1
|
Cao L, Ye F, Fahim AM, Ma C, Pang Y, Zhang X, Zhang Q, Lu X. Transcription factor ZmDof22 enhances drought tolerance by regulating stomatal movement and antioxidant enzymes activities in maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:132. [PMID: 38750241 DOI: 10.1007/s00122-024-04625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/14/2024] [Indexed: 06/09/2024]
Abstract
KEY MESSAGE The Dof22 gene encoding a deoxyribonucleic acid binding with one finger in maize, which is associated with its drought tolerance. The identification of drought stress regulatory genes is essential for the genetic improvement of maize yield. Deoxyribonucleic acid binding with one finger (Dof), a plant-specific transcription factor family, is involved in signal transduction, morphogenesis, and environmental stress responses. In present study, by weighted correlation network analysis (WGCNA) and gene co-expression network analysis, 15 putative Dof genes were identified from maize that respond to drought and rewatering. A real-time fluorescence quantitative PCR showed that these 15 genes were strongly induced by drought and ABA treatment, and among them ZmDof22 was highly induced by drought and ABA treatment. Its expression level increased by nearly 200 times after drought stress and more than 50 times after ABA treatment. After the normal conditions were restored, the expression levels were nearly 100 times and 40 times of those before treatment, respectively. The Gal4-LexA/UAS system and transcriptional activation analysis indicate that ZmDof22 is a transcriptional activator regulating drought tolerance and recovery ability in maize. Further, overexpressed transgenic and mutant plants of ZmDof22 by CRISPR/Cas9, indicates that the ZmDof22, improves maize drought tolerance by promoting stomatal closure, reduces water loss, and enhances antioxidant enzyme activity by participating in the ABA pathways. Taken together, our findings laid a foundation for further functional studies of the ZmDof gene family and provided insights into the role of the ZmDof22 regulatory network in controlling drought tolerance and recovery ability of maize.
Collapse
Affiliation(s)
- Liru Cao
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China
| | - Feiyu Ye
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Abbas Muhammad Fahim
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Chenchen Ma
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Yunyun Pang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Xin Zhang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Qianjin Zhang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Xiaomin Lu
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
2
|
Li J, Li X, Jia C, Liu D. Gene Cloning and Characterization of Transcription Factor FtNAC10 in Tartary Buckwheat ( Fagopyrum tataricum (L.) Gaertn.). Int J Mol Sci 2023; 24:16317. [PMID: 38003506 PMCID: PMC10671190 DOI: 10.3390/ijms242216317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
NAC transcription factors play a significant role in plant stress responses. In this study, an NAC transcription factor, with a CDS of 792 bp encoding 263 amino acids, was cloned from Fagopyrum tataricum (L.) Gaertn. (F. tataricum), a minor cereal crop, which is rich in flavonoids and highly stress resistant. The transcription factor was named FtNAC10 (NCBI accession number: MK614506.1) and characterized as a member of the NAP subgroup of NAC transcriptions factors. The gene exhibited a highly conserved N-terminal, encoding about 150 amino acids, and a highly specific C-terminal. The resulting protein was revealed to be hydrophilic, with strong transcriptional activation activity. FtNAC10 expression occurred in various F. tataricum tissues, most noticeably in the root, and was regulated differently under various stress treatments. The over-expression of FtNAC10 in transgenic Arabidopsis thaliana (A. thaliana) seeds inhibited germination, and the presence of FtNAC10 enhanced root elongation under saline and drought stress. According to phylogenetic analysis and previous reports, our experiments indicate that FtNAC10 may regulate the stress response or development of F. tataricum through ABA-signaling pathway, although the mechanism is not yet known. This study provides a reference for further analysis of the regulatory function of FtNAC10 and the mechanism that underlies stress responses in Tartary buckwheat.
Collapse
Affiliation(s)
- Jinghuan Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China; (J.L.); (D.L.)
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohua Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China; (J.L.); (D.L.)
| | - Caihua Jia
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Dahui Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China; (J.L.); (D.L.)
| |
Collapse
|
3
|
Wu J, Kamanga BM, Zhang W, Xu Y, Xu L. Research progress of aldehyde oxidases in plants. PeerJ 2022; 10:e13119. [PMID: 35356472 PMCID: PMC8958963 DOI: 10.7717/peerj.13119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
Plant aldehyde oxidases (AOs) are multi-functional enzymes, and they could oxidize abscisic aldehyde into ABA (abscisic acid) or indole acetaldehyde into IAA (indoleacetic acid) as the last step, respectively. AOs can be divided into four groups based on their biochemical and physiological functions. In this review, we summarized the recent studies about AOs in plants including the motif information, biochemical, and physiological functions. Besides their role in phytohormones biosynthesis and stress response, AOs could also involve in reactive oxygen species homeostasis, aldehyde detoxification and stress tolerance.
Collapse
Affiliation(s)
- Jun Wu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Blair Moses Kamanga
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Wenying Zhang
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Yanhao Xu
- Hubei Academy of Agricultural Science, Wuhan, China
| | - Le Xu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| |
Collapse
|
4
|
How Many Faces Does the Plant U-Box E3 Ligase Have? Int J Mol Sci 2022; 23:ijms23042285. [PMID: 35216399 PMCID: PMC8875423 DOI: 10.3390/ijms23042285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Ubiquitination is a major type of post-translational modification of proteins in eukaryotes. The plant U-Box (PUB) E3 ligase is the smallest family in the E3 ligase superfamily, but plays a variety of essential roles in plant growth, development and response to diverse environmental stresses. Hence, PUBs are potential gene resources for developing climate-resilient crops. However, there is a lack of review of the latest advances to fully understand the powerful gene family. To bridge the gap and facilitate its use in future crop breeding, we comprehensively summarize the recent progress of the PUB family, including gene evolution, classification, biological functions, and multifarious regulatory mechanisms in plants.
