1
|
He S, Xu S, He Z, Hao X. Genome-wide identification, characterization and expression analysis of the bZIP transcription factors in garlic ( Allium sativum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1391248. [PMID: 39148621 PMCID: PMC11324451 DOI: 10.3389/fpls.2024.1391248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Introduction The bZIP genes (bZIPs) are essential in numerous biological processes, including development and stress responses. Despite extensive research on bZIPs in many plants, a comprehensive genome-wide analysis of bZIPs in garlic has yet to be undertaken. Methods In this study, we identified and classified 64 AsbZIP genes (AsbZIPs) into 10 subfamilies. A systematic analysis of the evolutionary characteristics of these AsbZIPs, including chromosome location, gene structure, conserved motifs, and gene duplication, was conducted. Furthermore, we also examined the nucleotide diversity, cis-acting elements, and expression profiles of AsbZIPs in various tissues and under different abiotic stresses and hormone treatments. Results and Discussion Our findings revealed that gene replication plays a crucial role in the expansion of AsbZIPs, with a minor genetic bottleneck observed during domestication. Moreover, the identification of cis-acting elements suggested potential associations of AsbZIPs with garlic development, hormone, and stress responses. Several AsbZIPs exhibited tissue-preferential and stress/hormone-responsive expression patterns. Additionally, Asa7G01972 and Asa7G01379 were notably differentially expressed under various stresses and hormone treatments. Subsequent yeast two-hybridization and yeast induction experiments validated their interactions with Asa1G01577, a homologue of ABI5, reinforcing their importance in hormone and abiotic stress responses. This study unveiled the characteristics of the AsbZIP superfamily and lays a solid foundation for further functional analysis of AsbZIP in garlic.
Collapse
Affiliation(s)
- Shutao He
- Institute of Neurobiology, Jining Medical University, Jining, China
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, China
| | - Sen Xu
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Zhengjie He
- Rehabilitation Department, Traditional Chinese Medicine Hospital of Yanzhou District of Jining City, Jining, China
| | - Xiaomeng Hao
- Institute of Neurobiology, Jining Medical University, Jining, China
| |
Collapse
|
2
|
Omelyanchuk NA, Lavrekha VV, Bogomolov AG, Dolgikh VA, Sidorenko AD, Zemlyanskaya EV. Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1905. [PMID: 39065433 PMCID: PMC11280061 DOI: 10.3390/plants13141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
In plant hormone signaling, transcription factor regulatory networks (TFRNs), which link the master transcription factors to the biological processes under their control, remain insufficiently characterized despite their crucial function. Here, we identify a TFRN involved in the response to the key plant hormone auxin and define its impact on auxin-driven biological processes. To reconstruct the TFRN, we developed a three-step procedure, which is based on the integrated analysis of differentially expressed gene lists and a representative collection of transcription factor binding profiles. Its implementation is available as a part of the CisCross web server. With the new method, we distinguished two transcription factor subnetworks. The first operates before auxin treatment and is switched off upon hormone application, the second is switched on by the hormone. Moreover, we characterized the functioning of the auxin-regulated TFRN in control of chlorophyll and lignin biosynthesis, abscisic acid signaling, and ribosome biogenesis.
Collapse
Affiliation(s)
- Nadya A. Omelyanchuk
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Viktoriya V. Lavrekha
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anton G. Bogomolov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Vladislav A. Dolgikh
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra D. Sidorenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Baruah AR, Bannai H, Meija Y, Kimura A, Ueno H, Koide Y, Kishima Y, Palta J, Kasuga J, Yamamoto MP, Onishi K. Genetics of chilling response at early growth stage in rice: a recessive gene for tolerance and importance of acclimation. AOB PLANTS 2023; 15:plad075. [PMID: 38028749 PMCID: PMC10676198 DOI: 10.1093/aobpla/plad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Low-temperature adaptation in rice is mediated by the ability of a genotype to tolerate chilling temperatures. A genetic locus on chromosome 11 was analysed for chilling tolerance at the plumule stage in rice. The tolerant allele of A58, a japonica landrace in Japan, was inherited as a recessive gene (ctp-1A58), whereas the susceptible alleles from wild rice (Ctp-1W107) and modern variety (Ctp-1HY) were the dominant genes. Another recessive tolerant allele (ctp-1Silewah) was found in a tropical japonica variety (Silewah). Fine-mapping revealed that a candidate gene for the ctp-1 locus encoded a protein similar to the nucleotide-binding domain and leucine-rich repeat (NLR) protein, in which frameshift mutation by a 73 bp-deletion might confer chilling tolerance in ctp-1A58. Analysis of near-isogenic lines demonstrated that ctp-1A58 imparted tolerance effects only at severe chilling temperatures of 0.5 °C and 2 °C, both at plumule and seedling stages. Chilling acclimation treatments at a wide range of temperatures (8 °C-16 °C) for 72 h concealed the susceptible phenotype of Ctp-1W107 and Ctp-1HY. Furthermore, short-term acclimation treatment of 12 h at 8 °C was enough to be fully acclimated. These results suggest that the NLR gene induces a susceptible response upon exposure to severe chilling stress, however, another interacting gene(s) for acclimation response could suppress the maladaptive phenotype caused by the Ctp-1 allele. This study provides new insights for the adaptation and breeding of rice in a low-temperature environment.
Collapse
Affiliation(s)
- Akhil Ranjan Baruah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Hiroaki Bannai
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yan Meija
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Ayumi Kimura
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Haruka Ueno
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Jiwan Palta
- Department of Horticulture, University of Wisconsin-Madison, 490 Moore Hall, 1575 Linden Drive, Madison, WI 53706, USA
| | - Jun Kasuga
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Masayuki P Yamamoto
- Faculty of Science, Academic Assembly, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Kazumitsu Onishi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
4
|
Barr ZK, Werner T, Tilsner J. Heavy Metal-Associated Isoprenylated Plant Proteins (HIPPs) at Plasmodesmata: Exploring the Link between Localization and Function. PLANTS (BASEL, SWITZERLAND) 2023; 12:3015. [PMID: 37631227 PMCID: PMC10459601 DOI: 10.3390/plants12163015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) are a metallochaperone-like protein family comprising a combination of structural features unique to vascular plants. HIPPs possess both one or two heavy metal-binding domains and an isoprenylation site, facilitating a posttranslational protein lipid modification. Recent work has characterized individual HIPPs across numerous different species and provided evidence for varied functionalities. Interestingly, a significant number of HIPPs have been identified in proteomes of plasmodesmata (PD)-nanochannels mediating symplastic connectivity within plant tissues that play pivotal roles in intercellular communication during plant development as well as responses to biotic and abiotic stress. As characterized functions of many HIPPs are linked to stress responses, plasmodesmal HIPP proteins are potentially interesting candidate components of signaling events at or for the regulation of PD. Here, we review what is known about PD-localized HIPP proteins specifically, and how the structure and function of HIPPs more generally could link to known properties and regulation of PD.
Collapse
Affiliation(s)
- Zoe Kathleen Barr
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Tomáš Werner
- Department of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
5
|
Pirona R, Frugis G, Locatelli F, Mattana M, Genga A, Baldoni E. Transcriptomic analysis reveals the gene regulatory networks involved in leaf and root response to osmotic stress in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1155797. [PMID: 37332696 PMCID: PMC10272567 DOI: 10.3389/fpls.2023.1155797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Tomato (Solanum lycopersicum L.) is a major horticultural crop that is cultivated worldwide and is characteristic of the Mediterranean agricultural system. It represents a key component of the diet of billion people and an important source of vitamins and carotenoids. Tomato cultivation in open field often experiences drought episodes, leading to severe yield losses, since most modern cultivars are sensitive to water deficit. Water stress leads to changes in the expression of stress-responsive genes in different plant tissues, and transcriptomics can support the identification of genes and pathways regulating this response. Methods Here, we performed a transcriptomic analysis of two tomato genotypes, M82 and Tondo, in response to a PEG-mediated osmotic treatment. The analysis was conducted separately on leaves and roots to characterize the specific response of these two organs. Results A total of 6,267 differentially expressed transcripts related to stress response was detected. The construction of gene co-expression networks defined the molecular pathways of the common and specific responses of leaf and root. The common response was characterized by ABA-dependent and ABA-independent signaling pathways, and by the interconnection between ABA and JA signaling. The root-specific response concerned genes involved in cell wall metabolism and remodeling, whereas the leaf-specific response was principally related to leaf senescence and ethylene signaling. The transcription factors representing the hubs of these regulatory networks were identified. Some of them have not yet been characterized and can represent novel candidates for tolerance. Discussion This work shed new light on the regulatory networks occurring in tomato leaf and root under osmotic stress and set the base for an in-depth characterization of novel stress-related genes that may represent potential candidates for improving tolerance to abiotic stress in tomato.
Collapse
Affiliation(s)
- Raul Pirona
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Giovanna Frugis
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Roma, Italy
| | - Franca Locatelli
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Monica Mattana
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Annamaria Genga
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| |
Collapse
|
6
|
Dong W, Xie Q, Liu Z, Han Y, Wang X, Xu R, Gao C. Genome-wide identification and expression profiling of the bZIP gene family in Betula platyphylla and the functional characterization of BpChr04G00610 under low-temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107676. [PMID: 37060866 DOI: 10.1016/j.plaphy.2023.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
The basic leucine zipper (bZIP) gene, which plays a significant role in the regulation of tolerance to biotic/abiotic stresses, has been characterized in many plant species. Betula platyphylla is a significant afforestation species. To elucidate the stress resistance mechanism of birch, previous studies identified some stress resistance genes. However, the genome-wide identification and characterization of bZIP gene family in the birch have not been reported. Here, the 56 BpbZIP genes were identified and classified into 13 groups in birch. Cis-element analysis showed that the promoters of 56 family genes contained 108 elements, of which 16 were shared by 13 groups. There were 8 pairs of fragment repeats and 1 pair of tandem repeats, indicating that duplication may be the major reason for the amplification of the BpbZIP gene family. Tissue-specific of BpbZIP genes showed 18 genes with the highest expression in roots, 15 in flowers, 11 in xylem and 9 in leaves. In addition, five differentially expressed bZIP genes were identified from the RNA-seq data of birch under low-temperature stress, and the co-expressed differentially expressed genes were further screened. The analysis of gene ontology (GO) enrichment of each co-expression regulatory network showed that they were related to membrane lipids and cell walls. Furthermore, the transient overexpression of BpChr04G00610 decreased the ROS scavenging ability of birch under low-temperature stress, suggesting that it may be more sensitive to low-temperature. In conclusion, this study provides a basis for the study of the function of BpbZIP genes.
