. Functional analysis of potential splicing variants is scarce, and intronic variants are often not considered. This likely results in underestimation of the percentage of splicing variants. Understanding how sequence variants may affect splicing is not only crucial for confirmation of diagnosis and for genetic counseling, but also for the development of novel treatment options. These include small molecules, transsplicing, antisense oligonucleotides, and gene therapy. Here we review the current state of molecular mechanisms of splicing regulation and how deregulation can lead to human disease, diagnostics to detect splicing variants, and novel treatment options based on splicing correction.
Collapse
|
37
|
Xiong W, Zhou D. Progress in unraveling the genetic etiology of rolandic epilepsy. Seizure 2017; 47:99-104. [PMID: 28351718 DOI: 10.1016/j.seizure.2017.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 02/05/2023] Open
Abstract
Rolandic epilepsy (RE), or benign epilepsy of childhood with centrotemporal spikes (BECT), is the most frequent idiopathic partial epilepsy syndrome of childhood, where the "idiopathic" implies a genetic predisposition. Although RE has long been presumed to have a genetic component, clinical and genetic studies have shown a complex inheritance pattern. Furthermore, the underlying major genetic influence in RE has been challenged by recent reports of twin studies. Meanwhile, many genes or loci have been shown to be associated the RE/atypical RE (ARE) spectrum, with a higher frequency of causative variants in ARE. However, a full understanding of the genetic basis in the more common forms of the RE spectrum remains elusive.
Collapse
Affiliation(s)
- Weixi Xiong
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
38
|
Juan-Mateu J, Rech TH, Villate O, Lizarraga-Mollinedo E, Wendt A, Turatsinze JV, Brondani LA, Nardelli TR, Nogueira TC, Esguerra JLS, Alvelos MI, Marchetti P, Eliasson L, Eizirik DL. Neuron-enriched RNA-binding Proteins Regulate Pancreatic Beta Cell Function and Survival. J Biol Chem 2017; 292:3466-3480. [PMID: 28077579 PMCID: PMC5336178 DOI: 10.1074/jbc.m116.748335] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/10/2017] [Indexed: 01/05/2023] Open
Abstract
Pancreatic beta cell failure is the central event leading to diabetes. Beta cells share many phenotypic traits with neurons, and proper beta cell function relies on the activation of several neuron-like transcription programs. Regulation of gene expression by alternative splicing plays a pivotal role in brain, where it affects neuronal development, function, and disease. The role of alternative splicing in beta cells remains unclear, but recent data indicate that splicing alterations modulated by both inflammation and susceptibility genes for diabetes contribute to beta cell dysfunction and death. Here we used RNA sequencing to compare the expression of splicing-regulatory RNA-binding proteins in human islets, brain, and other human tissues, and we identified a cluster of splicing regulators that are expressed in both beta cells and brain. Four of them, namely Elavl4, Nova2, Rbox1, and Rbfox2, were selected for subsequent functional studies in insulin-producing rat INS-1E, human EndoC-βH1 cells, and in primary rat beta cells. Silencing of Elavl4 and Nova2 increased beta cell apoptosis, whereas silencing of Rbfox1 and Rbfox2 increased insulin content and secretion. Interestingly, Rbfox1 silencing modulates the splicing of the actin-remodeling protein gelsolin, increasing gelsolin expression and leading to faster glucose-induced actin depolymerization and increased insulin release. Taken together, these findings indicate that beta cells share common splicing regulators and programs with neurons. These splicing regulators play key roles in insulin release and beta cell survival, and their dysfunction may contribute to the loss of functional beta cell mass in diabetes.