Collapse
|
5
|
Maize WRKY Transcription Factor ZmWRKY79 Positively Regulates Drought Tolerance through Elevating ABA Biosynthesis. Int J Mol Sci 2021; 22:ijms221810080. [PMID: 34576244 PMCID: PMC8468953 DOI: 10.3390/ijms221810080] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Drought stress causes heavy damages to crop growth and productivity under global climatic changes. Transcription factors have been extensively studied in many crops to play important roles in plant growth and defense. However, there is a scarcity of studies regarding WRKY transcription factors regulating drought responses in maize crops. Previously, ZmWRKY79 was identified as the regulator of maize phytoalexin biosynthesis with inducible expression under different elicitation. Here, we elucidated the function of ZmWRKY79 in drought stress through regulating ABA biosynthesis. The overexpression of ZmWRKY79 in Arabidopsis improved the survival rate under drought stress, which was accompanied by more lateral roots, lower stomatal aperture, and water loss. ROS scavenging was also boosted by ZmWRKY79 to result in less H2O2 and MDA accumulation and increased antioxidant enzyme activities. Further analysis detected more ABA production in ZmWRKY79 overexpression lines under drought stress, which was consistent with up-regulated ABA biosynthetic gene expression by RNA-seq analysis. ZmWRKY79 was observed to target ZmAAO3 genes in maize protoplast through acting on the specific W-boxes of the corresponding gene promoters. Virus-induced gene silencing of ZmWRKY79 in maize resulted in compromised drought tolerance with more H2O2 accumulation and weaker root system architecture. Together, this study substantiates the role of ZmWRKY79 in the drought-tolerance mechanism through regulating ABA biosynthesis, suggesting its broad functions not only as the regulator in phytoalexin biosynthesis against pathogen infection but also playing the positive role in abiotic stress response, which provides a WRKY candidate gene to improve drought tolerance for maize and other crop plants.
Collapse
|
6
|
Sardans J, Peñuelas J. Potassium Control of Plant Functions: Ecological and Agricultural Implications. PLANTS (BASEL, SWITZERLAND) 2021; 10:419. [PMID: 33672415 PMCID: PMC7927068 DOI: 10.3390/plants10020419] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Potassium, mostly as a cation (K+), together with calcium (Ca2+) are the most abundant inorganic chemicals in plant cellular media, but they are rarely discussed. K+ is not a component of molecular or macromolecular plant structures, thus it is more difficult to link it to concrete metabolic pathways than nitrogen or phosphorus. Over the last two decades, many studies have reported on the role of K+ in several physiological functions, including controlling cellular growth and wood formation, xylem-phloem water content and movement, nutrient and metabolite transport, and stress responses. In this paper, we present an overview of contemporary findings associating K+ with various plant functions, emphasizing plant-mediated responses to environmental abiotic and biotic shifts and stresses by controlling transmembrane potentials and water, nutrient, and metabolite transport. These essential roles of K+ account for its high concentrations in the most active plant organs, such as leaves, and are consistent with the increasing number of ecological and agricultural studies that report K+ as a key element in the function and structure of terrestrial ecosystems, crop production, and global food security. We synthesized these roles from an integrated perspective, considering the metabolic and physiological functions of individual plants and their complex roles in terrestrial ecosystem functions and food security within the current context of ongoing global change. Thus, we provide a bridge between studies of K+ at the plant and ecological levels to ultimately claim that K+ should be considered at least at a level similar to N and P in terrestrial ecological studies.
Collapse
Affiliation(s)
- Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain;
- CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain;
- CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
7
|
Molinari MDC, Fuganti-Pagliarini R, Marin SRR, Ferreira LC, Barbosa DDA, Marcolino-Gomes J, Oliveira MCND, Mertz-Henning LM, Kanamori N, Takasaki H, Urano K, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K, Nepomuceno AL. Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions. Genet Mol Biol 2020; 43:e20190292. [PMID: 32511664 PMCID: PMC7278712 DOI: 10.1590/1678-4685-gmb-2019-0292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/06/2020] [Indexed: 01/13/2023] Open
Abstract
Water deficit is an important climatic problem that can impair agriculture yield and economy. Genetically modified soybean plants containing the AtNCED3 gene were obtained aiming drought-tolerance improvement. The NCED3 gene encodes a 9-cis-epoxycarotenoid dioxygenase (NCED, EC 1.13.11.51), an important enzyme in abscisic acid biosynthesis. ABA activates the expression of drought-responsive genes, in water-deficit conditions, targeting defense mechanisms and enabling plants to survive under low water availability. Results from greenhouse experiments showed that the transgene AtNCED3 and the endogenous genes GmAREB1, GmPP2C, GmSnRK2 and GmAAO3 presented higher expression under water deficit (WD) in the event 2Ha11 than in WT-plants. No significant correlation was observed between the plant materials and WD conditions for growth parameters; however, gas exchange measurements decreased in the GM event, which also showed 80% higher intrinsic water use when compared to WT plants. In crop season 2015/16, event 2Ha11 showed higher total number of pods, higher number of pods with seeds and yield than WT plants. ABA concentration was also higher in GM plants under WD. These results obtained in field screenings suggest that AtNCED3 soybean plants might outperform under drought, reducing economic and yield losses, thus being a good candidate line to be incorporated in the soybean-breeding program to develop drought-tolerant cultivars.