Collapse
Affiliation(s)
- Wenfang Dong
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Qingjun Xie
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Yating Han
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Xinyu Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Ruiting Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China.
| |
Collapse
|
7
|
Kutsuno T, Chowhan S, Kotake T, Takahashi D. Temporal cell wall changes during cold acclimation and deacclimation and their potential involvement in freezing tolerance and growth. PHYSIOLOGIA PLANTARUM 2023; 175:e13837. [PMID: 36461890 PMCID: PMC10107845 DOI: 10.1111/ppl.13837] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 05/19/2023]
Abstract
Plants adapt to freezing stress through cold acclimation, which is induced by nonfreezing low temperatures and accompanied by growth arrest. A later increase in temperature after cold acclimation leads to rapid loss of freezing tolerance and growth resumption, a process called deacclimation. Appropriate regulation of the trade-off between freezing tolerance and growth is necessary for efficient plant development in a changing environment. The cell wall, which mainly consists of polysaccharide polymers, is involved in both freezing tolerance and growth. Still, it is unclear how the balance between freezing tolerance and growth is affected during cold acclimation and deacclimation by the changes in cell wall structure and what role is played by its monosaccharide composition. Therefore, to elucidate the regulatory mechanisms controlling freezing tolerance and growth during cold acclimation and deacclimation, we investigated cell wall changes in detail by sequential fractionation and monosaccharide composition analysis in the model plant Arabidopsis thaliana, for which a plethora of information and mutant lines are available. We found that arabinogalactan proteins and pectic galactan changed in close coordination with changes in freezing tolerance and growth during cold acclimation and deacclimation. On the other hand, arabinan and xyloglucan did not return to nonacclimation levels after deacclimation but stabilized at cold acclimation levels. This indicates that deacclimation does not completely restore cell wall composition to the nonacclimated state but rather changes it to a specific novel composition that is probably a consequence of the loss of freezing tolerance and provides conditions for growth resumption.
Collapse
Affiliation(s)
- Tatsuya Kutsuno
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| | - Sushan Chowhan
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| | - Toshihisa Kotake
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| | - Daisuke Takahashi
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| |
Collapse
|
8
|
Rathore N, Kumar P, Mehta N, Swarnkar MK, Shankar R, Chawla A. Time-series RNA-Seq transcriptome profiling reveals novel insights about cold acclimation and de-acclimation processes in an evergreen shrub of high altitude. Sci Rep 2022; 12:15553. [PMID: 36114408 PMCID: PMC9481616 DOI: 10.1038/s41598-022-19834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
The high-altitude alpine regions are characterized by highly variable and harsh environmental conditions. However, relatively little is known about the diverse mechanisms adopted by alpine plants to adapt to these stressful conditions. Here, we studied variation in transcriptome and physiological adjustments occurring across the year at high elevation environments in the leaf tissue of Rhododendron anthopogon, an evergreen shrub of Himalaya. The samples were collected at 12 different time-points, from August until snowfall in November 2017, and then from June to September 2018. It was observed that with a drop in both ambient air temperature and photoperiod towards onset of winter, the freezing resistance of plants increased, resulting in 'cold acclimation'. Further, 'de-acclimation' was associated with a decrease in freezing resistance and increase in photosynthetic efficiency of leaves during spring. A considerable amount of variation was observed in the transcriptome in a time-dependent sequential manner, with a total of 9,881 differentially expressed genes. Based on gene expression profiles, the time-points could be segregated into four clusters directly correlating with the distinct phases of acclimation: non-acclimation (22-August-2017, 14-August-2018, 31-August-2018), early cold acclimation (12-September-2017, 29-September-2017), late cold acclimation (11-October-2017, 23-October-2017, 04-November-2017, 18-September-2018) and de-acclimation (15-June-2018, 28-June-2018, 14-July-2018). Cold acclimation was a gradual process, as indicated by presence of an intermediate stage (early acclimation). However, the plants can by-pass this stage when sudden decrease in temperature is encountered. The maximum variation in expression levels of genes occurred during the transition to de-acclimation, hence was 'transcriptionally' the most active phase. The similar or higher expression levels of genes during de-acclimation in comparison to non-acclimation suggested that molecular functionality is re-initiated after passing through the harsh winter conditions.
Collapse
Affiliation(s)
- Nikita Rathore
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, H.P, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prakash Kumar
- Biotechnology Division, CSIR-IHBT, Palampur, H.P, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Studio of Computational Biology and Bioinformatics, The Himalayan Centre for High-Throughput Computational Biology (HiCHiCoB, A BIC of Department of Biotechnology, Govt. of India), CSIR-IHBT, Palampur, H.P, India
| | - Nandita Mehta
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, H.P, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Ravi Shankar
- Biotechnology Division, CSIR-IHBT, Palampur, H.P, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. .,Studio of Computational Biology and Bioinformatics, The Himalayan Centre for High-Throughput Computational Biology (HiCHiCoB, A BIC of Department of Biotechnology, Govt. of India), CSIR-IHBT, Palampur, H.P, India.
| | - Amit Chawla
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, H.P, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Vyse K, Schaarschmidt S, Erban A, Kopka J, Zuther E. Specific CBF transcription factors and cold-responsive genes fine-tune the early triggering response after acquisition of cold priming and memory. PHYSIOLOGIA PLANTARUM 2022; 174:e13740. [PMID: 35776365 DOI: 10.1111/ppl.13740] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plants need to adapt to fluctuating temperatures throughout their lifetime. Previous research showed that Arabidopsis memorizes a first cold stress (priming) and improves its primed freezing tolerance further when subjected to a second similar stress after a lag phase. This study investigates primary metabolomic and transcriptomic changes during early cold priming or triggering after 3 days at 4°C interrupted by a memory phase. DREB1 family transcription factors DREB1C/CBF2, DREB1D/CBF4, DREB1E/DDF2, and DREB1F/DDF1 were strongly significantly induced throughout the entire triggering. During triggering, genes encoding Late Embryogenesis Abundant (LEA), antifreeze proteins or detoxifiers of reactive oxygen species (ROS) were higher expressed compared with priming. Examples of early triggering responders were xyloglucan endotransglucosylase/hydrolase genes encoding proteins involved in cell wall remodeling, while late responders were identified to act in fine-tuning the stress response and developmental regulation. Induction of non-typical members of the DREB subfamily of ERF/AP2 transcription factors, the relatively small number of induced CBF regulon genes and a slower accumulation of selected cold stress associated metabolites indicate that a cold triggering stimulus might be sensed as milder stress in plants compared with priming. Further, strong induction of CBF4 throughout triggering suggests a unique function of this gene for the response to alternating temperatures.
Collapse
Affiliation(s)
- Kora Vyse
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
10
|
Liu X, Luo M, Li M, Wei J. Transcriptomic Analysis Reveals LncRNAs Associated with Flowering of Angelica sinensis during Vernalization. Curr Issues Mol Biol 2022; 44:1867-1888. [PMID: 35678657 PMCID: PMC9164074 DOI: 10.3390/cimb44050128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
Angelica sinensis is a “low-temperature and long-day” perennial plant that produces bioactive compounds such as phthalides, organic acids, and polysaccharides for various types of clinical agents, including those with cardio-cerebrovascular, hepatoprotective, and immunomodulatory effects. To date, the regulatory mechanism of flowering under the photoperiod has been revealed, while the regulatory network of flowering genes during vernalization, especially in the role of lncRNAs, has yet to be identified. Here, lncRNAs associated with flowering were identified based on the full-length transcriptomic analysis of A. sinensis at vernalization and freezing temperatures, and the coexpressed mRNAs of lncRNAs were validated by qRT-PCR. We obtained a total of 2327 lncRNAs after assessing the protein-coding potential of coexpressed mRNAs, with 607 lncRNAs aligned against the TAIR database of model plant Arabidopsis, 345 lncRNAs identified, and 272 lncRNAs characterized on the SwissProt database. Based on the biological functions of coexpressed mRNAs, the 272 lncRNAs were divided into six categories: (1) chromatin, DNA/RNA and protein modification; (2) flowering; (3) stress response; (4) metabolism; (5) bio-signaling; and (6) energy and transport. The differential expression levels of representatively coexpressed mRNAs were almost consistent with the flowering of A. sinensis. It can be concluded that the flowering of A. sinensis is positively or negatively regulated by lncRNAs, which provides new insights into the regulation mechanism of the flowering of A. sinensis.
Collapse
Affiliation(s)
- Xiaoxia Liu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
| | - Mimi Luo
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
- Correspondence: (M.L.); (J.W.)
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (M.L.); (J.W.)
| |
Collapse
|
11
|
Vilchez AC, Peppino Margutti M, Reyna M, Wilke N, Villasuso AL. Recovery from chilling modulates the acyl-editing of phosphatidic acid molecular species in barley roots (Hordeum vulgare L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:862-873. [PMID: 34536899 DOI: 10.1016/j.plaphy.2021.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
In plants, lipid metabolism and remodelling are key mechanisms for survival under temperature stress. The present study attempted to compare the lipid profile in barley roots both under chilling stress treatment and in the subsequent recovery to stress. Lipids were obtained through a single-extraction method with a polar solvent mixture, followed by mass spectrometry analysis. The results indicate that lipid metabolism was significantly affected by chilling. Most of the glycerolipids analysed returned to control values during short- and long-term recovery, whereas several representative phosphatidic acid (PA) molecular species were edited during long-term recovery. Most of the PA molecular species that increased in the long-term had the same acyl chains as the phosphatidylcholine (PC) species that decreased. C34:2 and C36:4 underwent the most remarkable changes. Given that the mechanisms underlying the acyl-editing of PC in barley roots remain elusive, we also evaluated the contribution of lysophosphatidylcholine acyltransferases (HvLPCAT) and phospholipase A (HvPLA). In line with the aforementioned results, the expression of the HvLPCAT and HvPLA genes was up-regulated during recovery from chilling. The differential acyl-editing of PA during recovery, which involves the remodelling of PC, might therefore be a regulatory mechanism of cold tolerance in barley.
Collapse
Affiliation(s)
- Ana Carolina Vilchez
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Córdoba, Argentina; CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnología Ambiental y Salud, (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Micaela Peppino Margutti
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Mercedes Reyna
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Córdoba, Argentina; CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnología Ambiental y Salud, (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Natalia Wilke
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Ana Laura Villasuso
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Córdoba, Argentina; CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnología Ambiental y Salud, (INBIAS), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
12
|
Alamdari K, Fisher KE, Tano DW, Rai S, Palos K, Nelson ADL, Woodson JD. Chloroplast quality control pathways are dependent on plastid DNA synthesis and nucleotides provided by cytidine triphosphate synthase two. THE NEW PHYTOLOGIST 2021; 231:1431-1448. [PMID: 33993494 DOI: 10.1111/nph.17467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROS) produced in chloroplasts cause oxidative damage, but also signal to initiate chloroplast quality control pathways, cell death, and gene expression. The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant produces the ROS singlet oxygen in chloroplasts that activates such signaling pathways, but the mechanisms are largely unknown. Here we characterize one fc2 suppressor mutation and map it to CYTIDINE TRIPHOSPHATE SYNTHASE TWO (CTPS2), which encodes one of five enzymes in Arabidopsis necessary for de novo cytoplasmic CTP (and dCTP) synthesis. The ctps2 mutation reduces chloroplast transcripts and DNA content without similarly affecting mitochondria. Chloroplast nucleic acid content and singlet oxygen signaling are restored by exogenous feeding of the dCTP precursor deoxycytidine, suggesting ctps2 blocks signaling by limiting nucleotides for chloroplast genome maintenance. An investigation of CTPS orthologs in Brassicaceae showed CTPS2 is a member of an ancient lineage distinct from CTPS3. Complementation studies confirmed this analysis; CTPS3 was unable to compensate for CTPS2 function in providing nucleotides for chloroplast DNA and signaling. Our studies link cytoplasmic nucleotide metabolism with chloroplast quality control pathways. Such a connection is achieved by a conserved clade of CTPS enzymes that provide nucleotides for chloroplast function, thereby allowing stress signaling to occur.
