1
|
Cheng J, Wang W, Yu T, Zhou X, Lian X, Cheng X, Wang L, Song L. Immune stimulation by inactivated Vibrio splendidus promotes the development and resistance of oyster Crassostrea gigas larvae. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110041. [PMID: 39586384 DOI: 10.1016/j.fsi.2024.110041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The oyster Crassostrea gigas larvae in embryonic development stage have been suffering high mortality rate during hatching, which have seriously hindered the sustainable development of oyster seedling industry. This study explored the immune protection and developmental effects of priming with inactivated Vibrio splendidus in oyster larvae at middle umbo stage (10 d post fertilization, dpf). The results showed that the immune system of umbo larvae was activated after pre-immune stimulation with inactivated V. splendidus. The expressions of immune recognition receptors (CTL-3, Integrin β-1, TLR4), NF-kB signaling component (IKK), effector molecules (IL17-5, Defh2, HSP70) were significantly up-regulated, and the activities of antioxidant enzymes (superoxide dismutase and catalase), hydrolytic enzyme (lysozyme) also increased significantly. The proteins from the stimulated umbo larvae have obvious characteristics of agglutination and inhibition of V. splendidus growth. When the larvae at late umbo (18 dpf) or pediveliger stage (21 dpf) were challenged by live V. splendidus, much lower death rate was observed in the stimulation group compared to the control group. Simultaneously, the expressions of above immune related genes and the activities of antioxidant enzymes were all rapidly up-regulated in pediveliger larvae of immune stimulated group. Moreover, the significantly increased shell height and shell length as well as accelerated development rate, and higher settlement rate were revealed after the umbo larvae are stimulated by inactivated Vibrio splendidus. In summary, inactivated V. splendidus stimulation in oyster umbo larvae could activate their immune system, enhance their resistance against V. splendidus infection till to pediveliger stage, and promote their following growth and development. All the results provided a theoretical basis for solving poor disease resistance and high mortality of larvae in oyster seedling industry.
Collapse
Affiliation(s)
- Junlei Cheng
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Tianqi Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaoxu Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xingye Lian
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xuemei Cheng
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
2
|
Hu W, Cao Y, Liu Q, Yuan C, Hu Z. Effect of salinity on the physiological response and transcriptome of spotted seabass (Lateolabrax maculatus). MARINE POLLUTION BULLETIN 2024; 203:116432. [PMID: 38728954 DOI: 10.1016/j.marpolbul.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
Salinity fluctuations significantly impact the reproduction, growth, development, as well as physiological and metabolic activities of fish. To explore the osmoregulation mechanism of aquatic organisms acclimating to salinity stress, the physiological and transcriptomic characteristics of spotted seabass (Lateolabrax maculatus) in response to varying salinity gradients were investigated. In this study, different salinity stress exerted inhibitory effects on lipase activity, while the impact on amylase activity was not statistically significant. Notably, a moderate increase in salinity (24 psu) demonstrated the potential to enhance the efficient utilization of proteins by spotted seabass. Both Na+/K+-ATPase and malondialdehyde showed a fluctuating trend of increasing and then decreasing, peaking at 72 h. Transcriptomic analysis revealed that most differentially expressed genes were involved in energy metabolism, signal transduction, the immune response, and osmoregulation. These results will provide insights into the molecular mechanisms of salinity adaptation and contribute to sustainable development of the global aquaculture industry.
Collapse
Affiliation(s)
- Wenjing Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yi Cao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qigen Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Chen Yuan
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhongjun Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China..
| |
Collapse
|
3
|
Regan T, Stevens L, Peñaloza C, Houston RD, Robledo D, Bean TP. Ancestral Physical Stress and Later Immune Gene Family Expansions Shaped Bivalve Mollusc Evolution. Genome Biol Evol 2021; 13:6337976. [PMID: 34343278 PMCID: PMC8382680 DOI: 10.1093/gbe/evab177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bivalve molluscs comprise 20,000 species occupying a wide diversity of marine habitats. As filter feeders and detritivores they act as ecosystem engineers clarifying water, creating reefs, and protecting coastlines. The global decline of natural oyster reefs has led to increased restoration efforts in recent years. Bivalves also play an important role in global food security contributing to >20% of worldwide aquaculture production. Despite this importance, relatively little is known about bivalve evolutionary adaptation strategies. Difficulties previously associated with highly heterozygous and repetitive regions of bivalve genomes have been overcome by long-read sequencing, enabling the generation of accurate bivalve assemblies. With these resources we have analyzed the genomes of 32 species representing each molluscan class, including 15 bivalve species, to identify gene families that have undergone expansion during bivalve evolution. Gene family expansions across bivalve genomes occur at the point of evolutionary pressures. We uncovered two key factors that shape bivalve evolutionary history: expansion of bivalvia into environmental niches with high stress followed by later exposure to specific pathogenic pressures. The conserved expansion of protein recycling gene families we found across bivalvia is mirrored by adaptations to a sedentary lifestyle seen in plants. These results reflect the ability of bivalves to tolerate high levels of environmental stress and constant exposure to pathogens as filter feeders. The increasing availability of accurate genome assemblies will provide greater resolution to these analyses allowing further points of evolutionary pressure to become clear in other understudied taxa and potentially different populations of a single species.
Collapse
Affiliation(s)
- Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Lewis Stevens
- Tree of Life Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| |
Collapse
|
4
|
Wang D, Loor A, Bels LD, Stappen GV, den Broeck WV, Nevejan N. Dynamic Immune Response to Vibriosis in Pacific Oyster Crassostrea gigas Larvae during the Infection Process as Supported by Accurate Positioning of GFP-Tagged Vibrio Strains. Microorganisms 2021; 9:microorganisms9071523. [PMID: 34361958 PMCID: PMC8303456 DOI: 10.3390/microorganisms9071523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
As the immune system is not fully developed during the larval stage, hatchery culture of bivalve larvae is characterized by frequent mass mortality caused by bacterial pathogens, especially Vibrio spp. However, the knowledge is limited to the pathogenesis of vibriosis in oyster larvae, while the immune response to pathogenic microorganisms in this early life stage is still far from being fully elucidated. In this study, we combined green fluorescent protein (GFP)-tagging, histological and transcriptomic analyses to clarify the pathogenesis of experimental vibriosis and the mechanisms used by the host Pacific oyster Crassostrea gigas larvae to resist infection. The Vibrio strains first colonized the digestive system and rapidly proliferated, while only the transcription level of IκB kinase (IKK) and nuclear factor κB (NF-κB) associated with signaling transduction were up-regulated in oyster at 18 h post challenge (hpc). The mRNA levels for integrin β-1, peroxinectin, and heat shock protein 70 (HSP70), which are associated with phagocytosis, cell adhesion, and cytoprotection, were not upregulated until 30 hpc when the necrosis already happened in the larval digestive system. This suggested that the immunity in the early stages of C. gigas is not strong enough to prevent vibriosis and future research may focus on the strengthening of the gastrointestinal immune ability to defend vibriosis in bivalve larvae.
Collapse
Affiliation(s)
- Dongdong Wang
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.L.); (G.V.S.); (N.N.)
- Correspondence: or
| | - Alfredo Loor
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.L.); (G.V.S.); (N.N.)
| | - Lobke De Bels
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (L.D.B.); (W.V.d.B.)
| | - Gilbert Van Stappen
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.L.); (G.V.S.); (N.N.)
| | - Wim Van den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (L.D.B.); (W.V.d.B.)
| | - Nancy Nevejan
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.L.); (G.V.S.); (N.N.)
| |
Collapse
|
5
|
Histone Methylation Participates in Gene Expression Control during the Early Development of the Pacific Oyster Crassostrea gigas. Genes (Basel) 2019; 10:genes10090695. [PMID: 31509985 PMCID: PMC6771004 DOI: 10.3390/genes10090695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Histone methylation patterns are important epigenetic regulators of mammalian development, notably through stem cell identity maintenance by chromatin remodeling and transcriptional control of pluripotency genes. But, the implications of histone marks are poorly understood in distant groups outside vertebrates and ecdysozoan models. However, the development of the Pacific oyster Crassostrea gigas is under the strong epigenetic influence of DNA methylation, and Jumonji histone-demethylase orthologues are highly expressed during C. gigas early life. This suggests a physiological relevance of histone methylation regulation in oyster development, raising the question of functional conservation of this epigenetic pathway in lophotrochozoan. Quantification of histone methylation using fluorescent ELISAs during oyster early life indicated significant variations in monomethyl histone H3 lysine 4 (H3K4me), an overall decrease in H3K9 mono- and tri-methylations, and in H3K36 methylations, respectively, whereas no significant modification could be detected in H3K27 methylation. Early in vivo treatment with the JmjC-specific inhibitor Methylstat induced hypermethylation of all the examined histone H3 lysines and developmental alterations as revealed by scanning electronic microscopy. Using microarrays, we identified 376 genes that were differentially expressed under methylstat treatment, which expression patterns could discriminate between samples as indicated by principal component analysis. Furthermore, Gene Ontology revealed that these genes were related to processes potentially important for embryonic stages such as binding, cell differentiation and development. These results suggest an important physiological significance of histone methylation in the oyster embryonic and larval life, providing, to our knowledge, the first insights into epigenetic regulation by histone methylation in lophotrochozoan development.