Collapse
Affiliation(s)
- Mayla Daiane Correa Molinari
- Universidade Estadual de Londrina, Departamento Geral de Biologia, Londrina, PR, Brazil.,Embrapa Soja, Londrina, PR, Brazil
| | | | | | | | - Daniel de Amorim Barbosa
- Universidade Estadual de Londrina, Departamento Geral de Biologia, Londrina, PR, Brazil.,Embrapa Soja, Londrina, PR, Brazil
| | | | | | | | - Norihito Kanamori
- Japan International Research Center for Agricultural Sciences, Biological Resources and Post-harvest Division, Tsukuba, Ibaraki, Japan
| | - Hironori Takasaki
- RIKEN Center for Sustainable Resource Science, Gene Discovery Research Group, Tsukuba, Ibaraki, Japan
| | - Kaoru Urano
- RIKEN Center for Sustainable Resource Science, Gene Discovery Research Group, Tsukuba, Ibaraki, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Gene Discovery Research Group, Tsukuba, Ibaraki, Japan
| | - Kazuo Nakashima
- Japan International Research Center for Agricultural Sciences, Biological Resources and Post-harvest Division, Tsukuba, Ibaraki, Japan
| | - Kazuko Yamaguchi-Shinozaki
- The University of Tokyo, Laboratory of Plant Molecular Physiology, Department of Applied Biological Chemistry, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
8
|
Park SI, Kim JJ, Shin SY, Kim YS, Yoon HS. ASR Enhances Environmental Stress Tolerance and Improves Grain Yield by Modulating Stomatal Closure in Rice. FRONTIERS IN PLANT SCIENCE 2020; 10:1752. [PMID: 32117337 PMCID: PMC7033646 DOI: 10.3389/fpls.2019.01752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/13/2019] [Indexed: 05/24/2023]
Abstract
Abscisic acid-, stress-, and ripening-induced (ASR) genes are involved in responding to abiotic stresses, but their precise roles in enhancing grain yield under stress conditions remain to be determined. We cloned a rice (Oryza sativa) ASR gene, OsASR1, and characterized its function in rice plants. OsASR1 expression was induced by abscisic acid (ABA), salt, and drought treatments. Transgenic rice plants overexpressing OsASR1 displayed improved water regulation under salt and drought stresses, which was associated with osmolyte accumulation, improved modulation of stomatal closure, and reduced transpiration rates. OsASR1-overexpressing plants were hypersensitive to exogenous ABA and accumulated higher endogenous ABA levels under salt and drought stresses, indicating that OsASR1 is a positive regulator of the ABA signaling pathway. The growth of OsASR1-overexpressing plants was superior to that of wild-type (WT) plants under paddy field conditions when irrigation was withheld, likely due to improved modulation of stomatal closure via modified ABA signaling. The transgenic plants had higher grain yields than WT plants for four consecutive generations. We conclude that OsASR1 has a crucial role in ABA-mediated regulation of stomatal closure to conserve water under salt- and drought-stress conditions, and OsASR1 overexpression can enhance salinity and drought tolerance, resulting in improved crop yields.
Collapse
Affiliation(s)
- Seong-Im Park
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Jin-Ju Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Sun-Young Shin
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Young-Saeng Kim
- Research Institute for Dok-do and Ulleung-do, Kyungpook National University, Daegu, South Korea
| | - Ho-Sung Yoon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
9
|
Ahuja I, de Vos RCH, Rohloff J, Stoopen GM, Halle KK, Ahmad SJN, Hoang L, Hall RD, Bones AM. Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle. Sci Rep 2016; 6:38990. [PMID: 27976683 PMCID: PMC5157024 DOI: 10.1038/srep38990] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/16/2016] [Indexed: 11/23/2022] Open
Abstract
Both physical barriers and reactive phytochemicals represent two important components of a plant's defence system against environmental stress. However, these two defence systems have generally been studied independently. Here, we have taken an exclusive opportunity to investigate the connection between a chemical-based plant defence system, represented by the glucosinolate-myrosinase system, and a physical barrier, represented by the cuticle, using Arabidopsis myrosinase (thioglucosidase; TGG) mutants. The tgg1, single and tgg1 tgg2 double mutants showed morphological changes compared to wild-type plants visible as changes in pavement cells, stomatal cells and the ultrastructure of the cuticle. Extensive metabolite analyses of leaves from tgg mutants and wild-type Arabidopsis plants showed altered levels of cuticular fatty acids, fatty acid phytyl esters, glucosinolates, and indole compounds in tgg single and double mutants as compared to wild-type plants. These results point to a close and novel association between chemical defence systems and physical defence barriers.
Collapse
Affiliation(s)
- Ishita Ahuja
- Department of Biology, Norwegian University of Science and Technology (NTNU), Realfagbygget, NO-7491 Trondheim, Norway
- Plant Research International, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ric C. H. de Vos
- Plant Research International, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jens Rohloff
- Department of Biology, Norwegian University of Science and Technology (NTNU), Realfagbygget, NO-7491 Trondheim, Norway
| | - Geert M. Stoopen
- Plant Research International, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- RIKILT, Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - Kari K. Halle
- Department of Mathematical Sciences, NTNU, Trondheim, Norway
| | | | - Linh Hoang
- Cellular and Molecular Imaging Core Facility (CMIC), Laboratory for Electron Microscopy, NTNU, Trondheim, Norway
| | - Robert D. Hall
- Plant Research International, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Atle M. Bones
- Department of Biology, Norwegian University of Science and Technology (NTNU), Realfagbygget, NO-7491 Trondheim, Norway
| |
Collapse
|
10
|
Hamisch D, Kaufholdt D, Kuchernig JC, Bittner F, Mendel RR, Hänsch R, Popko J. Transgenic Poplar Plants for the Investigation of ABA-Dependent Salt and Drought Stress Adaptation in Trees. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajps.2016.79128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Shimizu T, Miyakawa S, Esaki T, Mizuno H, Masujima T, Koshiba T, Seo M. Live Single-Cell Plant Hormone Analysis by Video-Mass Spectrometry. PLANT & CELL PHYSIOLOGY 2015; 56:1287-1296. [PMID: 25759328 DOI: 10.1093/pcp/pcv042] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
Studies have indicated that endogenous concentrations of plant hormones are regulated very locally within plants. To understand the mechanisms underlying hormone-mediated physiological processes, it is indispensable to know the exact hormone concentrations at cellular levels. In the present study, we established a system to determine levels of ABA and jasmonoyl-isoleucine (JA-Ile) from single cells. Samples taken from a cell of Vicia faba leaves using nano-electrospray ionization (ESI) tips under a microscope were directly introduced into mass spectrometers by infusion and subjected to tandem mass spectrometry (MS/MS) analysis. Stable isotope-labeled [D(6)]ABA or [(13)C(6)]JA-Ile was used as an internal standard to compensate ionization efficiencies, which determine the amount of ions introduced into mass spectrometers. We detected ABA and JA-Ile from single cells of water- and wound-stressed leaves, whereas they were almost undetectable in non-stressed single cells. The levels of ABA and JA-Ile found in the single-cell analysis were compared with levels found by analysis of purified extracts with liquid chromatography-tandem mass spectrometry (LC-MS/MS). These results demonstrated that stress-induced accumulation of ABA and JA-Ile could be monitored from living single cells.