Collapse
Affiliation(s)
- Kamran Alamdari
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Karen E Fisher
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - David W Tano
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Snigdha Rai
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Kyle Palos
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
13
|
Ishida A, Nakamura T, Saiki ST, Yoshimura J, Kakishima S. Evolutionary loss of thermal acclimation accompanied by periodic monocarpic mass flowering in Strobilanthes flexicaulis. Sci Rep 2021; 11:14273. [PMID: 34253817 PMCID: PMC8275617 DOI: 10.1038/s41598-021-93833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/23/2021] [Indexed: 11/09/2022] Open
Abstract
While life history, physiology and molecular phylogeny in plants have been widely studied, understanding how physiology changes with the evolution of life history change remains largely unknown. In two closely related understory Strobilanthes plants, the molecular phylogeny has previously shown that the monocarpic 6-year masting S. flexicaulis have evolved from a polycarpic perennial, represented by the basal clade S. tashiroi. The polycarpic S. tashiroi exhibited seasonal thermal acclimation with increased leaf respiratory and photosynthetic metabolism in winter, whereas the monocarpic S. flexicaulis showed no thermal acclimation. The monocarpic S. flexicaulis required rapid height growth after germination under high intraspecific competition, and the respiration and N allocation were biased toward nonphotosynthetic tissues. By contrast, in the long-lived polycarpic S. tashiroi, these allocations were biased toward photosynthetic tissues. The life-history differences between the monocarpic S. flexicaulis and the polycarpic S. tashiroi are represented by the “height growth” and “assimilation” paradigms, respectively, which are controlled by different patterns of respiration and nitrogen regulation in leaves. The obtained data indicate that the monocarpic S. flexicaulis with the evolutionary loss of thermal acclimation may exhibit increased vulnerability to global warming.
Collapse
Affiliation(s)
- Atsushi Ishida
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan.
| | - Tomomi Nakamura
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Shin-Taro Saiki
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, 305-8687, Japan
| | - Jin Yoshimura
- Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan.,Faculty of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.,The University Museum, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Satoshi Kakishima
- Center for Molecular Biodiversity Research, National Museum of Nature and Sciences, Tsukuba, Ibaraki, 305-0005, Japan.
| |
Collapse
|
14
|
Li F, Hu Q, Chen F, Jiang JF. Transcriptome analysis reveals Vernalization is independent of cold acclimation in Arabidopsis. BMC Genomics 2021; 22:462. [PMID: 34154522 PMCID: PMC8218483 DOI: 10.1186/s12864-021-07763-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
Background Through vernalization, plants achieve flowering competence by sensing prolonged cold exposure (constant exposure approximately 2-5 °C). During this process, plants initiate defense responses to endure cold conditions. Here, we conducted transcriptome analysis of Arabidopsis plants subjected to prolonged cold exposure (6 weeks) to explore the physiological dynamics of vernalization and uncover the relationship between vernalization and cold stress. Results Time-lag initiation of the two pathways and weighted gene co-expression network analysis (WGCNA) revealed that vernalization is independent of cold acclimation. Moreover, WGCNA revealed three major networks involving ethylene and jasmonic acid response, cold acclimation, and chromatin modification in response to prolonged cold exposure. Finally, throughout vernalization, the cold stress response is regulated via an alternative splicing-mediated mechanism. Conclusion These findings illustrate a comprehensive picture of cold stress- and vernalization-mediated global changes in Arabidopsis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07763-3.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Fu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Birkeland S, Gustafsson ALS, Brysting AK, Brochmann C, Nowak MD. Multiple Genetic Trajectories to Extreme Abiotic Stress Adaptation in Arctic Brassicaceae. Mol Biol Evol 2021; 37:2052-2068. [PMID: 32167553 PMCID: PMC7306683 DOI: 10.1093/molbev/msaa068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Extreme environments offer powerful opportunities to study how different organisms have adapted to similar selection pressures at the molecular level. Arctic plants have adapted to some of the coldest and driest biomes on Earth and typically possess suites of similar morphological and physiological adaptations to extremes in light and temperature. Here, we compare patterns of molecular evolution in three Brassicaceae species that have independently colonized the Arctic and present some of the first genetic evidence for plant adaptations to the Arctic environment. By testing for positive selection and identifying convergent substitutions in orthologous gene alignments for a total of 15 Brassicaceae species, we find that positive selection has been acting on different genes, but similar functional pathways in the three Arctic lineages. The positively selected gene sets identified in the three Arctic species showed convergent functional profiles associated with extreme abiotic stress characteristic of the Arctic. However, there was little evidence for independently fixed mutations at the same sites and for positive selection acting on the same genes. The three species appear to have evolved similar suites of adaptations by modifying different components in similar stress response pathways, implying that there could be many genetic trajectories for adaptation to the Arctic environment. By identifying candidate genes and functional pathways potentially involved in Arctic adaptation, our results provide a framework for future studies aimed at testing for the existence of a functional syndrome of Arctic adaptation in the Brassicaceae and perhaps flowering plants in general.
Collapse
Affiliation(s)
- Siri Birkeland
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Anne K Brysting
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
16
|
Drobnitch ST, Comas LH, Flynn N, Ibarra Caballero J, Barton RW, Wenz J, Person T, Bushey J, Jahn CE, Gleason SM. Drought-Induced Root Pressure in Sorghum bicolor. FRONTIERS IN PLANT SCIENCE 2021; 12:571072. [PMID: 33613594 PMCID: PMC7886691 DOI: 10.3389/fpls.2021.571072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/08/2021] [Indexed: 05/26/2023]
Abstract
Root pressure, also manifested as profusive sap flowing from cut stems, is a phenomenon in some species that has perplexed biologists for much of the last century. It is associated with increased crop production under drought, but its function and regulation remain largely unknown. In this study, we investigated the initiation, mechanisms, and possible adaptive function of root pressure in six genotypes of Sorghum bicolor during a drought experiment in the greenhouse. We observed that root pressure was induced in plants exposed to drought followed by re-watering but possibly inhibited by 100% re-watering in some genotypes. We found that root pressure in drought stressed and re-watered plants was associated with greater ratio of fine: coarse root length and shoot biomass production, indicating a possible role of root allocation in creating root pressure and adaptive benefit of root pressure for shoot biomass production. Using RNA-Seq, we identified gene transcripts that were up- and down-regulated in plants with root pressure expression, focusing on genes for aquaporins, membrane transporters, and ATPases that could regulate inter- and intra-cellular transport of water and ions to generate positive xylem pressure in root tissue.
Collapse
Affiliation(s)
- Sarah Tepler Drobnitch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Louise H. Comas
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Nora Flynn
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Jorge Ibarra Caballero
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Ryan W. Barton
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Joshua Wenz
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Taylor Person
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Julie Bushey
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Courtney E. Jahn
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Sean M. Gleason
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| |
Collapse
|
17
|
Razi K, Muneer S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit Rev Biotechnol 2021; 41:669-691. [PMID: 33525946 DOI: 10.1080/07388551.2021.1874280] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Drought stress is one of the most adverse abiotic stresses that hinder plants' growth and productivity, threatening sustainable crop production. It impairs normal growth, disturbs water relations and reduces water-use efficiency in plants. However, plants have evolved many physiological and biochemical responses at the cellular and organism levels, in order to cope with drought stress. Photosynthesis, which is considered one of the most crucial biological processes for survival of plants, is greatly affected by drought stress. A gradual decrease in CO2 assimilation rates, reduced leaf size, stem extension and root proliferation under drought stress, disturbs plant water relations, reducing water-use efficiency, disrupts photosynthetic pigments and reduces the gas exchange affecting the plants adversely. In such conditions, the chloroplast, organelle responsible for photosynthesis, is found to counteract the ill effects of drought stress by its critical involvement as a sensor of changes occurring in the environment, as the first process that drought stress affects is photosynthesis. Beside photosynthesis, chloroplasts carry out primary metabolic functions such as the biosynthesis of starch, amino acids, lipids, and tetrapyroles, and play a central role in the assimilation of nitrogen and sulfur. Because the chloroplasts are central organelles where the photosynthetic reactions take place, modifications in their physiology and protein pools are expected in response to the drought stress-induced variations in leaf gas exchanges and the accumulation of ROS. Higher expression levels of various transcription factors and other proteins including heat shock-related protein, LEA proteins seem to be regulating the heat tolerance mechanisms. However, several aspects of plastid alterations, following a water deficit environment are still poorly characterized. Since plants adapt to various stress tolerance mechanisms to respond to drought stress, understanding mechanisms of drought stress tolerance in plants will lead toward the development of drought tolerance in crop plants. This review throws light on major droughts stress-induced molecular/physiological mechanisms in response to severe and prolonged drought stress and addresses the molecular response of chloroplasts in common vegetable crops. It further highlights research gaps, identifying unexplored domains and suggesting recommendations for future investigations.
Collapse
Affiliation(s)
- Kaukab Razi
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
18
|
Identification of the Genetic Basis of Response to De-Acclimation in Winter Barley. Int J Mol Sci 2021; 22:ijms22031057. [PMID: 33494371 PMCID: PMC7865787 DOI: 10.3390/ijms22031057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Mechanisms involved in the de-acclimation of herbaceous plants caused by warm periods during winter are poorly understood. This study identifies the genes associated with this mechanism in winter barley. Seedlings of eight accessions (four tolerant and four susceptible to de-acclimation cultivars and advanced breeding lines) were cold acclimated for three weeks and de-acclimated at 12 °C/5 °C (day/night) for one week. We performed differential expression analysis using RNA sequencing. In addition, reverse-transcription quantitative real-time PCR and enzyme activity analyses were used to investigate changes in the expression of selected genes. The number of transcripts with accumulation level changed in opposite directions during acclimation and de-acclimation was much lower than the number of transcripts with level changed exclusively during one of these processes. The de-acclimation-susceptible accessions showed changes in the expression of a higher number of functionally diverse genes during de-acclimation. Transcripts associated with stress response, especially oxidoreductases, were the most abundant in this group. The results provide novel evidence for the distinct molecular regulation of cold acclimation and de-acclimation. Upregulation of genes controlling developmental changes, typical for spring de-acclimation, was not observed during mid-winter de-acclimation. Mid-winter de-acclimation seems to be perceived as an opportunity to regenerate after stress. Unfortunately, it is competitive to remain in the cold-acclimated state. This study shows that the response to mid-winter de-acclimation is far more expansive in de-acclimation-susceptible cultivars, suggesting that a reduced response to the rising temperature is crucial for de-acclimation tolerance.