Collapse
|
6
|
Neave MJ, Corbeil S, McColl KA, Crane MSJ. Investigating the natural resistance of blackfoot p-a%%KERN_ERR%%ua Haliotis iris to abalone viral ganglioneuritis using whole transcriptome analysis. DISEASES OF AQUATIC ORGANISMS 2019; 135:107-119. [PMID: 31342912 DOI: 10.3354/dao03390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The natural resistance of New Zealand blackfoot p-a%%%%%%%%%%%%%%KERN_ERR%%KERN_ERR%%KERN_ERR%%KERN_ERR%%KERN_ERR%%KERN_ERR%%KERN_ERR%%ua Haliotis iris to infection by haliotid herpesvirus-1 (HaHV-1) and to the disease abalone viral ganglioneuritis was investigated in experimentally challenged p-aua using high throughput RNA-sequencing. HaHV-1-challenged p-aua up-regulated broad classes of genes that contained chitin-binding peritrophin-A domains, which seem to play diverse roles in the p-aua immune response. The p-aua also up-regulated vascular adhesion protein-1 (VAP-1), an important adhesion molecule for lymphocytes, and chitotriosidase-1 (CHIT-1), an immunologically important gene in mammalian immune systems. Moreover, several blood coagulation pathways were dysregulated in the p-aua, possibly indicating viral modulation. We also saw several indications that neurological tissues were specifically affected by HaHV-1, including the dysregulation of beta-1,4-N-acetylgalactosaminyltransferase (B4GALNT), GM2 ganglioside, neuroligin-4 and the Notch signalling pathway. This research may support the development of molecular therapeutics useful to control and/or manage viral outbreaks in abalone culture.
Collapse
Affiliation(s)
- Matthew J Neave
- Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220, Australia
| | | | | | | |
Collapse
|
7
|
Van Hung N, De Schryver P, Dung NV, Nevejan N, Bossier P. Ralstonia eutropha, containing high poly-β-hydroxybutyrate levels, regulates the immune response in mussel larvae challenged with Vibrio coralliilyticus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:196-203. [PMID: 30266603 DOI: 10.1016/j.fsi.2018.09.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Marine invertebrates rely mainly on innate immune mechanisms that include both humoral and cellular responses. Antimicrobial peptides (AMPs), lysozyme and phenoloxidase activity, are important components of the innate immune defense system in marine invertebrates. They provide an immediate and rapid response to invading microorganisms. The impact of amorphous poly-β-hydroxybutyrate (PHB-A) (1 mg PHB-A L-1) on gene expression of the AMPs mytimycin, mytilinB, defensin and the hydrolytic enzyme lysozyme in infected blue mussel larvae was investigated during "in vivo" challenge tests with Vibrio coralliilyticus (105 CFU mL-1). RNAs were isolated from mussel larvae tissue, and AMPs were quantified by q-PCR using the 18srRNA gene as a housekeeping gene. Our data demonstrated that AMPs genes had a tendency to be upregulated in challenged mussel larvae, and the strongest expression was observed from 24 h post-exposure onwards. The presence of both PHB-A and the pathogen stimulated the APMs gene expression, however no significant differences were noticed between treatments or between exposure time to the pathogen V. coralliilyticus. Looking at the phenoloxidase activity in the infected mussels, it was observed that the addition of PHB-A significantly increased the activity.
Collapse
Affiliation(s)
- Nguyen Van Hung
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Campus Coupure, F, Coupure Links 653, B-9000, Gent, Belgium; Research Institute for Aquaculture No.3, 33 Dang Tat st, Nha Trang City, Viet Nam
| | - Peter De Schryver
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Campus Coupure, F, Coupure Links 653, B-9000, Gent, Belgium
| | - Nguyen Viet Dung
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Campus Coupure, F, Coupure Links 653, B-9000, Gent, Belgium
| | - Nancy Nevejan
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Campus Coupure, F, Coupure Links 653, B-9000, Gent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Campus Coupure, F, Coupure Links 653, B-9000, Gent, Belgium.
| |
Collapse
|
8
|
Bai CM, Rosani U, Xin LS, Li GY, Li C, Wang QC, Wang CM. Dual transcriptomic analysis of Ostreid herpesvirus 1 infected Scapharca broughtonii with an emphasis on viral anti-apoptosis activities and host oxidative bursts. FISH & SHELLFISH IMMUNOLOGY 2018; 82:554-564. [PMID: 30165154 DOI: 10.1016/j.fsi.2018.08.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/19/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
The ark shell, Scapharca (Anadara) broughtonii, is an economically important marine shellfish species in Northwestern Pacific. Mass mortalities of ark shell adults related to Ostreid herpesvirus-1 (OsHV-1) infection have occurred frequently since 2012. However, due to the lack of transcriptomic resource of ark shells, the molecular mechanisms underpinning the virus-host interaction remains largely undetermined. In the present study, we resolved the dual transcriptome changes of OsHV-1 infected ark shell with Illumina sequencing. A total of 44 M sequence reads were generated, of which 67,119 reads were mapped to the OsHV-1 genome. De novo assembly of host reads resulted in 276,997 unigenes. 74,529 (26.90%), 47,653 (17.20%) and 19, 611 (7.07%) unigenes were annotated into GO, KOG and KEGG database, respectively. According to RSEM expression values, we identified 2998 differentially expressed genes (DEGs) between control and challenged groups, which included 2065 up-regulated unigenes and 933 down-regulated unigenes. Further analysis of functional pathways indicated that OsHV-1 could inhibit host cell apoptosis mainly by the up-regulation of inhibitor of apoptosis protein (IAP), and thus facilitating its successful replication. While host hemoglobins could induce oxidative burst by suppressing its peroxidase activity, and thus defense against OsHV-1 infection. Although we reported a narrow expression of the OsHV-1 genome compared to Crassostrea gigas infection, we highlighted several common viral genes highly expressed in the two hosts, suggesting an important functional role. This study offers insights into the pathogenesis mechanisms of OsHV-1 infection in bivalve mollusks of the Arcidae family.
Collapse
Affiliation(s)
- Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Umberto Rosani
- Department of Biology, University of Padua, Padua, 35121, Italy
| | - Lu-Sheng Xin
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Gui-Yang Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Chen Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Qing-Chen Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Chong-Ming Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
9
|
de Lorgeril J, Escoubas JM, Loubiere V, Pernet F, Le Gall P, Vergnes A, Aujoulat F, Jeannot JL, Jumas-Bilak E, Got P, Gueguen Y, Destoumieux-Garzón D, Bachère E. Inefficient immune response is associated with microbial permissiveness in juvenile oysters affected by mass mortalities on field. FISH & SHELLFISH IMMUNOLOGY 2018; 77:156-163. [PMID: 29567138 DOI: 10.1016/j.fsi.2018.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Since 2008, juvenile Crassostrea gigas oysters have suffered from massive mortalities in European farming areas. This disease of complex etiology is still incompletely understood. Triggered by an elevated seawater temperature, it has been associated to infections by a herpes virus named OsHV-1 as well as pathogenic vibrios of the Splendidus clade. Ruling out the complexity of the disease, most of our current knowledge has been acquired in controlled experiments. Among the many unsolved questions, it is still ignored what role immunity plays in the capacity oysters have to survive an infectious episode. Here we show that juvenile oysters susceptible to the disease mount an inefficient immune response associated with microbial permissiveness and death. We found that, in contrast to resistant adult oysters having survived an earlier episode of mortality, susceptible juvenile oysters never exposed to infectious episodes died by more than 90% in a field experiment. Susceptible oysters were heavily colonized by OsHV-1 herpes virus as well as bacteria including vibrios potentially pathogenic for oysters, which proliferated in oyster flesh and body fluids during the mortality event. Nonetheless, susceptible oysters were found to sense microbes as indicated by an overexpression of immune receptors and immune signaling pathways. However, they did not express important immune effectors involved in antimicrobial immunity and apoptosis and showed repressed expression of genes involved in ROS and metal homeostasis. This contrasted with resistant oysters, which expressed those important effectors, controlled bacterial and viral colonization and showed 100% survival to the mortality event. Altogether, our results demonstrate that the immune response mounted by susceptible oysters lacks some important immune functions and fails in controlling microbial proliferation. This study opens the way to more holistic studies on the "mass mortality syndrome", which are now required to decipher the sequence of events leading to oyster mortalities and determine the relative weight of pathogens, oyster genetics and oyster-associated microbiota in the disease.
Collapse
Affiliation(s)
- Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France.
| | - Jean-Michel Escoubas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| | - Vincent Loubiere
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| | - Fabrice Pernet
- Ifremer, LEMAR UMR6539, CNRS/UBO/IRD/Ifremer, F-29280, Plouzané, France
| | - Patrik Le Gall
- MARBEC UMR 9190 (CNRS-IRD-Ifremer-UM), F34203, Sète, France
| | - Agnès Vergnes
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| | - Fabien Aujoulat
- UMR 5569 HydroSciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Jean-Luc Jeannot
- UMR 5569 HydroSciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Estelle Jumas-Bilak
- UMR 5569 HydroSciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Patrice Got
- MARBEC UMR 9190 (CNRS-IRD-Ifremer-UM), F34095 Montpellier, France
| | - Yannick Gueguen
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| | | | - Evelyne Bachère
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, France
| |
Collapse
|
10
|
de la Ballina NR, Villalba A, Cao A. Proteomic profile of Ostrea edulis haemolymph in response to bonamiosis and identification of candidate proteins as resistance markers. DISEASES OF AQUATIC ORGANISMS 2018; 128:127-145. [PMID: 29733027 DOI: 10.3354/dao03220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
European flat oyster Ostrea edulis populations have suffered extensive mortalities caused by bonamiosis. The protozoan parasite Bonamia ostreae is largely responsible for this disease in Europe, while its congener B. exitiosa has been detected more recently in various European countries. Both of these intracellular parasites are able to survive and proliferate within haemocytes, the main cellular effectors of the immune system in molluscs. Two-dimensional electrophoresis was used to compare the haemolymph protein profile between Bonamia spp.-infected and non-infected oysters within 3 different stocks, a Galician stock of oysters selected for resistance against bonamiosis, a non-selected Galician stock and a selected Irish stock. Thirty-four proteins with a presumably relevant role in the oyster-Bonamia spp. interaction were identified; they were involved in major metabolic pathways, such as energy production, respiratory chain, oxidative stress, signal transduction, transcription, translation, protein degradation and cell defence. Furthermore, the haemolymph proteomic profiles of the non-infected oysters of the 2 Galician stocks were compared. As a result, 7 proteins representative of the non-infected Galician oysters selected for resistance against bonamiosis were identified; these 7 proteins could be considered as candidate markers of resistance to bonamiosis, which should be further assessed.