Collapse
Affiliation(s)
- Jonàs Juan-Mateu
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Tatiana H Rech
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Olatz Villate
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | - Anna Wendt
- Lund University Diabetes Center, Unit of Islets Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, SE 205 02 Malmö, Sweden
| | | | - Letícia A Brondani
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Tarlliza R Nardelli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Tatiane C Nogueira
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Jonathan L S Esguerra
- Lund University Diabetes Center, Unit of Islets Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, SE 205 02 Malmö, Sweden
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56126 Pisa, Italy
| | - Lena Eliasson
- Lund University Diabetes Center, Unit of Islets Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, SE 205 02 Malmö, Sweden
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium; Welbio, Université Libre de Bruxelles, 808 Route de Lennik, CP618, 1070 Brussels, Belgium.
| |
Collapse
|
39
|
Shukla JP, Deshpande G, Shashidhara LS. Ataxin 2-binding protein 1 is a context-specific positive regulator of Notch signaling during neurogenesis in Drosophila melanogaster. Development 2017; 144:905-915. [PMID: 28174239 DOI: 10.1242/dev.140657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/18/2017] [Indexed: 12/28/2022]
Abstract
The role of the Notch pathway during the lateral inhibition that underlies binary cell fate choice is extensively studied, but the context specificity that generates diverse outcomes is less well understood. In the peripheral nervous system of Drosophila melanogaster, differential Notch signaling between cells of the proneural cluster orchestrates sensory organ specification. Here we report functional analysis of Drosophila Ataxin 2-binding protein 1 (A2BP1) during this process. Its human ortholog is linked to type 2 spinocerebellar ataxia and other complex neuronal disorders. Downregulation of Drosophila A2BP1 in the proneural cluster increases adult sensory bristle number, whereas its overexpression results in loss of bristles. We show that A2BP1 regulates sensory organ specification by potentiating Notch signaling. Supporting its direct involvement, biochemical analysis shows that A2BP1 is part of the Suppressor of Hairless [Su(H)] complex in the presence and absence of Notch. However, in the absence of Notch signaling, the A2BP1 interacting fraction of Su(H) does not associate with the repressor proteins Groucho and CtBP. We propose a model explaining the requirement of A2BP1 as a positive regulator of context-specific Notch activity.
Collapse
Affiliation(s)
- Jay Prakash Shukla
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Girish Deshpande
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India.,Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - L S Shashidhara
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
40
|
Li F, Ye Z, Zhai Y, Gong B, Jiang L, Wu H, Lin Y, Wan L, Yang Z, Shi Y, Wu Z. Evaluation of genome-wide susceptibility loci for high myopia in a Han Chinese population. Ophthalmic Genet 2017; 38:330-334. [PMID: 28085524 DOI: 10.1080/13816810.2016.1227455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fang Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zimeng Ye
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yaru Zhai
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bo Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, Sichuan, China
| | - Lingxi Jiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Haiyan Wu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ying Lin
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, Sichuan, China
| | - Ling Wan
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zhenglin Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, Sichuan, China
| | - Yi Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, Sichuan, China
| | - Zhengzheng Wu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex. Cell 2016; 166:1147-1162.e15. [PMID: 27565344 DOI: 10.1016/j.cell.2016.07.025] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/22/2016] [Accepted: 07/18/2016] [Indexed: 01/13/2023]
Abstract
Alternative splicing is prevalent in the mammalian brain. To interrogate the functional role of alternative splicing in neural development, we analyzed purified neural progenitor cells (NPCs) and neurons from developing cerebral cortices, revealing hundreds of differentially spliced exons that preferentially alter key protein domains-especially in cytoskeletal proteins-and can harbor disease-causing mutations. We show that Ptbp1 and Rbfox proteins antagonistically govern the NPC-to-neuron transition by regulating neuron-specific exons. Whereas Ptbp1 maintains apical progenitors partly through suppressing a poison exon of Flna in NPCs, Rbfox proteins promote neuronal differentiation by switching Ninein from a centrosomal splice form in NPCs to a non-centrosomal isoform in neurons. We further uncover an intronic human mutation within a PTBP1-binding site that disrupts normal skipping of the FLNA poison exon in NPCs and causes a brain-specific malformation. Our study indicates that dynamic control of alternative splicing governs cell fate in cerebral cortical development.