Collapse
|
19
|
Abstract
Pecan is native to the United States. The US is the world’s largest pecan producer with an average yearly production of 250 to 300 million pounds; 80 percent of the world’s supply. Georgia, New Mexico, Texas, Arizona, Oklahoma, California, Louisiana, and Florida are the major US pecan producing states. Pecan trees frequently suffer from spring freeze at bud break and bloom as the buds are quite sensitive to freeze damage. This leads to poor flower and nut production. This review focuses on the impact of spring freeze during bud differentiation and flower development. Spring freeze kills the primary terminal buds, the pecan tree has a second chance for growth and flowering through secondary buds. Unfortunately, secondary buds have less bloom potential than primary buds and nut yield is reduced. Spring freeze damage depends on severity of the freeze, bud growth stage, cultivar type and tree age, tree height and tree vigor. This review discusses the impact of temperature on structure and function of male and female reproductive organs. It also summarizes carbohydrate relations as another factor that may play an important role in spring growth and transition of primary and secondary buds to flowers.
Collapse
|
20
|
An integrative Study Showing the Adaptation to Sub-Optimal Growth Conditions of Natural Populations of Arabidopsis thaliana: A Focus on Cell Wall Changes. Cells 2020; 9:cells9102249. [PMID: 33036444 PMCID: PMC7601860 DOI: 10.3390/cells9102249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
In the global warming context, plant adaptation occurs, but the underlying molecular mechanisms are poorly described. Studying natural variation of the model plant Arabidopsisthaliana adapted to various environments along an altitudinal gradient should contribute to the identification of new traits related to adaptation to contrasted growth conditions. The study was focused on the cell wall (CW) which plays major roles in the response to environmental changes. Rosettes and floral stems of four newly-described populations collected at different altitudinal levels in the Pyrenees Mountains were studied in laboratory conditions at two growth temperatures (22 vs. 15 °C) and compared to the well-described Col ecotype. Multi-omic analyses combining phenomics, metabolomics, CW proteomics, and transcriptomics were carried out to perform an integrative study to understand the mechanisms of plant adaptation to contrasted growth temperature. Different developmental responses of rosettes and floral stems were observed, especially at the CW level. In addition, specific population responses are shown in relation with their environment and their genetics. Candidate genes or proteins playing roles in the CW dynamics were identified and will deserve functional validation. Using a powerful framework of data integration has led to conclusions that could not have been reached using standard statistical approaches.
Collapse
|
21
|
Warmerdam S, Sterken MG, Sukarta OCA, van Schaik CC, Oortwijn MEP, Lozano-Torres JL, Bakker J, Smant G, Goverse A. The TIR-NB-LRR pair DSC1 and WRKY19 contributes to basal immunity of Arabidopsis to the root-knot nematode Meloidogyne incognita. BMC PLANT BIOLOGY 2020; 20:73. [PMID: 32054439 PMCID: PMC7020509 DOI: 10.1186/s12870-020-2285-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/07/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Root-knot nematodes transform vascular host cells into permanent feeding structures to withdraw nutrients from the host plant. Ecotypes of Arabidopsis thaliana can display large quantitative variation in susceptibility to the root-knot nematode Meloidogyne incognita, which is thought to be independent of dominant major resistance genes. However, in an earlier genome-wide association study of the interaction between Arabidopsis and M. incognita we identified a quantitative trait locus harboring homologs of dominant resistance genes but with minor effect on susceptibility to the M. incognita population tested. RESULTS Here, we report on the characterization of two of these genes encoding the TIR-NB-LRR immune receptor DSC1 (DOMINANT SUPPRESSOR OF Camta 3 NUMBER 1) and the TIR-NB-LRR-WRKY-MAPx protein WRKY19 in nematode-infected Arabidopsis roots. Nematode infection studies and whole transcriptome analyses using the Arabidopsis mutants showed that DSC1 and WRKY19 co-regulate susceptibility of Arabidopsis to M. incognita. CONCLUSION Given the head-to-head orientation of DSC1 and WRKY19 in the Arabidopsis genome our data suggests that both genes may function as a TIR-NB-LRR immune receptor pair. Unlike other TIR-NB-LRR pairs involved in dominant disease resistance in plants, DSC1 and WRKY19 most likely regulate basal levels of immunity to root-knot nematodes.
Collapse
Affiliation(s)
- Sonja Warmerdam
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Octavina C. A. Sukarta
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Casper C. van Schaik
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marian E. P. Oortwijn
- Laboratory of Plant breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jose L. Lozano-Torres
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jaap Bakker
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
22
|
Abstract
This introductory chapter provides a brief overview of plant freezing tolerance, cold acclimation, including subzero acclimation, and the subsequent deacclimation when plants return to warm conditions favoring growth and development. We describe the basic concepts and approaches that are currently followed to investigate these phenomena. We highlight the multidisciplinary nature of these investigations and the necessity to use methodologies from different branches of science, such as ecology, genetics, physiology, cell biology, biochemistry, and biophysics to gain a complete understanding of the complex adaptive mechanisms ultimately underlying plant winter survival.
Collapse
Affiliation(s)
- Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany.
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| |
Collapse
|
23
|
Applications and Trends of Machine Learning in Genomics and Phenomics for Next-Generation Breeding. PLANTS 2019; 9:plants9010034. [PMID: 31881663 PMCID: PMC7020215 DOI: 10.3390/plants9010034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022]
Abstract
Crops are the major source of food supply and raw materials for the processing industry. A balance between crop production and food consumption is continually threatened by plant diseases and adverse environmental conditions. This leads to serious losses every year and results in food shortages, particularly in developing countries. Presently, cutting-edge technologies for genome sequencing and phenotyping of crops combined with progress in computational sciences are leading a revolution in plant breeding, boosting the identification of the genetic basis of traits at a precision never reached before. In this frame, machine learning (ML) plays a pivotal role in data-mining and analysis, providing relevant information for decision-making towards achieving breeding targets. To this end, we summarize the recent progress in next-generation sequencing and the role of phenotyping technologies in genomics-assisted breeding toward the exploitation of the natural variation and the identification of target genes. We also explore the application of ML in managing big data and predictive models, reporting a case study using microRNAs (miRNAs) to identify genes related to stress conditions.
Collapse
|
24
|
DFR1-Mediated Inhibition of Proline Degradation Pathway Regulates Drought and Freezing Tolerance in Arabidopsis. Cell Rep 2019; 23:3960-3974. [PMID: 29949777 DOI: 10.1016/j.celrep.2018.04.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/09/2018] [Accepted: 04/01/2018] [Indexed: 11/23/2022] Open
Abstract
Proline accumulation is one of the most important adaptation mechanisms for plants to cope with environmental stresses, such as drought and freezing. However, the molecular mechanism of proline homeostasis under these stresses is largely unknown. Here, we identified a mitochondrial protein, DFR1, involved in the inhibition of proline degradation in Arabidopsis. DFR1 was strongly induced by drought and cold stresses. The dfr1 knockdown mutants showed hypersensitivity to drought and freezing stresses, whereas the DFR1 overexpression plants exhibited enhanced tolerance, which was positively correlated with proline levels. DFR1 interacts with proline degradation enzymes PDH1/2 and P5CDH and compromises their activities. Genetic analysis showed that DFR1 acts upstream of PDH1/2 and P5CDH to positively regulate proline accumulation. Our results demonstrate a regulatory mechanism by which, under drought and freezing stresses, DFR1 interacts with PDH1/2 and P5CDH to abrogate their activities to maintain proline homeostasis, thereby conferring drought and freezing tolerance.
Collapse
|
25
|
Vyse K, Pagter M, Zuther E, Hincha DK. Deacclimation after cold acclimation-a crucial, but widely neglected part of plant winter survival. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4595-4604. [PMID: 31087096 PMCID: PMC6760304 DOI: 10.1093/jxb/erz229] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/07/2019] [Indexed: 05/05/2023]
Abstract
Temperate and boreal plants show natural low temperature acclimation during autumn. This cold acclimation process results in increased freezing tolerance. Global climate change is leading to increasing spring and autumn temperatures that can trigger deacclimation and loss of freezing tolerance, making plants susceptible to both late-autumn and late-spring freezing events. In particular, spring frosts can have devastating effects on whole ecosystems and can significantly reduce the yield of crop plants. Although the timing and speed of deacclimation are clearly of crucial importance for plant winter survival, the molecular basis of this process is still largely unknown. The regulation of deacclimation is, however, not only related to freezing tolerance, but also to the termination of dormancy, and the initiation of growth and development. In this paper, we provide an overview of what is known about deacclimation in both woody and herbaceous plants. We use publicly available transcriptome data to identify a core set of deacclimation-related genes in Arabidopsis thaliana that highlight physiological determinants of deacclimation, and suggest important directions for future research in this area.
Collapse
Affiliation(s)
- Kora Vyse
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Majken Pagter
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej, Aalborg East, Denmark
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Dirk K Hincha
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
- Correspondence:
| |
Collapse
|
26
|
Liu C, Yang X, Yan Z, Fan Y, Feng G, Liu D. Analysis of differential gene expression in cold-tolerant vs. cold-sensitive varieties of snap bean (Phaseolus vulgaris L.) in response to low temperature stress. Genes Genomics 2019; 41:1445-1455. [PMID: 31535316 DOI: 10.1007/s13258-019-00870-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/04/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Snap bean, Phaseolus vulgaris L., as a warm-season vegetable, low temperature stress seriously affect the yield and quality. At present, little is known about the genes and molecular regulation mechanism in cold response in snap bean exposed to low temperature. OBJECTIVES Our objectives were to identify the low temperature response genes in snap bean and to examine differences in the gene response between cold-tolerant and cold-sensitive genotypes. METHODS We used two highly inbred snap bean lines in this study, the cold-tolerant line '120', and the cold-sensitive line '093'. The plants were grown to the three leaf and one heart stage and exposed to 4 °C low temperature. We used RNA sequencing (RNA-seq) to analyze the differences of gene expression. RESULTS 988 and 874 cold-responsive genes were identified in 'T120 vs CK120' and 'T093 vs CK093' ('T' stands for low temperature treatment, and 'CK' stands for control at room temperature), respectively. Of these, 555 and 442 genes were unique to cold-stressed lines '120' and '093', respectively compared to the control. Our analysis of these differentially expressed genes indicates that Ca2+, ROS, and hormones act as signaling molecules that play important roles in low temperature response in P. vulgaris. Altering the expression of genes in these signaling pathways activates expression of downstream response genes which can interact with other signaling regulatory networks. This may maintained the balance of ROS and hormones, making line '120' more cold-tolerant than line '093'. CONCLUSION Our results provide a preliminarily understanding of the molecular basis of low temperature response in snap bean, and also establish a foundation for the future genetic improvement of cold sensitivity in snap bean by incorporating genes for cold tolerance.