Collapse
Affiliation(s)
- Nuria R de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain
| | | | | |
Collapse
|
11
|
Fuhrmann M, Delisle L, Petton B, Corporeau C, Pernet F. Metabolism of the Pacific oyster, Crassostrea gigas, is influenced by salinity and modulates survival to the Ostreid herpesvirus OsHV-1. Biol Open 2018; 7:bio028134. [PMID: 29463513 PMCID: PMC5861354 DOI: 10.1242/bio.028134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/17/2017] [Indexed: 12/28/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas, is an osmoconforming bivalve exposed to wide salinity fluctuations. The physiological mechanisms used by oysters to cope with salinity stress are energy demanding and may impair other processes, such as defense against pathogens. This oyster species has been experiencing recurrent mortality events caused by the Ostreid herpesvirus 1 (OsHV-1). The objectives of this study were to investigate the effect of salinity (10, 15, 25 and 35‰) on energetic reserves, key enzyme activities and membrane fatty acids, and to identify the metabolic risk factors related to OsHV-1-induced mortality of oysters. Acclimation to low salinity led to increased water content, protein level, and energetic reserves (carbohydrates and triglycerides) of oysters. The latter was consistent with lower activity of hexokinase, the first enzyme involved in glycolysis, up-regulation of AMP-activated protein kinase, a major regulator of cellular energy metabolism, and lower activity of catalase, an antioxidant enzyme involved in management of reactive oxygen species. Acclimation to salinity also involved a major remodeling of membrane fatty acids. Particularly, 20:4n-6 decreased linearly with decreasing salinity, likely reflecting its mobilization for prostaglandin synthesis in oysters. The survival of oysters exposed to OsHV-1 varied from 43% to 96% according to salinity ( Fuhrmann et al., 2016). Risk analyses showed that activity of superoxide dismutase and levels of proteins, carbohydrates, and triglycerides were associated with a reduced risk of death. Therefore, animals with a higher antioxidant activity and a better physiological condition seemed less susceptible to OsHV-1.
Collapse
Affiliation(s)
- Marine Fuhrmann
- Ifremer/LEMAR UMR 6539 (UBO/CNRS/IRD/Ifremer), Technopole de Brest-Iroise, 29280 Plouzané, France
| | - Lizenn Delisle
- Ifremer/LEMAR UMR 6539 (UBO/CNRS/IRD/Ifremer), Technopole de Brest-Iroise, 29280 Plouzané, France
| | - Bruno Petton
- Ifremer/LEMAR UMR 6539 (UBO/CNRS/IRD/Ifremer), Presqu'île du vivier, 29840 Argenton, France
| | - Charlotte Corporeau
- Ifremer/LEMAR UMR 6539 (UBO/CNRS/IRD/Ifremer), Technopole de Brest-Iroise, 29280 Plouzané, France
| | - Fabrice Pernet
- Ifremer/LEMAR UMR 6539 (UBO/CNRS/IRD/Ifremer), Technopole de Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
12
|
Schultz JH, Adema CM. Comparative immunogenomics of molluscs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:3-15. [PMID: 28322934 PMCID: PMC5494275 DOI: 10.1016/j.dci.2017.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 05/22/2023]
Abstract
Comparative immunology, studying both vertebrates and invertebrates, provided the earliest descriptions of phagocytosis as a general immune mechanism. However, the large scale of animal diversity challenges all-inclusive investigations and the field of immunology has developed by mostly emphasizing study of a few vertebrate species. In addressing the lack of comprehensive understanding of animal immunity, especially that of invertebrates, comparative immunology helps toward management of invertebrates that are food sources, agricultural pests, pathogens, or transmit diseases, and helps interpret the evolution of animal immunity. Initial studies showed that the Mollusca (second largest animal phylum), and invertebrates in general, possess innate defenses but lack the lymphocytic immune system that characterizes vertebrate immunology. Recognizing the reality of both common and taxon-specific immune features, and applying up-to-date cell and molecular research capabilities, in-depth studies of a select number of bivalve and gastropod species continue to reveal novel aspects of molluscan immunity. The genomics era heralded a new stage of comparative immunology; large-scale efforts yielded an initial set of full molluscan genome sequences that is available for analyses of full complements of immune genes and regulatory sequences. Next-generation sequencing (NGS), due to lower cost and effort required, allows individual researchers to generate large sequence datasets for growing numbers of molluscs. RNAseq provides expression profiles that enable discovery of immune genes and genome sequences reveal distribution and diversity of immune factors across molluscan phylogeny. Although computational de novo sequence assembly will benefit from continued development and automated annotation may require some experimental validation, NGS is a powerful tool for comparative immunology, especially increasing coverage of the extensive molluscan diversity. To date, immunogenomics revealed new levels of complexity of molluscan defense by indicating sequence heterogeneity in individual snails and bivalves, and members of expanded immune gene families are expressed differentially to generate pathogen-specific defense responses.
Collapse
Affiliation(s)
- Jonathan H Schultz
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
13
|
Goncalves P, Jones DB, Thompson EL, Parker LM, Ross PM, Raftos DA. Transcriptomic profiling of adaptive responses to ocean acidification. Mol Ecol 2017; 26:5974-5988. [PMID: 28833825 DOI: 10.1111/mec.14333] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022]
Abstract
Some populations of marine organisms appear to have inherent tolerance or the capacity for acclimation to stressful environmental conditions, including those associated with climate change. Sydney rock oysters from the B2 breeding line exhibit resilience to ocean acidification (OA) at the physiological level. To understand the molecular basis of this physiological resilience, we analysed the gill transcriptome of B2 oysters that had been exposed to near-future projected ocean pH over two consecutive generations. Our results suggest that the distinctive performance of B2 oysters in the face of OA is mediated by the selective expression of genes involved in multiple cellular processes. Subsequent high-throughput qPCR revealed that some of these transcriptional changes are exclusive to B2 oysters and so may be associated with their resilience to OA. The intracellular processes mediated by the differentially abundant genes primarily involve control of the cell cycle and maintenance of cellular homeostasis. These changes may enable B2 oysters to prevent apoptosis resulting from oxidative damage or to alleviate the effects of apoptosis through regulation of the cell cycle. Comparative analysis of the OA conditioning effects across sequential generations supported the contention that B2 and wild-type oysters have different trajectories of changing gene expression and responding to OA. Our findings reveal the broad set of molecular processes underlying transgenerational conditioning and potential resilience to OA in a marine calcifier. Identifying the mechanisms of stress resilience can uncover the intracellular basis for these organisms to survive and thrive in a rapidly changing ocean.
Collapse
Affiliation(s)
- Priscila Goncalves
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Sydney Institute of Marine Science, Sydney, NSW, Australia
| | - David B Jones
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Sydney Institute of Marine Science, Sydney, NSW, Australia
| | - Emma L Thompson
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Sydney Institute of Marine Science, Sydney, NSW, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Laura M Parker
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Pauline M Ross
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David A Raftos
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Sydney Institute of Marine Science, Sydney, NSW, Australia
| |
Collapse
|
14
|
Young T, Kesarcodi-Watson A, Alfaro AC, Merien F, Nguyen TV, Mae H, Le DV, Villas-Bôas S. Differential expression of novel metabolic and immunological biomarkers in oysters challenged with a virulent strain of OsHV-1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:229-245. [PMID: 28373065 DOI: 10.1016/j.dci.2017.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Early lifestages of the Pacific oyster (Crassostrea gigas) are highly susceptible to infection by OsHV-1 μVar, but little information exists regarding metabolic or pathophysiological responses of larval hosts. Using a metabolomics approach, we identified a range of metabolic and immunological responses in oyster larvae exposed to OsHV-1 μVar; some of which have not previously been reported in molluscs. Multivariate analyses of entire metabolite profiles were able to separate infected from non-infected larvae. Correlation analysis revealed the presence of major perturbations in the underlying biochemical networks and secondary pathway analysis of functionally-related metabolites identified a number of prospective pathways differentially regulated in virus-exposed larvae. These results provide new insights into the pathogenic mechanisms of OsHV-1 infection in oyster larvae, which may be applied to develop disease mitigation strategies and/or as new phenotypic information for selective breeding programmes aiming to enhance viral resistance.
Collapse
Affiliation(s)
- Tim Young
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | | | - Andrea C Alfaro
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | - Fabrice Merien
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Thao V Nguyen
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Hannah Mae
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Dung V Le
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Silas Villas-Bôas
- Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
15
|
Qi H, Song K, Li C, Wang W, Li B, Li L, Zhang G. Construction and evaluation of a high-density SNP array for the Pacific oyster (Crassostrea gigas). PLoS One 2017; 12:e0174007. [PMID: 28328985 PMCID: PMC5362100 DOI: 10.1371/journal.pone.0174007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/01/2017] [Indexed: 12/31/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are widely used in genetics and genomics research. The Pacific oyster (Crassostrea gigas) is an economically and ecologically important marine bivalve, and it possesses one of the highest levels of genomic DNA variation among animal species. Pacific oyster SNPs have been extensively investigated; however, the mechanisms by which these SNPs may be used in a high-throughput, transferable, and economical manner remain to be elucidated. Here, we constructed an oyster 190K SNP array using Affymetrix Axiom genotyping technology. We designed 190,420 SNPs on the chip; these SNPs were selected from 54 million SNPs identified through re-sequencing of 472 Pacific oysters collected in China, Japan, Korea, and Canada. Our genotyping results indicated that 133,984 (70.4%) SNPs were polymorphic and successfully converted on the chip. The SNPs were distributed evenly throughout the oyster genome, located in 3,595 scaffolds with a length of ~509.4 million; the average interval spacing was 4,210 bp. In addition, 111,158 SNPs were distributed in 21,050 coding genes, with an average of 5.3 SNPs per gene. In comparison with genotypes obtained through re-sequencing, ~69% of the converted SNPs had a concordance rate of >0.971; the mean concordance rate was 0.966. Evaluation based on genotypes of full-sib family individuals revealed that the average genotyping accuracy rate was 0.975. Carrying 133 K polymorphic SNPs, our oyster 190K SNP array is the first commercially available high-density SNP chip for mollusks, with the highest throughput. It represents a valuable tool for oyster genome-wide association studies, fine linkage mapping, and population genetics.