Collapse
Affiliation(s)
- Takafumi Shimizu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Shinya Miyakawa
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo, 192-0397 Japan
| | - Tsuyoshi Esaki
- RIKEN Quantitative Biology Center, Suita, Osaka, 565-0874 Japan
| | - Hajime Mizuno
- RIKEN Quantitative Biology Center, Suita, Osaka, 565-0874 Japan
| | | | - Tomokazu Koshiba
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo, 192-0397 Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo, 192-0397 Japan
| |
Collapse
|
12
|
Misra BB, Acharya BR, Granot D, Assmann SM, Chen S. The guard cell metabolome: functions in stomatal movement and global food security. FRONTIERS IN PLANT SCIENCE 2015; 6:334. [PMID: 26042131 PMCID: PMC4436583 DOI: 10.3389/fpls.2015.00334] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 04/28/2015] [Indexed: 05/06/2023]
Abstract
Guard cells represent a unique single cell-type system for the study of cellular responses to abiotic and biotic perturbations that affect stomatal movement. Decades of effort through both classical physiological and functional genomics approaches have generated an enormous amount of information on the roles of individual metabolites in stomatal guard cell function and physiology. Recent application of metabolomics methods has produced a substantial amount of new information on metabolome control of stomatal movement. In conjunction with other "omics" approaches, the knowledge-base is growing to reach a systems-level description of this single cell-type. Here we summarize current knowledge of the guard cell metabolome and highlight critical metabolites that bear significant impact on future engineering and breeding efforts to generate plants/crops that are resistant to environmental challenges and produce high yield and quality products for food and energy security.
Collapse
Affiliation(s)
- Biswapriya B. Misra
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | | | - David Granot
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Bet-Dagan, Israel
| | | | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Virlouvet L, Fromm M. Physiological and transcriptional memory in guard cells during repetitive dehydration stress. THE NEW PHYTOLOGIST 2015; 205:596-607. [PMID: 25345749 DOI: 10.1111/nph.13080] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/20/2014] [Indexed: 05/19/2023]
Abstract
Arabidopsis plants subjected to a daily dehydration stress and watered recovery cycle display physiological and transcriptional stress memory. Previously stressed plants have stomatal apertures that remain partially closed during a watered recovery period, facilitating reduced transpiration during a subsequent dehydration stress. Guard cells (GCs) display transcriptional memory that is similar to that in leaf tissues for some genes, but display GC-specific transcriptional memory for other genes. The rate-limiting abscisic acid (ABA) biosynthetic genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) and ALDEHYDE OXIDASE 3 (AAO3) are expressed at much higher levels in GCs, particularly during the watered recovery interval, relative to their low levels in leaves. A genetic analysis using mutants in the ABA signaling pathway indicated that GC stomatal memory is ABA-dependent, and that ABA-dependent SNF1-RELATED PROTEIN KINASE 2.2 (SnRK2.2), SnRK2.3 and SnRK2.6 have distinguishable roles in the process. SnRK2.6 is more important for overall stomatal control, while SnRK2.2 and SnRK2.3 are more important for implementing GC stress memory in the subsequent dehydration response. Collectively, our results support a model of altered ABA production in GCs that maintains a partially closed stomatal aperture during an overnight watered recovery period.
Collapse
Affiliation(s)
- Laetitia Virlouvet
- University of Nebraska Center for Plant Science Innovation, 1901 Vine Street, Lincoln, NE, 68588, USA
| | | |
Collapse
|
14
|
Jensen MK, Skriver K. NAC transcription factor gene regulatory and protein-protein interaction networks in plant stress responses and senescence. IUBMB Life 2014; 66:156-166. [PMID: 24659537 DOI: 10.1002/iub.1256] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/28/2014] [Indexed: 12/18/2022]
Abstract
Plant-specific NAM/ATAF/CUC (NAC) transcription factors (TFs) have recently received considerable attention due to their significant roles in plant development and stress signaling. Here, we summarize progress in understanding NAC TFs in stress responses and senescence. We focus on interactions between the DNA-binding NAC domain and target genes, and between the large, mostly disordered transcription regulatory domain of NAC TFs and protein interaction partners. Recent studies have identified both up-stream regulators of NAC genes and down-stream NAC target genes, outlining regulatory networks associated with NAC-protein interactions. This connects molecular interactions and signal pathway intersections with biological functions with promising use in agriculture. © 2014 IUBMB Life, 66(3):156-166, 2014.