Collapse
|
42
|
Milone R, Ferrari AR, Pasquariello R, Bargagna S. Complex Phenotype of a Boy With De Novo 16p13.3-13.2 Interstitial Deletion. Child Neurol Open 2016; 3:2329048X16676153. [PMID: 28503620 PMCID: PMC5417293 DOI: 10.1177/2329048x16676153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 08/11/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022] Open
Abstract
Interstitial deletions encompassing chromosome 16p13.3-13.2 are rarely described in the literature, whereas terminal deletions or duplications involving this region are slightly more frequently described. The authors describe a boy harboring a de novo 16p13.3-13.2 interstitial deletion, with intellectual disability, verbal dyspraxia, epilepsy, and a distinctive brain magnetic resonance finding, namely a nodular heterotopia. The authors found partial genotype–phenotype correspondences regarding epilepsy and intellectual disability, which have been associated with 16p1 region. Conversely, nodular heterotopia and verbal dyspraxia have not been clearly related to this region. These data are in agreement with the emerging concept that similar copy number variants may be the general risk factors for distinct disorders. Verbal dyspraxia, which has not responded to speech therapy, is the child’s most disabling trait. In view of the above, genetic studies should be appraised in cases of serious speech difficulties, especially if they are associated with intellectual disability and epilepsy.
Collapse
Affiliation(s)
- Roberta Milone
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy
- Roberta Milone, MD, Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Viale del Tirreno 331/A, 56128 Calambrone, Pisa, Italy.
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Stefania Bargagna
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| |
Collapse
|
43
|
Damianov A, Ying Y, Lin CH, Lee JA, Tran D, Vashisht AA, Bahrami-Samani E, Xing Y, Martin KC, Wohlschlegel JA, Black DL. Rbfox Proteins Regulate Splicing as Part of a Large Multiprotein Complex LASR. Cell 2016; 165:606-19. [PMID: 27104978 DOI: 10.1016/j.cell.2016.03.040] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/18/2015] [Accepted: 03/22/2016] [Indexed: 12/11/2022]
Abstract
Rbfox proteins control alternative splicing and posttranscriptional regulation in mammalian brain and are implicated in neurological disease. These proteins recognize the RNA sequence (U)GCAUG, but their structures and diverse roles imply a variety of protein-protein interactions. We find that nuclear Rbfox proteins are bound within a large assembly of splicing regulators (LASR), a multimeric complex containing the proteins hnRNP M, hnRNP H, hnRNP C, Matrin3, NF110/NFAR-2, NF45, and DDX5, all approximately equimolar to Rbfox. We show that splicing repression mediated by hnRNP M is stimulated by Rbfox. Virtually all the intron-bound Rbfox is associated with LASR, and hnRNP M motifs are enriched adjacent to Rbfox crosslinking sites in vivo. These findings demonstrate that Rbfox proteins bind RNA with a defined set of cofactors and affect a broader set of exons than previously recognized. The function of this multimeric LASR complex has implications for deciphering the regulatory codes controlling splicing networks.
Collapse
Affiliation(s)
- Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Ying
- Molecular Biology Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ji-Ann Lee
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Diana Tran
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emad Bahrami-Samani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
44
|
Conboy JG. Developmental regulation of RNA processing by Rbfox proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27748060 DOI: 10.1002/wrna.1398] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/17/2016] [Accepted: 08/27/2016] [Indexed: 12/15/2022]
Abstract