Collapse
Affiliation(s)
- Haigang Qi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Chunyan Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Busu Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- * E-mail: (LL); (GZ)
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LL); (GZ)
| |
Collapse
|
16
|
Yan L, Su J, Wang Z, Yan X, Yu R, Ma P, Li Y, Du J. Transcriptomic analysis of Crassostrea sikamea × Crassostrea angulata hybrids in response to low salinity stress. PLoS One 2017; 12:e0171483. [PMID: 28182701 PMCID: PMC5300195 DOI: 10.1371/journal.pone.0171483] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/21/2017] [Indexed: 11/17/2022] Open
Abstract
Hybrid oysters often show heterosis in growth rate, weight, survival and adaptability to extremes of salinity. Oysters have also been used as model organisms to study the evolution of host-defense system. To gain comprehensive knowledge about various physiological processes in hybrid oysters under low salinity stress, we performed transcriptomic analysis of gill tissue of Crassostrea sikamea ♀ × Crassostrea angulata♂ hybrid using the deep-sequencing platform Illumina HiSeq. We exploited the high-throughput technique to delineate differentially expressed genes (DEGs) in oysters maintained in hypotonic conditions. A total of 199,391 high quality unigenes, with average length of 644 bp, were generated. Of these 35 and 31 genes showed up- and down-regulation, respectively. Functional categorization and pathway analysis of these DEGs revealed enrichment for immune mechanism, apoptosis, energy metabolism and osmoregulation under low salinity stress. The expression patterns of 41 DEGs in hybrids and their parental species were further analyzed by quantitative real-time PCR (qRT-PCR). This study will serve as a platform for subsequent gene expression analysis regarding environmental stress. Our findings will also provide valuable information about gene expression to better understand the immune mechanism, apoptosis, energy metabolism and osmoregulation in hybrid oysters under low salinity stress.
Collapse
Affiliation(s)
- Lulu Yan
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | - Jiaqi Su
- The Key Lab of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Zhaoping Wang
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | - Xiwu Yan
- Engineering Research Center of Shellfish Culture and Breeding of Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Ruihai Yu
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | - Peizhen Ma
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | - Yangchun Li
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | - Junpeng Du
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
17
|
Arzul I, Corbeil S, Morga B, Renault T. Viruses infecting marine molluscs. J Invertebr Pathol 2017; 147:118-135. [PMID: 28189502 DOI: 10.1016/j.jip.2017.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations.
Collapse
Affiliation(s)
- Isabelle Arzul
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Serge Corbeil
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong East, Victoria 3220, Australia
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Tristan Renault
- Ifremer, RBE, Centre Atlantique, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| |
Collapse
|
18
|
Pauletto M, Segarra A, Montagnani C, Quillien V, Faury N, Le Grand J, Miner P, Petton B, Labreuche Y, Fleury E, Fabioux C, Bargelloni L, Renault T, Huvet A. Long dsRNAs promote an anti-viral response in Pacific oyster hampering ostreid herpesvirus 1 replication. J Exp Biol 2017; 220:3671-3685. [DOI: 10.1242/jeb.156299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022]
Abstract
Double stranded RNA-mediated genetic interference (RNAi) is a widely used reverse genetic tool for determining the loss-of-function phenotype of a gene. Here, the possible induction of an immune response by long dsRNA was tested in a marine bivalve, i.e. Crassostrea gigas, as well as the specific role of the subunit 2 of the nuclear factor κB inhibitor (IκB2). This gene is a candidate of particular interest for functional investigations in the context of massive mortality oyster events as Cg-IκB2 mRNA levels exhibited significant variation depending on the amount of ostreid herpesvirus 1 (OsHV-1) DNA detected. In the present study, dsRNAs targeting Cg-IκB2 and Green Fluorescence Protein genes were injected in vivo into oysters before being challenged by OsHV-1. Survival appeared close to 100% in both dsRNA injected conditions associated with a low detection of viral DNA and a low expression of a panel of 39 OsHV-1 genes as compared to infected control. Long dsRNA molecules, both Cg-IκB2- and GFP-dsRNA, may have induced an anti-viral state controlling the OsHV-1 replication and precluding the understanding of the Cg-IκB2 specific role. Immune-related genes including Cg-IκB1, Cg-Rel1, Cg-IFI44, Cg-PKR, and Cg-IAP appeared activated in dsRNA-injected condition potentially hampering viral replication and thus conferring a better resistance to OsHV-1 infection. We revealed that long dsRNA-mediated genetic interference triggered an anti-viral state in the oyster, emphasizing the need of new reverse genetics tools for assessing immune gene function and avoiding off-target effects in bivalves.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Amélie Segarra
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, 17390 La Tremblade, France
| | - Caroline Montagnani
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Virgile Quillien
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Nicole Faury
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, 17390 La Tremblade, France
| | | | - Philippe Miner
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Bruno Petton
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Yannick Labreuche
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| | - Elodie Fleury
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Caroline Fabioux
- Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Tristan Renault
- Ifremer, Département Ressources Biologiques et Environnement, rue de l'Ile d'Yeu, 44000 Nantes, France
| | - Arnaud Huvet
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| |
Collapse
|
19
|
Kang SW, Patnaik BB, Hwang HJ, Park SY, Chung JM, Song DK, Patnaik HH, Lee JB, Kim C, Kim S, Park HS, Park SH, Park YS, Han YS, Lee JS, Lee YS. Sequencing and de novo assembly of visceral mass transcriptome of the critically endangered land snail Satsuma myomphala: Annotation and SSR discovery. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:77-89. [PMID: 28107688 DOI: 10.1016/j.cbd.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022]
Abstract
Satsuma myomphala is critically endangered through loss of natural habitats, predation by natural enemies, and indiscriminate collection. It is a protected species in Korea but lacks genomic resources for an understanding of varied functional processes attributable to evolutionary success under natural habitats. For assessing the genetic information of S. myomphala, we performed for the first time, de novo transcriptome sequencing and functional annotation of expressed sequences using Illumina Next-Generation Sequencing (NGS) platform and bioinformatics analysis. We identified 103,774 unigenes of which 37,959, 12,890, and 17,699 were annotated in the PANM (Protostome DB), Unigene, and COG (Clusters of Orthologous Groups) databases, respectively. In addition, 14,451 unigenes were predicted under Gene Ontology functional categories, with 4581 assigned to a single category. Furthermore, 3369 sequences with 646 having Enzyme Commission (EC) numbers were mapped to 122 pathways in the Kyoto Encyclopedia of Genes and Genomes Pathway database. The prominent protein domains included the Zinc finger (C2H2-like), Reverse Transcriptase, Thioredoxin-like fold, and RNA recognition motif domain. Many unigenes with homology to immunity, defense, and reproduction-related genes were screened in the transcriptome. We also detected 3120 putative simple sequence repeats (SSRs) encompassing dinucleotide to hexanucleotide repeat motifs from >1kb unigene sequences. A list of PCR primers of SSR loci have been identified to study the genetic polymorphisms. The transcriptome data represents a valuable resource for further investigations on the species genome structure and biology. The unigenes information and microsatellites would provide an indispensable tool for conservation of the species in natural and adaptive environments.
Collapse
Affiliation(s)
- Se Won Kang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Bharat Bhusan Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea; Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Bhubaneswar, Odisha, 751024, India
| | - Hee-Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - So Young Park
- Biodiversity Conservation & Change Research Division, Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Dae Kwon Song
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Hongray Howrelia Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Jae Bong Lee
- Korea Zoonosis Research Institute (KOZRI), Chonbuk National University, 820-120 Hana-ro, Iksan, Jeollabuk-do 54528, Republic of Korea
| | - Changmu Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea
| | - Soonok Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., Ltd., 621-6 Banseok-dong, Yuseong-gu, Daejeon 34069, Republic of Korea
| | - Seung-Hwan Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil (Shinjeong0dong), Jungeup-si, Jeollabuk-do,56212, Republic of Korea
| | - Young-Su Park
- Department of Nursing, College of Medicine, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jun Sang Lee
- Institute of Environmental Research, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do-si 243341, Republic of Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea.
| |
Collapse
|
20
|
Song X, Wang H, Xin L, Xu J, Jia Z, Wang L, Song L. The immunological capacity in the larvae of Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2016; 49:461-469. [PMID: 26806166 DOI: 10.1016/j.fsi.2016.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/05/2016] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
As the immune system has not fully developed during early developmental stages, bivalve larvae are more susceptible for pathogens, which frequently leads to the significant mortality in hatcheries. In the present study, the development of immune system and its response against bacteria challenge were investigated in order to characterize the repertoire of immunological capacity of Pacific oyster Crassostrea gigas during the ontogenesis. The phagocytosis was firstly observed in the early D-veliger larvae (17 hpf), especially in their velum site, which indicated the appearance of functional hemocytes during early D-veliger larvae stage. The whole-mount immunofluorescence assay of three pattern recognition receptors (integrin β-1, caspase-3 and C-type lectin 3) and one immune effector gene (IL17-5) was performed in blastula, early D-veliger and umbo larvae, suggested that velum and digestive gland were the potential sites of immune system in the larvae. The lowest activities of antioxidant enzymes (superoxide dismutase and catalase) and hydrolytic enzyme (lysozyme), as well as descended expression levels of 12 immune genes at the transition between embryogenesis and planktonic, indicated that the larvae at hatching (9 hpf) were in hypo-immunity. While the ascending activities of enzymes and expression levels of seven immune genes during the trochophore stage (15 hpf) suggested the initiation of immune system. The steadily increasing trend of all the 12 candidate genes at the early umbo larvae (120 h) hinted that the immune system was well developed at this stage. After bacterial challenge, some immune recognition (TLR4) and immune effector (IL17-5 and defh2) genes were activated in blastula stage (4 hpf), and other immune genes were up regulated in D-veliger larvae, indicating that the zygotic immune system could respond earlier against the bacterial challenge during its development. These results indicated that the cellular and humoral immune components appeared at trochophore stage, and the cellular immune system was activated with its occurrence, while the humoral immune system executed until the early umbo larval stage. The immune system emerged earlier to aid larvae in defending bacterial challenge during the early stages of oyster development.