Collapse
Affiliation(s)
- Michael K Jensen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen, Denmark
| | - Karen Skriver
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen, Denmark
| |
Collapse
|
15
|
Kelly G, Moshelion M, David-Schwartz R, Halperin O, Wallach R, Attia Z, Belausov E, Granot D. Hexokinase mediates stomatal closure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:977-88. [PMID: 23738737 DOI: 10.1111/tpj.12258] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 05/19/2023]
Abstract
Stomata, composed of two guard cells, are the gates whose controlled movement allows the plant to balance the demand for CO2 for photosynthesis with the loss of water through transpiration. Increased guard-cell osmolarity leads to the opening of the stomata and decreased osmolarity causes the stomata to close. The role of sugars in the regulation of stomata is not yet clear. In this study, we examined the role of hexokinase (HXK), a sugar-phosphorylating enzyme involved in sugar-sensing, in guard cells and its effect on stomatal aperture. We show here that increased expression of HXK in guard cells accelerates stomatal closure. We further show that this closure is induced by sugar and is mediated by abscisic acid. These findings support the existence of a feedback-inhibition mechanism that is mediated by a product of photosynthesis, namely sucrose. When the rate of sucrose production exceeds the rate at which sucrose is loaded into the phloem, the surplus sucrose is carried toward the stomata by the transpiration stream and stimulates stomatal closure via HXK, thereby preventing the loss of precious water.
Collapse
Affiliation(s)
- Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Jensen MK, Lindemose S, Masi FD, Reimer JJ, Nielsen M, Perera V, Workman CT, Turck F, Grant MR, Mundy J, Petersen M, Skriver K. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio 2013; 3:321-7. [PMID: 23951554 PMCID: PMC3741915 DOI: 10.1016/j.fob.2013.07.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 07/23/2013] [Indexed: 12/20/2022] Open
Abstract
ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT[A,C,G]CGT as ATAF1 consensus binding sequences. Co-expression analysis across publicly available microarray experiments identified 25 genes co-expressed with ATAF1. The promoter regions of ATAF1 co-expressors were significantly enriched for ATAF1 binding sites, and TTGCGTA was identified in the promoter of the key abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis.
Collapse
Key Words
- ABA, abscisic acid
- ATAF1, Arabidopsis thaliana activating factor 1
- Abscisic acid biosynthesis
- Arabidopsis
- ChIP, chromatin-immunoprecipitation
- DBD, DNA-binding domain
- DNA-binding
- NAC transcription factor
- NAC, NAM, ATAF1/2, CUC2
- NCED3, 9-cis-epoxycarotenoid dioxygenase-3
- PBM, protein-binding microarrays
- PWM, position weight matrix
- SnRK, Sucrose nonfermenting 1(SNF1)-related serine/threonine-protein kinase
- TF, transcription factor
Collapse
Affiliation(s)
- Michael Krogh Jensen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Søren Lindemose
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Federico de Masi
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Julia J. Reimer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Michael Nielsen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Venura Perera
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Chris T. Workman
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Franziska Turck
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Murray R. Grant
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - John Mundy
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Morten Petersen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Karen Skriver
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
17
|
Daszkowska-Golec A, Szarejko I. Open or close the gate - stomata action under the control of phytohormones in drought stress conditions. FRONTIERS IN PLANT SCIENCE 2013; 4:138. [PMID: 23717320 PMCID: PMC3652521 DOI: 10.3389/fpls.2013.00138] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/23/2013] [Indexed: 05/18/2023]
Abstract
Two highly specialized cells, the guard cells that surround the stomatal pore, are able to integrate environmental and endogenous signals in order to control the stomatal aperture and thereby the gas exchange. The uptake of CO2 is associated with a loss of water by leaves. Control of the size of the stomatal aperture optimizes the efficiency of water use through dynamic changes in the turgor of the guard cells. The opening and closing of stomata is regulated by the integration of environmental signals and endogenous hormonal stimuli. The various different factors to which the guard cells respond translates into the complexity of the network of signaling pathways that control stomatal movements. The perception of an abiotic stress triggers the activation of signal transduction cascades that interact with or are activated by phytohormones. Among these, abscisic acid (ABA), is the best-known stress hormone that closes the stomata, although other phytohormones, such as jasmonic acid, brassinosteroids, cytokinins, or ethylene are also involved in the stomatal response to stresses. As a part of the drought response, ABA may interact with jasmonic acid and nitric oxide in order to stimulate stomatal closure. In addition, the regulation of gene expression in response to ABA involves genes that are related to ethylene, cytokinins, and auxin signaling. In this paper, recent findings on phytohormone crosstalk, changes in signaling pathways including the expression of specific genes and their impact on modulating stress response through the closing or opening of stomata, together with the highlights of gaps that need to be elucidated in the signaling network of stomatal regulation, are reviewed.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| |
Collapse
|
18
|
Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Klenoticova H, Jacas L, Griga M, Ochatt SJ. Gene Transfer in Legumes. PROGRESS IN BOTANY 2013. [DOI: 10.1007/978-3-642-30967-0_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KAS, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N, Mendel RR, Bittner F, Hetherington AM, Hedrich R. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 2012; 23:53-7. [PMID: 23219726 DOI: 10.1016/j.cub.2012.11.022] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 11/09/2012] [Indexed: 01/16/2023]
Abstract
Stomata are pores on the leaf surface, bounded by two guard cells, which control the uptake of CO(2) for photosynthesis and the concomitant loss of water vapor. In 1898, Francis Darwin showed that stomata close in response to reduced atmospheric relative humidity (rh); however, our understanding of the signaling pathway responsible for coupling changes in rh to alterations in stomatal aperture is fragmentary. The results presented here highlight the primacy of abscisic acid (ABA) in the stomatal response to drying air. We show that guard cells possess the entire ABA biosynthesis pathway and that it appears upregulated by positive feedback by ABA. When wild-type Arabidopsis and the ABA-deficient mutant aba3-1 were exposed to reductions in rh, the aba3-1 mutant wilted, whereas the wild-type did not. However, when aba3-1 plants, in which ABA synthesis had been specifically rescued in guard cells, were challenged with dry air, they did not wilt. These data indicate that guard cell-autonomous ABA synthesis is required for and is sufficient for stomatal closure in response to low rh. Guard cell-autonomous ABA synthesis allows the plant to tailor leaf gas exchange exquisitely to suit the prevailing environmental conditions.