The Rbfox genes encode an ancient family of sequence-specific RNA binding proteins (RBPs) that are critical developmental regulators in multiple tissues including skeletal muscle, cardiac muscle, and brain. The hallmark of Rbfox proteins is a single high-affinity RRM domain, highly conserved from insects to humans, that binds preferentially to UGCAUG motifs at diverse regulatory sites in pre-mRNA introns, mRNA 3'UTRs, and pre-miRNAs hairpin structures. Versatile regulatory circuits operate on Rbfox pre-mRNA and mRNA to ensure proper expression of Rbfox1 protein isoforms, which then act on the broader transcriptome to regulate alternative splicing networks, mRNA stability and translation, and microRNA processing. Complex Rbfox expression is encoded in large genes encompassing multiple promoters and alternative splicing options that govern spatiotemporal expression of structurally distinct and tissue-specific protein isoforms with different classes of RNA targets. Nuclear Rbfox1 is a candidate master regulator that binds intronic UGCAUG elements to impact splicing efficiency of target alternative exons, many in transcripts for other splicing regulators. Tissue-specificity of Rbfox-mediated alternative splicing is executed by combinatorial regulation through the integrated activity of Rbfox proteins and synergistic or antagonistic splicing factors. Studies in animal models show that Rbfox1-related genes are critical for diverse developmental processes including germ cell differentiation and memory in Drosophila, neuronal migration and function in mouse brain, myoblast fusion and skeletal muscle function, and normal heart function. Finally, genetic and biochemical evidence suggest that aberrations in Rbfox-regulated circuitry are risk factors for multiple human disorders, especially neurodevelopmental disorders including epilepsy and autism, and cardiac hypertrophy. WIREs RNA 2017, 8:e1398. doi: 10.1002/wrna.1398 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- John G Conboy
- Biological Systems and Engineering Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA
| |
Collapse
|
45
|
Amin N, Allebrandt KV, van der Spek A, Müller-Myhsok B, Hek K, Teder-Laving M, Hayward C, Esko T, van Mill JG, Mbarek H, Watson NF, Melville SA, Del Greco FM, Byrne EM, Oole E, Kolcic I, Chen TH, Evans DS, Coresh J, Vogelzangs N, Karjalainen J, Willemsen G, Gharib SA, Zgaga L, Mihailov E, Stone KL, Campbell H, Brouwer RWW, Demirkan A, Isaacs A, Dogas Z, Marciante KD, Campbell S, Borovecki F, Luik AI, Li M, Hottenga JJ, Huffman JE, van den Hout MCGN, Cummings SR, Aulchenko YS, Gehrman PR, Uitterlinden AG, Wichmann HE, Müller-Nurasyid M, Fehrmann RSN, Montgomery GW, Hofman A, Kao WHL, Oostra BA, Wright AF, Vink JM, Wilson JF, Pramstaller PP, Hicks AA, Polasek O, Punjabi NM, Redline S, Psaty BM, Heath AC, Merrow M, Tranah GJ, Gottlieb DJ, Boomsma DI, Martin NG, Rudan I, Tiemeier H, van IJcken WFJ, Penninx BW, Metspalu A, Meitinger T, Franke L, Roenneberg T, van Duijn CM. Genetic variants in RBFOX3 are associated with sleep latency. Eur J Hum Genet 2016; 24:1488-95. [PMID: 27142678 PMCID: PMC5027680 DOI: 10.1038/ejhg.2016.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 01/30/2023] Open
Abstract
Time to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep latency. We performed a meta-analysis of genome-wide association studies (GWAS) including 2 572 737 single nucleotide polymorphisms (SNPs) established in seven European cohorts including 4242 individuals. We found a cluster of three highly correlated variants (rs9900428, rs9907432 and rs7211029) in the RNA-binding protein fox-1 homolog 3 gene (RBFOX3) associated with sleep latency (P-values=5.77 × 10(-08), 6.59 × 10(-)(08) and 9.17 × 10(-)(08)). These SNPs were replicated in up to 12 independent populations including 30 377 individuals (P-values=1.5 × 10(-)(02), 7.0 × 10(-)(03) and 2.5 × 10(-)(03); combined meta-analysis P-values=5.5 × 10(-07), 5.4 × 10(-07) and 1.0 × 10(-07)). A functional prediction of RBFOX3 based on co-expression with other genes shows that this gene is predominantly expressed in brain (P-value=1.4 × 10(-316)) and the central nervous system (P-value=7.5 × 10(-)(321)). The predicted function of RBFOX3 based on co-expression analysis with other genes shows that this gene is significantly involved in the release cycle of neurotransmitters including gamma-aminobutyric acid and various monoamines (P-values<2.9 × 10(-11)) that are crucial in triggering the onset of sleep. To conclude, in this first large-scale GWAS of sleep latency we report a novel association of variants in RBFOX3 gene. Further, a functional prediction of RBFOX3 supports the involvement of RBFOX3 with sleep latency.