Collapse
Affiliation(s)
- Xiaorui Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiachao Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
21
|
Green TJ, Chataway T, Melwani AR, Raftos DA. Proteomic analysis of hemolymph from poly(I:C)-stimulated Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2016; 48:39-42. [PMID: 26578249 DOI: 10.1016/j.fsi.2015.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 06/05/2023]
Abstract
Synthetic double stranded RNA (Poly(I:C)) injection of Crassostrea gigas results in a systemic antiviral response involving many evolutionary conserved antiviral effectors (ISGs). Compared to mammals, the timing of C. gigas ISG expression to viral or poly(I:C) injection is delayed (>12 h p.i.). It could be interpreted that a cytokine is responsible for the systemic, but delayed expression of C. gigas ISGs. We therefore analysed the acellular fraction of C. gigas hemolymph by two-dimensional electrophoresis (2-DE) to identify hemolymph proteins induced by poly(I:C). Poly(I:C) injection increased the relative intensity of four protein spots. These protein spots were identified by tandem mass spectrometry (LC-MS/MS) as a small heat shock protein (sHSP), poly(I:C)-inducible protein 1 (PIP1) and two isoforms of C1q-domain containing protein (C1qDC). RT-qPCR analysis confirmed that the genes encoding these proteins are induced in hemocytes of C. gigas injected with poly(I:C) (p < 0.05). Proteomic data from this experiment corroborates previous microarray and whole transcriptome studies that have reported up-regulation of C1qDC and sHSP during mass mortality events among farmed oysters.
Collapse
Affiliation(s)
- Timothy J Green
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia; Sydney Institute of Marine Science, Chowder Bay, Mosman, Sydney, NSW, Australia.
| | - Timothy Chataway
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Aroon R Melwani
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia; Sydney Institute of Marine Science, Chowder Bay, Mosman, Sydney, NSW, Australia
| | - David A Raftos
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia; Sydney Institute of Marine Science, Chowder Bay, Mosman, Sydney, NSW, Australia
| |
Collapse
|
22
|
Green TJ, Raftos D, Speck P, Montagnani C. Antiviral immunity in marine molluscs. J Gen Virol 2015; 96:2471-2482. [DOI: 10.1099/jgv.0.000244] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Timothy J. Green
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Australia
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - David Raftos
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Australia
| | - Peter Speck
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Caroline Montagnani
- IFREMER, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France
| |
Collapse
|
23
|
Guo X, He Y, Zhang L, Lelong C, Jouaux A. Immune and stress responses in oysters with insights on adaptation. FISH & SHELLFISH IMMUNOLOGY 2015; 46:107-119. [PMID: 25989624 DOI: 10.1016/j.fsi.2015.05.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/08/2015] [Accepted: 05/09/2015] [Indexed: 06/04/2023]
Abstract
Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments.
Collapse
Affiliation(s)
- Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08345, USA.
| | - Yan He
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Linlin Zhang
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Christophe Lelong
- UMR BOREA, "Biologie des Organismes et Ecosystèmes Aquatiques", MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 Caen, France; Centre de Référence sur l'Huître (CRH), Université de Caen Basse Normandie, Esplanade de la Paix, 14032 Caen, France
| | - Aude Jouaux
- UMR BOREA, "Biologie des Organismes et Ecosystèmes Aquatiques", MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 Caen, France; Centre de Référence sur l'Huître (CRH), Université de Caen Basse Normandie, Esplanade de la Paix, 14032 Caen, France
| |
Collapse
|
24
|
The use of -omic tools in the study of disease processes in marine bivalve mollusks. J Invertebr Pathol 2015; 131:137-54. [PMID: 26021714 DOI: 10.1016/j.jip.2015.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/09/2015] [Accepted: 05/05/2015] [Indexed: 01/01/2023]
Abstract
Our understanding of disease processes and host-pathogen interactions in model species has benefited greatly from the application of medium and high-throughput genomic, metagenomic, epigenomic, transcriptomic, and proteomic analyses. The rate at which new, low-cost, high-throughput -omic technologies are being developed has also led to an expansion in the number of studies aimed at gaining a better understanding of disease processes in bivalves. This review provides a catalogue of the genetic and -omic tools available for bivalve species and examples of how -omics has contributed to the advancement of marine bivalve disease research, with a special focus in the areas of immunity, bivalve-pathogen interactions, mechanisms of disease resistance and pathogen virulence, and disease diagnosis. The analysis of bivalve genomes and transcriptomes has revealed that many immune and stress-related gene families are expanded in the bivalve taxa examined thus far. In addition, the analysis of proteomes confirms that responses to infection are influenced by epigenetic, post-transcriptional, and post-translational modifications. The few studies performed in bivalves show that epigenetic modifications are non-random, suggesting a role for epigenetics in regulating the interactions between bivalves and their environments. Despite the progress -omic tools have enabled in the field of marine bivalve disease processes, there is much more work to be done. To date, only three bivalve genomes have been sequenced completely, with assembly status at different levels of completion. Transcriptome datasets are relatively easy and inexpensive to generate, but their interpretation will benefit greatly from high quality genome assemblies and improved data analysis pipelines. Finally, metagenomic, epigenomic, proteomic, and metabolomic studies focused on bivalve disease processes are currently limited but their expansion should be facilitated as more transcriptome datasets and complete genome sequences become available for marine bivalve species.
Collapse
|
25
|
Immune responses to infectious diseases in bivalves. J Invertebr Pathol 2015; 131:121-36. [PMID: 26003824 DOI: 10.1016/j.jip.2015.05.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/07/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022]
Abstract
Many species of bivalve mollusks (phylum Mollusca, class Bivalvia) are important in fisheries and aquaculture, whilst others are critical to ecosystem structure and function. These crucial roles mean that considerable attention has been paid to the immune responses of bivalves such as oysters, clams and mussels against infectious diseases that can threaten the viability of entire populations. As with many invertebrates, bivalves have a comprehensive repertoire of immune cells, genes and proteins. Hemocytes represent the backbone of the bivalve immune system. However, it is clear that mucosal tissues at the interface with the environment also play a critical role in host defense. Bivalve immune cells express a range of pattern recognition receptors and are highly responsive to the recognition of microbe-associated molecular patterns. Their responses to infection include chemotaxis, phagolysosomal activity, encapsulation, complex intracellular signaling and transcriptional activity, apoptosis, and the induction of anti-viral states. Bivalves also express a range of inducible extracellular recognition and effector proteins, such as lectins, peptidoglycan-recognition proteins, thioester bearing proteins, lipopolysaccharide and β1,3-glucan-binding proteins, fibrinogen-related proteins (FREPs) and antimicrobial proteins. The identification of FREPs and other highly diversified gene families in bivalves leaves open the possibility that some of their responses to infection may involve a high degree of pathogen specificity and immune priming. The current review article provides a comprehensive, but not exhaustive, description of these factors and how they are regulated by infectious agents. It concludes that one of the remaining challenges is to use new "omics" technologies to understand how this diverse array of factors is integrated and controlled during infection.
Collapse
|
26
|
Wei L, Wang Q, Wu H, Ji C, Zhao J. Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposure. J Proteomics 2015; 112:83-94. [DOI: 10.1016/j.jprot.2014.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/25/2014] [Accepted: 08/11/2014] [Indexed: 01/11/2023]
|
27
|
Cross I, Merlo MA, Rodríguez ME, Portela-Bens S, Rebordinos L. Adaptation to abiotic stress in the oyster Crassostrea angulata relays on genetic polymorphisms. FISH & SHELLFISH IMMUNOLOGY 2014; 41:618-624. [PMID: 25462456 DOI: 10.1016/j.fsi.2014.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
Here we describe the whole genome re-sequencing of the Portuguese oyster Crassostrea angulata, an edible cupped oyster of major commercial importance with an important role as biosensor of coastal water pollution. We sequenced the genome of the C. angulata to 29.3-fold coverage using ABI SOLID system. Comparisons of the sequences with the reference assembly of the Pacific oyster (Crassostrea gigas), yielded 129 million SNPs, 151,620 from which were located in 20,908 genes from the C. gigas database. The analysis of Gene Ontology (GO) terms associated with gene regions containing SNPs, revealed that significant GO terms showing differences between the two oyster species, were related to activities of response to stress caused both by drying and by metal contamination. In the Biological Process domain, the GO terms ion transport, phosphorylation and proteolysis processes, among others, showed many polymorphic genes in C. angulata. These processes are related to combating genotoxic and hypo-osmotic stress in the oyster. It is noteworthy that more than 200 polymorphic genes were associated with DNA repair processes. These results reveal that most of the gene polymorphisms observed in C. angulata are associated with processes related to genome adaptation to abiotic stress in estuarine regions and support that genetic polymorphisms may be the base to the observed ability of C. angulata to retain the phenomenally high concentrations of toxic heavy metals. Our results also provide the framework for future investigations to establish the molecular basis of phenotypic variation of adaptive traits and should contribute to the management of the species' genetic resources.