Collapse
Affiliation(s)
- Hubert Bauer
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Wuerzburg, 97082 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zarepour M, Simon K, Wilch M, Nieländer U, Koshiba T, Seo M, Lindel T, Bittner F. Identification of superoxide production by Arabidopsis thaliana aldehyde oxidases AAO1 and AAO3. PLANT MOLECULAR BIOLOGY 2012; 80:659-71. [PMID: 23065119 DOI: 10.1007/s11103-012-9975-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/28/2012] [Indexed: 05/07/2023]
Abstract
Plant aldehyde oxidases (AOs) have gained great attention during the last years as they catalyze the last step in the biosynthesis of the phytohormone abscisic acid by oxidation of abscisic aldehyde. Furthermore, oxidation of indole-3-acetaldehyde by AOs is likely to represent one route to produce another phytohormone, indole-3-acetic acid, and thus, AOs play important roles in many aspects of plant growth and development. In the present work we demonstrate that heterologously expressed AAO1 and AAO3, two prominent members of the AO family from Arabidopsis thaliana, do not only generate hydrogen peroxide but also superoxide anions by transferring aldehyde-derived electrons to molecular oxygen. In support of this, superoxide production has also been found for native AO proteins in Arabidopsis leaf extracts. In addition to their aldehyde oxidation activity, AAO1 and AAO3 were found to exhibit NADH oxidase activity, which likewise is associated with the production of superoxide anions. According to these results and due to the fact that molecular oxygen is the only known physiological electron acceptor of AOs, the production of hydrogen peroxide and/or superoxide has to be considered in any physiological condition in which aldehydes or NADH serve as substrate for AOs. In this respect, conditions such as natural senescence and stress-induced stomatal movement, which both require simultaneously elevated levels of abscisic acid and hydrogen peroxide/superoxide, are likely to benefit from AOs in two ways, namely by formation of abscisic acid and by concomitant formation of reactive oxygen species.
Collapse
Affiliation(s)
- Maryam Zarepour
- Department of Plant Biology, Braunschweig University of Technology, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A. Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 2012; 506:265-73. [PMID: 22771691 DOI: 10.1016/j.gene.2012.06.076] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/17/2012] [Accepted: 06/25/2012] [Indexed: 02/06/2023]
Abstract
Recent developments in defining the functional basis of abscisic acid in regulating growth, development and stress response have provided essential components for its actions. We are yet to envision the impact of how differential levels of ABA influence plant growth across life cycle. Here we reviewed the information arising from the recent unprecedented advancement made in the field of ABA signaling operative under calcium-dependent and calcium-independent pathways mediating the transcriptional reprogramming under short-term stress response. Advancement made in the field of ABA receptors and transporters has started to fill major gaps in our understanding of the ABA action. However, ABA just not only regulates guard cell movement but impacts other reproductive tissue development through massive transcriptional reprogramming events affecting various stages of the plant life cycle. Therefore many questions still remain unanswered. One such intriguing question is the contradictory role of ABA known to mediate two opposite faces of the coin: regulating abiotic stress tolerance and imparting growth retardation. In this review, we critically assessed the impact of substantial elevated levels of ABA on impairment of photosynthesis and growth alteration and its subsequent influence on seed yield formation. Excess biosynthesis of ABA under stress may deprive the same precursor pool necessary for chlorophyll biosynthesis pathway, thereby triggering growth retardation. Further, we emphasized the importance of ABA homeostasis for integrating stress cues towards coordinating sustainable plant growth. Also we provided a pertinent background on ABA biosynthesis and degradation pathway manipulation to highlight the genes and processes used in genetic engineering of plants for changed ABA content.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Interdiciplinary Center for Crop Plant Research (IZN) Research Group Stress Genomics, Corrensstraße 3, 06466 Gatersleben, Germany.
| | | | | | | | | |
Collapse
|
22
|
Wei KF, Chen J, Chen YF, Wu LJ, Jia WS. [Molecular mechanism for dynamic regulation of endogenous ABA signal level]. YI CHUAN = HEREDITAS 2012; 34:296-306. [PMID: 22425948 DOI: 10.3724/sp.j.1005.2012.00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The process from stress signal perception and the trigger of ABA biosynthesis to dynamic regulation of ABA level is an important stress signaling pathway in cells. Compared to the downstream events in ABA signal transduction, the researches in this field are relatively lagged. Expression of synthase genes, such as ZEP in roots and rate-limiting enzyme genes NCED, AtRGS1 and ABA2, can be activated in response to stresses. However, the expression of genes encoding degradative enzymes, including 7'-, 8'-, 9'-hydroxylase and glucosyltransferase, negatively regulates ABA accumulation. Meanwhile, the expressions of the synthases, such as ZEP and NCED3, are induced by increasing endogenous ABA contents. Additionally, the analyses of gene expression and source-sink dynamics indicates that sustained supply from root-sourced ABA is required for the maintenance of leaf ABA dynamic pool. It is notable that miRNAs should be involved in ABA signal origin and ABA level dynamic adjustment. Further dynamic analysis of ABA metabolism revealed that endogenous ABA signal levels are synergistically controlled by the expressions of synthases and degradative enzymes.