Collapse
Affiliation(s)
- Najaf Amin
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Karla V Allebrandt
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Ashley van der Spek
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Karin Hek
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maris Teder-Laving
- Estonian Genome Center, University of Tartu and Estonian Biocenter, Tartu, Estonia
| | - Caroline Hayward
- Medical Research Council, Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu and Estonian Biocenter, Tartu, Estonia
| | - Josine G van Mill
- Department of Psychiatry, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Hamdi Mbarek
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Nathaniel F Watson
- Department of Neurology, University of Washington, Seattle, WA, USA
- University of Washington Medicine Sleep Center, Seattle, WA, USA
| | - Scott A Melville
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Fabiola M Del Greco
- Center for Biomedicine, European Academy of Bolzano, Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Enda M Byrne
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Edwin Oole
- Center for Biomics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ivana Kolcic
- School of Medicine, University of Split, Split, Croatia
| | - Ting-hsu Chen
- VA Boston Healthcare System, Boston University, Boston, MA, USA
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Josef Coresh
- Departments of Epidemiology, Biostatistics, and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole Vogelzangs
- Department of Psychiatry, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Juha Karjalainen
- Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Sina A Gharib
- University of Washington Medicine Sleep Center, Seattle, WA, USA
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Lina Zgaga
- Medical Research Council, Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu and Estonian Biocenter, Tartu, Estonia
| | - Katie L Stone
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Rutger WW Brouwer
- Center for Biomics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ayse Demirkan
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Aaron Isaacs
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Zoran Dogas
- Department of Neuroscience and Sleep Medicine Centre, University of Split School of Medicine, Split, Croatia
| | - Kristin D Marciante
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan Campbell
- Medical Research Council, Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland
| | - Fran Borovecki
- Centre for Functional Genomics and Department of Neurology, Faculty of Medicine, University of Zagreb, Zagreb, Croatia
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Man Li
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Jouke Jan Hottenga
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Jennifer E Huffman
- Medical Research Council, Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland
| | | | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Yurii S Aulchenko
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Philip R Gehrman
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing and National Genomics Initiative, Leiden, The Netherlands
| | - Heinz-Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum Munich-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University and Klinikum Grosshadern, Munich, Germany
- Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, Germany
| | - Martina Müller-Nurasyid
- Institute of Epidemiology I, Helmholtz Zentrum Munich-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Rudolf SN Fehrmann
- Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | | | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wen Hong Linda Kao
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Ben A Oostra
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Alan F Wright
- Medical Research Council, Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland
| | - Jacqueline M Vink
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - James F Wilson
- Medical Research Council, Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Peter P Pramstaller
- Center for Biomedicine, European Academy of Bolzano, Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
- Department of Neurology, General Central Hospital, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Andrew A Hicks
- Center for Biomedicine, European Academy of Bolzano, Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Ozren Polasek
- School of Medicine, University of Split, Split, Croatia
- Centre for Global Health, University of Split School of Medicine, Split, Croatia
| | - Naresh M Punjabi
- Department of Pulmonary Medicine and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital and Beth Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University, St Louis, MO, USA
| | - Martha Merrow
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Daniel J Gottlieb
- Department of Medicine, Brigham and Women's Hospital and Beth Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | | | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, The Netherlands
| | | | - Brenda W Penninx
- Department of Psychiatry, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu and Estonian Biocenter, Tartu, Estonia
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Techinsche Universität München, München, Germany
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Till Roenneberg
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Cornelia M van Duijn
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing and National Genomics Initiative, Leiden, The Netherlands
- Centre for Medical Systems Biology, Leiden, The Netherlands
| |
Collapse
|
46
|
Abstract
Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain.
Collapse
Affiliation(s)
- Celine K Vuong
- Molecular Biology Interdepartmental Graduate Program, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Sika Zheng
- Division of Biomedical Sciences, University of California at Riverside, Riverside, California 92521, USA
| |
Collapse
|
47
|
Abstract
Tumor-associated alterations in RNA splicing result either from mutations in splicing-regulatory elements or changes in components of the splicing machinery. This review summarizes our current understanding of the role of splicing-factor alterations in human cancers. We describe splicing-factor alterations detected in human tumors and the resulting changes in splicing, highlighting cell-type-specific similarities and differences. We review the mechanisms of splicing-factor regulation in normal and cancer cells. Finally, we summarize recent efforts to develop novel cancer therapies, based on targeting either the oncogenic splicing events or their upstream splicing regulators.