Collapse
Affiliation(s)
- Ismael Cross
- Laboratory of Genetics, Faculty of Marine and Environmental Sciences, CACYTMAR, University of Cadiz, Campus Río San Pedro, 11510 Puerto Real, Cadiz, Spain.
| | | | | | | | | |
Collapse
|
28
|
Nikapitiya C, McDowell IC, Villamil L, Muñoz P, Sohn S, Gomez-Chiarri M. Identification of potential general markers of disease resistance in American oysters, Crassostrea virginica through gene expression studies. FISH & SHELLFISH IMMUNOLOGY 2014; 41:27-36. [PMID: 24973516 DOI: 10.1016/j.fsi.2014.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
Several diseases have a significant impact on American oyster populations in the Atlantic coasts of North America. Knowledge about the responses of oysters to pathogenic challenge could help in identifying potential markers of disease resistance and biomarkers of the health status of an oyster population. A previous analysis of the transcriptome of resistant and susceptible American oysters in response to challenge with the bacterial pathogen Roseovarius crassostreae, as well as sequencing of suppression subtractive hybridization libraries from oysters challenged with the protozoan parasite Perkinsus marinus, provided a list of genes potentially involved in disease resistance or susceptibility. We investigated the patterns of inducible gene expression of several of these genes in response to experimental challenge with the oyster pathogens R. crassostreae, Vibrio tubiashii, and P. marinus. Oysters showing differential susceptibility to R. crassostreae demonstrated differential patterns of expression of genes coding for immune (serine protease inhibitor-1, SPI1) and stress-related (heat shock protein 70, HSP70; arginine kinase) proteins 30 days after challenge with this bacterial pathogen. Differential patterns of expression of immune (spi1, galectin and a matrix metalloproteinase) and stress-related (hsp70, histone H4, and arginine kinase) genes was observed in hemocytes from adult oysters challenged with P. marinus, but not with V. tubiashii. While levels of spi1 expression in hemocytes collected 8 and 21 days after P. marinus challenge were negatively correlated with parasite load in oysters tissues at the end of the challenge (62 days), levels of expression of hsp70 in hemocytes collected 1-day after challenge were positively correlated with oyster parasite load at 62 days. Our results confirm previous research on the role of serine protease inhibitor-1 in immunity and disease resistance in oysters. They also suggest that HSP70 and histone H4 could be used as a markers of health status or disease susceptibility in oysters.
Collapse
Affiliation(s)
- Chamilani Nikapitiya
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, CBLS169, Kingston, RI 02881, USA
| | - Ian C McDowell
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, CBLS169, Kingston, RI 02881, USA
| | - Luisa Villamil
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, CBLS169, Kingston, RI 02881, USA
| | - Pilar Muñoz
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, CBLS169, Kingston, RI 02881, USA
| | - SaeBom Sohn
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, CBLS169, Kingston, RI 02881, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, CBLS169, Kingston, RI 02881, USA.
| |
Collapse
|
29
|
Corporeau C, Tamayo D, Pernet F, Quéré C, Madec S. Proteomic signatures of the oyster metabolic response to herpesvirus OsHV-1 μVar infection. J Proteomics 2014; 109:176-87. [DOI: 10.1016/j.jprot.2014.06.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/18/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
|
30
|
Segarra A, Mauduit F, Faury N, Trancart S, Dégremont L, Tourbiez D, Haffner P, Barbosa-Solomieu V, Pépin JF, Travers MA, Renault T. Dual transcriptomics of virus-host interactions: comparing two Pacific oyster families presenting contrasted susceptibility to ostreid herpesvirus 1. BMC Genomics 2014; 15:580. [PMID: 25012085 PMCID: PMC4111845 DOI: 10.1186/1471-2164-15-580] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/01/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Massive mortality outbreaks affecting Pacific oyster (Crassostrea gigas) spat in various countries have been associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). However, few studies have been performed to understand and follow viral gene expression, as it has been done in vertebrate herpesviruses. In this work, experimental infection trials of C. gigas spat with OsHV-1 were conducted in order to test the susceptibility of several bi-parental oyster families to this virus and to analyze host-pathogen interactions using in vivo transcriptomic approaches. RESULTS The divergent response of these oyster families in terms of mortality confirmed that susceptibility to OsHV-1 infection has a significant genetic component. Two families with contrasted survival rates were selected. A total of 39 viral genes and five host genes were monitored by real-time PCR. Initial results provided information on (i) the virus cycle of OsHV-1 based on the kinetics of viral DNA replication and transcription and (ii) host defense mechanisms against the virus. CONCLUSIONS In the two selected families, the detected amounts of viral DNA and RNA were significantly different. This result suggests that Pacific oysters are genetically diverse in terms of their susceptibility to OsHV-1 infection. This contrasted susceptibility was associated with dissimilar host gene expression profiles. Moreover, the present study showed a positive correlation between viral DNA amounts and the level of expression of selected oyster genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Tristan Renault
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Unité Santé Génétique et Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390 La Tremblade, France.
| |
Collapse
|
31
|
Wang J, Qi H, Li L, Que H, Wang D, Zhang G. Discovery and validation of genic single nucleotide polymorphisms in the Pacific oyster Crassostrea gigas. Mol Ecol Resour 2014; 15:123-35. [PMID: 24823694 DOI: 10.1111/1755-0998.12278] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 12/01/2022]
Abstract
The economic and ecological importance of the oyster necessitates further research on the molecular mechanisms, which both regulate the commercially important traits of the oyster and help it to survive in the variable marine environment. Single nucleotide polymorphisms (SNPs) have been widely used to assess genetic variation and identify genes underlying target traits. In addition, high-resolution melting (HRM) analysis is a potentially powerful method for validating candidate SNPs. In this study, we adopted a rapid and efficient pipeline for the screening and validation of SNPs in the genic region of Crassostrea gigas based on transcriptome sequencing and HRM analysis. Transcriptomes of three wild oyster populations were sequenced using Illumina sequencing technology. In total, 50-60 million short reads, corresponding to 4.5-5.4 Gbp, from each population were aligned to the oyster genome, and 5.8 × 10(5) SNPs were putatively identified, resulting in a predicted SNP every 47 nucleotides on average. The putative SNPs were unevenly distributed in the genome and high-density (≥2%), nonsynonymous coding SNPs were enriched in genes related to apoptosis and responses to biotic stimuli. Subsequently, 1,671 loci were detected by HRM analysis, accounting for 64.7% of the total selected candidate primers, and finally, 1,301 polymorphic SNP markers were developed based on HRM analysis. All of the validated SNPs were distributed into 897 genes and located in 672 scaffolds, and 275 of these genes were stress inducible under unfavourable salinity, temperature, and exposure to air and heavy metals. The validated SNPs in this study provide valuable molecular markers for genetic mapping and characterization of important traits in oysters.
Collapse
Affiliation(s)
- Jiafeng Wang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Affiliated Hospital of Guangdong Medical College, Guangdong, 524001, China
| | | | | | | | | | | |
Collapse
|
32
|
Contrasted survival under field or controlled conditions displays associations between mRNA levels of candidate genes and response to OsHV-1 infection in the Pacific oyster Crassostrea gigas. Mar Genomics 2014; 15:95-102. [DOI: 10.1016/j.margen.2014.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 11/22/2022]
|
33
|
Limtipsuntorn U, Haga Y, Kondo H, Hirono I, Satoh S. Microarray analysis of hepatic gene expression in juvenile Japanese flounder Paralichthys olivaceus fed diets supplemented with fish or vegetable oils. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:88-102. [PMID: 24052493 DOI: 10.1007/s10126-013-9535-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/15/2013] [Indexed: 05/25/2023]
Abstract
Gene expression profiling was performed in Japanese flounder Paralichthys olivaceus fed diets supplemented with fish oil (FO), linseed oil (LO), or olive oil (OO) for 6 weeks. The LO and OO groups showed significantly retarded growth, lower feed intake, lower protein efficiency ratio, and lower hepatosomatic index (P < 0.05). Liver fatty acid composition reflected the dietary fatty acid composition. Microarray analysis revealed that dietary n - 3 highly unsaturated fatty acid (HUFA) deficiency affected 169 transcripts. In the LO group, 57 genes were up-regulated and 38 genes were down-regulated, whereas in the OO group nine genes were up-regulated and 87 genes were down-regulated. Analysis of the functional annotations suggested that dietary n - 3 HUFA affected genes involved in signal transduction (23.2 %), cellular processes (21.1 %), metabolism (including glucose, lipid, and nucleobase; 15.5 %), transport (11.3 %), regulation of transcription (10.5 %), and immune response (4.2 %). Several genes encoding serine/threonine kinases such as protein kinase C and calmodulin-dependent kinase and nuclear hormone receptors such as vitamin D receptor, retinoic acid receptor, and receptors for cytokines (bone morphogenic protein and transforming growth factor β) were affected. Among 169 transcripts, 22 genes were affected in both LO and OO groups. The present study identified several genes involved in n - 3 HUFA deficiency-sensitive pathways, which will be useful for selective breeding of flounder strains able to adapt to n - 3 HUFA deficiency.
Collapse
Affiliation(s)
- Ubonrat Limtipsuntorn
- Department of Marine Bioscience, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan, Minato 4-5-7, Tokyo, 108-8477, Japan
| | | | | | | | | |
Collapse
|
34
|
Wegner KM, Volkenborn N, Peter H, Eiler A. Disturbance induced decoupling between host genetics and composition of the associated microbiome. BMC Microbiol 2013; 13:252. [PMID: 24206899 PMCID: PMC3840651 DOI: 10.1186/1471-2180-13-252] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/01/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. RESULTS While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. CONCLUSION The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.
Collapse
Affiliation(s)
- Karl Mathias Wegner
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Coastal Ecology, Wadden Sea Station Sylt, Hafenstrasse 43, 25992, List/Sylt, Germany.
| | | | | | | |
Collapse
|
35
|
Suárez-Ulloa V, Fernández-Tajes J, Manfrin C, Gerdol M, Venier P, Eirín-López JM. Bivalve omics: state of the art and potential applications for the biomonitoring of harmful marine compounds. Mar Drugs 2013; 11:4370-89. [PMID: 24189277 PMCID: PMC3853733 DOI: 10.3390/md11114370] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 12/26/2022] Open
Abstract
The extraordinary progress experienced by sequencing technologies and bioinformatics has made the development of omic studies virtually ubiquitous in all fields of life sciences nowadays. However, scientific attention has been quite unevenly distributed throughout the different branches of the tree of life, leaving molluscs, one of the most diverse animal groups, relatively unexplored and without representation within the narrow collection of well established model organisms. Within this Phylum, bivalve molluscs play a fundamental role in the functioning of the marine ecosystem, constitute very valuable commercial resources in aquaculture, and have been widely used as sentinel organisms in the biomonitoring of marine pollution. Yet, it has only been very recently that this complex group of organisms became a preferential subject for omic studies, posing new challenges for their integrative characterization. The present contribution aims to give a detailed insight into the state of the art of the omic studies and functional information analysis of bivalve molluscs, providing a timely perspective on the available data resources and on the current and prospective applications for the biomonitoring of harmful marine compounds.