Collapse
Affiliation(s)
- Chang Liu
- Horticulture Department, Academy of Crop Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China.,Work Station of Science and Technique for Post-doctoral in Sugar Beet Institute Affiliated to Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China.,Post-doctoral Research Station Affiliated To Northeast Agricultural University, 59 Mucai Road, Harbin, 150000, Heilongjiang, China
| | - Xiaoxu Yang
- Horticulture Department, Academy of Crop Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China.,Work Station of Science and Technique for Post-doctoral in Sugar Beet Institute Affiliated to Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China.,Post-doctoral Research Station Affiliated To Northeast Agricultural University, 59 Mucai Road, Harbin, 150000, Heilongjiang, China
| | - Zhishan Yan
- Horticulture Department, Academy of Crop Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Youjun Fan
- Horticulture Department, Academy of Crop Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Guojun Feng
- Horticulture Department, Academy of Crop Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China.
| | - Dajun Liu
- Horticulture Department, Academy of Crop Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
27
|
El-Soda M, Neris Moreira C, Goredema-Matongera N, Jamar D, Koornneef M, Aarts MGM. QTL and candidate genes associated with leaf anion concentrations in response to phosphate supply in Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:410. [PMID: 31533608 PMCID: PMC6751748 DOI: 10.1186/s12870-019-1996-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 08/29/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Phosphorus is often present naturally in the soil as inorganic phosphate, Pi, which bio-availability is limited in many ecosystems due to low soil solubility and mobility. Plants respond to low Pi with a Pi Starvation Response, involving Pi sensing and long-distance signalling. There is extensive cross-talk between Pi homeostasis mechanisms and the homeostasis mechanism for other anions in response to Pi availability. RESULTS Recombinant Inbred Line (RIL) and Genome Wide Association (GWA) mapping populations, derived from or composed of natural accessions of Arabidopsis thaliana, were grown under sufficient and deficient Pi supply. Significant treatment effects were found for all traits and significant genotype x treatment interactions for the leaf Pi and sulphate concentrations. Using the RIL/QTL population, we identified 24 QTLs for leaf concentrations of Pi and other anions, including a major QTL for leaf sulphate concentration (SUL2) mapped to the bottom of chromosome (Chr) 1. GWA mapping found 188 SNPs to be associated with the measured traits, corresponding to 152 genes. One of these SNPs, associated with leaf Pi concentration, mapped to PP2A-1, a gene encoding an isoform of the catalytic subunit of a protein phosphatase 2A. Of two additional SNPs, associated with phosphate use efficiency (PUE), one mapped to AT5G49780, encoding a leucine-rich repeat protein kinase involved in signal transduction, and the other to SIZ1, a gene encoding a SUMO E3 ligase, and a known regulator of P starvation-dependent responses. One SNP associated with leaf sulphate concentration was found in SULTR2;1, encoding a sulphate transporter, known to enhance sulphate translocation from root to shoot under P deficiency. Finally, one SNP was mapped to FMO GS-OX4, a gene encoding glucosinolate S-oxygenase involved in glucosinolate biosynthesis, which located within the confidence interval of the SUL2 locus. CONCLUSION We identified several candidate genes with known functions related to anion homeostasis in response to Pi availability. Further molecular studies are needed to confirm and validate these candidate genes and understand their roles in examined traits. Such knowledge will contribute to future breeding for improved crop PUE .
Collapse
Affiliation(s)
- Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613 Egypt
| | - Charles Neris Moreira
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Nakai Goredema-Matongera
- Department of Research and Specialist Services, Maize Breeding Programme, Crop Breeding Institute, P. O. Box CY550 Causeway, Harare, Zimbabwe
| | - Diaan Jamar
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
28
|
Parrotta L, Faleri C, Guerriero G, Cai G. Cold stress affects cell wall deposition and growth pattern in tobacco pollen tubes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:329-342. [PMID: 31128704 DOI: 10.1016/j.plantsci.2019.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 03/15/2019] [Indexed: 05/08/2023]
Abstract
Cold is an abiotic stress seriously threatening crop productivity by decreasing biomass production. The pollen tube is a target of cold stress, but also a useful model to address questions on cell wall biosynthesis. We here provide (immuno)cytological data relative to the impact of cold on the pollen tube cell wall. We clearly show that the growth pattern is severely affected by the stress, since the typical pulsed-growth mechanism accompanied by the periodic deposition of pectin rings is absent/severely reduced. Additionally, pectins and cellulose accumulate in bulges provoked by the stress, while callose, which colocalizes with pectins in the periodic rings formed during pulsed growth, accumulates randomly in the stressed samples. The altered distribution of the cell wall components is accompanied by differences in the localization of glucan synthases: cellulose synthase shows a more diffuse localization, while callose synthase shows a more frequent cytoplasmic accumulation, thereby denoting a failure in plasma membrane insertion. The cell wall observations are complemented by the analysis of intracellular Ca2+, pH and reactive oxygen species (ROS): while in the case of pH no major differences are observed, a less focused Ca2+ and ROS gradients are present in the stressed samples. The standard oscillatory growth of pollen tubes is recovered by transient changes of turgor pressure induced by hypoosmotic media. Overall our data contribute to the understanding of the impact that cold stress has on the normal development of the pollen tube and unveil the cell wall-related aberrant features accompanying the observed alterations.
Collapse
Affiliation(s)
- Luigi Parrotta
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Via Irnerio 42, Bologna, Italy
| | - Claudia Faleri
- Università di Siena, Dipartimento di Scienze della Vita, via P.A. Mattioli 4, Siena, Italy
| | - Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362, Esch/Alzette, Luxembourg
| | - Giampiero Cai
- Università di Siena, Dipartimento di Scienze della Vita, via P.A. Mattioli 4, Siena, Italy.
| |
Collapse
|
29
|
Comparative Transcriptome Analysis of Temperature-Induced Green Discoloration in Garlic. Int J Genomics 2019; 2018:6725728. [PMID: 30627531 PMCID: PMC6304921 DOI: 10.1155/2018/6725728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/17/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022] Open
Abstract
Green discoloration is one of the most important problems that cause low quality of product in the processing of garlic, which can be induced by low-temperature stress. But the mechanism of low temperature-induced green discoloration is poorly understood. In the present study, the control garlic and three low temperature-treated garlic samples (stored at 4°C with 10, 15, and 40 days, respectively) were used for genome-wide transcriptome profiling analysis. A total of 49280 garlic unigenes with an average length of 1337 bp were de novo assembled, 20231 of which were achieved for functional annotation. When being suffered from 10, 15, and 40 days of low-temperature treatment, an increased degree of discoloration was observed, and a total of 4757, 4401, and 2034 unigenes showed a differential expression, respectively. Finally, 5923 differentially expressed genes (DEGs) were found to respond to the low-temperature stress, of which 3921 were identified in at least two treatments. Among these stress-responsive unigenes, there were large numbers of enzyme-encoding genes, which significantly enriched the pathway “proteasome,” many genes of which are potentially involved in the garlic discoloration, such as 7 alliinase-encoding genes, 5 γ-glutamyltranspeptidase-encoding genes, and 1 δ-aminolevulinic acid dehydratase-encoding gene. These stress-responsive enzyme-encoding genes are possibly responsible for the low-temperature-induced garlic discoloration. The identification of large numbers of DEGs provides a basis for further elucidating the mechanism of low-temperature-induced green discoloration in garlic.
Collapse
|
30
|
Legeay M, Aubourg S, Renou JP, Duval B. Large scale study of anti-sense regulation by differential network analysis. BMC SYSTEMS BIOLOGY 2018; 12:95. [PMID: 30458828 PMCID: PMC6245689 DOI: 10.1186/s12918-018-0613-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Systems biology aims to analyse regulation mechanisms into the cell. By mapping interactions observed in different situations, differential network analysis has shown its power to reveal specific cellular responses or specific dysfunctional regulations. In this work, we propose to explore on a large scale the role of natural anti-sense transcription on gene regulation mechanisms, and we focus our study on apple (Malus domestica) in the context of fruit ripening in cold storage. Results We present a differential functional analysis of the sense and anti-sense transcriptomic data that reveals functional terms linked to the ripening process. To develop our differential network analysis, we introduce our inference method of an Extended Core Network; this method is inspired by C3NET, but extends the notion of significant interactions. By comparing two extended core networks, one inferred with sense data and the other one inferred with sense and anti-sense data, our differential analysis is first performed on a local view and reveals AS-impacted genes, genes that have important interactions impacted by anti-sense transcription. The motifs surrounding AS-impacted genes gather transcripts with functions mostly consistent with the biological context of the data used and the method allows us to identify new actors involved in ripening and cold acclimation pathways and to decipher their interactions. Then from a more global view, we compute minimal sub-networks that connect the AS-impacted genes using Steiner trees. Those Steiner trees allow us to study the rewiring of the AS-impacted genes in the network with anti-sense actors. Conclusion Anti-sense transcription is usually ignored in transcriptomic studies. The large-scale differential analysis of apple data that we propose reveals that anti-sense regulation may have an important impact in several cellular stress response mechanisms. Our data mining process enables to highlight specific interactions that deserve further experimental investigations. Electronic supplementary material The online version of this article (10.1186/s12918-018-0613-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marc Legeay
- LERIA, Université d'Angers, 2 bd Lavoisier, Angers, 49045, France.,IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, 49071, France
| | - Sébastien Aubourg
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, 49071, France
| | - Jean-Pierre Renou
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, 49071, France
| | - Béatrice Duval
- LERIA, Université d'Angers, 2 bd Lavoisier, Angers, 49045, France.
| |
Collapse
|
31
|
Miki Y, Takahashi D, Kawamura Y, Uemura M. Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. J Proteomics 2018; 197:71-81. [PMID: 30447334 DOI: 10.1016/j.jprot.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 01/19/2023]
Abstract
Freezing stress is one of the most important limiting factors of plant survival. Plants have developed a freezing adaptation mechanism upon sensing low temperatures (cold acclimation). Compositional changes in the plasma membrane, one of the initial sites of freezing injury, is prerequisite of achieving cold acclimation and have been investigated in several plant species. Conversely, the cold dehardening process at elevated temperatures (de-acclimation) has not yet been fully characterized and few studies have addressed the importance of the plasma membrane in the de-acclimation process. In the present study, we conducted shotgun proteomics with label-free semiquantification on plasma membrane fractions of Arabidopsis leaves during cold acclimation and de-acclimation. We consequently obtained a list of 873 proteins with significantly changed proteins in response to the two processes. Although the cold-acclimation-responsive proteins were globally returned to non-acclimated levels by de-acclimation, several representative cold-acclimation-responsive proteins tended to remain at higher abundance during de-acclimation process. Taken together, our results suggest plants deharden right after cold acclimation to restart growth and development but some cold-acclimation-induced changes of the plasma membrane may be maintained under de-acclimation to cope with the threat of sudden freezing during de-acclimation process. SIGNIFICANCE: Plant freezing tolerance can be enhanced by low temperature treatment (cold acclimation), while elevated temperatures right after cold acclimation can result in the dehardening of freezing tolerance (de-acclimation). However, the de-acclimation process, particularly its relevance to the plasma membrane as the primary site of freezing injury, has not been elucidated. In the present study, a comprehensive proteomic analysis of the plasma membrane during cold acclimation and de-acclimation was carried out as a first step to elucidating how plants respond to rising temperatures. Cold acclimation induced a number of proteomic changes as reported in previous studies, but most proteins, in general, immediately returned to NA levels during de-acclimation treatment for two days. However, the abundances of stress-related proteins (e.g. LTI29, COR78 and TIL) decreased slower than other functional proteins during de-acclimation. Therefore, plants harden during cold acclimation by aborting growth and development and accumulating stress-responsive proteins but seem to deharden quickly under subsequent elevated temperature to resume these processes while guarding against the threat of sudden temperature drops.