Collapse
Affiliation(s)
- Olga Anczuków
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
48
|
Repression of Pumilio Protein Expression by Rbfox1 Promotes Germ Cell Differentiation. Dev Cell 2016; 36:562-71. [PMID: 26954550 DOI: 10.1016/j.devcel.2016.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 01/11/2016] [Accepted: 02/08/2016] [Indexed: 11/21/2022]
Abstract
RNA-binding Fox (Rbfox) proteins have well-established roles in regulating alternative splicing, but specific Rbfox isoforms lack nuclear localization signals and accumulate in the cytoplasm. The potential splicing-independent functions of these proteins remain unknown. Here we demonstrate that cytoplasmic Drosophila Rbfox1 regulates germ cell development and represses the translation of mRNAs containing (U)GCAUG elements within their 3'UTRs. During germline cyst differentiation, Rbfox1 targets pumilio mRNA for destabilization and translational silencing, thereby promoting germ cell development. Mis-expression of pumilio results in the formation of germline tumors, which contain cysts that break down and dedifferentiate back to single, mitotically active cells. Together, these results reveal that cytoplasmic Rbfox family members regulate the translation of specific target mRNAs. In the Drosophila ovary, this activity provides a genetic barrier that prevents germ cells from reverting back to an earlier developmental state. The finding that Rbfox proteins regulate mRNA translation has implications for Rbfox-related diseases.
Collapse
|
49
|
Hamada N, Ito H, Nishijo T, Iwamoto I, Morishita R, Tabata H, Momiyama T, Nagata KI. Essential role of the nuclear isoform of RBFOX1, a candidate gene for autism spectrum disorders, in the brain development. Sci Rep 2016; 6:30805. [PMID: 27481563 PMCID: PMC4969621 DOI: 10.1038/srep30805] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/07/2016] [Indexed: 01/10/2023] Open
Abstract
Gene abnormalities in RBFOX1, encoding an mRNA-splicing factor, have been shown to cause autism spectrum disorder and other neurodevelopmental disorders. Since pathophysiological significance of the dominant nuclear isoform in neurons, RBFOX1-isoform1 (iso1), remains to be elucidated, we performed comprehensive analyses of Rbfox1-iso1 during mouse corticogenesis. Knockdown of Rbfox1-iso1 by in utero electroporation caused abnormal neuronal positioning during corticogenesis, which was attributed to impaired migration. The defects were found to occur during radial migration and terminal translocation, perhaps due to impaired nucleokinesis. Axon extension and dendritic arborization were also suppressed in vivo in Rbfox1-iso1-deficient cortical neurons. In addition, electrophysiology experiments revealed significant defects in the membrane and synaptic properties of the deficient neurons. Aberrant morphology was further confirmed by in vitro analyses; Rbfox1-iso1-konckdown in hippocampal neurons resulted in the reduction of primary axon length, total length of dendrites, spine density and mature spine number. Taken together, this study shows that Rbfox1-iso1 plays an important role in neuronal migration and synapse network formation during corticogenesis. Defects in these critical processes may induce structural and functional defects in cortical neurons, and consequently contribute to the pathophysiology of neurodevelopmental disorders with RBFOX1 abnormalities.
Collapse
Affiliation(s)
- Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Takuma Nishijo
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Rika Morishita
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
50
|
Molecular Features Underlying Neurodegeneration Identified through In Vitro Modeling of Genetically Diverse Parkinson's Disease Patients. Cell Rep 2016; 15:2411-26. [PMID: 27264186 DOI: 10.1016/j.celrep.2016.05.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/22/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
The fact that Parkinson's disease (PD) can arise from numerous genetic mutations suggests a unifying molecular pathology underlying the various genetic backgrounds. To address this hypothesis, we took an integrated approach utilizing in vitro disease modeling and comprehensive transcriptome profiling to advance our understanding of PD progression and the concordant downstream signaling pathways across divergent genetic predispositions. To model PD in vitro, we generated neurons harboring disease-causing mutations from patient-specific, induced pluripotent stem cells (iPSCs). We observed signs of degeneration in midbrain dopaminergic neurons, reflecting the cardinal feature of PD. Gene expression signatures of PD neurons provided molecular insights into disease phenotypes observed in vitro, including oxidative stress vulnerability and altered neuronal activity. Notably, PD neurons show that elevated RBFOX1, a gene previously linked to neurodevelopmental diseases, underlies a pattern of alternative RNA-processing associated with PD-specific phenotypes.
Collapse
|