Collapse
Affiliation(s)
- Victoria Suárez-Ulloa
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
| | - Juan Fernández-Tajes
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; E-Mail:
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Paola Venier
- Department of Biology, University of Padova, Padova 35121, Italy; E-Mail:
| | - José M. Eirín-López
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-305-919-4000; Fax: +1-305-919-4030
| |
Collapse
|
36
|
Schmitt P, Santini A, Vergnes A, Degremont L, de Lorgeril J. Sequence polymorphism and expression variability of Crassostrea gigas immune related genes discriminate two oyster lines contrasted in term of resistance to summer mortalities. PLoS One 2013; 8:e75900. [PMID: 24086661 PMCID: PMC3784401 DOI: 10.1371/journal.pone.0075900] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/18/2013] [Indexed: 12/15/2022] Open
Abstract
Summer mortalities of Crassostreagigas are a major concern in oyster aquaculture. They are the result of a complex interaction between the host, pathogens and environmental factors. Oyster genetics have been identified as an essential determinant of oyster susceptibility to summer mortalities. As the capability of oysters to circumvent diseases depends in part on their immune defenses, we aimed to analyze the gene expression and sequence polymorphism of 42 immune related genes in two oyster lines selected for their “High” (H) and “Low” (L) survival to summer mortalities. Results showed that the variability of gene expression and the sequence polymorphism acting on particular genes could enable the discrimination between H and L oyster lines. Besides, a higher sequence polymorphism was observed on the L line affecting 11 of the 42 analyzed genes. By analyzing gene expression, sequence polymorphism and gene copy number of two antimicrobial peptide families (Cg-Defs and Cg-Prp), and an antimicrobial protein (Cg-BPI) on individual oysters, we showed that gene expression and/or sequence polymorphism could also discriminate H and L oyster lines. Finally, we observed a positive correlation between the gene expression and the gene copy number of antimicrobials and that sequence polymorphism could be encoded in the genome. Overall, this study gives new insights in the relationship between oyster immunity and divergent phenotypes, and discusses the potential implication of antimicrobial diversity in oyster survival to summer mortalities.
Collapse
Affiliation(s)
- Paulina Schmitt
- Institut Français de Recherche pour l’Exploitation de la Mer, Centre National de la Recherche Scientifique, Université de Montpellier 2, Université de Montpellier 1, Institut de la Recherche pour le Développement, UMR 5119 "Ecologie des Systèmes Marins Côtiers", Montpellier, France
- * E-mail:
| | - Adrien Santini
- Institut Français de Recherche pour l’Exploitation de la Mer, Centre National de la Recherche Scientifique, Université de Montpellier 2, Université de Montpellier 1, Institut de la Recherche pour le Développement, UMR 5119 "Ecologie des Systèmes Marins Côtiers", Montpellier, France
| | - Agnès Vergnes
- Institut Français de Recherche pour l’Exploitation de la Mer, Centre National de la Recherche Scientifique, Université de Montpellier 2, Université de Montpellier 1, Institut de la Recherche pour le Développement, UMR 5119 "Ecologie des Systèmes Marins Côtiers", Montpellier, France
| | - Lionel Degremont
- Institut Français de Recherche pour l’Exploitation de la Mer, Laboratoire de Génétique et de Pathologie des Mollusques Marins, La Tremblade, France
| | - Julien de Lorgeril
- Institut Français de Recherche pour l’Exploitation de la Mer, Laboratoire de Génétique et de Pathologie des Mollusques Marins, La Tremblade, France
- * E-mail:
| |
Collapse
|
37
|
Green TJ, Montagnani C. Poly I:C induces a protective antiviral immune response in the Pacific oyster (Crassostrea gigas) against subsequent challenge with Ostreid herpesvirus (OsHV-1 μvar). FISH & SHELLFISH IMMUNOLOGY 2013; 35:382-388. [PMID: 23685009 DOI: 10.1016/j.fsi.2013.04.051] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/19/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
In-vivo studies were carried out to investigate the protective effect of a synthetic viral analogue (poly I:C) against Ostreid herpes virus (OsHV-1 μvar). Pacific oysters (Crassostrea gigas) were immune-primed by intramuscular injection of 240 μg of poly I:C or sterile seawater at 1 day prior to infection with OsHV-1 μvar. Poly I:C injection induced an antiviral state in C. gigas as the percentage of viral-infected oysters at 48 h post infection was significantly lower in the poly I:C treatment (11%) compared to seawater controls (100%). In an additional experiment, we demonstrated that the protective role of poly I:C is reproducible and elicits a specific antiviral response as immune-priming with heat-killed Vibrio splendidus provided no protection against subsequent viral infection. In both experiments, genes homologous to a toll-like receptor (TLR), MyD88, interferon regulatory factor (IRF) and protein kinase R (PKR) were up-regulated in oysters immune-primed with poly I:C compared to seawater controls (p < 0.05). The MyD88, IRF and PKR genes were also significantly up-regulated in response to OsHV-1 μvar infection (p < 0.05), which is suggestive that they are implicated in the antiviral response of C. gigas. Our results demonstrate that C. gigas can recognise double-strand RNA to initiate an innate immune response that inhibits viral infection. The observed response has striking similarities to the hallmarks of the type-1 interferon response of vertebrates.
Collapse
Affiliation(s)
- Timothy J Green
- Ifremer, UMR 5119 "Ecology of Coastal Marine Systems", Université Montpellier 2, Place Eugène Bataillon, CC80, 30495 Montpellier Cedex 05, France.
| | | |
Collapse
|
38
|
Genard B, Miner P, Nicolas JL, Moraga D, Boudry P, Pernet F, Tremblay R. Integrative study of physiological changes associated with bacterial infection in Pacific oyster larvae. PLoS One 2013; 8:e64534. [PMID: 23704993 PMCID: PMC3660371 DOI: 10.1371/journal.pone.0064534] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 04/16/2013] [Indexed: 12/30/2022] Open
Abstract
Background Bacterial infections are common in bivalve larvae and can lead to significant mortality, notably in hatcheries. Numerous studies have identified the pathogenic bacteria involved in such mortalities, but physiological changes associated with pathogen exposure at larval stage are still poorly understood. In the present study, we used an integrative approach including physiological, enzymatic, biochemical, and molecular analyses to investigate changes in energy metabolism, lipid remodelling, cellular stress, and immune status of Crassostrea gigas larvae subjected to experimental infection with the pathogenic bacteria Vibrio coralliilyticus. Findings Our results showed that V. coralliilyticus exposure induced (1) limited but significant increase of larvae mortality compared with controls, (2) declined feeding activity, which resulted in energy status changes (i.e. reserve consumption, β-oxidation, decline of metabolic rate), (3) fatty acid remodeling of polar lipids (changes in phosphatidylinositol and lysophosphatidylcholine composition`, non-methylene–interrupted fatty acids accumulation, lower content of major C20 polyunsaturated fatty acids as well as activation of desaturases, phospholipase and lipoxygenase), (4) activation of antioxidant defenses (catalase, superoxide dismutase, peroxiredoxin) and cytoprotective processes (heat shock protein 70, pernin), and (5) activation of the immune response (non-self recognition, NF-κκ signaling pathway, haematopoiesis, eiconosoids and lysophosphatidyl acid synthesis, inhibitor of metalloproteinase and antimicrobial peptides). Conclusion Overall, our results allowed us to propose an integrative view of changes induced by a bacterial infection in Pacific oyster larvae, opening new perspectives on the response of marine bivalve larvae to infections.
Collapse
Affiliation(s)
- Bertrand Genard
- Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
39
|
Timmins-Schiffman E, Nunn BL, Goodlett DR, Roberts SB. Shotgun proteomics as a viable approach for biological discovery in the Pacific oyster. CONSERVATION PHYSIOLOGY 2013; 1:cot009. [PMID: 27293593 PMCID: PMC4732435 DOI: 10.1093/conphys/cot009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 05/03/2023]
Abstract
Shotgun proteomics offers an efficient means to characterize proteins in a complex mixture, particularly when sufficient genomic resources are available. In order to assess the practical application of shotgun proteomics in the Pacific oyster (Crassostrea gigas), liquid chromatography coupled with tandem mass spectrometry was used to characterize the gill proteome. Using information from the recently published Pacific oyster genome, 1043 proteins were identified. Biological samples (n = 4) and corresponding technical replicates (three) were similar in both specific proteins identified and expression, as determined by normalized spectral abundance factor. A majority of the proteins identified (703) were present in all biological samples. Functional analysis of the protein repertoire illustrates that these proteins represent a wide range of biological processes, supporting the dynamic function of the gill. These insights are important for understanding environmental influences on the oyster, because the gill tissue acts as the interface between the oyster and its environment. In silico analysis indicated that this sequencing effort identified a large proportion of the complete gill proteome. Together, these data demonstrate that shotgun sequencing is a viable approach for biological discovery and will play an important role in future studies of oyster physiology.