Collapse
Affiliation(s)
- Yushi Miki
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Yukio Kawamura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Matsuo Uemura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
32
|
Cen W, Liu J, Lu S, Jia P, Yu K, Han Y, Li R, Luo J. Comparative proteomic analysis of QTL CTS-12 derived from wild rice (Oryza rufipogon Griff.), in the regulation of cold acclimation and de-acclimation of rice (Oryza sativa L.) in response to severe chilling stress. BMC PLANT BIOLOGY 2018; 18:163. [PMID: 30097068 PMCID: PMC6086036 DOI: 10.1186/s12870-018-1381-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/30/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is a thermophilic crop vulnerable to chilling stress. However, common wild rice (Oryza rufipogon Griff.) in Guangxi (China) has the ability to tolerate chilling stress. To better understand the molecular mechanisms underlying chilling tolerance in wild rice, iTRAQ-based proteomic analysis was performed to examine CTS-12, a major chilling tolerance QTL derived from common wild rice, mediated chilling and recovery-induced differentially expressed proteins (DEPs) between the chilling-tolerant rice line DC90 and the chilling-sensitive 9311. RESULTS Comparative analysis identified 206 and 155 DEPs in 9311 and DC90, respectively, in response to the whole period of chilling and recovery. These DEPs were clustered into 6 functional groups in 9311 and 4 in DC90. The majority were enriched in the 'structural constituent of ribosome', 'protein-chromophore linkage', and 'photosynthesis and light harvesting' categories. Short Time-series Expression Miner (STEM) analysis revealed distinct dynamic responses of both chloroplast photosynthetic and ribosomal proteins between 9311 and DC90. CONCLUSION CTS-12 might mediate the dynamic response of chloroplast photosynthetic and ribosomal proteins in DC90 under chilling (cold acclimation) and recovery (de-acclimation) and thereby enhancing the chilling stress tolerance of this rice line. The identified DEPs and the involvement of CTS-12 in mediating the dynamic response of DC90 at the proteomic level illuminate and deepen the understanding of the mechanisms that underlie chilling stress tolerance in wild rice.
Collapse
Affiliation(s)
- Weijian Cen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004 China
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Jianbin Liu
- College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| | - Siyuan Lu
- College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| | - Peilong Jia
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Kai Yu
- Shanghai MHelix BioTech Co., Ltd, Shanghai, 201900 People’s Republic of China
| | - Yue Han
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004 China
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Jijing Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004 China
- College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| |
Collapse
|
33
|
Shariatipour N, Heidari B. Investigation of Drought and Salinity Tolerance Related Genes and their Regulatory Mechanisms in Arabidopsis (Arabidopsis thaliana). ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1875036201811010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:The development of genome microarrays of the model plant;Arabidopsis thaliana, with increasing repositories of publicly available data and high-throughput data analysis tools, has opened new avenues to genome-wide systemic analysis of plant responses to environmental stresses.Objective:To identify differentially expressed genes and their regulatory networks inArabidopsis thalianaunder harsh environmental condition.Methods:Two replications of eight microarray data sets were derived from two different tissues (root and shoot) and two different time courses (control and 24 hours after the beginning of stress occurrence) for comparative data analysis through various bioinformatics tools.Results:Under drought stress, 2558 gene accessions in root and 3691 in shoot tissues had significantly differential expression with respect to control condition. Likewise, under salinity stress 9078 gene accessions in root and 5785 in shoot tissues were discriminated between stressed and non-stressed conditions. Furthermore, the transcription regulatory activity of differentially expressed genes was mainly due to hormone, light, circadian and stress responsivecis-acting regulatory elements among which ABRE, ERE, P-box, TATC-box, CGTCA-motif, GARE-motif, TGACG-motif, GAG-motif, GA-motif, GATA- motif, TCT-motif, GT1-motif, Box 4, G-Box, I-box, LAMP-element, Sp1, MBS, TC-rich repeats, TCA-element and HSE were the most important elements in the identified up-regulated genes.Conclusion:The results of the high-throughput comparative analyses in this study provide more options for plant breeders and give an insight into genes andcis-acting regulatory elements involved in plant response to drought and salinity stresses in strategic crops such as cereals.
Collapse
|
34
|
Chen LR, Ko CY, Folk WR, Lin TY. Chilling susceptibility in mungbean varieties is associated with their differentially expressed genes. BOTANICAL STUDIES 2017; 58:7. [PMID: 28510190 PMCID: PMC5432936 DOI: 10.1186/s40529-017-0161-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/02/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND Mungbean (Vigna radiata L. Wilczek) is an economically important legume of high nutritional value, however, its cultivation is limited by susceptibility to chilling. Varieties NM94 and VC1973A, with differential susceptibility to stress, serve as good materials for uncovering how they differ in chilling tolerance. This study aimed to identify the ultrastructural, physiological and molecular changes to provide new insights on the differential susceptibility to chilling between varieties VC1973A and NM94. RESULTS Chilling stress caused a greater reduction in relative growth rate, a more significant decrease in maximum photochemical efficiency of PSII and DPPH scavenging activity and more-pronounced ultrastructural changes in VC1973A than in NM94 seedlings. Comparative analyses of transcriptional profiles in NM94 and VC1973A revealed that the higher expression of chilling regulated genes (CORs) in NM94. The transcript levels of lipid transfer protein (LTP), dehydrin (DHN) and plant defensin (PDF) in NM94 seedlings after 72 h at 4 °C was higher than that in its parental lines VC1973A, 6601 and VC2768A. CONCLUSIONS Our results suggested that LTP, DHN and PDF may mediate chilling tolerance in NM94 seedlings.
Collapse
Affiliation(s)
- Li-Ru Chen
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114 Taiwan
| | - Chia-Yun Ko
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - William R. Folk
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
| | - Tsai-Yun Lin
- Department of Life Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013 Taiwan
| |
Collapse
|
35
|
Hawkins AK, Garza ER, Dietz VA, Hernandez OJ, Hawkins WD, Burrell AM, Pepper AE. Transcriptome Signatures of Selection, Drift, Introgression, and Gene Duplication in the Evolution of an Extremophile Endemic Plant. Genome Biol Evol 2017; 9:3478-3494. [PMID: 29220486 PMCID: PMC5751042 DOI: 10.1093/gbe/evx259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
Plants on serpentine soils provide extreme examples of adaptation to environment, and thus offer excellent models for the study of evolution at the molecular and genomic level. Serpentine outcrops are derived from ultramafic rock and have extremely low levels of essential plant nutrients (e.g., N, P, K, and Ca), as well as toxic levels of heavy metals (e.g., Ni, Cr, and Co) and low moisture availability. These outcrops provide habitat to a number of endemic plant species, including the annual mustard Caulanthus amplexicaulis var. barbarae (Cab) (Brassicaceae). Its sister taxon, C. amplexicaulis var. amplexicaulis (Caa), is intolerant to serpentine soils. Here, we assembled and annotated comprehensive reference transcriptomes of both Caa and Cab for use in protein coding sequence comparisons. A set of 29,443 reciprocal best Blast hit (RBH) orthologs between Caa and Cab was compared with identify coding sequence variants, revealing a high genome-wide dN/dS ratio between the two taxa (mean = 0.346). We show that elevated dN/dS likely results from the composite effects of genetic drift, positive selection, and the relaxation of negative selection. Further, analysis of paralogs within each taxon revealed the signature of a period of elevated gene duplication (∼10 Ma) that is shared with other species of the tribe Thelypodieae, and may have played a role in the striking morphological and ecological diversity of this tribe. In addition, distribution of the synonymous substitution rate, dS, is strongly bimodal, indicating a history of reticulate evolution that may have contributed to serpentine adaptation.
Collapse
|
36
|
Hosseinpour B, Sepahvand S, Kamali Aliabad K, Bakhtiarizadeh M, Imani A, Assareh R, Salami SA. Transcriptome profiling of fully open flowers in a frost-tolerant almond genotype in response to freezing stress. Mol Genet Genomics 2017; 293:151-163. [PMID: 28929226 DOI: 10.1007/s00438-017-1371-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/07/2017] [Indexed: 01/24/2023]
Abstract
Spring frost is a major limiting abiotic stress for the cultivation of almonds [Prunus dulcis (Mill.)] in Mediterranean areas or the Middle East. Spring frost, in particular, damages almond fully open flowers, resulting to significant reduction in yield. Little is known about the genetic factors expressed after frost stress in Prunus spp. as well as in almond fully open flowers. Here, we provide the molecular signature of pistils of fully open flowers from a frost-tolerant almond genotype. The level of frost tolerance in this genotype was determined for all three flowering stages and was confirmed by comparing it to two other cultivars using several physiological analyses. Afterwards, comprehensive expression profiling of genes expressed in fully open flowers was performed after being exposed to frost temperatures (during post-thaw period). Clean reads, 27,104,070 and 32,730,772, were obtained for non-frost-treated and frost-treated (FT) libraries, respectively. A total of 62.24 Mb was assembled, generating 50,896 unigenes and 66,906 transcripts. Therefore, 863 upregulated genes and 555 downregulated genes were identified in the FT library. Functional annotation showed that most of the upregulated genes were related to various biological processes involved in responding to abiotic stress. For the first time, a highly expressed cold-shock protein was identified in the reproductive organ of fruit trees. The expression of six genes was validated by RT-PCR. As the first comprehensive analysis of open flowers in a frost-tolerant almond genotype, this study represents a key step toward the molecular breeding of fruit tree species for frost tolerance.