Collapse
Affiliation(s)
- Kai-Fa Wei
- Department of Biological Sciences and Biotechnology, Zhangzhou Normal University, China.
| | | | | | | | | |
Collapse
|
23
|
Zhou L, Franck C, Yang K, Pilot G, Heath LS, Grene R. Mining for meaning: visualization approaches to deciphering Arabidopsis stress responses in roots and shoots. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:208-28. [PMID: 22416883 DOI: 10.1089/omi.2011.0111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Massive amounts of transcriptomic data documenting plant responses to changes in environment continue to accumulate in online databases. Unfortunately, many of these data sets have not been analyzed in full detail, especially those that involve time course experiments. To gain more knowledge of the successive gene expression events that occur when stress is initiated in one organ and then relayed to another, we have chosen stress response data for Arabidopsis shoots and roots from the detailed time course study of Killian et al. as a promising source to mine. Using refined statistical analysis, modified vector analysis, and a GO enrichment algorithm, more information was revealed concerning the effects of salt and UVB on gene expression events in shoots and roots over a 24-h time period. GeneMania, with in-house modifications, was used to further analyze abscisic acid (ABA) and jasmonic acid-related (JA) gene expression events in salt-stressed roots and shoots. JA effects appeared to be quite distinct in roots when compared to shoots, especially with respect to the expression of members of the negative regulatory JAZ gene family. In contrast, ABA-related gene expression events were more similar in the two organs. Instances of crosstalk between hormones were observed, as were early responses of regulatory genes involved in both auxin and cytokinin signaling. In the case of each hormone class examined, hormone biosynthesis genes were coexpressed with the genes encoding negative regulators of the corresponding signaling pathway. Hypotheses to explain this finding and future experiments to further explore these nonlinear phenomena are proposed.
Collapse
Affiliation(s)
- Lecong Zhou
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute & State University, Blacksburg, 24061, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ding Y, Avramova Z, Fromm M. The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:735-44. [PMID: 21309869 DOI: 10.1111/j.1365-313x.2011.04534.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Emerging evidence suggests that the molecular mechanisms driving the responses of plants to environmental stresses are associated with specific chromatin modifications. Here, we demonstrate that the Arabidopsis trithorax-like factor ATX1, which trimethylates histone H3 at lysine 4 (H3K4me3), is involved in dehydration stress signaling in both abscisic acid (ABA)-dependent and ABA-independent pathways. The loss of function of ATX1 results in decreased germination rates, larger stomatal apertures, more rapid transpiration and decreased tolerance to dehydration stress in atx1 plants. This deficiency is caused in part by reduced ABA biosynthesis in atx1 plants resulting from decreased transcript levels from NCED3, which encodes a key enzyme controlling ABA production. Dehydration stress increased ATX1 binding to NCED3, and ATX1 was required for the increased levels of NCED3 transcripts and nucleosomal H3K4me3 that occurred during dehydration stress. Mechanistically, ATX1 affected the quantity of RNA polymerase II bound to NCED3. By upregulating NCED3 transcription and ABA production, ATX1 influenced ABA-regulated pathways and genes. ATX1 also affected the expression of ABA-independent genes, implicating ATX1 in diverse dehydration stress-response mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Yong Ding
- University of Nebraska Center for Biotechnology and Center for Plant Science Innovation, 1901 Vine Street, Lincoln, NE 68588, USA
| | | | | |
Collapse
|
25
|
Xiao Y, Yu X, Chen J, Di P, Chen W, Zhang L. IiSDD1, a gene responsive to autopolyploidy and environmental factors in Isatis indigotica. Mol Biol Rep 2010; 37:987-94. [PMID: 19728150 DOI: 10.1007/s11033-009-9776-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/18/2009] [Indexed: 11/29/2022]
Abstract
In plants, stomata play a pivotal role in the regulation of gas exchange and are distributed throughout the aerial epidermis. SDD1, a gene isolated from Arabidopsis thaliana has been demonstrated to specialize in stomatal density and distribution. In our present study, a comprehensive survey of global gene expression performed by using an A. thaliana whole genome Affymetrix gene chip revealed SDD1 tends to be significantly lower in tetraploid Isatis indigotica than in diploid ones. To intensively investigate different SDD1 expression in response to polyploidy, a full-length cDNA clone (IiSDD1) encoding SDD1 was isolated from the traditional Chinese medicinal herb I. indigotica cDNA library. IiSDD1 shared a high level of identity with that from A. thaliana, containing some basic features of subtilases: D, H and S regions, as well as a substrate-binding site. Real-time quantitative PCR analysis indicated that IiSDD1 was constitutively expressed in all tested tissues, including roots, stems and leaves, both in tetraploid and diploid I. indigotica, and with the highest expression in leaves. In addition, IiSDD1 was also found to be down-regulated by signalling molecules for plant defence responses, such as abscisic acid (100 microM) and gibberellin (100 mg/L), as well as by environmental stresses including salt, darkness, coldness and drought. Our study, for the first time, indicates SDD1 participates not only in the defense/stress responsive pathways, but also probably involves in plants polyploidy evolution.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, 200003 Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Teschner J, Lachmann N, Schulze J, Geisler M, Selbach K, Santamaria-Araujo J, Balk J, Mendel RR, Bittner F. A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis. THE PLANT CELL 2010; 22:468-80. [PMID: 20164445 PMCID: PMC2845412 DOI: 10.1105/tpc.109.068478] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 12/29/2009] [Accepted: 02/03/2010] [Indexed: 05/18/2023]
Abstract
The molybdenum cofactor (Moco) is a prosthetic group required by a number of enzymes, such as nitrate reductase, sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase. Its biosynthesis in eukaryotes can be divided into four steps, of which the last three are proposed to occur in the cytosol. Here, we report that the mitochondrial ABC transporter ATM3, previously implicated in the maturation of extramitochondrial iron-sulfur proteins, has a crucial role also in Moco biosynthesis. In ATM3 insertion mutants of Arabidopsis thaliana, the activities of nitrate reductase and sulfite oxidase were decreased to approximately 50%, whereas the activities of xanthine dehydrogenase and aldehyde oxidase, whose activities also depend on iron-sulfur clusters, were virtually undetectable. Moreover, atm3 mutants accumulated cyclic pyranopterin monophosphate, the first intermediate of Moco biosynthesis, but showed decreased amounts of Moco. Specific antibodies against the Moco biosynthesis proteins CNX2 and CNX3 showed that the first step of Moco biosynthesis is localized in the mitochondrial matrix. Together with the observation that cyclic pyranopterin monophosphate accumulated in purified mitochondria, particularly in atm3 mutants, our data suggest that mitochondria and the ABC transporter ATM3 have a novel role in the biosynthesis of Moco.