Collapse
Affiliation(s)
- Emma Timmins-Schiffman
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195, USA
| | - Brook L. Nunn
- Genomic Sciences, University of Washington, Box 355065, Seattle, WA 98195, USA
| | - David R. Goodlett
- Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, USA
| | - Steven B. Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195, USA
- Corresponding author: School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195, USA. Tel: +1 206 685 3742.
| |
Collapse
|
40
|
Béguel JP, Huvet A, Quillien V, Lambert C, Fabioux C. Study of the antioxidant capacity in gills of the Pacific oyster Crassostrea gigas in link with its reproductive investment. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:63-71. [PMID: 23073513 DOI: 10.1016/j.cbpc.2012.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
Energy allocation principle is a core element of life-history theory in which "the cost of reproduction" corresponds to an acceleration of senescence caused by an increase in reproductive investment. In the "theory of aging", senescence is mainly due to the degradation of lipids, proteins and DNA by reactive oxygen species (ROS), by-products of oxidative metabolism. Some studies have shown that oxidative stress susceptibility could be a cost of reproduction. The present study investigates the effect of reproductive investment on antioxidant capacity in the gills of a species with a very high reproductive investment, the Pacific oyster Crassostrea gigas. We used RNA interference targeting the oyster vasa-like gene (Oyvlg) to produce oysters with contrasted reproductive investment. Antioxidant capacity was studied by measuring the mRNA levels of genes encoding major antioxidant enzymes, and the activity of these enzymes. The highest reproductive investment was associated with the highest transcript levels for glutathione peroxidase and extra-cellular and mitochondrial superoxide dismutase. In contrast, lipid peroxidation did not show any sign of oxidative damage whatever the reproductive investment. Up-regulation of certain genes encoding enzymes involved in the first step of ROS detoxification could therefore be a part of the organism's strategy for managing the pro-oxidant species produced by heavy reproductive investment.
Collapse
Affiliation(s)
- Jean-Philippe Béguel
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR CNRS/UBO/IRD/IFREMER, Plouzané, France
| | | | | | | | | |
Collapse
|
41
|
Zhao X, Yu H, Kong L, Li Q. Transcriptomic responses to salinity stress in the Pacific oyster Crassostrea gigas. PLoS One 2012; 7:e46244. [PMID: 23029449 PMCID: PMC3459877 DOI: 10.1371/journal.pone.0046244] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/28/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low salinity is one of the main factors limiting the distribution and survival of marine species. As a euryhaline species, the Pacific oyster Crassostrea gigas is considered to be tolerant to relative low salinity. The genes that regulate C. gigas responses to osmotic stress were monitored using the next-generation sequencing of whole transcriptome with samples taken from gills. By RNAseq technology, transcript catalogs of up- and down-regulated genes were generated from the oysters exposed to low and optimal salinity seawater. METHODOLOGY/PRINCIPAL FINDINGS Through Illumina sequencing, we reported 1665 up-regulated transcripts and 1815 down-regulated transcripts. A total of 45771 protein-coding contigs were identified from two groups based on sequence similarities with known proteins. As determined by GO annotation and KEGG pathway mapping, functional annotation of the genes recovered diverse biological functions and processes. The genes that changed expression significantly were highly represented in cellular process and regulation of biological process, intracellular and cell, binding and protein binding according to GO annotation. The results highlighted genes related to osmoregulation, signaling and interactions of osmotic stress response, anti-apoptotic reactions as well as immune response, cell adhesion and communication, cytoskeleton and cell cycle. CONCLUSIONS/SIGNIFICANCE Through more than 1.5 million sequence reads and the expression data of the two libraries, the study provided some useful insights into signal transduction pathways in oysters and offered a number of candidate genes as potential markers of tolerance to hypoosmotic stress for oysters. In addition, the characterization of C. gigas transcriptome will not only provide a better understanding of the molecular mechanisms about the response to osmotic stress of the oysters, but also facilitate research into biological processes to find underlying physiological adaptations to hypoosmotic shock for marine invertebrates.
Collapse
Affiliation(s)
| | | | | | - Qi Li
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
42
|
A hemocyte gene expression signature correlated with predictive capacity of oysters to survive Vibrio infections. BMC Genomics 2012; 13:252. [PMID: 22708697 PMCID: PMC3418554 DOI: 10.1186/1471-2164-13-252] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/18/2012] [Indexed: 01/07/2023] Open
Abstract
Background The complex balance between environmental and host factors is an important determinant of susceptibility to infection. Disturbances of this equilibrium may result in multifactorial diseases as illustrated by the summer mortality syndrome, a worldwide and complex phenomenon that affects the oysters, Crassostrea gigas. The summer mortality syndrome reveals a physiological intolerance making this oyster species susceptible to diseases. Exploration of genetic basis governing the oyster resistance or susceptibility to infections is thus a major goal for understanding field mortality events. In this context, we used high-throughput genomic approaches to identify genetic traits that may characterize inherent survival capacities in C. gigas. Results Using digital gene expression (DGE), we analyzed the transcriptomes of hemocytes (immunocompetent cells) of oysters able or not able to survive infections by Vibrio species shown to be involved in summer mortalities. Hemocytes were nonlethally collected from oysters before Vibrio experimental infection, and two DGE libraries were generated from individuals that survived or did not survive. Exploration of DGE data and microfluidic qPCR analyses at individual level showed an extraordinary polymorphism in gene expressions, but also a set of hemocyte-expressed genes whose basal mRNA levels discriminate oyster capacity to survive infections by the pathogenic V. splendidus LGP32. Finally, we identified a signature of 14 genes that predicted oyster survival capacity. Their expressions are likely driven by distinct transcriptional regulation processes associated or not associated to gene copy number variation (CNV). Conclusions We provide here for the first time in oyster a gene expression survival signature that represents a useful tool for understanding mortality events and for assessing genetic traits of interest for disease resistance selection programs.
Collapse
|
43
|
Schmitt P, Rosa RD, Duperthuy M, de Lorgeril J, Bachère E, Destoumieux-Garzón D. The Antimicrobial Defense of the Pacific Oyster, Crassostrea gigas. How Diversity may Compensate for Scarcity in the Regulation of Resident/Pathogenic Microflora. Front Microbiol 2012; 3:160. [PMID: 22783227 PMCID: PMC3390580 DOI: 10.3389/fmicb.2012.00160] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/10/2012] [Indexed: 12/31/2022] Open
Abstract
Healthy oysters are inhabited by abundant microbial communities that vary with environmental conditions and coexist with immunocompetent cells in the circulatory system. In Crassostrea gigas oysters, the antimicrobial response, which is believed to control pathogens and commensals, relies on potent oxygen-dependent reactions and on antimicrobial peptides/proteins (AMPs) produced at low concentrations by epithelial cells and/or circulating hemocytes. In non-diseased oysters, hemocytes express basal levels of defensins (Cg-Defs) and proline-rich peptides (Cg-Prps). When the bacterial load dramatically increases in oyster tissues, both AMP families are driven to sites of infection by major hemocyte movements, together with bactericidal permeability/increasing proteins (Cg-BPIs) and given forms of big defensins (Cg-BigDef), whose expression in hemocytes is induced by infection. Co-localization of AMPs at sites of infection could be determinant in limiting invasion as synergies take place between peptide families, a phenomenon which is potentiated by the considerable diversity of AMP sequences. Besides, diversity occurs at the level of oyster AMP mechanisms of action, which range from membrane lysis for Cg-BPI to inhibition of metabolic pathways for Cg-Defs. The combination of such different mechanisms of action may account for the synergistic activities observed and compensate for the low peptide concentrations in C. gigas cells and tissues. To overcome the oyster antimicrobial response, oyster pathogens have developed subtle mechanisms of resistance and evasion. Thus, some Vibrio strains pathogenic for oysters are equipped with AMP-sensing systems that trigger resistance. More generally, the known oyster pathogenic vibrios have evolved strategies to evade intracellular killing through phagocytosis and the associated oxidative burst.
Collapse
Affiliation(s)
- Paulina Schmitt
- Ecology of Coastal Marine Systems, UMR 5119, CNRS, Université Montpellier 2, IRD, Ifremer, and Université Montpellier 1, Place Eugène Bataillon Montpellier, France
| | | | | | | | | | | |
Collapse
|
44
|
Dheilly NM, Lelong C, Huvet A, Kellner K, Dubos MP, Riviere G, Boudry P, Favrel P. Gametogenesis in the Pacific oyster Crassostrea gigas: a microarrays-based analysis identifies sex and stage specific genes. PLoS One 2012; 7:e36353. [PMID: 22590533 PMCID: PMC3348941 DOI: 10.1371/journal.pone.0036353] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
Background The Pacific oyster Crassostrea gigas (Mollusca, Lophotrochozoa) is an alternative and irregular protandrous hermaphrodite: most individuals mature first as males and then change sex several times. Little is known about genetic and phenotypic basis of sex differentiation in oysters, and little more about the molecular pathways regulating reproduction. We have recently developed and validated a microarray containing 31,918 oligomers (Dheilly et al., 2011) representing the oyster transcriptome. The application of this microarray to the study of mollusk gametogenesis should provide a better understanding of the key factors involved in sex differentiation and the regulation of oyster reproduction. Methodology/Principal Findings Gene expression was studied in gonads of oysters cultured over a yearly reproductive cycle. Principal component analysis and hierarchical clustering showed a significant divergence in gene expression patterns of males and females coinciding with the start of gonial mitosis. ANOVA analysis of the data revealed 2,482 genes differentially expressed during the course of males and/or females gametogenesis. The expression of 434 genes could be localized in either germ cells or somatic cells of the gonad by comparing the transcriptome of female gonads to the transcriptome of stripped oocytes and somatic tissues. Analysis of the annotated genes revealed conserved molecular mechanisms between mollusks and mammals: genes involved in chromatin condensation, DNA replication and repair, mitosis and meiosis regulation, transcription, translation and apoptosis were expressed in both male and female gonads. Most interestingly, early expressed male-specific genes included bindin and a dpy-30 homolog and female-specific genes included foxL2, nanos homolog 3, a pancreatic lipase related protein, cd63 and vitellogenin. Further functional analyses are now required in order to investigate their role in sex differentiation in oysters. Conclusions/Significance This study allowed us to identify potential markers of early sex differentiation in the oyster C. gigas, an alternative hermaphrodite mollusk. We also provided new highly valuable information on genes specifically expressed by mature spermatozoids and mature oocytes.
Collapse
Affiliation(s)
- Nolwenn M Dheilly
- Université de Caen Basse-Normandie, Biologie des Organismes Marins et des Ecosystèmes Associés, IBFA, SFR ICORE, Caen, France.
| | | | | | | | | | | | | | | |
Collapse
|