Collapse
Affiliation(s)
- Batool Hosseinpour
- Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran.
| | - Sadegh Sepahvand
- Department of Horticulture, College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University of Tehran, Tehran, Iran
| | | | - MohammadReza Bakhtiarizadeh
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, P.O. Box 3391653755, Pakdasht, Tehran, Iran.
| | - Ali Imani
- Horticultural Sciences Research Institute (HSRI), Karaj, Iran
| | - Reza Assareh
- Young Researchers and Elite Club, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
37
|
Pagter M, Alpers J, Erban A, Kopka J, Zuther E, Hincha DK. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. BMC Genomics 2017; 18:731. [PMID: 28915789 PMCID: PMC5602955 DOI: 10.1186/s12864-017-4126-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022] Open
Abstract
Background During low temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. This is accompanied by dampened oscillations of circadian clock genes and disrupted oscillations of output genes and metabolites. During deacclimation in response to warm temperatures, cold acclimated plants lose freezing tolerance and resume growth and development. While considerable effort has been directed toward understanding the molecular and metabolic basis of cold acclimation, much less information is available about the regulation of deacclimation. Results We report metabolic (gas chromatography-mass spectrometry) and transcriptional (microarrays, quantitative RT-PCR) responses underlying deacclimation during the first 24 h after a shift of Arabidopsis thaliana (Columbia-0) plants cold acclimated at 4 °C back to warm temperature (20 °C). The data reveal a faster response of the transcriptome than of the metabolome and provide evidence for tightly regulated temporal responses at both levels. Metabolically, deacclimation is associated with decreasing contents of sugars, amino acids, glycolytic and TCA cycle intermediates, indicating an increased need for carbon sources and respiratory energy production for the activation of growth. The early phase of deacclimation also involves extensive down-regulation of protein synthesis and changes in the metabolism of lipids and cell wall components. Hormonal regulation appears particularly important during deacclimation, with extensive changes in the expression of genes related to auxin, gibberellin, brassinosteroid, jasmonate and ethylene metabolism. Members of several transcription factor families that control fundamental aspects of morphogenesis and development are significantly regulated during deacclimation, emphasizing that loss of freezing tolerance and growth resumption are transcriptionally highly interrelated processes. Expression patterns of some clock oscillator components resembled those under warm conditions, indicating at least partial re-activation of the circadian clock during deacclimation. Conclusions This study provides the first combined metabolomic and transcriptomic analysis of the regulation of deacclimation in cold acclimated plants. The data indicate cascades of rapidly regulated genes and metabolites that underlie the developmental switch resulting in reduced freezing tolerance and the resumption of growth. They constitute a large-scale dataset of genes, metabolites and pathways that are crucial during the initial phase of deacclimation. The data will be an important reference for further analyses of this and other important but under-researched stress deacclimation processes. Electronic supplementary material The online version of this article (10.1186/s12864-017-4126-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Majken Pagter
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany.,Present address: Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg East, Denmark
| | - Jessica Alpers
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany.
| |
Collapse
|
38
|
Perea-Resa C, Rodríguez-Milla MA, Iniesto E, Rubio V, Salinas J. Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. MOLECULAR PLANT 2017; 10:791-804. [PMID: 28412546 DOI: 10.1016/j.molp.2017.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 05/25/2023]
Abstract
The process of cold acclimation is an important adaptive response whereby many plants from temperate regions increase their freezing tolerance after being exposed to low non-freezing temperatures. The correct development of this response relies on proper accumulation of a number of transcription factors that regulate expression patterns of cold-responsive genes. Multiple studies have revealed a variety of molecular mechanisms involved in promoting the accumulation of these transcription factors. Interestingly, however, the mechanisms implicated in controlling such accumulation to ensure their adequate levels remain largely unknown. In this work, we demonstrate that prefoldins (PFDs) control the levels of HY5, an Arabidopsis transcription factor with a key role in cold acclimation by activating anthocyanin biosynthesis, in response to low temperature. Our results show that, under cold conditions, PFDs accumulate into the nucleus through a DELLA-dependent mechanism, where they interact with HY5, triggering its ubiquitination and subsequent degradation. The degradation of HY5 would result, in turn, in anthocyanin biosynthesis attenuation, ensuring the accurate development of cold acclimation. These findings uncover an unanticipated nuclear function for PFDs in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Miguel A Rodríguez-Milla
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Elisa Iniesto
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Vicente Rubio
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Julio Salinas
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain.
| |
Collapse
|
39
|
Arae T, Isai S, Sakai A, Mineta K, Yokota Hirai M, Suzuki Y, Kanaya S, Yamaguchi J, Naito S, Chiba Y. Co-ordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells. PLANT & CELL PHYSIOLOGY 2017; 58:1090-1102. [PMID: 28444357 DOI: 10.1093/pcp/pcx059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Plants possess a cold acclimation system to acquire freezing tolerance through pre-exposure to non-freezing low temperatures. The transcriptional cascade of C-repeat-binding factors (CBFs)/dehydration response element-binding factors (DREBs) is considered a major transcriptional regulatory pathway during cold acclimation. However, little is known regarding the functional significance of mRNA stability regulation in the response of gene expression to cold stress. The actual level of individual mRNAs is determined by a balance between mRNA synthesis and degradation. Therefore, it is important to assess the regulatory steps to increase our understanding of gene regulation. Here, we analyzed temporal changes in mRNA amounts and half-lives in response to cold stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were estimated from the above two parameters using a mathematical approach. Our results showed that several cold-responsive genes, including Cold-regulated 15a, were relatively destabilized, whereas the mRNA amounts were increased during cold treatment by accelerating the transcription rate to overcome the destabilization. Considering the kinetics of mRNA synthesis and degradation, this apparently contradictory result supports that mRNA destabilization is advantageous for the swift increase in CBF-responsive genes in response to cold stress.
Collapse
Affiliation(s)
- Toshihiro Arae
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shiori Isai
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Akira Sakai
- Department of Mathematics, Hokkaido University, Sapporo, Japan
| | - Katsuhiko Mineta
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | | | - Yuya Suzuki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- National Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | - Shigehiko Kanaya
- Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Junji Yamaguchi
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Satoshi Naito
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yukako Chiba
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
40
|
Cavaiuolo M, Cocetta G, Spadafora ND, Müller CT, Rogers HJ, Ferrante A. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses: A transcriptomic resource for Diplotaxis tenuifolia. PLoS One 2017; 12:e0178119. [PMID: 28558066 PMCID: PMC5448768 DOI: 10.1371/journal.pone.0178119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/07/2017] [Indexed: 11/25/2022] Open
Abstract
Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceutical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre- and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation) and postharvest stresses (cold, dehydration, dark, wounding) known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
| | | | | | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
- * E-mail:
| |
Collapse
|
41
|
Deng C, Ye H, Fan M, Pu T, Yan J. The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1316442. [PMID: 28414264 PMCID: PMC5501220 DOI: 10.1080/15592324.2017.1316442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 05/18/2023]
Abstract
Cold stress is one of the major constraints for crop yield. Plants have in turn evolved highly sophisticated mechanisms involving altered physiologic and biochemical processes to cope with the cold stress. Previous studies have revealed that the INDUCER OF CBF EXPRESSION 1 (ICE1), a basic helix-loop-helix (bHLH) transcription factor, directly binds and activates the expression of C-Repeat Binding Factor/Dehydration-Responsive-Element-Binding protein (CBF/DREB1) to regulate the cold-response pathway in Arabidopsis thaliana. However, the function of AtICE1 orthologues in rice is largely unknown. Here we identified that OsICE1 and OsICE2 in rice shared highly conserved amino acid sequence with AtICE1 in Arabidopsis. Overexpression of OsICE1 and OsICE2 in Arabidopsis significantly enhanced the cold tolerance of Arabidopsis seedlings and improved the expression of cold-response genes. Furthermore, we showed that both OsICE1 and OsICE2 physically interact with OsMYBS3, a single DNA-binding repeat MYB transcription factor that is essential for cold adaptation in rice, suggesting that OsICE1/OsICE2 and OsMYBS3 probably act through specific signal transduction mechanisms to coordinate cold tolerance in rice. These results demonstrated that the 2 OsICEs are orthologues of AtICE1 and play positive regulators in activation of cold-response genes to regulate the cold tolerance.
Collapse
Affiliation(s)
- Cuiyun Deng
- School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Haiyan Ye
- School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Meng Fan
- School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Tongliang Pu
- School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Jianbin Yan
- School of Life Sciences, Tsinghua University, Beijing, P.R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
- CONTACT Jianbin Yan , School of Life Science, Tsinghua University, Renhuan Building, Room 404, Beijing,100084, China
| |
Collapse
|
42
|
Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A. A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage. PLANT MOLECULAR BIOLOGY 2016; 92:483-503. [PMID: 27714490 DOI: 10.1007/s11103-016-0526-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 08/06/2016] [Indexed: 05/14/2023]
Abstract
Peach fruits subjected to prolonged cold storage (CS) to delay decay and over-ripening often develop a form of chilling injury (CI) called mealiness/woolliness (WLT), a flesh textural disorder characterized by lack of juiciness. Transcript profiles were analyzed after different lengths of CS and subsequent shelf life ripening (SLR) in pools of fruits from siblings of the Pop-DG population with contrasting sensitivity to develop WLT. This was followed by quantitative PCR on pools and individual lines of the Pop-DG population to validate and extend the microarray results. Relative tolerance to WLT development during SLR was related to the fruit's ability to recover from cold and the reactivation of normal ripening, processes that are probably regulated by transcription factors involved in stress protection, stress recovery and induction of ripening. Furthermore, our results showed that altered ripening in WLT fruits during shelf life is probably due, in part, to cold-induced desynchronization of the ripening program involving ethylene and auxin hormonal regulation of metabolism and cell wall. In addition, we found strong correlation between expression of RNA translation and protein assembly genes and the visual injury symptoms.
Collapse
Affiliation(s)
- Clara Pons
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain.
| | - Cristina Martí
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| | - Carlos H Crisosto
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| |
Collapse
|
43
|
Kovi MR, Ergon Å, Rognli OA. Freezing tolerance revisited-effects of variable temperatures on gene regulation in temperate grasses and legumes. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:140-146. [PMID: 27479037 DOI: 10.1016/j.pbi.2016.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 05/11/2023]
Abstract
Climate change creates new patterns of seasonal climate variation with higher temperatures, longer growth seasons and more variable winter climates. This is challenging the winter survival of perennial herbaceous plants. In this review, we focus on the effects of variable temperatures during autumn/winter/spring, and its interactions with light, on the development and maintenance of freezing tolerance. Cold temperatures induce changes at several organizational levels in the plant (cold acclimation), leading to the development of freezing tolerance, which can be reduced/lost during warm spells (deacclimation) in winters, and attained again during cold spells (reacclimation). We summarize how temperature interacts with components of the light regime (photoperiod, PSII excitation pressure, irradiance, and light quality) in determining changes in the transcriptome, proteome and metabolome.
Collapse
Affiliation(s)
- Mallikarjuna Rao Kovi
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Åshild Ergon
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Odd Arne Rognli
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway.
| |
Collapse
|
44
|
Chen C, Zhang Y, Xu Z, Luan A, Mao Q, Feng J, Xie T, Gong X, Wang X, Chen H, He Y. Transcriptome Profiling of the Pineapple under Low Temperature to Facilitate Its Breeding for Cold Tolerance. PLoS One 2016; 11:e0163315. [PMID: 27656892 PMCID: PMC5033252 DOI: 10.1371/journal.pone.0163315] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple's response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar 'Shenwan' before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance.
Collapse
Affiliation(s)
- Chengjie Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Yafeng Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Zhiqiang Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Aiping Luan
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Qi Mao
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Junting Feng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Tao Xie
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Xue Gong
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Xiaoshuang Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Hao Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Yehua He
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| |
Collapse
|
45
|
Ben Daniel BH, Cattan E, Wachtel C, Avrahami D, Glick Y, Malichy A, Gerber D, Miller G. Identification of novel transcriptional regulators of Zat12 using comprehensive yeast one-hybrid screens. PHYSIOLOGIA PLANTARUM 2016; 157:422-441. [PMID: 26923089 DOI: 10.1111/ppl.12439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
To appropriately acclimate to environmental stresses, plants have to rapidly activate a specific transcriptional program. Yet, the identity and function of many of the transcriptional regulators that mediate early responses to abiotic stress stimuli is still unknown. In this work we employed the promoter of the multi-stress-responsive zinc-finger protein Zat12 in yeast one-hybrid (Y1H) screens to identify early abiotic stress-responsive transcriptional regulators. Analysis of Zat12 promoter fragments fused to luciferase underlined an approximately 200 bp fragment responsive to NaCl and to reactive oxygen species (ROS). Using these segments and others as baits against Y1H control or stress Arabidopsis prey libraries, we identified 15 potential Zat12 transcriptional regulators. Among the prominent proteins identified were known transcription factors including bZIP29 and ANAC91 as well as unknown function proteins such as a homolog of the human USB1, a U6 small nuclear RNA (snRNA) processing protein, and dormancy/auxin-associated family protein 2 (DRM2). Altered expression of Zat12 during high light stress in the knockout mutants further indicated the involvement of these proteins in the regulation of Zat12. Using a state of the art microfluidic approach we showed that AtUSB1 and DRM2 can specifically bind dsDNA and were able to identify the preferred DNA-binding motif of all four proteins. Overall, the proteins identified in this work provide an important start point for charting the earliest signaling network of Zat12 and of other genes required for acclimation to abiotic stresses.