Collapse
Affiliation(s)
- Julia Teschner
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
| | - Nicole Lachmann
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
| | - Jutta Schulze
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
| | - Mirco Geisler
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
| | - Kristina Selbach
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
| | | | - Janneke Balk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ralf R. Mendel
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
- Address correspondence to
| | - Florian Bittner
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, 38023 Braunschweig, Germany
| |
Collapse
|
27
|
Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F, Hoth S. Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:39-51. [PMID: 19309463 DOI: 10.1111/j.1365-313x.2009.03846.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
During leaf senescence, resources are recycled by redistribution to younger leaves and reproductive organs. Candidate pathways for the regulation of onset and progression of leaf senescence include ubiquitin-dependent turnover of key proteins. Here, we identified a novel plant U-box E3 ubiquitin ligase that prevents premature senescence in Arabidopsis plants, and named it SENESCENCE-ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1). Using in vitro ubiquitination assays, we show that SAUL1 has E3 ubiquitin ligase activity. We isolated two alleles of saul1 mutants that show premature senescence under low light conditions. The visible yellowing of leaves is accompanied by reduced chlorophyll content, decreased photochemical efficiency of photosystem II and increased expression of senescence genes. In addition, saul1 mutants exhibit enhanced abscisic acid (ABA) biosynthesis. We show that application of ABA to Arabidopsis is sufficient to trigger leaf senescence, and that this response is abolished in the ABA-insensitive mutants abi1-1 and abi2-1, but enhanced in the ABA-hypersensitive mutant era1-3. We found that increased ABA levels coincide with enhanced activity of Arabidopsis aldehyde oxidase 3 (AAO3) and accumulation of AAO3 protein in saul1 mutants. Using label transfer experiments, we showed that interactions between SAUL1 and AAO3 occur. This suggests that SAUL1 participates in targeting AAO3 for ubiquitin-dependent degradation via the 26S proteasome to prevent premature senescence.
Collapse
Affiliation(s)
- Sabine Raab
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:867-80. [PMID: 18694460 DOI: 10.1111/j.1365-313x.2008.03646.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ATAF1 is a member of a largely uncharacterized plant-specific gene family encoding NAC transcription factors, and is induced in response to various abiotic and biotic stimuli in Arabidopsis thaliana. Previously, we showed that a mutant allele of ATAF1 compromises penetration resistance in Arabidopsis with respect to the non-host biotrophic pathogen Blumeria graminis f. sp. hordei (Bgh). In this study, we have used genome-wide transcript profiling to characterize signalling perturbations in ataf1 plants following Bgh inoculation. Comparative transcriptomic analyses identified an over-representation of abscisic acid (ABA)-responsive genes, including the ABA biosynthesis gene AAO3, which is significantly induced in ataf1 plants compared to wild-type plants following inoculation with Bgh. Additionally, we show that Bgh inoculation results in decreased endogenous ABA levels in an ATAF1-dependent manner, and that the ABA biosynthetic mutant aao3 showed increased penetration resistance to Bgh compared to wild-type plants. Furthermore, we show that ataf1 plants show ABA-hyposensitive phenotypes during seedling development and germination. Our data support a negative correlation between ABA levels and penetration resistance, and identify ATAF1 as a new stimuli-dependent attenuator of ABA signalling for the mediation of efficient penetration resistance in Arabidopsis upon Bgh attack.
Collapse
Affiliation(s)
- Michael K Jensen
- Department of Plant Biology, Faculty of Life Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
29
|
Endo A, Koshiba T, Kamiya Y, Nambara E. Vascular system is a node of systemic stress responses: Competence of the cell to synthesize abscisic acid and its responsiveness to external cues. PLANT SIGNALING & BEHAVIOR 2008; 3:1138-40. [PMID: 19704460 PMCID: PMC2634481 DOI: 10.4161/psb.3.12.7145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 05/18/2023]
Abstract
Activation of abscisic acid (ABA) biosynthesis is a trigger to elicit ABA-mediated biological events. We recently reported that drought-induced ABA biosynthesis occurs predominantly in vascular parenchyma cells. This work also showed that a particular set of drought inducible gene expressions initiated in the vascular system. The spatial constraint of ABA biosynthesis is supposed to be critical for directing systemic stress responses. Cellular competence to synthesize ABA and its responsiveness to developmental and environmental signals is discussed.
Collapse
Affiliation(s)
- Akira Endo
- Department of Cell & Systems Biology; University of Toronto; Toronto, Ontario Canada
| | - Tomokazu Koshiba
- Department of Biological Sciences; Tokyo Metropolitan University; Hachouji, Tokyo Japan
| | - Yuji Kamiya
- Growth Regulation Research Group; RIKEN Plant Science Center; Tsurumi, Kanagawa Japan
| | - Eiji Nambara
- Department of Cell & Systems Biology; University of Toronto; Toronto, Ontario Canada
- The Centre for the Analysis of Genome Evolution and Function (CAGEF); University of Toronto; Toronto, Ontario Canada
| |
Collapse
|