Collapse
Affiliation(s)
- Bat-Hen Ben Daniel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Esther Cattan
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Chaim Wachtel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Dorit Avrahami
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- The Nanotechnology Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Yair Glick
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- The Nanotechnology Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Asaf Malichy
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- The Nanotechnology Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Doron Gerber
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- The Nanotechnology Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Gad Miller
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
46
|
Tolerant and Susceptible Sesame Genotypes Reveal Waterlogging Stress Response Patterns. PLoS One 2016; 11:e0149912. [PMID: 26934874 PMCID: PMC4774966 DOI: 10.1371/journal.pone.0149912] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/06/2016] [Indexed: 02/07/2023] Open
Abstract
Waterlogging is a common adverse environmental condition that limits plant growth. Sesame (Sesamum indicum) is considered a drought-tolerant oil crop but is typically susceptible to harmful effects from waterlogging. The present study used comparative analysis to explore the waterlogging stress response associated with two sesame genotypes. The RNA-seq dataset generated during a time course of 0, 3, 9 and 15 h of waterlogging as well as 20 h post-drainage indicated that stress gradually suppressed the expression of sesame genes, with 9 h as the critical time point for the response of sesame to waterlogging stress. Of the 19,316 genes expressed during waterlogging, 72.1% were affected significantly. Sesame of both tolerant and susceptible genotypes showed decreased numbers of upregulated differentially expressed genes (DEGs) but increased numbers of downregulated DEGs at the onset of waterlogging. However, the tolerant-genotype sesame exhibited 25.5% more upregulated DEGs and 29.7% fewer downregulated DEGs than those of the susceptible-genotype strain between 3 and 15 h. The results indicated that the tolerant sesame displayed a more positive gene response to waterlogging. A total of 1,379 genes were significantly induced and commonly expressed in sesame under waterlogging conditions from 3 to 15 h regardless of tolerance level; of these genes, 98 are known homologous stress responsive genes, while the remaining 1,281 are newly reported here. This gene set may represent the core genes that function in response to waterlogging, including those related mainly to energy metabolism and phenylpropanoid biosynthesis. Furthermore, a set of 3,016 genes functioning in energy supply and cell repair or formation was activated in sesame recovery from waterlogging stress. A comparative analysis between sesame of the tolerant and susceptible genotypes revealed 66 genes that may be candidates for improving sesame tolerance to waterlogging. This study provided a comprehensive picture of the sesame gene expression pattern in response to waterlogging stress. These results will help dissect the mechanism of the sesame response to waterlogging and identify candidate genes to improve its tolerance.
Collapse
|
47
|
Wu ZG, Jiang W, Chen SL, Mantri N, Tao ZM, Jiang CX. Insights from the Cold Transcriptome and Metabolome of Dendrobium officinale: Global Reprogramming of Metabolic and Gene Regulation Networks during Cold Acclimation. FRONTIERS IN PLANT SCIENCE 2016; 7:1653. [PMID: 27877182 PMCID: PMC5099257 DOI: 10.3389/fpls.2016.01653] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/20/2016] [Indexed: 05/20/2023]
Abstract
Plant cold acclimation (CA) is a genetically complex phenomenon involving gene regulation and expression. Little is known about the cascading pattern of gene regulatroy network and the link between genes and metabolites during CA. Dendrobium officinale (DOKM) is an important medicinal and ornamental plant and hypersensitive to low temperature. Here, we used the large scale metabolomic and transcriptomic technologies to reveal the response to CA in DOKM seedlings based on the physiological profile analyses. Lowering temperature from 4 to -2°C resulted in significant increase (P < 0.01) in antioxidant activities and electrolyte leakage (EL) during 24 h. The fitness CA piont of 0°C and control (20°C) during 20 h were firstly obtained according to physiological analyses. Subsequently, massive transcriptome and metabolome reprogramming occurred during CA. The gene to metabolite network demonstrated that the CA associated processes are highly energy demanding through activating hydrolysis of sugars, amino acids catabolism and citrate cycle. The expression levels of 2,767 genes were significantly affected by CA, including 153-fold upregulation of CBF transcription factor, 56-fold upregulation of MAPKKK16 protein kinase. Moreover, the gene interaction and regulation network analysis revealed that the CA as an active process, was regulated at the transcriptional, post-transcriptional, translational and post-translational levels. Our findings highligted a comprehensive regulatory mechanism including cold signal transduction, transcriptional regulation, and gene expression, which contributes a deeper understanding of the highly complex regulatory program during CA in DOKM. Some marker genes identified in DOKM seedlings will allow us to understand the role of each individual during CA by further functional analyses.
Collapse
Affiliation(s)
- Zhi-Gang Wu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural SciencesWenzhou, China
- *Correspondence: Zhi-Gang Wu, Zheng-Ming Tao,
| | - Wu Jiang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural SciencesWenzhou, China
| | - Song-Lin Chen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural SciencesWenzhou, China
- School of Applied Sciences, Health Innovations Research Institute, Royal Melbourne Institute of Technology University, MelbourneVIC, Australia
| | - Nitin Mantri
- School of Applied Sciences, Health Innovations Research Institute, Royal Melbourne Institute of Technology University, MelbourneVIC, Australia
| | - Zheng-Ming Tao
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural SciencesWenzhou, China
- *Correspondence: Zhi-Gang Wu, Zheng-Ming Tao,
| | - Cheng-Xi Jiang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural SciencesWenzhou, China
| |
Collapse
|
48
|
Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions. Sci Rep 2015; 5:12199. [PMID: 26174584 PMCID: PMC4648415 DOI: 10.1038/srep12199] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/18/2015] [Indexed: 11/21/2022] Open
Abstract
During low temperature exposure, Arabidopsis thaliana and many other plants from temperate climates increase in freezing tolerance in a process termed cold acclimation. However, the correct timing and rate of deacclimation, resulting in loss of freezing tolerance and initiation of growth is equally important for plant fitness and survival. While the molecular basis of cold acclimation has been investigated in detail, much less information is available about deacclimation. We have characterized the responses of 10 natural accessions of Arabidopsis thaliana that vary widely in their freezing tolerance, to deacclimation conditions. Sugar, proline and transcript levels declined sharply over three days in all accessions after transfer of cold acclimated plants to ambient temperatures, while freezing tolerance only declined in tolerant accessions. Correlations between freezing tolerance and the expression levels of COR genes and the content of glucose, fructose and sucrose, as well as many correlations among transcript and solute levels, that were highly significant in cold acclimated plants, were lost during deacclimation. Other correlations persisted, indicating that after three days of deacclimation, plant metabolism had not completely reverted back to the non-acclimated state. These data provide the basis for further molecular and genetic studies to unravel the regulation of deacclimation.
Collapse
|
49
|
Lindlöf A, Chawade A, Sikora P, Olsson O. Comparative Transcriptomics of Sijung and Jumli Marshi Rice during Early Chilling Stress Imply Multiple Protective Mechanisms. PLoS One 2015; 10:e0125385. [PMID: 25973918 PMCID: PMC4431715 DOI: 10.1371/journal.pone.0125385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/23/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Low temperature is one of the major environmental factors that adversely affect plant growth and yield. Many cereal crops from tropical regions, such as rice, are chilling sensitive and, therefore, are affected already at <10 °C. Interestingly, it has been demonstrated that chilling susceptibility varies greatly among rice varieties, which indicates differences in the underlying molecular responses. Understanding these differences is vital for continued development of rational breeding and transgenic strategies for more tolerant varieties. Thus, in this study, we conducted a comparative global gene expression profiling analysis of the chilling tolerant varieties Sijung and Jumli Marshi (spp. Japonica) during early chilling stress (<24 h, 10 °C). METHODS AND RESULTS Global gene expression experiments were conducted with Agilent Rice Gene Expression Microarray 4 x 44 K. The analysed results showed that there was a relatively low (percentage or number) overlap in differentially expressed genes in the two varieties and that substantially more genes were up-regulated in Jumli Marshi than in Sijung but the number of down-regulated genes were higher in Sijung. In broad GO annotation terms, the activated response pathways in Sijung and Jumli Marshi were coherent, as a majority of the genes belonged to the catalytic, transcription regulator or transporter activity categories. However, a more detailed analysis revealed essential differences. For example, in Sijung, activation of calcium and phosphorylation signaling pathways, as well as of lipid transporters and exocytosis-related proteins take place very early in the stress response. Such responses can be coupled to processes aimed at strengthening the cell wall and plasma membrane against disruption. On the contrary, in Jumli Marshi, sugar production, detoxification, ROS scavenging, protection of chloroplast translation, and plausibly the activation of the jasmonic acid pathway were the very first response activities. These can instead be coupled to detoxification processes. CONCLUSIONS Based on the results inferred from this study, we conclude that different, but overlapping, strategies are undertaken by the two varieties to cope with the chilling stress; in Sijung the initial molecular responses seem to be mainly targeted at strengthening the cell wall and plasma membrane, whereas in Jumli Marshi the protection of chloroplast translation and detoxification is prioritized.
Collapse
Affiliation(s)
- Angelica Lindlöf
- Systems Biology Research Centre, University of Skövde, 541 28 Skövde, Sweden
- * E-mail:
| | - Aakash Chawade
- CropTailor AB, Department of Pure and Applied Biochemistry, Lund University, Box 124, SE 22100 Lund, Sweden
- Department of Immunotechnology, Lund University, SE-22381, Lund, Sweden
| | - Per Sikora
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Olof Olsson
- CropTailor AB, Department of Pure and Applied Biochemistry, Lund University, Box 124, SE 22100 Lund, Sweden
- Department of Pure and Applied Biochemistry, Lund University, Box 124, SE 22100 Lund, Sweden
| |
Collapse
|
50
|
Abstract
This introductory chapter provides a brief overview of plant freezing tolerance and cold acclimation and describes the basic concepts and approaches that are currently followed to investigate these phenomena. We highlight the multidisciplinary nature of these investigations and the necessity to use methodologies from different branches of science, such as ecology, genetics, physiology, biochemistry, and biophysics, to come to a complete understanding of the complex adaptive mechanisms underlying plant cold acclimation.
Collapse
Affiliation(s)
- Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany,
| | | |
Collapse
|